
AN1921
Microchip TCP/IP Lite Stack
INTRODUCTION

This application note describes the structure and the
interface for the Microchip Transmission Control
Protocol/Internet Protocol (TCP/IP) Lite Stack library,
and includes some simple example applications using
MPLAB® Code Configurator (MCC). The purpose of
the implementation is to provide an optimized (low
Flash and RAM footprint) TCP/IP stack for
microcontrollers with 8 KB Flash (UDP only) and 16

KB Flash (TCP/IP), while still having a fully functional
TCP/IPv4 stack. The stack will allow users to add wired
communication and interoperability with other systems
to their applications over Ethernet.

The Microchip TCP/IP Lite Stack is implemented in a
configurable and modular way, allowing users to
include only the intended features or functionalities to
their application. The stack is written in C programming
language and it is intended to be compiled with the
MPLAB® XC8 compiler.

TCP/IP STACK ARCHITECTURE

The TCP/IP Lite library implementation is based on the
TCP/IP communication model, as shown in Figure 1:

FIGURE 1: MULTILAYER TCP/IP COMMUNICATION MODEL

Authors: Janaki Kuruganti,
Alin Stoicescu,
Marius Cristea,
Microchip Technology Inc.
 2015-2017 Microchip Technology Inc. DS00001921D-page 1

AN1921
The TCP/IP stack is divided into multiple layers
(Figure 1). Each layer in the Microchip TCP/IP Lite
Stack can directly access one or more layers situated
above or below it.

The TCP/IP stack needs a background task called
periodically by the user, in order to handle
asynchronous events like managing a timeout,
checking the status for the Ethernet controller, and
parsing the received buffers.

The code implementing each protocol resides in
separate source files, while the services and the
Application Programming Interfaces (APIs) are defined
through header or include files.

Stack Configuration

TCP/IP Lite stack is scalable (i.e., the user can
configure the protocols as per application
requirements). MCC gives the user the flexibility to
choose and to generate code only for the needed
protocols. Apart from the protocol selection, users also
have the option of configuring the stack parameters
using MCC. These stack parameters reside in the
tcpip_config.h file as part of MCC code
generation.

Some important configurations include:

1. dhcpName:

Used by the DHCP server to assign a human readable
name to a MAC address. The default value is the
device name ETHERNET, for example: “PIC16F18346
ETHERNET”.

2. ARP_MAP_SIZE:

This refers to the maximum size of the Address
Resolution Protocol (ARP) table. The default value is 8.

3. IP address, Subnet Mask, Default Gateway,
Preferred and Alternate DNS Server addresses,
in case of static IP address

4. For ICMP, there is an option to generate Echo
Response and Port Unreachable messages.

TCP/IP STACK BUFFER
MANAGEMENT

Overview

The TCP/IP stack uses by default the least possible
memory, so that users have the maximum possible
memory available to be allocated for their applications.
In order to achieve this, users are responsible for
providing all the buffers required for each TCP/IP
protocol/connection, as described further on.

The Ethernet controller receives and stores multiple
packets until the TCP/IP stack can process them. The
buffer for each received packet is managed by the
Ethernet controller automatically and a buffer
descriptor is available for the user. The Ethernet

controller starts dropping the received packets if it does
not have enough memory left to store the incoming
packets.

Ethernet packets to be transmitted are also built and
kept in the Ethernet controller’s memory.

Buffers Used by the UDP Protocol

The stack allows the user to directly store the payload
in the Ethernet controller’s RAM. The user will call the
API to start a UDP packet, transfer the payload and
send the packet.

When receiving data over the UDP protocol, the
Ethernet controller manages the received packet
buffer. If the packet was received successfully and
there is a user callback registered for the incoming port,
the stack calls the registered function (callback) and
gives the user the opportunity to access the payload
directly from the Ethernet controller. This avoids
copying the payload multiple times and saves time and
memory.

Buffers Used by the TCP Protocol

In case of TCP, the user needs to allocate some
memory for each TCP connection. There are a few
types of buffers needed by the TCP:

• The Socket Memory
- Memory allocation for each socket is the

user’s responsibility. This can be done by
calling an API, especially designed for this
purpose. This is where all the internal
information about the TCP connection is
kept.

• The Rx and Tx Buffers
- The receive (Rx) and the transmit (Tx) buffers

for each TCP connection are to be created by
the user and passed to the stack via the stack
API. Each socket can have only one Rx and
one Tx buffer at a time. The stack always
needs one Rx buffer available to receive data
from the remote host. The stack functions
only for a short period of time without the Rx
buffer, before asking for packet
retransmission.

TCP/IP Stack Features and Limitations

The TCP/IP stack has some limitations based on the
limited memory, for both RAM and Flash, available to
run on constrained devices like 8-bit microcontrollers.
To find information about the current features and
limitations of the stack, refer to MCC’s TCP/IP Lite
library release notes.
DS00001921D-page 2  2015-2017 Microchip Technology Inc.

AN1921
RUNNING THE TCP/IP STACK DEMOS

Required Hardware and Software to Run
the Demo

1. Curiosity Development Board (DM164137)

2. PIC16F18346 MCU

3. USB Power Supply

4. MPLAB® X v3.45 or later

5. XC8 v1.41 C compiler or later

6. Computer with Windows, Linux or MAC OS

7. TCP/IP Demo Application

8. Ethernet ENC28J60 Click Board (ETH Click)

9. Packet Sender Application (to send and receive
UDP/TCP packets). Download the application at
https://packetsender.com/.

