
AN2039
Four-Channel PIC16F1XXX Based Power Sequencer

Note: Not recommended for new designs. Please refer to AN2345 for new designs.
INTRODUCTION

Power sequencers are commonly used in system-level
board designs where multiple power supplies are
enabled in a sequential manner. Typically, systems
using a power sequencer have different components
on them which require different power supply voltages
and power levels. The sequence of enabling the
different voltages would insure that there is no conflict
between components being powered up and all units
are powered up correctly. When shutting down the
system, there may also be a sequence. The power-up
and power-down sequence is programmable and is
time based. This application note defines a four-
channel power sequencer. The four voltages defined
are 5.0V, 3.3V, 2.5V and 1.8V. Each of these voltages
is provided through a power module (PM) unit (BEL
power modules: VRAE-10E1A0 Series). These PM
units typically have five pins: Input/Output Power,
Ground, Enable and Trim (Figure 1). Users can select
any number of PM units in their system. The software
has been written in a modular format to support up to
ten PMs. These can be added or removed to meet
specific needs. An enhanced core PIC16F1509 device
has been selected as the MCU for this application.

The PIC16F1509 peripherals used in this application
note are:

• GPIO

• Timer1

• ADC

• I2C

• PWM(4)

HARDWARE DESIGN
CONSIDERATIONS

Power Module (PM) Units

The PM units are typically off-the-shelf power supply
blocks, sold with specific current and power
capabilities. The PMs used in our design are:
VRAE-10E1A0 Series made by BEL Power Products
(Figure 1). Each PM has five pins: Input Voltage (VIN),
Output Voltage (VOUT), Ground, Enable Input and
Output Trim. The Enable signal is active-high and when

enabled, the PM output voltage appears at the Output
Voltage pin. The Trim pin with the associated Rtrim
resistor (Figure 2) allows the output voltage to be set as
desired. The voltage at the Trim pin is typically around
0.591V. A DC voltage at the Trim pin also allows the
system to provide some voltage load regulation of
VOUT. In this design, the DC voltage is provided by a
PWM-driven RC filter circuit which provides a DAC
output to the Trim pin (Figure 3). Alternately, this DC
voltage can be provided only by using fixed resistors
from the Trim pin to GND (Figure 2) with no PWM trim
DAC voltage. If this alternate option is selected, the
PWM, with its associated hardware/firmware in the
PIC16 microcontroller, would be eliminated. Refer to
the BEL data sheet for more details on the trim-down
resistor values.

FIGURE 1: BEL POWER MODULE

FIGURE 2: Rtrim FORMULA FOR VOUT
(Vo)

FIGURE 3: RC FILTER CIRCUIT

Author: Stan D'Souza

Microchip Technology Inc.

VIN

Enable

VOUT

Trim

VRAE - 10E1A0

GND

VIN

Enable

VOUT

Trim
GND Rtrim

VRAE-10E1A0

Rtrim = 1.182
Vo – 0.591

K

PWM Input DAC Output

RC Filter
 2015-2019 Microchip Technology Inc. DS00002039B-page 1

AN2039
Power-Up Sequencing

A PIC16F1509 operating at 5.0V and 4 MIPS (using the
internal RC clock) is used to control the power-up
sequence. The power-up sequence is initiated by:

• A Serial command using the I2C interface
• Pressing the push button switch, S1

Each PM is sequenced ON at a set time interval from 1
to 16,393 ms (16.4 seconds) with a 1 ms accuracy. For
example, PM1 can be started at 10 ms from the Start
command, followed by PM2 at 25 ms, PM4 at 200 ms
and finally, PM3 at 1000 ms. Each PM has a
corresponding ON time value which is a 14-bit
unsigned integer value in firmware. This value is
compared to a timer value incremented every
millisecond. If a match between the timer value and the
ON time value of the PM occurs, then the
corresponding PM is turned ON. The ON/OFF timing
can be selected by the user and is saved in Flash on
the PIC16 device. The ON/OFF sequence can be
started/stopped using the serial I2C GUI.

Trimming

When a PM is turned ON, the corresponding PWM
output is enabled and VOUT is monitored via the PIC16
ADC. The PWM duty cycle corresponds to the 8-bit
DAC value for the PM. This DAC value can be changed
by the user in the GUI or in the firmware. The trim
voltage is created by using a combination of Rtrim and
the PWM output from the PIC16 microcontroller. This
PWM output is sent to a RC filter to create a DAC
voltage, which in combination with the Rtrim resistor, is
applied to the trim pin of the PM (Figure 3). The output
of the PM is monitored using a 10-bit ADC converter on
the PIC16 microcontroller. Each PM voltage is
averaged over 16 readings to give a 14-bit value. Only
the Most Significant eight bits of this value are used to
reference the VOUT voltage value of each PM. The
reference voltage of the ADC is VDD or 5.0V. For
example, if the PM output voltage is 2.5V, then the
accuracy of the measurement would be (2.5V/5.0V)/
256 = 2.0 mV. All output voltages are constantly
monitored to verify they are within the specified over/
undervoltage limits specified by the customer. If the PM
voltage goes above or under the under/overvoltage
limits, then a failure is signaled and the system is
automatically shut down.

Power-Down Sequencing

The PIC16 MCU also controls the programmable
power-down sequencing of the four power supplies.
The power-down sequence is initiated on:

• Serial command from the I2C
• Any Fault condition on the PMs or input voltage
• Pressing the push button switch, S1

Each PM is sequenced OFF at a set time interval from
1 to 16,393 ms (16.4 seconds) with a 1 ms accuracy.
For example, PM4 can be shut at 20 ms from the Stop
command, followed by PM2 at 25 ms, PM3 at 200 ms
and finally, PM1 at 1000 ms. Each PM has a
corresponding OFF time value, which is an unsigned
integer (14-bit value). This value is independent from
the ON time value. This value is compared to a 16-bit
counter value incremented every millisecond. If the two
are equal, then the corresponding PM is turned OFF.
The OFF time values are user selectable and are
saved in Flash. In case of a Fault condition power-
down, a new power-up sequence will be automatically
initiated depending on the number of retries selected
by the user. Typically, a user may specify two or three
retries. After all retries return a failure, the system is
shut down and the Fault condition is signaled. Using
the I2C GUI interface, the user can figure out which PM
condition or input voltage caused the failure. The user
must take the appropriate corrective action to remove
the failure condition and reset the system using the I2C
Serial command or the Graphical User Interface (GUI),
and then retry the power-up sequence.

MCU Requirements

The MCU requirements fall in four categories:

• I/O pins to enable/disable the PMs
• ADC input to sample the PM VOUT voltage
• PWM output to generate the DAC output for the

trim voltage
• Communication using I2C

Since four channels of PMs are used in this design, at
least four I/O lines for the enable/disable function is
required. Also required is four ADC channels, four
PWM outputs and finally, two lines for I2C. An additional
ADC channel is used to sample the input voltage, the
MCLR, the VDD, the VSS and the programming pins; a
total of 20 pins. A PIC16F1509 was selected for the
design. Figure 4 is the system block diagram.
DS00002039B-page 2  2015-2019 Microchip Technology Inc.

