
 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 1

Introduction
This document outlines the DSP library for dsPIC® devices, which offers a suite of pre-optimized software
routines tailored to streamline digital signal processing tasks. This library deliver efficient implementations
of intricate mathematical functions and algorithms, empowering developers to boost the performance and
capabilities of dsPIC® DSC devices in applications, such as advanced sensing and control, power conversion,
audio processing, telecommunications and motor control. The DSP Library currently supports a total of 52
functions.

 DSP Library User Guide for dsPIC® Digital Signal
Controllers

https://microchip.com

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 2

Table of Contents
Introduction...1

1. DSP Library for dsPIC® Digital Signal Controllers...4

1.1. C Code Applications... 4
1.2. Using the DSP Library..4

2. Vector Functions..8

2.1. Fractional Vector Operations..8
2.2. Additional Remarks..9
2.3. Functions...9

3. Window Functions...25

3.1. Window Operations...25
3.2. User Considerations.. 25
3.3. Functions...25

4. Matrix Functions..30

4.1. Functions...30
4.2. Fractional Matrix Operations... 30
4.3. User Considerations.. 31
4.4. Additional Remarks... 31
4.5. Functions...32

5. Filtering Functions...39

5.1. Fractional Filter Operations.. 39
5.2. FIR and IIR Filter Implementations...40
5.3. Single Sample Filtering.. 40
5.4. User Considerations.. 40
5.5. Functions...41

6. Transform Functions...71

6.1. Fractional Transform Operations.. 72
6.2. Fractional Complex Vectors ...72
6.3. User Considerations.. 72
6.4. Functions...73

7. Control Functions..109

7.1. Proportional Integral Derivative (PID) Control... 109
7.2. Functions.. 111

8. Conversion Functions... 115

8.1. Functions.. 115

9. Stack Functions..117

9.1. SetStackGuard..117

Microchip Information... 119

Trademarks..119
Legal Notice... 119

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 3

Microchip Devices Code Protection Feature..119

DSP Library for dsPIC® Digital Signal Controllers

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 4

1. DSP Library for dsPIC® Digital Signal Controllers
1.1. C Code Applications

The DSP library for dsPIC® devices is included with the XC-DSC compiler. Within the compiler install
directory, the library and its related files can be found at

• lib\libdsp-elf.a – DSP library/archive file
• src – zipped source code (libdsp.zip) for library functions, including a batch file to rebuild the

library
• support\generic\h – header file for DSP library

1.2. Using the DSP Library
Read the following document sections before using the DSP library in specific user or conventional
applications

• Building with the DSP Library
• Memory Models
• DSP Library Function Calling Convention
• Data Types
• Data Memory Usage
• CORCON Register Usage
• Overflow and Saturation Handling
• Integrating with Interrupts and an RTOS
• Rebuilding the DSP Library
• DSP Library Functions

1.2.1. Building with the DSP Library
Building an application which utilizes the DSP Library requires only two files: dsp.h and libdsp-elf.a.
dsp.h is a header file which provides all the function prototypes, #defines and typedefs used by the
library. libdsp-elf.a is the archived library file which contains all the individual object files for each
library function. (See the MPLAB XC-DSC Libraries Reference Manual, DS50003591, for more on
ELF-specific libraries.)

When compiling an application, dsp.h must be referenced (using #include) by all source files which
call a function in the DSP Library or use its symbols or typedefs. When linking an application,
libdsp-elf.a must be provided as an input to the linker (using the --library dsp or -ldsp linker switch)
so the functions used by the application be linked to the project.

The linker will place the functions of the DSP library into a special text section named .libdsp. This
can be seen in the map file generated by the linker.

1.2.2. Memory Models
The DSP Library is built using the "small code" and "small data" memory models to minimize the
library footprint. Some functions within the DSP library are written in C and utilize the compiler’s
floating-point library. Consequently, the compiler linker script files position the .libm and .libdsp
text sections adjacent to each other. This ensures that the DSP library can safely call the RCALL
instruction to invoke the necessary floating-point routines from the floating-point library.

https://ww1.microchip.com/downloads/aemDocuments/documents/DEV/ProductDocuments/ReferenceManuals/MPLAB-XC-DSC-Libraries-Reference-Manual-DS50003591.pdf

DSP Library for dsPIC® Digital Signal Controllers

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 5

1.2.3. DSP Library Function Calling Convention
All the object modules within the DSP Library are compliant with the C compatibility guidelines
for the dsPIC DSC devices. The guidelines follow the function call conventions documented in the
"Function call convention" section of XC-DSC C Compiler User’s Guide, DS50003589.

1.2.4. Data Types
The operations provided by the DSP Library have been designed to take advantage of the DSP
instruction set and architectural features of the dsPIC30F/33F/33E/33C/33A devices. Therefore, most
operations are computed using fractional arithmetic.

For the dsPIC30F, dsPIC33F, dsPIC33C and dsPIC33E family of devices, all fractional input and output
arguments utilize the 1.15 fixed-point data type format. In contrast, for the dsPIC33A series, the 1.31
fixed-point data type format is used.

The DSP Library defines a fractional type from an integer type:

#ifndef fractional

 typedef int fractional;

#endif

In case of dsPIC30F/33F/33E/33C, the fractional data type is used to represent data that has one
sign bit and 15 fractional bits. The data which uses this format is commonly referred to as 1.15
fixed-point data. For functions which use the multiplier, results are computed using the 40-bit
accumulator, and “9.31” arithmetic is utilized. This data format has nine sign/magnitude bits and 31
fractional bits, which provide for extra computation above the range (-1.00 to ~+1.00) provided by
the 1.15 format. These functions provide the result as fractional data type, in 1.15 format.

Similarly, for dsPIC33A devices, the fractional data are represented with one sign bit and 31
fractional bits, which is commonly known as the 1.31 fixed-point format. The results of functions
which use the multiplier are computed using the 72-bit accumulator with “9.63” arithmetic. This
format comprises nine sign/magnitude bits and 63 fractional bits, providing space for extra
computation beyond the range of -1.00 to approximately +1.00 offered by the 1.31 format. When
these functions return a result, they revert to a fractional data type in the 1.31 format.

Due to the increased number of available fractional bits, the 1.31 format delivers greater precision
compared to the 1.15 format.

The use of fractional arithmetic has some constraints on the allowable set of values to be input to
a particular function. However, several functions perform implicit scaling to the input data and/or
output results, which may decrease the resolution of the output values (when compared to a
floating-point implementation).

A subset of operations in the DSP Library, which require a higher degree of numerical resolution, do
operate in floating-point arithmetic. Nevertheless, the results of these operations are transformed
into fractional values for integration with the application. The only exception to this is the
MatrixInvert function which computes the inversion of a floating-point matrix in floating-point
arithmetic and provides the results in floating-point format.

1.2.5. Data Memory Usage
The DSP Library performs no allocation of RAM and leaves this task to the users. If the users do
not allocate and align the data memory properly, undesired results will occur during the function
execution. In addition, to minimize execution time, the DSP Library will do no checking on the
provided function arguments (including pointers to data memory) to determine if they are valid.