10. DHCP Server (without it the board cannot
retrieve an IP address and the UDP demo will
not work). The TCP Demo works with static IP
address configuration.

11. Ethernet cables:

- Straight-through – if the board will be
connected to a router/switch

- Crossover – if the board will be connected to
the computer directly

Setting up the Hardware

1. Connect the ETH click board to the Curiosity
Development board (connector J35).

2. Connect the ENC28J60 to an Ethernet network
using an Ethernet cable (it can be connected
directly to the Ethernet port of a PC). The board
must be able to connect to a running DHCP
server for the UDP demo.

3. Connect the USB power supply to the Curiosity
Development board using the J2 connector.

4. For each application the user should follow the
steps presented in the setup chapter related to
each demo.

SETUP THE SOFTWARE FOR TCP
CLIENT/SERVER DEMO USING MCC

In order to create an application using TCP the user
should configure the TCP/IP Lite module, available
through MCC, as shown below:

1. Start MPLAB X and create a new project for the
PIC16F18346 device. (This demo uses
PIC16F18346, but any 8-bit MCU can be utilized
instead.)

2. Open MCC.

3. From Device Resources  Libraries, double
click on the TCP/IP Lite module, as shown in
Figure 2:

FIGURE 2: LIBRARY SELECTION

 2015-2017 Microchip Technology Inc. DS00001921D-page 3

AN1921
4. A TCP Application requires some changes to
the TCP/IP module, as illustrated in Figure 3:

- UDP – not checked
- DHCP – not checked. The user must provide

its own static IP configuration
- TCP – checked

FIGURE 3: STACK CONFIGURATION

5. The Notifications tab shows different types of
messages (Figure 4).

- “WARNING” messages are required to be
addressed to generate an error free code

- “HINT” messages help the user follow the
code generation

- “INFO” messages allow the user to give
information about the loaded modules

The Notifications tab shows all the dependencies of
the TCP/IP stack.

FIGURE 4: NOTIFICATIONS TAB

DS00001921D-page 4  2015-2017 Microchip Technology Inc.

AN1921
6. TCP/IP Lite module requires the Ethernet MAC
library and Timer1 module, as indicated in
Figure 5.

- From Device Resources  Libraries 
Ethernet, double click on MAC

- From Device Resources  Peripherals 
Timer, double click on TMR1

FIGURE 5: STACK DEPENDENCIES
SELECTION

7. The device needs to be configured with a 1s tick
of system clock. The user shall configure the
Timer1 as shown in Figure 6 below:

- Timer Period – 250 ms
- Enable Timer Interrupt – Checked
- Callback Function Rate – 4

FIGURE 6: TIMER CONFIGURATION

 2015-2017 Microchip Technology Inc. DS00001921D-page 5

AN1921
8. Below are the steps required to configure the
Ethernet MAC module (Figure 7):

- In the Easy Setup window, the user should
select the ENC28J60 controller from the drop
down selection box. The ENC28J60
controller is based on the Serial Peripheral
Interface. The Curiosity Development board
(DM164137) supports the MSSP1 – SPI
module interface on the J35 connector.

FIGURE 7: MAC LIBRARY
CONFIGURATION

9. The user shall add the MSSP1 module, as
shown in Figure 8:

- From Device Resources  Peripherals 
MSSP, double click on MSSP1

FIGURE 8: MAC LIBRARY
DEPENDENCY SELECTION

10. Steps required to configure MSSP1 module are
shown in Figure 9:

- Mode – SPI Master
- Input Data Sampled at – End
- Clock Edge – Active to Idle

FIGURE 9: SPI CONFIGURATION

11. The user shall use the ADC module to send the
potentiometer data over TCP, as shown in
Figure 10.

- From Device Resources  Peripherals 
ADC, double click on ADC

FIGURE 10: ADC MODULE SELECTION

DS00001921D-page 6  2015-2017 Microchip Technology Inc.

AN1921
12. The ADC module should be configured
(Figure 11) with:

- Clock Source – FOSC/4
- Result Alignment – Right

FIGURE 11: ADC MODULE CONFIGURATION

 2015-2017 Microchip Technology Inc. DS00001921D-page 7

AN1921
13. Steps required to configure the Pin Manager
(Figure 12):

• MSSP1 module Pin configuration:
- SCK1 – output Port RB6
- SDI1 – input Port RB4
- SDO1 – output - Port RC7

• MAC module Pin configuration
- ETH_CS – for the ENC28J60 controller -

output Port RC6
• ADC module Pin configuration:

- ANx – input Port RC0
- From Project Resources  System  Pin

Module, the user can provide a custom name
to the AN0 channel ex: Pot

• Configure Pin Manager for LED on Curiosity
board
- Pin module – output Port RA5
- From Project Resources  System  Pin

Module, the user can provide a custom name
to the RA5 Pin ex: Toggle_Led

FIGURE 12: PIN FUNCTIONS AND NAMES

14. All the required configurations were made and
the user can click the Generate button.

DS00001921D-page 8  2015-2017 Microchip Technology Inc.

AN1921
SIMPLE TCP CLIENT DEMO
IMPLEMENTATION

Overview

This is a simple TCP client implementation that will
connect to a server that runs on a computer on port 60.
The user needs to modify the server IP address in the
firmware. Once the connection is established, the client
will send status packets to the server every 2 seconds.
The packets sent by the client contain potentiometer
value and LED status. From the server, the user can
also turn the LED on or off on the board, using the GUI
push buttons. In this demo any button will trigger the
same LED.