AN2039
FIGURE 4: SYSTEM BLOCK DIAGRAM

The MCU is powered by 5.0V via a 5V regulator. The
internal 16 MHz RC clock is used to run the CPU at
4 MIPS. The hardware/firmware can be modified to
accommodate up to ten PMs. If more PMs are required,
the number of I/O will increase and a larger
PIC16F1XXX device would have to be selected. If less
PMs are required, then a smaller PIC16F1XXX device
can be selected for the application. The trim voltage
requirements can also be adjusted. If the user wants to
trim the PMs using only the external resistor (Figure 2),
then the DAC voltage and the associated PWM
(Figure 3) is not required. The software to drive the
PWM and DAC will also be eliminated.

Voltage Limits

Each PM has its own normal over/undervoltage limit.
The PMs also have margin under/over limit for the trim
voltage.

Normal Over/Under Limits

As specified, these limits are the absolute limits for
each PM. The output voltage of each PM is monitored
and, in case the output voltage goes under or above
these limits at any time, a fault is signaled and the
power is sequenced OFF. A retry is initiated after a
power fault occurs. After a certain number (defined by
the user) of automatic retries, the system is shut down
until the user clears the system with a Serial command
using the I2C GUI and fixes the hardware/software
error. For example, for a 5V PM, the user may select
4.5V as the undervoltage limit and 5.5V as the
overvoltage limit.

Margin Over/Under Limits

Each PM has a user-defined margin over/under limit.
These limits are 8-bit values which are maintained in
the firmware and correspond to the PWM duty cycle
value of the respective PM. The user can modify these
values via the GUI. The DAC value can be changed
within the bounds of the over/under margin limits.

I2C Communication Protocol and
Commands

An I2C slave interface is implemented on the MCU for
serial communication with an external I2C GUI. The
command structure for the I2C interface is specified in
Appendix A: “Serial Command Definitions and
Structures”. On the demo board, a MCP2221 I2C-to-
mini-USB interface chip is provided. This interface can
be implemented by the users in their own hardware or
if required, a different I2C interface can be implemented
by the user.

I2C Addressing

Only one device is connected to the interface so a fixed
slave address of 0x14 is selected for the sequencer.
This address can be changed in firmware if required.
PMBus™ is not supported at this time.

PWM1

ENABLE1

Trim
DAC1 P 1

ADC1

VOUT1
CH1

CH2

CH3

CH4

I²C

PIC16F1509

Note: The trim voltage is not monitored by the
PIC16 ADC. Only the trim value (i.e., the
PWM duty cycle value), is compared with
the limit set by the user. This value is
defined as a 8-bit value.
 2015-2019 Microchip Technology Inc. DS00002039B-page 3

AN2039
FIRMWARE IMPLEMENTATION

Peripherals Code Generated Using the
Microchip Code Configurator (MCC)

All the firmware for I/O, Timer1, ADC, PWM, Flash
memory and I2C peripherals has been created and
initialized using the free MPLAB® Code Configurator
(MCC) software. The system setup also uses the MCC
software. The entire firmware was developed using the
MPLAB® X IDE. The use of the MCC software is highly
recommended since the firmware created is tested and
well documented. The initialization and the user
routines for each peripheral are modular and, in case
the user wants to use another larger or smaller
PIC16F1XXX device, the re-creation of peripheral
routines is very simple and takes very little time. Using
the MCC, the code for all the peripherals will be
automatically generated and placed in the MPLAB X
project. As an example, Appendix B: “Using
MPLAB® Code Configurator (MCC) to Add Timer1
Function to an Application” shows a step-by-step
process using the MCC to generate code for Timer1.

I2C Slave Interrupt Firmware

The I2C Slave Interrupt Firmware has also been
created using MCC. The setup using MCC is explained
in detail in Appendix C: “Modifying MCC created I2C
Slave Interrupt file to implement Application Serial
Interface”, along with the modifications required. The
MCC firmware has a built-in example of a serial
EEPROM. This firmware is modified to incorporate the
slave I2C used in the power sequencer program. This
method is quick and very easy to use without any prior
knowledge or setup details on the I2C protocol or
function.

User Application

All code has been written in state machine format. The
code for the PM modules is in the file app.c. The code
for the ADC, Flash, Key and System is in the respective
files appAdc.c, appFlash.c, appKey.c and
appSys.c. The definitions and the variables used are
defined in app.h. The entire application code is state
machine based, where each task is defined as a series
of states. For example, there is a state machine for the
ADC, for each PM module, for Flash memory and for
the overall system. The *main.c program is very
simple, as shown in Example 1.

EXAMPLE 1: CODE SNIPPET

Each initialize routine initializes the module, the system
or the peripheral. On the other hand, each task is a
state machine which runs the tasks for the application
PM modules 0 to 4, the ADC, KEY, Flash memory and
the overall system.

void main(void) {

//All state machines are initialized at the start
 SYSTEM_Initialize();
 APP_FLASH_Initialize();
 APP_M0_Initialize();
 APP_M1_Initialize();

APP_M2_Initialize();
APP_M3_Initialize();

 APP_M4_Initialize();
 APP_KEY_Initialize();
 APP_ADC_Initialize();
 APP_SYS_Initialize();

//In an infinite loop each state machine is run one after another
 while (1)
 {
 APP_M0_Tasks();
 for (MI=1;MI < AllModules;MI++)

APP_MX_Tasks();
 APP_KEY_Tasks();

APP_ADC_Tasks();
 APP_SYS_Tasks();

APP_FLASH_Tasks();
 }

}

Note: Note that modules 1 to 4 correspond to
the PMs 1 to 4. Module 0 is designated to
run a state machine which monitors the
input voltage.
DS00002039B-page 4  2015-2019 Microchip Technology Inc.

AN2039
Parameter Structure for Each Module

Each power module is assigned a set of parameters
which are defined in app.h.

The parameters are:

• State – it defines the state in which each module
is in at a given moment in time

The eight states are:

- Init – the initial state of the module
- On – the module is in the ON state
- Off – the module is in the OFF state
- Start – the module is turned ON
- Starting – the module rise time is taken into

account when turning ON
- Stop – the module is turned OFF
- CheckADC – updates the ADC value for the

corresponding PM module
- CheckError – checks the output voltage for a

under/overvoltage fault

• NormalUVL, NormalOVL, MarginUVL,
MarginOVL – OverVoltageLimit and
UnderVoltageLimit for normal and margin
voltages. These variables are used and
maintained for error checking. They are 8-bit
unsigned value and they can be modified by the
user

• ADC – unsigned 16-bit value to maintain 16
counts of 10-bit ADC values

• PWMValue – 10-bit PWM duty cycle value used in
the specific PWM with the module

• ADCValue – 8-bit average value of ADC over 16
counts of 10-bit values. This value is compared
with the limit voltage values and checked for
errors

• anChannel – ADC channel number assigned to
module

• OnTime and OffTime – 14-bit value in ms for the
start and stop time for each module

• TurnOn – bit value to indicate if the module is
turned ON

All parameters are defined in a type-defined structure
and an array of this structure is defined as:
appmData[5]. The appmData[1] is for module 1
and appmData[4] is for module 4. The input voltage,
VIN is assigned parameters in appmData[0] or the
first element of the array. Note that only some of the
parameters may be relevant to VIN. Example 2 shows
a PWM parameter for module 3.