Most functions accept data pointers as function arguments, which contain the data to be operated
on and, typically, the location to store the result. For convenience, most functions in the DSP Library
expect their input arguments to be allocated in the default RAM memory space (X-Data or Y-Data)
and the output to be stored back into the default RAM memory space. However, the computational

https://ww1.microchip.com/downloads/aemDocuments/documents/DEV/ProductDocuments/UserGuides/MPLAB-XC-DSC-C-Compiler-User-Guide-DS50003589.pdf

DSP Library for dsPIC® Digital Signal Controllers

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 6

intensive functions require that some operands reside in X-Data and Y-Data (or program memory
and Y-Data), so the operation can take advantage of the dual data fetch capability of the dsPIC
architecture.

Note: The dsPIC33A architecture does not mandate that specific operands be located in either the
X or Y data space. However, for a few computationally intensive functions, placing them in the same
data space, whether X or Y, will result in sequential operand access, thereby affecting data fetch
efficiency.

1.2.6. CORCON Register Usage
Many functions of the DSP Library place the device into a special operating mode by modifying the
CORCON register. On the entry of these functions, the CORCON register is pushed to the stack. It is
then modified to correctly perform the desired operation, and lastly, the CORCON register is popped
from the stack to preserve its original value. This mechanism allows the library to execute without
disrupting the CORCON setting.

The CORCON register is configured to place the target device into the following operational mode.

• DSP multipliers are configured to utilize signed fractional data.
• Accumulator saturation is enabled for Accumulator A and Accumulator B.
• Saturation mode is set to 9.31/9.63 saturation (Super saturation).
• Data Space Write saturation is enabled.
• If applicable, Program Space Visibility is disabled.
• Convergent (unbiased) rounding is enabled.

For a detailed explanation of the CORCON register and its effects, refer to the respective device data
sheets.

1.2.7. Overflow and Saturation Handling
The DSP Library performs most computations using 9.31/9.63 saturation but must store the output
of the function in 1.15 or 1.31 format, respectively. If the accumulator in use saturates during the
course of operation, the corresponding saturation bit (SA or SB) in the STATUS register will be set.
This bit will stay set until it is cleared. This allows the inspection of SA or SB after the function
executes and to determine if action should be taken to scale the input data to the function.

Similarly, if a computation performed with the accumulator results in an overflow, the
corresponding overflow bit (OA or OB) in the STATUS register will be set. Unlike the SA and SB
status bits, OA and OB will not stay set until they are cleared. These bits are updated each time an
operation using the accumulator is executed. If exceeding this specified range marks an important
event, it is recommended to enable the Accumulator Overflow Trap via the OVATE, OVBTE and
COVTE bits in the INTCON1 register (in dsPIC30F/33F/33E/33C) or INTCON4 register (in dsPIC33A).
This will have the effect of generating an Arithmetic Math Error Trap as soon as the Overflow
condition occurs to then take the required action.

1.2.8. Integrating with Interrupts and an RTOS
The DSP Library may easily be integrated into an application which utilizes interrupts or an
RTOS with certain guidelines. To minimize execution time, the DSP Library utilizes DO loops
(if implemented), REPEAT loops, Modulo Addressing and Bit-Reversed Addressing. Each of these
components is a finite hardware resource on the dsPIC device, and the background code must
consider the use of each resource when disrupting execution of a DSP Library function.

When integrating with the DSP Library, make sure to examine the Function Profile of each function
description to determine which resources are used. If a library function is to be interrupted, it shall
be the user’s responsibility to save and restore the contents of all registers used by the function,
including the state of the DO (if implemented), REPEAT and special addressing hardware. This also
includes saving and restoring the contents of the CORCON and Status registers.

DSP Library for dsPIC® Digital Signal Controllers

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 7

1.2.9. Rebuilding the DSP Library
To build the DSP library, extract the source files in the (Compiler Install Path)\src\libdsp.zip path;
this creates a sub-folder called libdsp. Execute the makedsplib.bat file within this folder to rebuild
the library archives. This creates two folders called "lib" and "obj". Once the batch file execution is
completed, the rebuild libdsp.a file can be found in the “lib” folder.

The MPLAB XC-DSC compiler is required to rebuild the DSP library, and its installation path must be
added to Windows® or Linux® environment variables.

1.2.10. DSP Library Functions
The DSP library supports the functional modules listed below:

• Vector Functions
• Window Functions
• Matrix Functions
• Filtering Functions
• Transform Functions
• Control Functions
• Conversion Functions
• Stack Functions

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 8

2. Vector Functions
Function Description

VectorAdd Adds the value of each element in the source one vector with its counterpart in the source
two vector and places the result in the destination vector.

VectorConvolve Computes the convolution between two source vectors and stores the result in a destination
vector.

VectorCopy Copies the elements of the source vector into the beginning of an (already existing) destination
vector.

VectorCorrelate Computes the correlation between two source vectors and stores the result in a destination
vector.

VectorDotProduct Computes the sum of the products between corresponding elements of the source one and
source two vectors.

VectorMax Finds the last element in the source vector whose value is greater than or equal to any previous
vector element. Then, it returns that maximum value and the index of the maximum element.

VectorMin Finds the last element in the source vector whose value is less than or equal to any previous
vector element. Then, it returns that minimum value and the index of the minimum element.

VectorMultiply Multiplies the value of each element in the source one vector with its counterpart in the source
two vector and places the result in the corresponding element of destination vector.

VectorNegate Negates (changes the sign of) the values of the elements in the source vector and places them
in the destination vector.

VectorPower Computes the power of a source vector as the sum of the squares of its elements.

VectorScale Scales (multiplies) the values of all the elements in the source vector by a scale value and places
the result in the destination vector.

VectorSubtract Subtracts the value of each element in the source two vector from its counterpart in the source
one vector and places the result in the destination vector.

VectorZeroPad Copies the source vector into the beginning of the (already existing) destination vector and
then fills with zeros the remaining elements of the destination vector:

2.1. Fractional Vector Operations
A fractional vector is a collection of numerical values, the vector elements, allocated contiguously
in memory, with the first element at the lowest memory address. One word of memory is used
to store the value of each element, and this quantity must be interpreted as a fractional number
represented in the 1.15/1.31 data format.

The pointer addressing the first element of the vector serves as a handle, granting access to each
value within the vector. This address of the first element is known as the base address (BA) of the
vector. Given that each vector element is either 16-bits (for 1.15 fractional data) or 32-bits (for 1.31
fractional data), the last 1-bit or 2-bits of the base address must be zero, respectively.

The one-dimensional arrangement of a vector accommodates to the memory storage model of the
device, so that the nth element of an N-element vector can be accessed from the vector's base
address as:

 BA + (sizeof(fractional))*(n – 1), for 1 ≤ n ≤ N.