For this demo there is only one active connection
implemented, but the TCP/IP stack supports multiple
TCP connections on the same board. For each new
connection the user needs to create a new socket, an
Rx buffer, and try to connect to the server. This demo
has been set up to run on the Curiosity board.

The TCP Client demo will try to connect to the server
every two seconds. This was implemented so the user
can easily watch and analyze the packets using
Wireshark protocol analyzer.

Setting up the Software for the TCP
Client Demo

1. The user should find the IP address of the
computer where the TCP/IP server Java demo
application runs on.

2. Use the TCP/IP Lite library from the previously
created project.

3. Add the tcp_client_demo.c and
tcp_client_demo.h files to the project.

4. In main(), the user should call
TCP_Client_Initialize() to add the
server IP address and port number. The IP
address is the one from step 1, as shown in
Example 1.

EXAMPLE 1: SETTING SERVER
LOCATION

5. In main(), the user shall enable the Global and
Peripheral Interrupts.

6. In while(1) loop, the Network_Manage()
command must be called. It is an API which
polls the Ethernet controller for new packets and
processes them.

7. In while(1) loop, the DEMO_TCP_Client()
command must be called to handle the socket
states of the Client connected to the server.

8. The project must be compiled using XC8.

9. Using MPLAB X, the user can program the
firmware on the PIC16F18346 on the Curiosity
Development board.

10. If the IP address configured in MCC and the IP
address of the computer where the TCP/IP
server runs on are both unique, valid and in the
same network, they must be able to exchange
packets. The user can test this by sending ICMP
messages (using the ping command).

11. Start the TCP/IP demo Java application on the
computer, as shown in Figure 13.

12. Go to the TCP Server Demo tab.

13. Go to the Server  Local Port and change the
port number to 60.

14. Push the Listen button (The status will be
changed to “Listen...” and the button should be
replaced by one with a Disconnect option).

15. When the Curiosity board will connect to the
computer, a message in the Sent/Received Data
windows will be printed, as shown in Example 2.

EXAMPLE 2: CONNECTION STATUS

16. In the Send field, the user can type a message
to be sent to the board. The message will be
sent when the Enter or Send button is pressed.
Both sent data and received data will be printed
in different colors in the Sent/Received Data
window.

17. Messages that came from the board will be
automatically printed in Sent/Received Data and
contain the LED state and the raw value of the
on-board potentiometer. Values are in
hexadecimal format.

18. Pushing the LED 0 – LED 7 button will initiate
the sending of a command to the board. In this
demo, all buttons will trigger the same LED on
the board (will be turned on or off). The
implementation supports only one LED turning
on or off at a time.

19. Pushing the Disconnect button will close the
Server connection and print a “Server closed”
message followed by a “Client disconnected”
message. This message will be printed for each
“Client connected” message.

20. Repeat steps 13 to 18 to test the connection.

remoteSocket.addr.s_addr = MAKE_IPV4_AD-
DRESS(192,168,0,3);

remoteSocket.port = 60;

192.168.0.21: Connected
 2015-2017 Microchip Technology Inc. DS00001921D-page 9

AN1921
FIGURE 13: MICROCHIP TCP CLIENT
DEMO IN JAVA
APPLICATION

TCP Client Demo Firmware – Buffer
Creation

Before starting the Client, the user needs to create the
socket and also, at least, the Rx buffer, as shown in
Example 3. The Tx buffer will be created by the user
and passed to the TCP stack when it is ready to be
sent.

EXAMPLE 3: SOCKET CREATION

TCP Client Implementation

The steps required to start and implement the TCP
Client are as follows:

1. Initialize the TCP stack. The function should be
called before any other TCP function is called. It
is done automatically through
Network_Init() by the MCC’s
SYSTEM_Initialize() function.

TCP_Init();

2. Set the IP address and port number. The user
needs to provide the port number to connect to
(this is the port number where the server listens
on) and the IP address of the computer where
the TCP/IP server Java demo application runs
on. This function should be called before the
while(1) loop.

TCP_Client_Initialize();

3. Check the status of the socket. This function
checks if the pointer provided as parameter is
registered internally to the TCP/IP stack as a
socket. If the pointer is a valid socket, the
function will return the state of that socket. The
possible states of the socket are defined in the
tcpv4.h file.

socket_state = TCP_SocketPoll(&port7TCB);

4. Insert and initialize the socket in order to create
the connection. All the necessary information for
the TCP connection is kept here.

TCP_SocketInit(&port60TCB);

5. Set the local port for the client. This step is not
mandatory, as the TCP stack will use the next
available port number as a local port. The user
needs to use TCP_Bind() to make sure that a
certain port number will be used when the
connection is initiated. This is useful when the
server accepts connections only from a certain
port number.

TCP_Bind(&port60TCB, 1024);

6. Add the Rx buffer to the socket. The function will
insert the buffer into the socket. It will be used for
saving the received data.

TCP_InsertRxBuffer(&port60TCB, rxdat
aPort60, sizeof(rxdataPort60));

7. Start the Client by calling the TCP_Connect()
function that will initiate the TCP connect
procedure for connecting to the server. If the
TCP handshake is successful, the user can
exchange data with the remote server over the
TCP connection.

TCP_Connect(&port60TCB, &remoteSocket);

8. Close a TCP connection. If the connection
failed, the Client should abort the connection
and close the socket. The user should initiate a
new TCP connect procedure every two
seconds. This function will close the TCP
connection. The user needs to check the socket
state periodically, until the socket is in closed
state. When the socket is in closed state, the Rx
and Tx buffers can be safely reused.