EXAMPLE 2: PWM DUTY CYCLE
PARAMETER

Apart from creating this structure, each module has an
initialize routine. The task routines are common for
each PM module 1 to 4, so a common
APP_MX_Tasks() routine is used along with a module
index (MI) parameter corresponding to the respective
PM module. VIN is assigned its own routine
APP_M0_Tasks();.

By creating this structure and the associated functions
for each module, it becomes very easy for the user to
increase or decrease the number of modules used in
the application. If the number of required modules is
three, then the number of elements can be decreased
by one (from four to three). One initialize and one task
function can also be deleted. However, if the number of
modules needs to be increased by one to five, then the
number of elements in the array needs to be increased
as well (from four to five). A copy/paste of one
additional initialize routine will be needed and the
appropriate parameters adjusted to reflect the new
module 5. Appendix D: “Adding an additional
Module to the Existing Code” is an example of how
to add one additional module 4 to the application.

ADC Routine and Voltage Measurement

The ADC routine essentially runs through and samples
the voltage of each module 0 to 4. Module 0, as
mentioned earlier, corresponds to the input voltage,
which always gets monitored for a failure. A failure of
the input voltage causes a shutdown. No retries will be
attempted. The 10-bit ADC routine samples each
voltage 16 times and then uses the average 8-bit value
to check for an error with the corresponding under/
overvoltage limits. In the hardware used, the voltage
reference is 5.0V or VDD of the system. A 5.0V voltage
reference will work fine when sampling and converting
1.8V, 2.5V and 3.3V. However, for the 5.0V module and
the input voltage, a resistor divider is needed to bring
the full-voltage range within the 5.0V reference voltage.
The resistor divider factor for the 5.0V module is 0.55
and the input voltage divide factor is 0.239. Users will
have to use this value during the calculation of the
under and overvoltage limit values and define them
appropriately in the header files. This is especially
required if the user decides to use values other than
those used in this application note.

ADC State Machine States

• Init – initializes the ADC converter
• Sample – in this state, the ADC channel is

assigned a 1 ms sampling time before the
conversion is started

• Convert – the Convert command is given and the
ADC conversion is started

Note: Appendix E shows the State Machine
Diagram for the module state machine.

appmData[3].PWMValue – corresponds to the 10-bit
duty cycle value of the PWM used for module 3.
 2015-2019 Microchip Technology Inc. DS00002039B-page 5

AN2039
• Done – a check to see if the conversion is
complete; if yes, then the converted value is
added and if all 16 samples have been taken, the
appropriate module state is assigned for a voltage
update and voltage check

• Next – in this state, the next module is assigned to
the ADC and the whole process is repeated

The ADC state machine is always running. A
designated module voltage is only checked if that
module is turned ON or is in the ON state. Otherwise,
only the input voltage is checked. Once a module is
turned ON it is always checked.

KEY State Machine

The KEY state machine has the following states:

• Init – initializes the state machine
• High – when the key is at the default high state, a

check for a key press (0V) is done
• Low – when the key is in the pressed state, a

check for a release (5V) is done
• Debounce – in this state a delay of 20 ms is

executed then a check for a high or low state is
done

The KEY state machine insures the proper functioning
of the key-press switch, S1. If the system is OFF, a key
press will turn the system ON. If the system is ON, a
key press will turn the system OFF.

SYS State Machine

The SYS state machine manages the overall
functioning of the system. In particular, it manages
failure modes during start-up. If a start-up failure
occurs, then automatic restarts are executed as
defined by the user in the retry parameter. The
APP_SYS_Tasks() routine makes sure that all the retry
attempts are executed. If all retry attempts are
exhausted, the system will shut down and a Fault
condition will result. The user must then reset the
system using a Serial command on the I2C interface or
a button on the GUI. Any failure mechanism must be
fixed to prevent another failure during start-up. The
system will not restart until the Reset command is
executed or a Power-down Reset is done.

The SYS states are:

Init – initialize state for SYS

ON – state when the system is ON

OFF – state when the system is OFF

Starting – state when the system is starting up

Stopping – state when the system is shutting down

Fault – state when a system fault has occurred

Flash State Machine

The default parameters are saved in the Flash memory
of the PIC16F1509. The Flash PM storage location
starts at 0x1f80 and the parameters are saved
sequentially for each module. The default parameters
for each module are:

• Start time
• Stop time
• Normal Undervoltage Limit
• Normal Overvoltage Limit
• Margin Undervoltage Limit
• Margin Overvoltage Limit
• PWM Duty Cycle

Apart from these 28 parameters (4 x 7), the system
parameters are also saved:

• VIN Undervoltage Limit
• VIN Overvoltage Limit

Number of Retries

The user can use the GUI or the Serial command to
change the value of these parameters. These values
have to be “burnt” onto the Flash memory by the user,
using the Burn Flash button on the GUI or the Serial
command: 0x10, 0xAB. Once they are burnt, they
become the new default values. The file flash.as
defines all the default values and locations in Flash PM.

Power Sequencer GUI

The power sequencer GUI has been designed for the
user to:

1. Enter relevant data for the power sequencer
application

2. Monitor relevant data from the power sequencer
application

3. Control the power sequencer application

The Graphic User Interface (GUI) is shown in Figure 5.
DS00002039B-page 6  2015-2019 Microchip Technology Inc.

AN2039
FIGURE 5: THE GRAPHICAL USER INTERFACE (GUI)

The Main window has the system options on the left
and the module options as tabs on the right.

In the system options, the user can Start, Stop, Reset
and Read the current firmware values. The Status
window allows the user to define the VOUT

corresponding to the module index. These values can
be modified by the user and will be saved when the GUI
is closed. The user can also enter the ADC reference
value, which for this application note is set at 5.0V.
Finally, the user can burn the updated module settings
onto the Flash program memory by clicking on the
Burn Flash button.

Under each module tab, the user can also set or read
existing values for each module. Module 1 is the 5V
module and the user can set the normal/margin, over/
under limits for this module, along with start and stop
times in milliseconds for this module. Also, the voltage
divide factor can also be edited and entered in this tab.
The Read Values button reads the existing values in
RAM, and the Update Values button writes new values
to the RAM. If the user wants to make these values
permanent, then they would have to be programmed
into the Flash using the Burn Flash button. By clicking
on the appropriate tab, the user can modify/read/
update values for all modules.

When a Fault occurs, the GUI is not automatically
updated, since the I2C implementation on the PIC16 is
in Slave mode. The user has to click the Read Current
Firmware Values button to get a status update and
identify which module failed.

In each module tab, the DAC value can be incremented
or decremented using the up/down arrow located at
one side of the DAC value box. The value increments
or decrements and if the module is ON, then the output
voltage will be read and updated. To see the voltage
change, more than one increment or decrement may
have to be performed. This feature allows the user to
increase or decrease the output voltage during a
system test when voltages reach their limit. This is
called voltage limit testing and allows the customer to
test a complete system when one or more of the output
voltages reaches their under/overvoltage limits.