Unary and binary fractional vector operations are implemented in this library. The operand vector
in an unary operation is called the source vector. In a binary operation, the first operand is referred
to as the source one vector and the second as the source two vector. Each operation applies
some computation to one or several elements of the source vector(s). Some operations produce a
result which is a scalar value (also to be interpreted as a 1.15/1.31 fractional number), while other
operations produce a result which is a vector. When the result is also a vector, this is referred to as
the destination vector.

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 9

Some operations, that result in a vector, allow computation in place. This means the results of the
operation are placed back into the source vector (or the source one vector for binary operations). In
this case, the destination vector is said to (physically) replace the source (one) vector. If an operation
can be computed in place, it is indicated as such in the comments provided with the function
description.

For some binary operations, the two operands can be the same (physical) source vector, which
means the operation is applied to the source vector and itself. If this type of computation is possible
for a given operation, it is indicated as “self-applicable” in the comments provided with the function
description.

Some operations can be both self-applicable and computed in place.

All the fractional vector operations in this library take as an argument the cardinality (number of
elements) of the operand vector(s). Based on the value of this argument, the following assumptions
are made:

1. The sum of sizes of all the vectors involved in a particular operation falls within the range of
available data memory for the target device.

2. In the case of binary operations, the cardinalities of both operand vectors must obey the rules of
vector algebra (specifically for the VectorConvolve and VectorCorrelate functions).

3. The destination vector must be large enough to accept the results of an operation.

2.2. Additional Remarks
The description of the functions limits its scope of what could be considered the regular usage of
these operations. However, since no boundary checking is performed during computation of these
functions, operations and its results are interpreted to fit specific needs.

For instance, while computing the VectorMax function, the length of the source vector could be
greater than numElems. In this case, the function would be used to find the maximum value only
among the first numElems elements of the source vector.

Similarly, if the requirement is to replace numElems elements of a destination vector located
between N and N+numElems-1, with numElems elements from a source vector located between
elements M and M+numElems-1, then, the VectorCopy function could be used as follows:

fractional* dstV[DST_ELEMS] = {...};
fractional* srcV[SRC_ELEMS] = {...};

int n = NUM_ELEMS;
int N = N_PLACE; /* NUM_ELEMS+N ≤ DST_ELEMS */
int M = M_PLACE; /* NUM_ELEMS+M ≤ SRC_ELEMS */

fractional* dstVector = dstV+N;
fractional* srcVector = srcV+M;

dstVector = VectorCopy (n, dstVector, srcVector);

Also in this context, the VectorZeroPad function can operate in place, where dstV = srcV, numElems is
the number of elements at the beginning of the source vector to preserve, and numZeros is the
number of elements at the vector tail to set to zero. Other possibilities can be exploited from the
fact that no boundary checking is performed.

2.3. Functions

2.3.1. VectorAdd
Description

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 10

VectorAdd adds the value of each element in the source one vector with its counterpart in the
source two vector and places the result in the destination vector.

Prototype

fractional* VectorAdd (int numElems, fractional* dstV, fractional* srcV1,
fractional* srcV2);
Arguments

Parameters Description

numElems Number of elements in the source vectors

dstV Pointer to the destination vector

srcV1 Pointer to the source one vector

srcV2 Pointer to the source two vector

Returns

Pointer to the base address of the destination vector.

Remarks

If the absolute value of srcV1[n] + srcV2[n] is larger than the maximum value of 1.15/1.31 fractional
datatype, this operation results in saturation for the nth element.

This function can be computed in place.

This function can be self-applicable.

Source File

• For dsPIC30F/33F/33E/33C
vadd.s

• For dsPIC33A
vadd_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 13 17 + 3*(numElems)
dsPIC33E/33C 16 25 + 3*(numElems)

dsPIC33A 11 36 + 4*(numElems)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W4 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• 1 DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W4 - used, not restored
– ACCA - used, not restored

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 11

– CORCON - saved, used, restored
– REPEAT instruction/s usage – None

2.3.2. VectorConvolve
Description

VectorConvolve computes the convolution between two source vectors and stores the result in a
destination vector. The result is computed as follows:

Where,

x[k] = source one vector of size N,

h[k] = source two vector of size M (with M < N).

Prototype

fractional* VectorConvolve (int numElems1,int numElems2,fractional* dstV,
fractional* srcV1,fractional* srcV2);
Arguments

Parameters Description

numElems1 Number of elements in source-one vector

numElems2 Number of elements in source-two vector

dstV Pointer to the destination vector

srcV1 Pointer to the source-one vector

srcV2 Pointer to the source-two vector

Returns

Pointer to the base address of the destination vector.

Remarks

The number of elements in the source two vector must be less than or equal to the number of
elements in the source one vector.

The destination vector must already exist, with exactly numElems1+numElems2-1 number of
elements.

This function can be self-applicable.

Source File

• For dsPIC30F/33F/33E/33C
vcon.s

• For dsPIC33A
vcon_aa.s

Function Profile

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 12

Device Program
Words

Cycles

dsPIC30F/33F 58 For N = numElems1, and M = numElems2,

dsPIC33E/33C 62 For N = numElems1, and M = numElems2,

dsPIC33A 37 For N = numElems1, and M = numElems2,

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W10 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• Two levels of DO instructions
• No REPEAT instruction(s)

• For dsPIC33A
– W0… W7 - used, not restored
– W8…W9 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– Two REPEAT instruction(s)

2.3.3. VectorCopy
Description

VectorCopy copies the elements of the source vector into the beginning of an (already existing)
destination vector, so that:

dstV[n] = srcV[n], 0 ≤ n < numElems

Prototype

fractional* VectorCopy (int numElems, fractional* dstV, fractional* srcV);
Arguments

Parameters Description

numElems Number of elements in the source vectors

dstV Pointer to the destination vector

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 13

VectorCopy (continued)
Parameters Description

srcV1 Pointer to the source one vector

Returns

Pointer to the base address of the destination vector.

Remarks

The destination vector must already exist. The size of the destination vector must be greater than or
equal to numElems.

This function can be computed in place. See Additional Remarks at the beginning of the section for
comments on this mode of operation.

Source File

• For dsPIC30F/33F/33E/33C
vcopy.s

• For dsPIC33A
vcopy_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 6 12 + (numElems)
dsPIC33E/33C 9 20 + (numElems)

dsPIC33A 5 *See below

Cycle counts for dsPIC33A

Source Vector Size Cycles

32 68

64 122

128 228

256 442

512 868

1024 1722

2048 3428

System resource usage

• For dsPIC30F/33F/33E/33C/33A
– W0…W3 - used, not restored
– DO and REPEAT instruction usage

• No DO Instruction (N/A for dsPIC33A)
• One REPEAT instruction(s)

2.3.4. VectorCorrelate
Description

VectorCorrelate computes the correlation between two source vectors and stores the result in a
destination vector. The result is computed as follows:

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 14

Prototype

fractional* VectorCorrelate (int numElems1, int numElems2, fractional* dstV,
fractional* srcV1, fractional* srcV2);
Arguments

Parameters Description

numElems1 Number of elements in the source one vector (N)

numElems2 Number of elements in the source two vector (M, with M ≤ N)

dstV Pointer to the destination vector (of size N+M-1)

srcV1 Pointer to the source one vector

srcV2 Pointer to the source two vector

Returns

Pointer to the base address of the destination vector.