TCP_Close(&port60TCB);

// create the socket for the TCP Client

tcpTCB_t port60TCB;

// create the TX and RX buffers

uint8_t rxdataPort60[50];

uint8_t txdataPort60[80];
DS00001921D-page 10  2015-2017 Microchip Technology Inc.

AN1921
9. Check if the Tx buffer was sent correctly. This
function needs to be called before trying to send
anything, because the socket can handle only
one buffer at a time.

TCP_SendDone(&port60TCB);

10. Read available bytes in Rx buffer and make the
buffer user ready. The function below will return
the number of bytes available in the buffer. After
calling this function, the user can access the
buffer in a safe way. Once the function is called,
the stack will not save further received data into
this Rx buffer. The user should provide, as
quickly as possible, another Rx buffer to the
stack (in order to avoid packet retransmission).

rxLen = TCP_GetReceivedData(&port60TCB);

11. Send the buffer to the remote machine. The API
will allow the user to send data over an active
TCP connection. The data cannot be sent if the
connection is not established between the local
and remote host.

TCP_Send(&port60TCB, txdataPort60, txLen);

12. Remove the socket. When the socket is closed,
if the user wants to remove the socket from the
internal socket list, the following API will remove
the pointer.

TCP_SocketRemove(&port60TCB);

13. Background task. The function below needs to
be called periodically by the application, in order
to handle the timeouts from the TCP stack. The
TCP background task is called once per second
to handle the TCP stack timeouts.

TCP_Update(); // handle timeouts
 2015-2017 Microchip Technology Inc. DS00001921D-page 11

AN1921
Source Code for the TCP Client
Implementation

The TCP Client demo code in Example 4 (source code
and prebuilt hex file) is available as download on
www.microchip.com.

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
DS00001921D-page 12  2015-2017 Microchip Technology Inc.

http://www.microchip.com/

AN1921
EXAMPLE 4: TCP CLIENT DEMO SOURCE CODE
void DEMO_TCP_Client(void)

{

// create the socket for the TCP Client

static tcpTCB_t port60TCB;

 // create the TX and RX Client's buffers

static uint8_t rxdataPort60[50];

static uint8_t txdataPort60[80];

static time_t t_client = 0;

static time_t socketTimeout = 0;

uint16_t rx_len;

sockaddr_in_t remoteSocket;

socketState_t socketState;

rx_len = 0;

socketState = TCP_SocketPoll(&port60TCB);

time(&t_client);

switch(socketState)

{

case NOT_A_SOCKET:

// Inserting and initializing the socket

TCP_SocketInit(&port60TCB);
break;

case SOCKET_CLOSED:

// if the socket is closed we will try to connect again

// try to connect once at 2 seconds

 socketTimeout = t_client + 2;

 TCP_InsertRxBuffer(&port60TCB,rxdataPort60, sizeof(rxdataPort60));

 TCP_Connect(&port60TCB, &remoteSocket);

break;

 case SOCKET_IN_PROGRESS:

// close the socket

 if(t_client >= socketTimeout)

 {

 TCP_Close(&port60TCB);

 }

break;
 2015-2017 Microchip Technology Inc. DS00001921D-page 13

AN1921
EXAMPLE 4: TCP CLIENT DEMO SOURCE CODE (CONTINUED)
case SOCKET_CONNECTED:

// implement an echo client over TCP

// check if the previous buffer was sent

if (TCP_SendDone(&port60TCB))

{

rx_len = TCP_GetReceivedData(&port60TCB);

// handle the incoming data

if(rx_len > 0)

{

/*

…………………………………………………………………………….

LED Command parsing and LCD updates was removed from this example.

The full code is available in the source code.

…………………………………………………………………………….

*/

// reuse the RX buffer

TCP_InsertRxBuffer(&port60TCB, rxdataPort60, sizeof(rxdataPort60));

}

if(t_client >= socketTimeout)

{

// send board status message only once at 2 seconds

socketTimeout = t_client + 2;

/*

…………………………………………………………………………….

Composing the TX message in the TX buffer was removed from this example.

The full code is available in the source code.

…………………………………………………………………………….

*/

//send data back to the source

TCP_Send(&port60TCB, txdataPort60, strlen(txdataPort60));

 }

}

break;

 case SOCKET_CLOSING:

//remove the used socket form the list

TCP_SocketRemove(&port60TCB);

break;

 default:

break;

}

}

DS00001921D-page 14  2015-2017 Microchip Technology Inc.

AN1921
SIMPLE TCP SERVER DEMO
IMPLEMENTATION

Overview

This is a simple TCP echo server implementation,
listening on port 7. The Server is started on the
Curiosity board and it will wait for any incoming
connection. The Server will echo back all the received
data once the connection with a client is established.
Only one active connection will be created for this
demo, but the TCP/IP stack supports multiple TCP
connections on the same board. The user needs to
create a new Server (create buffers, initialize and start
listening) for each new connection.

Setting up the Software for the TCP
Server Demo

1. The user should create a project as it was
shown in Section “Setup the Software for
TCP Client/Server Demo Using MCC”, this
time excluding steps 11 and 12. The Server
does not need an ADC module or LEDs to be
toggled.

2. Add the tcp_server_demo.c and
tcp_server_demo.h files to the project.

3. In the main() function, the user will enable the
Global and Peripheral Interrupts.

4. In while(1) loop, the Network_Manage()
function must be called. It is an API which polls
the Ethernet controller for new packets and
processes them.