The voltage values are displayed as actual voltage
values (3.3V or 2.5V). The DAC value and the margin
limits are displayed as 8-bit values from 0 to 255.
 2015-2019 Microchip Technology Inc. DS00002039B-page 7

AN2039
CONCLUSION

This application note is designed for easy use by the
customer when implementing a power sequencer
design application using a PIC16F1XXX device. The
user can easily modify this application note to control
four voltage modules in their own design application.
Additionally, customers can add more power modules
to their application or remove modules for a smaller
application. The hardware and firmware have been
created in a modular format to accomplish these goals
easily. The completed board is depicted in Figure 6
below. Appendix F: “Power Sequencer
Schematics” shows the schematics for the board.

FIGURE 6: POWER CONTROL DEMO BOARD
DS00002039B-page 8  2015-2019 Microchip Technology Inc.

AN2039
APPENDIX A: SERIAL COMMAND
DEFINITIONS AND
STRUCTURES

I2C Serial Command Format

NOTATIONS

• S = Start
• P = Stop
• A = Acknowledge
• N = N
• W = Read/Write bit

Written Commands

S<Slave Address> W A <Command> A <Parameter> A
<ValueL> A <ValueH> A P

Read Commands

S <Slave Address> R A <ValueL> A <ValueH> N P

COMMAND 0X10: PROGRAM FLASH

Writing a 0x10 followed by a 0xAB will start a Program
Flash operation. Once the user has updated all the
parameters for all the modules (using the GUI or I2C
serial instructions mentioned in this section), a
Program Flash operation will permanently burn the
values onto the Flash memory of the PIC16F1509
device. A subsequent Reset or Power-up Reset will
retrieve values from the Flash memory. This operation
is recommended after the user updates all the module
parameters.

COMMAND 0X20: SET MODULE START TIME
VALUE

Writing a 0x20 command followed by the module
number, will set a new start time for the specified
module. The two data bytes which follow this command
and parameter will contain the desired start time setting
in milliseconds. Since the start time is only 14 bits, the
value will be limited from 1 to 16393 ms.

COMMAND 0X24: READ MODULE START
TIME VALUE

Writing a 0x24 command followed by the module
number will read the start time for the specified module.
A restart is then sent with a read cycle with the device
slave address, to read the two data bytes. The two data
bytes which follow this command and parameter will

contain the desired start time setting in ms. Since the
start time is only 14 bits, the value will be limited from 1
to 16393 ms.

COMMAND 0X28: SET MODULE STOP TIME
VALUE

Writing a 0x24 command followed by the module
number, will set a new stop time for the specified
module. The two data bytes which follow this command
and parameter will contain the desired stop time setting
in milliseconds. Since the stop time is only 14 bits, the
value will be limited from 1 to 16393 ms.

COMMAND 0X2C: READ MODULE STOP TIME
VALUE

Writing a 0x2C command followed by the module
number, will read the stop time for the specified
module. A restart is then sent with a read cycle with the
device slave address to read the two data bytes. The
two data bytes which follow this command and
parameter will contain the desired stop time setting in
milliseconds. Since the stop time is only 14 bits, the
value will be limited from 1 to 16393 ms.

COMMAND 0X30: SET DAC MARGIN OUTPUT
VOLTAGE

Writing a 0x30 command followed by the module
number as the parameter, will send a new margin
setting for the parameter specified PWM/DAC channel.
The two data bytes which follow this command and
parameter will contain the desired PWM/DAC output
setting. Since the PWM/DAC is only eight bits, the
ValueH is zero.

COMMAND 0X38: READ DAC MARGIN
VOLTAGE

Writing a 0x38 command followed by the module
number will setup a read of the present DAC value. A
restart is then sent with a read cycle with the device
slave address, to read the two data bytes. A read will
respond with the high and low value for the DAC,
however, since the value is only 8-bit, the high value
will be zero and the low byte will contain the DAC value.

COMMAND 0X34: READ SYSTEM RETRY
COUNT

Writing a 0x34 command followed by 0x00 as the
parameter, will read the preset retry count parameter
specified for the system. The two data bytes which
follow this command and parameter will contain the
retry counts. Since this value will typically be less than
ten, the ValueH is ignored.

Note: Some commands will only contain a
parameter and no ValueL or ValueH
parameter will be sent. Typically, these
are Write commands which precede a
Read command.
 2015-2019 Microchip Technology Inc. DS00002039B-page 9

AN2039
COMMAND 0X3C: SET SYSTEM RETRY
COUNT

Writing a 0x3C command followed by 0x00 as the
parameter, will set the preset retry count parameter
specified for the system. The two data bytes which
follow this command and parameter will contain the
retry counts. Since this value will typically be less than
10, the ValueH is zero.

COMMAND 0X40: SET NORMAL
UNDERVOLTAGE LIMIT

Writing a 0x40 followed by the module number as the
parameter, will send a new normal undervoltage limit
for that channel. The two data bytes which follow this
command and parameter will contain the desired
normal undervoltage limit for that ADC channel and
apply to that power supply. This is an 8-bit value, so
ValueH is zero.

COMMAND 0X50: SET NORMAL
OVERVOLTAGE LIMIT

Writing a 0x50 followed by the module number as the
parameter, will send a new normal overvoltage limit for
that channel. The two data bytes which follow this
command and parameter will contain the desired
normal overvoltage limit for that ADC channel and
apply to that power supply. This is an 8-bit value so,
ValueH is zero.

COMMAND 0X60: SET MARGIN
UNDERVOLTAGE LIMIT

Writing a 0x60 followed by the module number as the
parameter, will send a new margin undervoltage limit
for that channel. The two data bytes which follow this
command and parameter will contain the desired
margin undervoltage limit for that ADC channel and
apply to that power supply. This is an 8-bit value,
therefore ValueH is zero.

COMMAND 0X70: SET MARGIN
OVERVOLTAGE LIMIT

Writing a 0x70 followed by the module number as the
parameter, will send a new margin overvoltage limit for
that channel. The two data bytes which follow this
command and parameter will contain the desired
margin overvoltage limit for that ADC channel and
apply to that power supply. This is an 8-bit value so,
ValueH is zero.

COMMAND 0X80: READ NORMAL
UNDERVOLTAGE LIMIT

Writing a 0x80 followed by the module number as the
parameter, will initiate a read for the normal
undervoltage limit for that ADC channel. A restart is
then sent with a read cycle with the device slave
address, to read the two data bytes. The two data bytes
which are read will contain the current normal

undervoltage limit for that module. Since the value is 8-
bit only, the low byte will contain the value and the high
byte will be zero. The command will allow clock
stretching from the Master for several milliseconds.

COMMAND 0X90: READ NORMAL
OVERVOLTAGE LIMIT

Writing a 0x90 followed by the module number as the
parameter, will initiate a read for the normal
overvoltage limit for that ADC Channel. A restart is then
sent with a read cycle with the device slave address, to
read the two data bytes. The two data bytes which are
read will contain the current normal overvoltage limit for
that ADC channel. Since the value is 8-bit only, the low
byte will contain the value and the high byte will be
zero. The command will allow clock stretching from the
Master for several milliseconds.