Remarks

The number of elements in the source two vector must be less than or equal to the number of
elements in the source one vector.

The destination vector must already exist, with exactly numElems1+numElems2-1 number of
elements.

This function can be self-applicable.

This function uses VectorConvolve.

Source File

• For dsPIC30F/33F/33E/33C
vcor.s

• For dsPIC33A
vcor_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 14 19 + ⌊M/2⌋ x 3
dsPIC33E/33C 17 25 + ⌊M/2⌋ x 3

dsPIC33A 12 28 + ⌊M/2⌋ x 3

Note :

1. The above-mentioned program word and cycle counts pertain solely to VectorCorrelate.
However, as this function inherently utilizes VectorConvolve, the respective counts for
VectorConvolve must also be considered.

2. In the description of VectorConvolve, the number of cycles reported includes four cycles
of C-function call overhead. Thus, the number of actual cycles from VectorConvolve to
add to VectorCorrelate is four less than whatever number is reported for a stand-alone
VectorConvolve.

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 15

System resource usage

The below system resource usages are excluded from those of the VectorConvolve function.

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– DO and REPEAT instruction usage

• One level DO Instruction
• No REPEAT instruction/s

• For dsPIC33A
– W0…W7 - used, not restored
– REPEAT instruction(s) usage – None

2.3.5. VectorDotProduct
Description

VectorDotProduct computes the sum of the products between the corresponding elements of the
source one and source two vectors.

Prototype

fractional VectorDotProduct (int numElems, fractional* srcV1,
fractional* srcV2);
Arguments

Parameters Description

numElems Number of elements in the source vectors

srcV1 Pointer to the source one vector

srcV2 Pointer to the source two vector

Returns

Value of the sum of products.

Remarks

If the absolute value of sum-of-products is larger than the maximum value of 1.15/1.31 fractional
data type, the operation results in saturation.

This function can be computed in place.

This function can be self-applicable.

Source File

• For dsPIC30F/33F/33E/33C
vdot.s

• For dsPIC33A
vdot_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 13 17 + 3*(numElems)
dsPIC33E/33C 16 25 + 3*(numElems)

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 16

VectorDotProduct (continued)
Device Program Words Cycles

dsPIC33A 11 32 + numElems - If srcV2 in y-memory
and srcV1 in x-memory.

32 + 2*numElems - If both
srcV2 and srcV1 in x-memory.

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W5 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• One level DO Instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W4 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – 1

2.3.6. VectorMax
Description

VectorMax returns the value and index of the last element in the source vector whose value is
greater than or equal to any previous vector element.

Prototype

fractional VectorMax (int numElems, fractional* srcV, int* maxIndex);
Arguments

Parameters Description

numElems Number of elements in the source vector

srcV Pointer to the source vector

maxIndex Pointer to the holder for the index of (last) maximum element

Returns

Maximum value in the vector.

Remarks

If srcV[i] = srcV[j] = maxVal, and i < j, then *maxIndex = j.

Source File

• For dsPIC30F/33F/33E/33C
vmax.s

• For dsPIC33A
vmax_aa.s

Function Profile

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 17

Device Program
Words

Cycles

dsPIC30F/33F 13 14, if numElems = 1
20 + 8(numElems - 2), if srcV[n] ≤ srcV[n + 1], 0 ≤ n < numElems - 1
19 + 7(numElems - 2), if srcV[n] > srcV[n + 1], 0 ≤ n < numElems - 1

dsPIC33E/33C 16 22, if numElems = 1
28 + 10(numElems - 2), if srcV[n] ≤ srcV[n + 1], 0 ≤ n < numElems - 1
27 + 11(numElems - 2), if srcV[n] > srcV[n + 1], 0 ≤ n < numElems - 1

dsPIC33A 10 32 + 4*(numElems - 1),

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W5 - used, not restored
– DO and REPEAT instruction usage

• No DO or REPEAT instructions
• For dsPIC33A

– W0…W6 - used, not restored
– REPEAT instruction(s) usage – None

2.3.7. VectorMin
Description

VectorMin returns the value and index of the last element in the source vector whose value is
lesser than or equal to any previous vector element.

Prototype

fractional VectorMin (int numElems, fractional* srcV, int* minIndex);
Arguments

Parameters Description

numElems Number of elements in the source vector

srcV Pointer to the source vector

minIndex Pointer to the holder for the index of the (last) minimum element

Returns

Minimum value in the vector.

Remarks

If srcV[i] = srcV[j] = minVal, and i < j, then *minIndex = j.

Source File

• For dsPIC30F/33F/33E/33C
vmin.s

• For dsPIC33A
vmin_aa.s

Function Profile

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 18

Device Program
Words

Cycles

dsPIC30F/33F 13 14, if numElems = 1
20 + 8(numElems - 2), if srcV[n] ≤ srcV[n + 1], 0 ≤ n < numElems - 1
19 + 7(numElems - 2), if srcV[n] > srcV[n + 1], 0 ≤ n < numElems - 1

dsPIC33E/33C 16 22, if numElems = 1
28 + 10(numElems - 2), if srcV[n] ≤ srcV[n + 1], 0 ≤ n < numElems - 1
27 + 11(numElems - 2), if srcV[n] > srcV[n + 1], 0 ≤ n < numElems - 1

dsPIC33A 10 32 + 4*(numElems - 1),

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W5 - used, not restored
– DO and REPEAT instruction usage

• No DO or REPEAT instructions
• For dsPIC33A

– W0…W6 - used, not restored
– REPEAT instruction/s usage – None

2.3.8. VectorMultiply
Description

VectorMultiply multiplies the value of each element in the source one vector with its counterpart
in the source two vector and places the result in the destination vector.

Prototype

fractional* VectorMultiply (int numElems, fractional* dstV,
fractional* srcV1, fractional* srcV2);
Arguments

Parameters Description

numElems Number of elements in the source vectors

dstV Pointer to the destination vector

srcV1 Pointer to the source one vector

srcV2 Pointer to the source two vector

Returns

Pointer to the base address of the destination vector.

Remarks

This operation is also known as the vector element-by-element multiplication.

This function can be computed in place.

This function can be self-applicable.

Source File

• For dsPIC30F/33F/33E/33C
vmul.s

• For dsPIC33A

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 19

vmul_aa.s
Function Profile

Device Program Words Cycles

dsPIC30F/33F 14 17 + 4*(numElems)
dsPIC33E/33C 17 25 + 4*(numElems)

dsPIC33A 20 36 + ⌈2.5 x numElems⌉

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W5 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• 1 DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W4 - used, not restored
– W13 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

2.3.9. VectorNegate
Description

VectorNegate negates (changes the sign of) the values of the elements in the source vector and
places them in the destination vector.

Prototype

fractional* VectorNegate (int numElems, fractional* dstV, fractional* srcV1);
Arguments

Parameters Description

numElems Number of elements in the source vectors

dstV Pointer to the destination vector

srcV1 Pointer to the source vector

Returns

Pointer to the base address of the destination vector.