5. In while(1) loop, the DEMO_TCP_EchoServer()
function must be called to open the socket and listen
for incoming clients.

6. The project must be compiled using XC8.

7. Using MPLAB X, the user can program the
firmware to the PIC16F18346 on the Curiosity
Development board.

8. Start the TCP/IP demo Java application on the
computer (see Figure 14).

9. Go to the TCP Client Demo tab.

10. Go to the “Server IP Address” and set the IP
address and the port number to 7. The IP
address is static and it was configured using
MCC.

11. Click on the Connect button.

12. When the computer is connected to the
Curiosity board, a message in the Sent/
Received Data windows will be printed, as
shown in Example 5.

EXAMPLE 5: INITIAL LOG MESSAGE

13. The user can type in the Send window and press

Enter from keyboard or push the Send button to
send the string. Both sent and received data will
be printed with different colors in the Sent/
Received Data window.

14. Pushing the Disconnect button will close the
TCP connection. A “Connection closed”
message will be printed.

15. Repeat steps 9 to 13 to test the connection
using different strings length.

16. To generate TCP traffic to the board the ECHO
back received message button should be
enabled. The Send text box should be filled with
the desired message to be sent to the board.
Pushing the Send button will initiate the data
exchange. To stop the TCP traffic the Echo
Back received message button should be
pushed again. In this case, in the Sent/Received
Data window, only the received messages will
be printed.

FIGURE 14: MICROCHIP TCP CLIENT
DEMO FOR JAVA
APPLICATION

Connected to 192.168.0.21 Port: 7

 2015-2017 Microchip Technology Inc. DS00001921D-page 15

AN1921
TCP Server Demo Firmware – Buffer
Creation

Before starting the Server, the user needs to create the
socket and also, at least, the Rx buffer. The Tx buffer
will be created by the user and passed to the TCP stack
when it is ready to be sent.

EXAMPLE 6: SOCKET CREATION

TCP Server Implementation

These are the steps required to implement the TCP
Server:

1. Initialize the TCP stack. The function should be
called before any other TCP function. It is done
automatically through Network_Init() by the
MCC’s SYSTEM_Initialize() function.

TCP_Init();

2. Check the status of the socket: This function
checks if the pointer provided as parameter is
registered internally to the TCP/IP stack as a
socket. If the pointer is a valid socket, the
function will return the state of that socket. The
possible states of the socket are defined in the
tcpv4.h file.

socket_state = TCP_SocketPoll(&port7TCB);

3. Insert and initialize the socket in order to create
the connection. All the necessary information for
the TCP connection is kept here.

TCP_SocketInit(&port7TCB);

4. Assign the local port for the Server. The function
will assign a port for the socket to listen on. The
Server will listen on this port for any incoming
connections. The TCP stack will automatically
allocate a port number to listen on if a port
number is not supplied by the user.

TCP_Bind(&port7TCB, 7);

5. Add the receive buffer to a socket. The function
will insert the buffer into the socket for storing
the received data.

TCP_InsertRxBuffer(&port7TCB,

rxdataPort7, sizeof(rxdataPort7));

6. Start the TCP Server. The function will set the
TCP stack to listen to a port for a connection
request. If the TCP handshake completes
successfully, the user can exchange data with
the remote over the TCP connection. Only one
connection request is accepted at a time. The

TCP stack can handle multiple connections for a
particular port number. But for each new
connection the user needs to create a new
socket, an Rx buffer, and start a new instance of
the Server for the same port.

TCP_Listen(&port7TCB);

7. Check the status of the socket. This function
checks if the pointer provided as parameter is
already registered to the TCP/IP stack as a
socket. If the pointer is a valid socket, the
function will return the state of that socket. The
possible states of the socket are defined in the
tcpv4.h file.

socket_state = TCP_SocketPoll(&port7TCB);

8. Check if the Tx buffer was sent correctly (this
means that the remote acknowledged all the
received bytes). This function needs to be called
before trying to send anything, because the
socket can handle only one buffer at a time.

TCP_SendDone(&port7TCB);

9. Check if there is any data received in the socket.
The function will return the number of bytes
available in the Rx buffer.

 rxLen = TCP_GetRxLength(&port7TCB);

10. Read how many bytes are available in the Rx
buffer and make the buffer ready to use. The
function will return the number of bytes available
in the buffer. After calling this function, the user
can access the buffer in a safe way. Once the
function is called, the stack will not save any
further data received into this Rx buffer. The
user should provide, as fast as possible, another
Rx buffer to the stack, in order to avoid packet
retransmission.

rxLen = TCP_GetReceivedData
(&port7TCB);

11. Send the buffer to the remote machine. The API
will allow the user to send data over an active
TCP connection. The data cannot be sent if the
connection is not established between the local
and the remote host.

TCP_Send(&port7TCB, txdataPort7,
txLen);

12. Close the TCP connection. Socket connection
closing will happen after the TCP connection
handshake is done (the connection closing is
not done right away). The user needs to check
the socket state periodically, until the socket is in
Closed state. When the socket is in Closed
state, the Rx and the Tx buffers can be safely
reused.

TCP_Close(&port7TCB)

// create the socket for the TCP Server

tcpTCB_t port7TCB;

// create the TX and RX buffers

uint8_t rxdataPort7[20];

uint8_t txdataPort7[20];
DS00001921D-page 16  2015-2017 Microchip Technology Inc.