COMMAND 0XA0: READ MARGIN
UNDERVOLTAGE LIMIT

Writing a 0xA0 followed by the module number as the
parameter, will initiate a read for the margin
undervoltage limit for that ADC channel. A restart is
then sent with a read cycle with the device slave
address, to read the two data bytes. The two data bytes
which are read will contain the present Margin
undervoltage limit for that ADC channel. Since the
value is 8-bit only, the low byte will contain the value
and the high byte will be zero. The command will allow
clock stretching from the Master for several
milliseconds.

COMMAND 0XB0: READ MARGIN
OVERVOLTAGE LIMIT

Writing a 0xB0 command followed by the module
number as the parameter, will initiate a read for the
margin overvoltage limit for that ADC channel. A restart
is then sent with a read cycle with the device slave
address, to read the two data bytes. The two data bytes
which are read will contain the current margin
overvoltage limit for that ADC channel. Since the value
is 8-bit only, the low byte will contain the value and the
high byte will be zero. The command will allow clock
stretching from the Master for several milliseconds.

COMMAND 0XC0: READ POWER
SEQUENCER STATUS

Writing a 0xC0 command followed by the desired
STATUS register as the parameter, will initiate a read of
the desired STATUS register. A restart is then sent with
a read cycle with the device slave address to read the
two data bytes of the STATUS register. The STATUS
registers are as shown in Table A-1 below.
DS00002039B-page 10  2015-2019 Microchip Technology Inc.

AN2039
COMMAND 0XC8: CLEAR STATUS ERROR
FLAGS AS WELL AS RETRY NUMBER

A 0xC8 command followed by 0xCE will send a Clear
command to clear all the Status bits mentioned in the
0xC0 command execution above. STATUS registers 0
to 3 will all be cleared. The margin enable bit will not be
cleared.

COMMAND 0XD0: READ MODULE ANALOG
VOLTAGE

Writing a 0xD0 command followed by the module
number as the parameter will initiate a read for the
module voltage reading. A restart is then sent with a
read cycle to the device slave address to read the two
data bytes. The two data bytes which are read will
contain the present voltage from that module voltage.
Since the value is 8-bit only, the low byte will contain
the value and the high byte will be zero. The command
will allow clock stretching from the Master for several
milliseconds.

COMMAND 0XE0: POWER-UP

Writing a 0xE0 command followed by 0xEF will start a
power-up sequence. If the power sequencer is already
ON, then this command will be ignored. This command
would typically be used to restart the modules after a
desequencing event which was triggered by an under/
overvoltage fault that has occurred.

COMMAND 0XF0: POWER-DOWN

Writing a 0xF0 command followed by 0xDF will start a
power-down sequence. This command is ignored if the
controller is presently in the start-up or power-down
state. If the controller is in the ON state, then this
command will initiate a power-down sequence.

TABLE A-1: STATUS REGISTERS

Register
no.

Value

0 Power supply undervoltage error bits, one
for each PM

1 Power supply overvoltage error bits, one
for each PM

2 Fault<15>, Seq.State<14>,Margin
Enable<0:9>

3 Number of system sequence retries since
the last power ADC channel
 2015-2019 Microchip Technology Inc. DS00002039B-page 11

AN2039
TABLE A-2: COMMAND SUMMARY

Command Parameter
Write
Data 1

Write
Data 2

Read Data 1 Read Data 2 Description

0x10 0xAB Program Flash

0x20 DAC# ValueL ValueH Set Start Time

0x24 DAC# ValueL ValueH Read Start Time

0x28 DAC# ValueL ValueH Set Stop Time

0x2C DAC# ValueL ValueH Read Stop Time

0x30 DAC# ValueL ValueH Set DAC output

0x38 DAC# ValueL ValueH Read DAC Value

0x34 0x00 ValueL ValueH Read Retry Count

0x3C 0x00 ValueL ValueH Set Retry Count

0x40 Ch # ValueL ValueH Set Normal UV limit

0x50 Ch # ValueL ValueH Set Normal OV limit

0x60 Ch # ValueL ValueH Set Margin UV limit

0x70 Ch # ValueL ValueH Set Margin OV limit

0x80 Ch # ValueL ValueH Read Nor. UV limit

0x90 Ch # ValueL ValueH Read Nor. OV limit

0xA0 Ch # ValueL ValueH Read Margin UV limit

0xB0 Ch # ValueL ValueH Read Margin OV limit

0xC0 STATUS Reg # Status L Status H Read Sequencer Status

0xC8 0xCE Clear STATUS Reg.

0xD0 Ch # ValueL ValueH Read Analog Voltage

0xE0 0xEF Power-Up Command

0xF0 0xDF Power-Down Command
DS00002039B-page 12  2015-2019 Microchip Technology Inc.

AN2039
TABLE A-3: STATUS REGISTER BIT DEFINITIONS

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Status 0 H Vin UV — — — — — Mod10 UV Mod9 UV

Status 0 L Mod8 UV Mod7 UV Mod6 UV Mod5 UV Mod4 UV Mod3 UV Mod2 UV Mod1 UV

Status 1 H Vin OV — — — — — Mod10 OV Mod9 OV

Status 1 L Mod8 OV Mod7 OV Mod6 OV Mod5 OV Mod4 OV Mod3 OV Mod2 OV Mod1 OV

Status 2 H Fault On Seq State 0 0 0 0 Mod10 Mrg
En

Mod9 Mrg
En

Status 2 L Mod8 Mrg
En

Mod7 Mrg
En

Mod6 Mrg
En

Mod5 Mrg
En

Mod4 Mrg
En

Mod3 Mrg
En

Mod2 Mrg En Mod1 Mrg
En

Status 3 H 0 0 0 0 0 0 0 0

Status 3 L System Retry Counter Value

Legend: Modx = Module x

MRG En = Margin Enable

OV = Overvoltage

UV = Undervoltage
 2015-2019 Microchip Technology Inc. DS00002039B-page 13

AN2039
APPENDIX B: USING MPLAB®
CODE
CONFIGURATOR
(MCC) TO ADD
TIMER1 FUNCTION
TO AN APPLICATION

To add a Timer1 function to an application using the
MCC, follow these steps:

1. With the project opened in MPLAB® X, from the
main menu select Tools  Microchip
Embedded  MPLAB Code Configurator, as
shown in Figure B-1.

FIGURE B-1: SELECT MCC

2. After MCC opens, from the Device Resources
menu, select Timer1 to bring it into the Project
Resources window, as illustrated in Figure B-2.

FIGURE B-2: OPENING TIMER1 IN
PROJECT RESOURCES
WINDOW

3. Click on TMR1 to edit and enter values to
configure TMR1, as shown in Figure B-3.

FIGURE B-3: TMR1 CONFIGURATION
DS00002039B-page 14  2015-2019 Microchip Technology Inc.

AN2039
4. To configure the TMR1 for a 1 mS interrupt using
the 16 MHz internal clock, edit the “Time Period”
to 1.0 mS, check the “Enable Timer Interrupt”
box and edit the callback function rate to 1, as
indicated in Figure B-4 below.