Remarks

The negated value of 0x80..0 is set to 0x7F..F.

This function can be computed in place.

Source File

• For dsPIC30F/33F/33E/33C

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 20

vneg.s
• For dsPIC33A

vneg_aa.s
Function Profile

Device Program Words Cycles

dsPIC30F/33F 16 19 + 4*(numElems)
dsPIC33E/33C 19 27 + 4*(numElems)

dsPIC33A 10 32 + (numElems)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W5 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• One level DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W3 - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

2.3.10. VectorPower
Description

VectorPower computes the power of a source vector as the sum of the squares of its elements.

Prototype

fractional VectorPower(int numElems, fractional* srcV);
Arguments

Parameters Description

numElems Number of elements in the source vectors

srcV Pointer to the source vector

Returns

Value of the vector’s power (sum of squares).

Remarks

If the absolute value of sum-of-squares is larger than the maximum value of 1.15/1.31 fractional data
type, the operation results in saturation.

This function can be self-applicable.

Source File

• For dsPIC30F/33F/33E/33C
vpow.s

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 21

• For dsPIC33A
vpow_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 12 16 + 2*(numElems)
dsPIC33E/33C 15 24 + 2*(numElems)

dsPIC33A 9 36 + (numElems)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W4 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• No DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W4 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– One REPEAT instruction

2.3.11. VectorScale
Description

VectorScale multiplies the values of all the elements in the source vector by a scale value and
places the result in the destination vector.

Prototype

fractional* VectorScale (int numElems, fractional* dstV, fractional* srcV,
fractional sclVal);
Arguments

Parameters Description

numElems Number of elements in the source vectors

dstV Pointer to the destination vector

srcV Pointer to the source vector

sclVal Value by which to scale the vector elements

Returns

Pointer to the base address of the destination vector.

Remarks

sclVal must be a fractional number in 1.15/1.31 format.

This function can be computed in place.

This function can be self-applicable.

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 22

Source File

• For dsPIC30F/33F/33E/33C
vscl.s

• For dsPIC33A
vscl_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 14 17 + 4*(numElems)
dsPIC33E/33C 17 25 + 4*(numElems)

dsPIC33A 20 40 + ⌈2.5 x numElems⌉

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W4 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• 1 level DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W4 - used, not restored
– W13 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

2.3.12. VectorSubtract
Description

VectorSubtract subtracts the value of each element in the source one vector with its counterpart
in the source two vector and places the result in the destination vector.

Prototype

fractional* VectorSubtract (int numElems, fractional* dstV,
fractional* srcV1, fractional* srcV2);
Arguments

Parameters Description

numElems Number of elements in the source vectors

dstV Pointer to the destination vector

srcV1 Pointer to the source one vector

srcV2 Pointer to the source two vector

Returns

Pointer to the base address of the destination vector.

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 23

Remarks

If the absolute value of srcV1[n] - srcV2[n] is larger than the maximum value of 1.15/1.31 fractional
data type, the operation results in saturation for the nth element.

This function can be computed in place.

This function can be self-applicable.

Source File

• For dsPIC30F/33F/33E/33C
vsub.s

• For dsPIC33A
vsub_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 13 17 + 3*(numElems)
dsPIC33E/33C 16 25 + 3*(numElems)

dsPIC33A 11 36 + 4*(numElems)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W4 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• One DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W4 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

2.3.13. VectorZeroPad
Description

VectorZeroPad copies the source vector into the beginning of the (already existing) destination
vector and then fills the remaining numZeros elements of the destination vector with zeros.

dstV[n] = srcV[n], 0 ≤ n < numElems

dstV[n] = 0, numElems ≤ n < numElems + numZeros

Prototype

fractional* VectorZeroPad (int numElems, int numZeros, fractional* dstV,
fractional* srcV1);
Arguments

Vector Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 24

Parameters Description

numElems Number of elements in the source vectors

numZeros Number of zeros

dstV Pointer to the destination vector (of size numElems + numZeros)

srcV1 Pointer to the source vector

Returns

Pointer to the base address of the destination vector.

Remarks

The destination vector must already exist with exactly numElems + numZeros number of elements.

This function can be computed in place.

This function uses VectorCopy

Source File

• For dsPIC30F/33F/33E/33C
vzpad.s

• For dsPIC33A
vzpad_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 13 18 + (numZeros)
dsPIC33E/33C 16 26 + (numZeros)

dsPIC33A 9 12 + (numZeros)

Notes: 
1. The above-mentioned program word and cycle counts pertain solely to VectorZeroPad.

However, as this function inherently utilizes VectorCopy, the respective counts for VectorCopy
must also be considered.

2. In the description of VectorCopy, the number of cycles reported includes four cycles of
C-function call overhead. Thus, the number of actual cycles from VectorCopy to add to
VectorZeroPad is four less than whatever number is reported for a stand-alone VectorCopy.

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W6- used, not restored
– DO and REPEAT instruction usage

• No DO instruction
• One REPEAT instruction(s)

• For dsPIC33A
– W0…W5 - used, not restored
– One REPEAT instruction(s)

Window Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 25

3. Window Functions
Function Description

BartlettInit Initializes a Barlett window of length numElems.

BlackmanInit Initializes a Blackman (3 terms) window of length numElems.

HammingInit Initializes a Hamming window of length numElems.

HanningInit Initializes a Hanning window of length numElems.

KaiserInit Initializes a Kaiser window with shape determined by argument betaVal and of length
numElems.

VectorWindow Applies a window to a given source vector and stores the resulting windowed vector in a
destination vector.

3.1. Window Operations
A window is a vector with a specific value distribution within its domain (0 ≤ n < numElems). The
particular value distribution depends on the characteristics of the window being generated.

Given a vector, its value distribution may be modified by applying a window to it. In these cases, the
window must have the same number of elements as the vector to modify.

Before a vector can be windowed, the window must be created. Window initialization operations are
provided which generate the values of the window elements. For higher numerical precision, these
values are computed in floating-point arithmetic, and the resulting quantities stored as 1.15/1.31
fractionals.

To avoid excessive overhead when applying a window operation, a particular window could be
generated once and used many times during the execution of the program. Thus, it is advisable to
store the window returned by any of the initialization operations in a permanent (static) vector.

3.2. User Considerations
When using window functions, consider the following:

1. All the window initialization functions have been designed to generate window vectors allocated
in the default RAM memory space (X-Data or Y-Data).

2. The window function is designed to operate on vectors allocated in the default RAM memory
space (X-Data or Y-Data).

3. It is recommended that the STATUS Register (SR) be examined after completion of each function
call.

3.3. Functions

3.3.1. BartlettInit
Description

BartlettInit initializes a Barlett window of length numElems.

Prototype

fractional* BartlettInit(int numElems, fractional* window);
Arguments

Parameters Description

numElems Number of rows in the source matrices.

Window Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 26

BartlettInit (continued)
Parameters Description

window Number of columns in the source matrices.

Returns

Pointer to the base address of the initialized window.