AN1921
13. Remove the socket. If the user wants to remove
the socket from the internal socket list when the
socket is closed, the following API will remove
the pointer.

TCP_SocketRemove(&port7TCB)

14. Background task. This function needs to be
called periodically by the application, in order to
handle the timeouts from the TCP stack. The
TCP background task is called once per second
to handle the TCP stack timeouts.

TCP_Update();// handle timeouts

Source Code for the TCP Server
Implementation

The TCP Client demo code in Example 7 (source code
and prebuilt hex file) is available as download on
www.microchip.com.

EXAMPLE 7: TCP ECHO SERVER IMPLEMENTATION
void DEMO_TCP_echo_server(void)

{

// create the socket for the TCP Server

static tcpTCB_t port7TCB;

 // create the TX and RX buffers

 static uint8_t rxdataPort7[20];

 static uint8_t txdataPort7[20];

 uint16_t rxLen, txLen, i;

 socket_state_t socket_state;

 rxLen = 0;

 // checking the status of the socket

 socket_state = TCP_SocketPoll(&port7TCB);

 switch(socket_state)

 {

case NOT_A_SOCKET:

 //Inserting and initializing the socket

 TCP_SocketInit(&port7TCB);

case SOCKET_CLOSED:

//configure the local port

 TCP_Bind(&port7TCB, 7);

// add receive buffer

TCP_InsertRxBuffer(&port7TCB,rxdataPort7, sizeof(rxdataPort7));

// start the server

TCP_Listen(&port7TCB);

break;
 2015-2017 Microchip Technology Inc. DS00001921D-page 17

http://www.microchip.com/

AN1921
EXAMPLE 7: TCP ECHO SERVER IMPLEMENTATION (CONTINUED)
case SOCKET_CONNECTED:

// check if the buffer was sent, if yes we can reuse the //buffer

if(TCP_SendDone(&port7TCB))

{

// check to see if there are any received data

rxLen = TCP_GetRxLength(&port7TCB);

if(rxLen > 0)

{

//make sure it safe to use the receive buffer

rxLen = TCP_GetReceivedData(&port7TCB);

 //simulate some buffer processing copy from //the RX buffer to the TX buffer

for(i = 0; i < rxLen; i++)

{

txdataPort7[i] = rxdataPort7[i];

}

// reuse the rx buffer

TCP_InsertRxBuffer(&port7TCB,rxdataPort7, sizeof(rxdataPort7));

txLen = rxLen;

//send data back to the source

TCP_Send(&port7TCB, txdataPort7, txLen);

}

}

break;

case SOCKET_CLOSING:

TCP_SocketRemove(&port60TCB);

break;

default:

// we should not end up here

break;

}

}

DS00001921D-page 18  2015-2017 Microchip Technology Inc.

AN1921
UDP DEMO

Overview

This is a UDP Client and Server implementation. It
consists of UDP Send (UDP Client) and UDP Receive
(UDP Server) implementations. As UDP Send, the
Curiosity Development board sends potentiometer
readings as UDP packets. As UDP Receive, the
Curiosity Development board starts listening to any
incoming UDP packets such as toggle LEDs on port
65531. The port numbers can be anything between in
0 to 65535, but some of them are reserved or already
registered. Therefore, it is recommended to choose a
port between 49152 to 65535, since all of them are
free.

Setting up the Software for UDP Send/
Receive (Client/Server) Demo

1. Start MPLAB X and create a new project for the
device PIC16F18346.

2. Load the MCC module.

3. Go to Device Resources, and under Libraries
select TCP/IP Lite module.

4. Load the TCP/IP Lite module.

5. The Notifications tab shows different types of
messages:

- “WARNING” messages are required to be
implemented to generate an error free code

- “HINT” messages help the user follow the
code generation

- “INFO” messages allow the user to give
information about the modules loaded

6. Go to Device Resources, under Libraries select
Ethernet  MAC module.

7. Load the MAC module.

8. In the Easy Setup, select the ENC28J60
controller from the drop down selection box.

9. The ENC28J60 controller is based on Serial
Peripheral Interface. So, as per the Curiosity
Development board schematics, the “MSSP1 –
SPI module” interface is supported on the
connector J35.

10. Go to Device Resources, under Peripherals
select MSSP1 module.

11. Load MSSP1 module and configure to SPI
Master mode and select the Clock Edge to
Active to Idle mode, and set Input Data Sampled
at “End”.

12. Go to Device Resources, and under Peripherals
select TMR1 module.

13. Update the Timer Period to 250 ms. Enable the
Timer Interrupt and update the Callback
Function Rate to 4 to generate a 1s period. This
feature is required to configure the device with a
1s tick of system clock.

14. Configure the ADC module to send the
potentiometer data over UDP. Go to Device
Resources, under Peripherals select ADC
module. Load the ADC module.

15. In the ADC module, configure Clock Source to
FOSC/4, and Result Alignment to right.

16. Configure the Pin Manager:

• MSSP1 module Pin Configuration
- SCK1 – output Port RB6
- SDI1 – input Port RB4
- SDO1 – output Port RC7

• MAC module Pin Configuration
• ETH_CS (for the ENC28J60 controller) – output

Port RC6
• ADC module Pin Configuration

- ANx – input PORT RC0
- From Project Resource  System  Pin

Module, the user can provide a custom name
to the AN0 channel, for example: Pot

• Configure the Pin Manager for LEDs on Curiosity
board:
- Pin module – output Port RA5
- From Project Resource  System  Pin

Module, the user can provide a custom name
to the RA5 Pin, for example: Toggle_Led

17. Click on Generate button to generate the code.

18. Add the udp_demo.c and udp_demo.h files to
the project.

19. In the main() function, the user should enable
the Global and Peripheral interrupts.

20. In main(), call the POT_UDP_Initialize()
API in the udp_demo.c file to initialize the
potentiometer and UDP server packet i.e., UDP
server (destination) Port Number – 65531, UDP
Server Address – computer IP address
(Destination address), and UDP Client (Source)
Port Number – 65533.