FIGURE B-4: TMR1 INTERRUPT CONFIGURATION

5. Click the Generate Code button, for MCC to
create the code for TMR1.

FIGURE B-5: GENERATE CODE BUTTON

Using the MCC, this method can be used to initialize
and create functions for the ADC, PWM, GPIO, Flash
memory and I2C.
 2015-2019 Microchip Technology Inc. DS00002039B-page 15

AN2039
APPENDIX C: MODIFYING MCC
CREATED I2C SLAVE
INTERRUPT FILE TO
IMPLEMENT
APPLICATION
SERIAL INTERFACE

When MCC is used to generate an I2C Slave Interrupt
file, the MCC generates an EEPROM example for the
user in the I2c.c file. Since the EEPROM code is not
used, this section will explain how to modify the existing
code to accommodate the power sequencer I2C
interface code.

The I2C command structure receives up to four bytes of
information and transmits two bytes, so buffers need to
be created and defined to hold that data:

• unsigned char RcvBuf[4];
• unsigned char TrmtBuf[2];

To access these buffers, appropriate pointers should
also be defined as:

• unsigned char RcvPtr=0;
• unsigned char TrmtPtr=0;

The following example can be a possible scenario:
presumably, only two commands are implemented:
0x20 (Set Start Time) and 0x24 (Read Start Time). All
other commands follow the same structure as the two
mentioned here and can be easily added to their
respective state machine code.

The ProcessRcvBuf() function processes the
received I2C data from the Master or from the GUI.

EXAMPLE C-1: PARTIAL
PROCESSRCVBUF()
FUNCTION

The ProcessRcvBuf() functions should be called in
the I2C callback function after all serial data has been
received. Depending on the command, two or four data
bytes are received serially. The function
SetDataLength() is called to determine the number
of data bytes which will be received serially (either 2
or 4). Once the appropriate bytes are received, the
ProcessRcvBuf() function is called and the serial
data is processed. Example C-2 shows where the
ProcessRcvBuf() function is called.

EXAMPLE C-2: PROCESSRCVBUF()
FUNCTION CALL

The Transmit buffer is loaded as part of the
ProcessRcvBuf() operation. Commands which
need a transmit reply, load the transmit buffer
appropriately. The actual transmit occurs in the
callback function as shown in Example C-3.

EXAMPLE C-3: TRANSMIT CODE
LOCATION

With these modifications, the I2C interface will work as
required in the application.void ProcessRcvBuf(void)

{
 unsigned int r;
 if (RcvPtr >= 4)
 RcvPtr = 0;
 switch (RcvBuf[0])
 {
 case 0x20: // Start time int value
 r = RcvBuf[3];
 r = r << 8;
 appmData[RcvBuf[1]].OnTime = r +
(int)RcvBuf[2];
 break;
 default:
 break;
 }
}

 case SLAVE_NORMAL_DATA:

 default:

// the master has written data to be processed

RcvBuf[RcvPtr++] = I2C_slaveWriteData;

if (RcvPtr == 1)

SetDataLength();

if (RcvPtr >= DataLength)

{RcvPtr = 0;ProcessRcvBuf();}

break;

case I2C_SLAVE_READ_REQUEST:
 if (TrmtPtr == 0)
 LoadTrmtBuf();
 SSP1BUF = TrmtBuf[TrmtPtr++];
 if (TrmtPtr >= 2)
 TrmtPtr = 0;
 break;
DS00002039B-page 16  2015-2019 Microchip Technology Inc.

AN2039
APPENDIX D: ADDING AN
ADDITIONAL
MODULE TO THE
EXISTING CODE

The code for the user has been made fairly modular so
that the existing application can be expanded to include
more modules. In this appendix, one extra module 4 is
added to the existing 3 modules in the program.

Each module has two functions which are defined as
below:

• APP_M4_Initialize() – Function which
initializes the module 4 state machine and
hardware/firmware

• APP_MX_Task() – Common function for all mod-
ules with the right Module Index (MI) when called.

In addition there is also a data structure which is
defined as:

appmData[4].XXXXX – This data structure has a
number of elements in it. Example: State, DACValue,
PWMValue etc., which are the data elements for each
module. They are resident in an array structure and the
fourth element of that array will correspond to module 4.

In the file app.h the structure already exists, but one
extra element needs to be added. A constant
"AllModules" has been defined in app.h and this
needs to be changed to 5, as shown in Example D-1.

EXAMPLE D-1: RE-DEFINE ALLMODULES

By redefining the constant “AllModules”, most
parameters will appropriately be adjusted to
accommodate the additional module 4 added to the
application. Below are the parameters which need to
be modified by the user.

Module 4 has three hardware elements associated with
it:

1. Enable signal I/O pin assigned by the user
during MCC initialization.

2. PWM output to drive the Trim line on the
module. This is assigned by the user during
MCC initialization.

3. ADC channel to sample and convert the module
output voltage. This ADC channel is defined by
the user during MCC initialization.

These three hardware elements were assigned the
following designations during the MCC initialization
process:

1. EN4 for the Enable I/O pin

2. PWM4 for the trim voltage PWM

3. VO4 for the ADC channel number

These values need to be changed as the user copies
and pastes an existing module in order to re-create an
additional one.

Apart from the hardware elements, some firmware
elements are also uniquely defined for each module,
depending on the voltage of that new module. In this
application note, module 4 is the 1.8V module and it
has its own unique default values defined in the file
flash.as. The user can copy an existing module’s
parameters in that file and then change the value with
the new module parameter. The user can take module
1 values and copy and paste them just below module 3
values in the flash.as file.

In the flash.as file, copy and paste module 1 defines
just below module 3 defines, as shown in Example D-2.

EXAMPLE D-2: COPY/PASTE MODULE 1
PARAMETERS

Then, the user can edit and modify the M1 parameter
to M4 and the associated values for 1.8 volts to 5.0
volts, as per Example D-3.

EXAMPLE D-3: MODULE 1 TO MODULE 4
PARAMETER CHANGE

In the app.h file, the new module needs a nominal
voltage output level defined as illustrated in
Example D-4 below.

Note: Module 0, or the zero element of this
array, is assigned to the input voltage. The
user does not need to copy/paste the
entire structure, however, the structure
needs to be increased by one element
from 4 to 5, as shown above.

#define AllModules 5 // M1 to M4 + the Input voltage
= 5.

Note: Module 1 is the 5.0V module, so all the
parameters associated with it are for the
5.0V voltage.

M3MarginUVLEQU 10 ;(0.2/5.0)*256

;Default voltage/time defs for M1 = 5V module
M1NormalOVLEQU 155 ;(5.5V*0.55/5.0V)*256; 0.55 =
Res. Divide Factor
M1NormalUVLEQU 127 ;(4.5V*0.55/5.0V)*256; 0.55 =
Res. Divide Factor
PWM1DC EQU 100 ;
M1OnTime EQU 250
M1OffTimeEQU 2000
M1MarginOVLEQU 51 ;(1.2V/5.0V)* 256
M1MarginUVLEQU 10 ;(0.2/5.0)*256

;voltage/time defs for M4 = 1.8V module
M4NormalOVLEQU 118 ;(3.8V/5.0V)*256;
M4NormalUVLEQU 67 ;(2.8V/5.0V)*256;
PWM4DC EQU 52 ;
M4OnTime EQU 2000
M4OffTimeEQU 500
M4MarginOVLEQU 51 ;(1.2V/5.0V)* 256
M4MarginUVLEQU 10 ;(0.2/5.0)*256
 2015-2019 Microchip Technology Inc. DS00002039B-page 17

AN2039
EXAMPLE D-4: DEFINE V04NOMINAL

Also the VO4Nominal needs to be added to the array
VONominal[AllModules] as the 5th element, as
shown in Example D-5 below.