Remarks

The window vector must already exist, with exactly numElems number of elements.

Source File

• For dsPIC30F/33F/33E/33C/33A
initbart.c (c-code implementation)

3.3.2. BlackmanInit
Description

BlackmanInit initializes a Blackman (3 terms) window of length numElems.

Prototype

fractional* BlackmanInit(int numElems, fractional* window);
Arguments

Parameters Description

numElems Number of rows in the source matrices.

window Number of columns in the source matrices.

Returns

Pointer to the base address of the initialized window.

Remarks

The window vector must already exist, with exactly numElems number of elements.

Source File

• For dsPIC30F/33F/33E/33C/33A
initblck.c (c-code implementation)

3.3.3. HammingInit
Description

HammingInit initializes a Hamming window of length numElems.

Prototype

fractional* HammingInit(int numElems, fractional* window);
Arguments

Parameters Description

numElems Number of rows in the source matrices.

window Number of columns in the source matrices.

Returns

Window Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 27

Pointer to the base address of the initialized window.

Remarks

The window vector must already exist, with exactly numElems number of elements.

Source File

• For dsPIC30F/33F/33E/33C/33A
inithamm.c (c-code implementation)

3.3.4. HanningInit
Description

HanningInit initializes a Hanning window of length numElems.

Prototype

fractional* HanningInit(int numElems, fractional* window);
Arguments

Parameters Description

numElems Number of rows in the source matrices.

window Number of columns in the source matrices.

Returns

Pointer to the base address of the initialized window.

Remarks

The window vector must already exist, with exactly numElems number of elements.

Source File

• For dsPIC30F/33F/33E/33C/33A
inithann.c (c-code implementation)

3.3.5. KaiserInit
Description

KaiserInit initializes a Kaiser window of length numElems.

Prototype

fractional* KaiserInit(int numElems, fractional* window, float betaVal);
Arguments

Parameters Description

numElems Number of rows in the source matrices.

window Number of columns in the source matrices.

betaVal Window shaping parameter.

Returns

Pointer to the base address of the initialized window.

Remarks

The window vector must already exist, with exactly numElems number of elements.

Source File

Window Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 28

• For dsPIC30F/33F/33E/33C/33A
initkais.c (c-code implementation)

3.3.6. VectorWindow
Description

VectorWindow applies a window to a given source vector and stores the resulting windowed vector
in a destination vector.

Prototype

fractional* VectorWindow (int numElems, fractional* dstV, fractional* srcV,
fractional* window);
Arguments

Parameters Description

numElems Number of elements in the source vectors.

dstV Pointer to the destination vector.

srcV Pointer to the source vector.

window Pointer to the initialized window.

Returns

Pointer to the base address of the destination vector.

Remarks

The window vector must have already been initialized, with exactly numElems number of elements.

This function can be computed in place.

This function can be self-applicable.

This function uses VectorMultiply.

Source File

• For dsPIC30F/33F/33E/33C
dowindow.s

• For dsPIC33A
dowindow_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 3 9
dsPIC33E/33C 3 9

dsPIC33A 2 11

Notes: 
1. The above-mentioned program word and cycle counts pertain solely to VectorWindow.

However, as this function inherently utilizes VectorMultiply, the respective counts for
VectorMultiply must also be considered.

2. In the description of VectorMultiply, the number of cycles reported includes four cycles
of C-function call overhead. Thus, the number of actual cycles from VectorMultiply to
add to VectorWindow is four less than whatever number is reported for a stand-alone
VectorMultiply.

Window Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 29

System resource usage

• For dsPIC30F/33F/33E/33C/33A
– None. (VectorWindow just includes a function to call to VectorMultiply.)

Matrix Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 30

4. Matrix Functions
4.1. Functions

Function Description

MatrixAdd Adds the value of each element in the source one matrix with its counterpart in the source
two matrix and places the result in the destination matrix.

MatrixMultiply Performs the matrix multiplication between the source one and source two matrices and
places the result in the destination matrix.

MatrixScale Scales (multiplies) the values of all elements in the source matrix by a scale value and places
the result in the destination matrix.

MatrixSubtract Subtracts the value of each element in the source one matrix from its counterpart in the source
two matrix and places the result in the destination matrix.

MatrixTranspose Transposes the rows by the columns in the source matrix and places the result in the
destination matrix.

MatrixInvert Computes the inverse of the source matrix and places the result in the destination matrix.

4.2. Fractional Matrix Operations
A fractional matrix is a collection of numerical values, the matrix elements allocated contiguously
in memory, with the first element at the lowest memory address. One word of memory is used
to store the value of each element, and this quantity must be interpreted as a fractional number
represented in the 1.15/1.31 format.

A pointer addressing the first element of the matrix is used as a handle which provides access to
each of the matrix values. The address of the first element is referred to as the base address (BA) of
the matrix. Because each element of the matrix is 16-bits/32-bits, the base address must be aligned
to two or four, respectively.

The two-dimensional arrangement of a matrix is emulated in the memory storage area by placing
its elements organized in row major order. Thus, the first value in memory is the first element of
the first row. It is followed by the rest of the elements of the first row. Then, the elements of the
second row are stored, and so on, until all the rows are in memory. This way, the element at row r
and column c of a matrix with R rows and C columns is located from the matrix base address (BA) at:

BA + (sizeof(fractional)) * (C(r - 1) + c - 1), for 1 ≤ r ≤ R, 1 ≤ c ≤ C.

Unary and binary fractional matrix operations are implemented in this library. The operand matrix
in a unary operation is called the source matrix. In a binary operation the first operand is referred
to as the source one matrix and the second matrix as the source two matrix. Each operation applies
some computation to one or several elements of the source matrix(ces). The operations result in a
matrix, referred to as the destination matrix.

Some operations resulting in a matrix allow computation in place. This means the results of the
operation are placed back into the source matrix (or the source one matrix for a binary operation).
In this case, the destination matrix is said to (physically) replace the source (one) matrix. If an
operation can be computed in place, it is indicated as such in the comments provided with the
function description.

For some binary operations, the two operands can be the same (physical) source matrix, which
means the operation is applied to the source matrix and itself. If this type of computation is possible
for a given operation, it is indicated as such in the comments provided with the function description.

Some operations can be self-applicable and computed in place.

Matrix Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 31

All fractional matrix operations in this library take as arguments to the number of rows and the
number of columns of the operand matrix(ces). Based on the values of these arguments, the
following assumptions are made:

1. The sum of sizes of all the matrices involved in a particular operation falls within the range of
available data memory for the target device.

2. In the case of binary operations, the number of rows and columns of the operand matrices must
obey the rules of vector algebra (i.e., For matrix addition and subtraction, the two matrices must
have the same number of rows and columns, while for matrix multiplication, the number of
columns of the first operand must be the same as the number of rows of the second operand.).
The source matrix to the inversion operation must be square (the same number of rows and
columns) and non-singular (its determinant different than zero).

The destination matrix must be large enough to accept the results of an operation.