21. In while(1) loop, call the Network_Mange()
API which polls the Ethernet controller for new
packets and processes them.

22. The project must be compiled using XC8 and
program the firmware to the PIC16F18346 on
the Curiosity Development board.

23. Start the Packet Sender application (Figure 15)
on the computer.
 2015-2017 Microchip Technology Inc. DS00001921D-page 19

AN1921
FIGURE 15: PACKET SENDER INTERFACE

24. Go to File Settings Network, enable the
UDP Server and update the port to 65531.

25. Turn the knob on the Curiosity Development
board. The board sends UDP packets to display
the potentiometer reading in volts.

26. In the Packet Sender application, send a UDP
packet to turn the LEDs on the Curiosity
Development board to toggle.

• Name – UDP Led1 Send
• ASCII – L1
• Address – board’s IP address. This can be

accessed from the D-Discover O-Offer R-
Request A-Acknowledgment process using the
Wireshark analyzer tool.

• Port – 65531
• Select the UDP protocol
• Click on Save to save this packet

DS00001921D-page 20  2015-2017 Microchip Technology Inc.

AN1921
FIGURE 16: UDP PACKET CONFIGURATION

27. In Packet Sender, click on the Send button of
the saved UDP packets to toggle the LED on the
Curiosity board.

28. Repeat steps 25 and 27 to verify the UDP send
and UDP receive packets on port 65531.

UDP Send Implementation

In order to start the UDP packet, the following steps are
required:

1. Start the UDP Packet

The function will start the UDPv4 Packet, which starts
the IPv4 packet and writes the UDP Header. The UDP
Header fields – checksum and Data length – are
initially set to ‘0’.

- UDP_Start(uint32_t destIP,
uint16_t srcPort,
uint16_t destPort);

2. Write the UDP Packet

There are six methods of writing a UDP packet,
depending on the size and order of data written.

- UDP_WriteBlock(uint8_t* data,
uint16_t length) – Writes a block of
data

- UDP_Write8(uint8_t data) – Writes 1
byte of data

- UDP_Write16(uint16_t data); -
Writes 2 bytes of data in Host Order

- UDP_Write24(uint32_t data); -
Writes 3 bytes of data in Host Order

- UDP_Write32(uint32_t data); -
Writes 4 bytes of data in Host Order

- UDP_String(const char *string)–
Writes String in Network Order

3. Send the UDP Packet

The function will insert the total payload length into the
UDP header, compute the checksum of the UDP
packet and send the packet on the wire.

- UDP_Send();

 2015-2017 Microchip Technology Inc. DS00001921D-page 21

AN1921
UDP Receive Implementation

In order to receive the UDP packet, the following steps
are required:

1. Port Handling

In the udpv4_port_handler_table.c file, the
UDP_CallBackTable[] function needs to be
updated with the receiving port number and its callback
function.

EXAMPLE 8: PORT HANDLING

2. Receive the UDP Packet

At first, check for the valid checksum. Any UDP packets
with invalid checksums are discarded. If the checksum
is correct, the function will check for the port number to
be matched in UDP_CallBackTable[]. If the port
number and the corresponding function handler
(callback) are valid in the table, the length of UDP
payload is passed as parameter to the callback. Any
UDP packet with invalid port number will respond with
an “ICMP PORT UNREACHABLE” message, if “ICMP
Port Unreachable” option is selected in the MCC while
configuring the stack; else the UDP packet is
discarded.

- UDP_Receive(uint16_t udpcksm);

3. Read the UDP Packet

There are five methods of reading a UDP packet,
depending on the size and order of data.

- UDP_ReadBlock(uint8_t* data,
uint16_t length) – Reads a block of
data

- UDP_Read8() – Reads 1 byte of data
- UDP_Read16() - Reads 2 bytes of data in

Host Order
- UDP_Read24() - Reads 3 bytes of data in

Host Order
- UDP_Read32() - Reads 4 bytes of data in

Host Order

typedef struct
{
 uint16_t portNumber;
 ip_receive_function_ptr callBack;
}udp_handler_t;

const udp_handler_t UDP_CallBackTable [] = \
{

{portNumber, &callback}
};
DS00001921D-page 22  2015-2017 Microchip Technology Inc.

AN1921
Source Code for the UDP Client/Server
Implementation

The UDP demo code (source code and prebuilt hex
file) is available as download on www.microchip.com.

EXAMPLE 9: UDP CLIENT IMPLEMENTATION

EXAMPLE 10: UDP SERVER IMPLEMENTATION

void UDP_DEMO_Send (void)

{

error_msg ret = ERROR;

potCurrResult = (ADCC_GetSingleConversion(Pot)/10);

if(...)

{

...

ret = UDP_Start(udpPacket.destinationAddress, udpPacket.sourcePortNumber,
udpPacket.destinationPortNumber);

if(ret = SUCCESS)

{

UDP_Write16(potCurrResult);

UDP_Send();

}

}

}

const udp_handler_t UDP_CallBackTable [] = \

{

{68, DHCP_Handler},

 {65531, UDP_DEMO_Recv}

};

void UDP_DEMO_Recv (int length)

{

...