EXAMPLE D-5: ADD V04NOMINAL TO
ARRAY

In addition, the M4 parameter defaults defined in
flash.as need to be saved in the Buf[] array used
during read/write operations on the Flash PM. Each
element has its own unique Buffer Index (BI) and the
user can copy an existing list for module 1 and edit it for
module 4 as in Example D-6 below.

EXAMPLE D-6: DEFINE MODULE 4
BUFFER INDEX
PARAMETERS

In the app.h file, a prototype for
APP_M4_Initialize() function needs to be created.
The user can copy an existing prototype definition and
then change the designator.

Once all the needed changes in the app.h file have been
made, the user can switch to the app.c file to make the
changes for the APP_M4_Initialize(),
SetUVFault(), SetOVFault(), TurnOnMod() and
TurnOffMod() functions. It is very easy to just copy and
paste an existing module and then make the required
module designator changes. Therefore, copy and paste
the APP_M1_Initialize() function. Then change the
1 designators in the function to 4 to make it a
APP_M4_Initialize() function. In the
SetUVFault(), SetOVFault(), TurnOnMod() and
TurnOffMod() functions, cut and paste an existing case
statement for module 1, change the designator from 1 to
4 and create a new case statement for module 4.

Finally, in the file main.c, the user will have to make a
function call for the APP_M4_Initialize() routine.

With all these changes complete and thoroughly
checked, the user can build and program the part and
verify proper operation. In case of an error, most likely a
typo which has occurred during the copy and paste
operation, it is highly recommended to check the new
module edits and see that all the parameters are as
desired.

Note: The Buf[] array is a 32 element buffer of
unsigned 16-bit values.

// Nominal voltage for M4 = 1.8 V module
#define VO4Nominal 93 // (1.8V/5.0V)*256

unsigned char VONominal[AllModules] =

{0,VO1Nominal, VO2Nominal, VO3Nominal, VO4Nominal};

// Buf Index (BI) for M4 parameters
#define M4NormalOVLBI 24
#define M4NormalUVLBI 25
#define PWM4DCBI 26
#define M4OnTimeBI 27
#define M4OffTimeBI 28
#define M4MarginOVLBI 29
#define M4MarginUVLBI 30
DS00002039B-page 18  2015-2019 Microchip Technology Inc.

AN2039
APPENDIX E: STATE MACHINE
DIAGRAM FOR
MODULE STATE
MACHINE

FIGURE E-1: STATE MACHINE DIAGRAM

The states of module State Machine are listed below:

• Init – Initializes the State Machine and moves to
OFF state

• Off – Check for SystemTurnOn flag. If true, then
check for OnTime. When Time = OnTime, turn on
module and move to Starting state

• Starting – A fixed delay to take care of the
voltage rise time is allowed. Move to ON state

• On – Check for SystemTurnOn flag. If false, then
check for OffTime. When Time = OffTime, move to
Stop state.

• Stop – Turn off module and move to OFF state

• CheckADC – In the ADC State Machine, when
the module voltage has been sampled, the
module state is automatically moved to the
CheckADC state. In this state the Voltage value is
updated. Move to CheckError state.

• CheckError – A under/overvoltage check is done.
If an error is detected, then the SystemTurnOn
flag is set to false. Move to ON state.

Starting

On

Update ADCCheck Error

Stop

If Error
SystemTurnOn

=False

If SystemTurnOn=False
Check OffTime

Time = OffTime

Off
If SystemTurnOn=True

Check OnTime
Time = OnTime

Allow Rise-time Delay

ADC SM
Module ADC

Sampling
Completed

mee
Turn On Module

Turn Off Module

Update Voltage Values

Init
Init State Machine

Module State Machine
 2015-2019 Microchip Technology Inc. DS00002039B-page 19

AN2039
APPENDIX F: POWER SEQUENCER
SCHEMATICS

FIGURE F-1: POWER SEQUENCER SCHEMATICS

�
�
�

��

�
�
��

�	

�

��

�
�

��

�
�

�

��
�

�

�

�

�

�
��

�

�
��

��

��
�
��

�
��
��

�
�
��
�	

�

��
��
��

�
��

��
��
�
��

��
��

�
�
��

�
�
�
��

��
�
��

��
��

�
�
��
��

�
�
�
��

��
�
��

��
��

��
��

��
��

!

��
�

�!

��
�

"

�
�

��

�
�

��

#
��

��
��

��
#
�

�
�

�
��

�#
��

�

�
�
�

�

�
�
�

�

��
��
�
�
�

�

��
��

��
�

�

�
�

�

�
�
�

��
�

$�

%�

�
��

�
��

��
�

	&
�'

��

��
�

	&
�'

��

��
�

�	
�

�

��

��
�

��
�

��
�

��
�

�(
#
�

�(
#
�

�(
#
�

�(
#
�

�

�

�

�	
��
�
	�

�
��

�

�
�
�

�

�
�
�
�

�

�

�#

�

��
�
�
�

�

�

�

�	
��
�
	�

�
��

�

�
�
�

�

�
�
�
�

�

�

�#

�

��
�
�
�

�

�

�

�	
��
�
	�

�
��

�

�
�
�

�

�
�
�
�

�

�

�#

�

��
�
�
�

�

�

�

�	
��
�
	�

�
��

�

�
�
�

�

�
�
�
�

�

�

�#

�

��
�
�
!

�&
	'

��

�	
	

�	

�	
	

��

�&
	'

��

��
�

�(
#
�

��

��

�&
	'

�"

�	
	

��

�	
	

��

�&
	'

��

�(
#
�

��

�"

�&
	'

�
�	

�	
	

��

�	
	

��

�&
	'

��

�(
#
�

��

�	

�&
	'

�
��

�	
	

��

�	
	

�!

�&
	'

�!

�(
#
�

��

��

�
�
�

��

�
	�
�
�
	�
��

��
��
�
�
��

�
��
���

��
��
��
�
�
��
��
�
�
�
�

��

�
��
�
�
��
�
��

��
�
��
�

�

 �
��
��
�
	

��
��
�
	

���

�
���

��
��

�
���

�
�
��

��

�

��
�
�
��
��

�
�
��
�
�
��

�
��
��
	�

�
���
�
��
��
��
�(

#
��
��

��
��
(
�
�
��

��

�
��
�
��

��
�
	�
�
��

��
��

��
��
��
�
�#

��

�

�
��
�
�
��
��

��
�
��
��

���
��
��

�
�
�
��
�
��

�
�	

�
��
��

��
���

��
�
���

��
��

��
���

��
��

�
��
��
��

�
�"

�
��
�
�
�	
��
��

��
�
	�
��

�
��
�
���
�
�

�	

�
��
�
�
��
��
��

��
�
	�

�
��
��
��
�

"

�
��
��

��
��

�
���

�
�

�
!�
��

��
��
�
��
�
���

�
!