4.3. User Considerations
When using matrix functions, consider the following:

1. No boundary checking is performed by these functions. Out of range dimensions (including zero
row and/or zero column matrices) as well as nonconforming use of source matrix sizes in binary
operations may produce unexpected results.

2. The matrix addition and subtraction operations could lead to saturation if the sum of
corresponding elements in the source(s) matrix(ces) is greater than 1-2-15 for 1.15 fractional
or 1-2-31 for 1.31 fractional or smaller than -1.

3. The matrix multiplication operation could lead to saturation if the sum of products of
corresponding row and column sets results in a value greater than 1-2-15 for 1.15 fractional
or 1-2-31 for 1.31 fractional or smaller than -1.

4. It is recommended that the STATUS Register (SR) is examined after completion of each function
call. In particular, users can inspect the SA, SB and SAB flags after the function returns to
determine if saturation occurred.

5. Operations which return a destination matrix can be nested. For instance, if:
a = Op1 (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a = Op1 (Op2 (d), Op3 (e, f))

6. All cycle count values for dsPIC33A are considered with the PBU cache enabled and may differ
depending on the status of the PBU cache or on the placement of vectors and code.

4.4. Additional Remarks
The description of the functions limits the scope to the regular usage of these operations. However,
since no boundary checking is performed during computation of these functions, operations and
the results are interpreted to fit specific needs.

For instance, while computing the MatrixMultiply function, the dimensions of the intervening
matrices do not necessarily need to be {numRows1, numCos1Rows2} for the source one matrix,
{numCols1Rows2, numCols2} for the source two matrix, and {numRows1, numCols2} for the
destination matrix. In fact, all that is needed is that their sizes are large enough so during
computation, the pointers do not exceed their memory range.

As another example, when a source matrix of dimension {numRows, numCols} is transposed, the
destination matrix has dimensions {numCols, numRows}. Therefore, the operation can be computed
in place only if the source matrix is square. Nevertheless, the operation can be successfully applied
in place to non-square matrices; all that needs to be kept in mind is the implicit change of
dimensions.

Other possibilities can be exploited from the fact that no boundary checking is performed.

Matrix Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 32

4.5. Functions

4.5.1. MatrixAdd
Description

MatrixAdd adds the value of each element in the source one matrix with its counterpart in the
source two matrix and places the result in the destination matrix.

Prototype

fractional* MatrixAdd (int numRows, int numCols, fractional* dstM,
fractional* srcM1, fractional* srcM2);
Arguments

Parameters Description

numRows Number of rows in the source matrices.

numCols Number of columns in the source matrices.

dstM Pointer to the destination matrix

srcM1 Pointer to the source one matrix

srcM2 Pointer to the source two matrix

Returns

Pointer to the base address of the destination matrix.

Remarks

If the absolute value of srcM1[r][c] + srcM2[r][c] is larger than the maximum value of the 1.15/1.31
fractional data type, this operation results in saturation for the nth element.

This function can be computed in place.

This function can be self applicable.

Source File

• For dsPIC30F/33F/33E/33C
madd.s

• For dsPIC33A
madd_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 14 20 + 3*(numRows * numCols)
dsPIC33E/33C 17 28 + 3*(numRows * numCols)

dsPIC33A 11 38 + 4*(numRows * numCols)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W4 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

Matrix Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 33

• One level DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W5 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

4.5.2. MatrixMultiply
Description

MatrixMultiply performs the matrix multiplication between the source one and source two
matrices and places the result in the destination matrix.

Symbolically:

where:

0 ≤ i < numRows1

0 ≤ j < numCols2

0 ≤ k < numCols1Rows2

Prototype

fractional* MatrixMultiply (int numRows1, int numCols1Rows2, int numCols2,
fractional* dstM, fractional* srcM1, fractional* srcM2);
Arguments

Parameters Description

numRows1 Number of rows in the source one matrix.

numCols1Rows2 Number of columns in the source one matrix which is same as number of rows in the source
two matrix.

numCols2 Number of columns in the source two matrix.

dstM Pointer to the destination matrix

srcM1 Pointer to the source one matrix

srcM2 Pointer to the source two matrix

Returns

Pointer to the base address of the destination matrix.

Remarks

If the absolute value of result in dstM[r][c] is larger than the maximum value of the 1.15/1.31
fractional data type, this operation results in saturation for the (r,c)th element.

If the source one matrix is squared, then this function can be computed in place and can be
self-applicable.

Source File

• For dsPIC30F/33F/33E/33C

Matrix Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 34

mmul.s
• For dsPIC33A/

mmul_aa.s
Function Profile

Device Program Words Cycles

dsPIC30F/33F 35 36+numRows1*(8+numCols2*(7+4*(numCols1Rows2)))
dsPIC33E/33C 38 44+numRows1*(8+numCols2*(7+4*(numCols1Rows2)))

dsPIC33A 27 45+numRows1*(6+numCols2*(9+4*(numCols1Rows2 - 1)))

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W13 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• Two level DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W12 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

4.5.3. MatrixScale
Description

MatrixScale scales (multiplies) the values of all elements in the source matrix by a scale value and
places the result in the destination matrix.

Prototype

fractional* MatrixScale (int numRows, int numCols, fractional* dstM,
fractional* srcM, fractional sclVal);
Arguments

Parameters Description

numRows Number of rows in the source matrices.

numCols Number of columns in the source matrices.

dstM Pointer to the destination matrix

srcM1 Pointer to the source one matrix

sclVal Value used to scale the matrix elements

Returns

Pointer to the base address of the destination matrix.

Matrix Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 35

Remarks

This function can be computed in place.

Source File

• For dsPIC30F/33F/33E/33C
mscl.s

• For dsPIC33A
mscl_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 14 20 + 3*(numRows*numCols)
dsPIC33E/33C 17 28 + 3*(numRows*numCols)

dsPIC33A 20 44 + ⌈2.5 x numElems⌉

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W4 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• One level DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W5 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

4.5.4. MatrixSubtract
Description

MatrixSubtract subtracts the value of each element in the source two matrix from its counterpart
in the source one matrix and places the result in the destination matrix.

Prototype

fractional* MatrixAdd (int numRows, int numCols, fractional* dstM,
fractional* srcM1, fractional* srcM2);
Arguments

Parameters Description

numRows Number of rows in the source matrices.

numCols Number of columns in the source matrices.

dstM Pointer to the destination matrix

srcM1 Pointer to the source one matrix

srcM2 Pointer to the source two matrix

Matrix Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 36

Returns

Pointer to the base address of the destination matrix.

Remarks

If the absolute value of srcM1[r][c] - srcM2[r][c] is larger than the maximum value of the 1.15/1.31
fractional data type, this operation results in saturation for the nth element.

This function can be computed in place.

This function can be self-applicable.

Source File

• For dsPIC30F/33F/33E/33C
msub.s

• For dsPIC33A
msub_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 14 20 + 3*(numRows * numCols)
dsPIC33E/33C 17 28 + 3*(numRows * numCols)

dsPIC33A 11 38 + 4*(numRows * numCols)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W4 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage

• One level DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W5 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

4.5.5. MatrixTranspose
Description

MatrixTranspose transposes the rows by the columns in the source matrix and places the result
in the destination matrix.