UDP_ReadBlock(&data,sizeof(data));

/*

...

Process the Receive Buffer data

*/

}

 2015-2017 Microchip Technology Inc. DS00001921D-page 23

http://www.microchip.com/
http://www.microchip.com/

AN1921
CONCLUSION

This application note presents some very simple
software solutions for implementing a TCP Server, a
TCP Client and exchange data over UDP based on the
Microchip lightweight TCP/IP stack. The TCP/IP stack
provides space efficiency and modular implementation
allowing to add network connectivity to embedded
systems with limited resources.
DS00001921D-page 24  2015-2017 Microchip Technology Inc.

AN1921
APPENDIX A: REFERENCES

1. User Datagram Protocol, RFC 768

2. Internet Protocol, DARPA Internet Program
Protocol Specification, RFC 791

3. Internet Control Message Protocol, DARPA
Internet Program Protocol Specification, RFC
792

4. Transmission Control Protocol, DARPA Internet
Program Protocol Specification, RFC 793

5. Requirements for Internet Hosts,
Communication Layers, RFC 1122

6. An Ethernet Address Resolution Protocol or
Converting Network Protocol Addresses to
48 bit Ethernet Address for Transmission on
Ethernet Hardware, RFC 826

7. Domain Names – Implementation and
Specification, RFC 1035

8. Clarifications to the DNS Specification, RFC
2181

9. Service Name and Transport Protocol Port
Number Registry (www.iana.org)
 2015-2017 Microchip Technology Inc. DS00001921D-page 25

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

AN1921
APPENDIX B: FLOWCHART FOR
TCP CLIENT DEMO

Since the demo containing the TCP/IP stack is very
large, the software flowchart shown in Figure B-1 is
only for the main application with a focus on the TCP
Client routine found in the main.c file.

FIGURE B-1: FLOWCHART FOR TCP CLIENT DEMO

DS00001921D-page 26  2015-2017 Microchip Technology Inc.

AN1921
FIGURE B-2: FLOWCHART FOR TCP SERVER DEMO

 2015-2017 Microchip Technology Inc. DS00001921D-page 27

AN1921
FIGURE B-3: FLOWCHART FOR UDP DATA EXCHANGE DEMO
DS00001921D-page 28  2015-2017 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2015-2017 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT
logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR,
Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK
MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST
logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32
logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC,
SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are
registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,
CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,
ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-
Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi,
MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,
PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix,
RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial
Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II,
Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2015-2017, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-1727-9
DS00001921D-page 29

DS00001921D-page 30  2015-2017 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

France - Saint Cloud
Tel: 33-1-30-60-70-00

Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

11/07/16

http://support.microchip.com
http://www.microchip.com

	Introduction
	TCP/IP Stack Architecture
	FIGURE 1: Multilayer TCP/IP Communication Model
	Stack Configuration

	TCP/IP Stack Buffer Management
	Overview
	Buffers Used by the UDP Protocol
	Buffers Used by the TCP Protocol
	TCP/IP Stack Features and Limitations

	Running the TCP/IP Stack Demos
	Required Hardware and Software to Run the Demo
	Setting up the Hardware

	Setup the Software for TCP Client/Server Demo Using MCC
	FIGURE 2: Library Selection
	FIGURE 3: Stack Configuration
	FIGURE 4: Notifications Tab
	FIGURE 5: Stack Dependencies Selection
	FIGURE 6: Timer Configuration
	FIGURE 7: MAC Library Configuration
	FIGURE 8: MAC Library Dependency Selection
	FIGURE 9: SPI Configuration
	FIGURE 10: ADC Module Selection
	FIGURE 11: ADC Module Configuration
	FIGURE 12: Pin Functions and Names

	Simple TCP Client Demo Implementation
	Overview
	Setting up the Software for the TCP Client Demo
	EXAMPLE 1: Setting Server Location
	EXAMPLE 2: Connection Status
	FIGURE 13: Microchip TCP Client Demo in Java Application

	TCP Client Demo Firmware – Buffer Creation
	EXAMPLE 3: Socket Creation

	TCP Client Implementation
	Source Code for the TCP Client Implementation
	EXAMPLE 4: TCP Client Demo Source Code
	EXAMPLE 4: TCP Client Demo Source Code (Continued)

	Simple TCP Server Demo Implementation
	Overview
	Setting up the Software for the TCP Server Demo
	EXAMPLE 5: Initial Log Message
	FIGURE 14: Microchip TCP Client Demo for Java Application

	TCP Server Demo Firmware – Buffer Creation
	EXAMPLE 6: Socket Creation

	TCP Server Implementation
	Source Code for the TCP Server Implementation
	EXAMPLE 7: TCP Echo Server implementation
	EXAMPLE 7: TCP Echo Server Implementation (Continued)

	UDP Demo
	Overview
	Setting up the Software for UDP Send/ Receive (Client/Server) Demo
	FIGURE 15: Packet Sender Interface
	FIGURE 16: UDP Packet Configuration

	UDP Send Implementation
	UDP Receive Implementation
	EXAMPLE 8: Port Handling

	Source Code for the UDP Client/Server Implementation
	EXAMPLE 9: UDP Client Implementation
	EXAMPLE 10: UDP Server Implementation

	Conclusion
	Appendix A: References
	Appendix B: Flowchart for TCP Client Demo
	Trademarks
	Worldwide Sales and Service