�
��

�!

�
��
�
��
�
��

��
�
�
��

�
	

��

�
��

��
�(

#
��
�
��
�
�

��
��
�
�

��
�
��

�
�

��

�
��
�
�

��
��
�
�

��
�
��

�
�

��

�
��

��
�
	�
�(

#
��
��

��
�

��
�
!�

�
�

�
�(

�
��

��
��

��
��

��
��
��
��

�
�
��

�

�
�

�(
�
��

��
��

��
�(

#
��

�

�
�

��
��
��

��
�
��
�
��

��
�
�
��

�
�

�

��
�
��
��

��
�
��
�
�
"�

�
!

�
��

�
��

��
�
��
 �
�	
"

��#

�

�
�

�%

�
	�
����

%�

� �

%�

�
� �

��

�
��

��
�

��
�

��
�

��
�

�&
!�

�
�&
!�

�

��
�

��
�

��
	

�	

)
*

�
�

��
	

��

)
*

�
�

��
	

��

)
*

�
�

��
	

��

)
*

�
!

�
��

�
��

�
��

�
��

�	
�

�� ��

	

��

�	
�

��

�	
�

��

�	
�

���!

	

�!

�!
	

��

!�
	

�"

��
	

���
+)
),

�
�

�
+)
),

�
"

�
+)
),

�
�	

�
+)
),

�
��

�&
!�

!��
�

�

�
��

�
��

�
��

�
��

��
�

��
�

��
�

��
�

	&
�'

�
��

	&
�'

�
��

	&
�'

�
��

	&
�'

�
��

��
	

��

��
	

��

��

�!

�
+-
,.
)

�
�

�
+)
),

�
�

��
	

�
��
	

"

��
�

��
�

�	
�

�
��
�

	&
�!
'

��

�
�

%"

�
�

%�
	

�
�

%�

�
�

%!

��
�

��
�

��
�

��
�

��
�

��
�

� � � � � �

%�
��
�

��
�

��
�

��
�

��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

/�
��

0

/�
�&
��

0

/�
�&
��

0

/�
�&
��

0

/�
��

0

/�
�&
��

0

/�
�&
��

0

/�
�&
��

0

�
+)
),

�
�

��
	

�

	

��

�
�
�

	

�	

�
�
��
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�&
�	
�

��

��
�

�	
'

�
��

��
�

��
'

�
�!

��
�

�	
'

�
�" ��
�

�	
'

�
�	 ��
�

�	
'

�
��

	

�"

�&
!�

��

�
��
	

��

�
��

�
��
	

��

�
��

��� �

�
��

�
�
�
�
�

�

#
�
��
!	
�

�	
	�
��
�
�

�
�

�	
�

�	
'

�
��

��
�

�
��

$
$
1
23
+4
$�

�
��

�
�

�

�

�
�

�
��

�
�
�
�

�

�
!
�
"

%�

� �

%�

� �

%�
�

� �

%�
�

� �

%�
�

DS00002039B-page 20  2015-2019 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2015-2019 Microchip Technology Inc.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo,
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo,
JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash,
tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company, EtherSynch,
Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision
Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet,
KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail,
PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-
ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher,
SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the
U.S.A.
Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II
GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other
countries.

All other trademarks mentioned herein are property of their respective
companies.

© 2015-2019, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-4451-0
DS00002039B-page 21

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00002039B-page 22  2015-2019 Microchip Technology Inc.

NOTES:

DS00002039B-page 23  2015-2019 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

08/15/18

http://support.microchip.com
http://www.microchip.com

	Introduction
	Hardware Design Considerations
	Power Module (PM) Units
	FIGURE 1: BEL Power Module
	FIGURE 2: RTrim Formula for Vout (Vo)
	FIGURE 3: RC Filter Circuit

	Power-Up Sequencing
	Trimming
	Power-Down Sequencing
	MCU Requirements
	FIGURE 4: System Block Diagram

	Voltage Limits
	Normal Over/Under Limits
	Margin Over/Under Limits
	I2C Communication Protocol and Commands
	I2C Addressing

	Firmware Implementation
	Peripherals Code Generated Using the Microchip Code Configurator (MCC)
	I2C Slave Interrupt Firmware
	User Application
	EXAMPLE 1: Code Snippet

	Parameter Structure for Each Module
	EXAMPLE 2: PWM Duty Cycle Parameter

	ADC Routine and Voltage Measurement
	ADC State Machine States
	KEY State Machine
	SYS State Machine
	Flash State Machine
	Number of Retries
	Power Sequencer GUI
	FIGURE 5: The Graphical User Interface (GUI)

	Conclusion
	FIGURE 6: Power Control Demo Board

	Appendix A: Serial Command Definitions and Structures
	I2C Serial Command Format
	Notations

	Written Commands
	Read Commands
	Command 0x10: Program Flash
	Command 0x20: Set Module Start Time value
	Command 0x24: Read Module Start Time value
	Command 0x28: Set Module Stop Time Value
	Command 0x2C: Read Module Stop Time Value
	Command 0x30: Set DAC Margin Output Voltage
	Command 0x38: Read DAC Margin Voltage
	Command 0x34: Read System Retry Count
	Command 0x3C: Set System Retry Count
	Command 0x40: Set Normal Undervoltage Limit
	Command 0x50: Set Normal Overvoltage Limit
	Command 0x60: Set Margin Undervoltage Limit
	Command 0x70: Set Margin Overvoltage Limit
	Command 0x80: Read Normal Undervoltage Limit
	Command 0x90: Read Normal Overvoltage Limit
	Command 0xA0: Read Margin Undervoltage Limit
	Command 0xB0: Read Margin Overvoltage Limit
	Command 0xC0: Read Power Sequencer Status
	Command 0xC8: Clear Status Error Flags as well as Retry Number
	Command 0xD0: Read Module Analog Voltage
	Command 0xE0: Power-Up
	Command 0xF0: Power-down

	Appendix B: Using MPLAB® Code Configurator (MCC) to Add Timer1 Function to an Application
	Appendix C: Modifying MCC created I2C Slave Interrupt file to implement Application Serial Interface
	EXAMPLE C-1: Partial ProcessRcvBuf() Function
	EXAMPLE C-2: ProcessRcvBuf() Function Call
	EXAMPLE C-3: Transmit Code Location

	Appendix D: Adding an additional Module to the Existing Code
	EXAMPLE D-1: Re-define AllModules
	EXAMPLE D-2: Copy/Paste Module 1 Parameters
	EXAMPLE D-3: Module 1 to Module 4 Parameter Change
	EXAMPLE D-4: Define V04Nominal
	EXAMPLE D-5: Add V04Nominal to Array
	EXAMPLE D-6: Define Module 4 Buffer Index Parameters

	Appendix E: State Machine Diagram for Module State Machine
	Appendix F: Power Sequencer Schematics
	Worldwide Sales and Service