In effect:

dstM[i][j] = srcM[j][i],

0 ≤ i < numRows, 0 ≤ j < numCols.

Prototype

Matrix Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 37

fractional* MatrixTranspose (int numRows, int numCols, fractional* dstM,
fractional* srcM);
Arguments

Parameters Description

numRows Number of rows in the source matrices.

numCols Number of columns in the source matrices.

dstM Pointer to the destination matrix

srcM Pointer to the source matrix

Returns

Pointer to the base address of the destination matrix.

Remarks

If the source matrix is square, this function can be computed in place.

Source File

• For dsPIC30F/33F/33E/33C
mtrp.s

• For dsPIC33A
mtrp_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 14 16 + numCols *(6 + (numRows-1)*3)
dsPIC33E/33C 17 24 + numCols *(6 + (numRows-1)*2)

dsPIC33A 9 23 + numCols *(7 + (numRows-1)*4)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W4 - used, not restored
– DO and REPEAT instruction usage

• Two level DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W5 - used, not restored
– REPEAT instruction(s) usage – None

4.5.6. MatrixInvert
The result of inverting a non-singular, square, fractional matrix is another square matrix (of the
same dimension) whose element values are not necessarily constrained to the discrete fractional set
{-1, ..., ~1}. Thus, no matrix inversion operation is provided for fractional matrices.

However, since matrix inversion is a very useful operation, an implementation based on floating-
point number representation and arithmetic is provided within the DSP Library.

Description

MatrixInverse computes the inverse of the source matrix and places the result in the destination
matrix.

Matrix Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 38

Prototype

float* MatrixInvert (int numRowsCols, float* dstM, float* srcM,
float* pivotFlag, int* swappedRows, int* swappedCols);
Arguments

Parameters Description

numRowsCols Number of rows/columns in the source (square) matrix.

dstM Pointer to the destination matrix

srcM Pointer to the source matrix

pivotFlag Pointer to a length numRowsCols vector

swappedRows Pointer to a length numRowsCols vector

swappedCols Pointer to a length numRowsCols vector

Returns

Pointer to the base address of the destination matrix, or NULL if the source matrix is singular.

Remarks

Even though the vectors pivotFlag, swappedRows and swappedCols are for internal use only, they
must be allocated prior to calling this function.

If the source matrix is singular (determinant equal to zero) the matrix does not have an inverse. In
this case, the function returns NULL.

,

This function can be computed in place.

Source File

• For dsPIC30F/33F/33E/33C/33A
minv.c (assembled from C-code)

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 39

5. Filtering Functions
Function Description

FIRStruct Struct that describes the filter structure for any of the FIR filters.

FIR Applies an FIR filter to the sequence of the source samples, places the results in the sequence
of destination samples and updates the delay values.

FIRDecimate Decimates the sequence of the source samples at a rate of R to 1, or equivalently, it down-
samples the signal by a factor of R.

FIRDelayInit Initializes to zero the delay values in an FIRStruct filter structure.

FIRInterpolate Interpolates the sequence of the source samples at a rate of 1 to R, or equivalently, it up-
samples the signal by a factor of R.

FIRInterpDelayInit Initializes to zero the delay values in an FIRStruct filter structure, optimized for use with an FIR
interpolating filter.

FIRLattice Uses a lattice structure implementation to apply an FIR filter to the sequence of the source
samples.

FIRLMS Applies an adaptive FIR filter to the sequence of the source samples, stores the results in the
sequence of the destination samples and updates the delay values.

FIRLMSNorm Applies an adaptive FIR filter to the sequence of the source samples, stores the results in the
sequence of the destination samples and updates the delay values. The filter coefficients are
also updated, at a sample-per-sample basis, using a Normalized Least Mean Square algorithm
applied according to the values of the reference samples.

FIRStructInit Initializes the values of the parameters in an FIRStruct FIR Filter structure.

IIRCanonic Applies an IIR filter, using a cascade of canonic (direct form II) biquadratic sections, to the
sequence of the source samples.

IIRCanonicInit Initializes to zero the delay values in an IIRCanonicStruct filter structure.

IIRLattice Uses a lattice structure implementation to apply an IIR filter to the sequence of the source
samples.

IIRLatticeInit Initializes to zero the delay values in an IIRLatticeStruct filter structure.

IIRTransposed Applies an IIR filter, using a cascade of transposed (direct form II) biquadratic sections, to the
sequence of the source samples.

IIRTransposedInit Initializes to zero the delay values in an IIRTransposedStruct filter structure.

5.1. Fractional Filter Operations
Filtering the data sequence represented by fractional vector x[n] (0 ≤ n < N) is equivalent to solving
the following difference equation for every nth sample, which results into the filtered data sequence
y[n].

In this sense, the fractional filter is characterized by the fractional vectors a[p] (0 ≤ p < P) and b[m] (0
≤ m < M), referred to as the set of filter coefficients, which are designed to induce some pre-specified
changes in the signal represented by the input data sequence.

When filtering, it is important to know and manage the past history of the input and output data
sequences (x[n], -M + 1 ≤ n < 0, and y[n], -P + 1 ≤ n < 0), which represent the initial conditions of the
filtering operation. Also, when repeatedly applying the filter to contiguous sections of the input data
sequence, it is necessary to remember the final state of the last filtering operation (x[n], N – M + 1
≤ n < N – 1, and y[n], N – P + 1 ≤ n < N – 1). This final state is then taken into consideration for the

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 40

calculations of the next filtering stage. Accounting for the past history and current state is required
in order to perform a correct filtering operation.

The management of the past state and current state of a filtering operation is commonly
implemented via additional sequences (also fractional vectors), referred to as the filter delay line.
Prior to applying the filter operation, the delay describes the past state of the filter. After performing
the filtering operation, the delay contains a set of the most recently filtered data samples and of the
most recent output samples.

Note: To ensure correct operation of a particular filter implementation, it is advisable to initialize
the delay values to zero by calling the corresponding initialization function.

In the filter implementations provided with the DSP Library, the input data sequence is referred to
as the sequence of source samples, while the resulting filtered sequence is called the destination
samples. The filter coefficients (a,b) and delay are usually thought of as making up a filter structure.
In all filter implementations, the input and output data samples may be allocated in default RAM
memory space (X-Data or Y-Data). Filter coefficients may reside either in X-Data memory or program
memory, and filter delay values must be accessed only from Y-Data.

Note: The dsPIC33A architecture does not mandate filter delay values to be located in Y data space.
However, not placing it in Y data space will result in sequential operand access, thereby affecting
data fetch efficiency.

5.2. FIR and IIR Filter Implementations
The properties of a filter depend on the value distribution of its coefficients. In particular, two types
of filters are of special interest: Finite Impulse Response (FIR) filters, for which a[m] = 0 when 1 ≤ m
< M, and Infinite Impulse Response (IIR) filters, those such that a[0] ≠ 0 and a[m] ≠ 0 for some m in
{1, ..., M}. Other classifications within the FIR and IIR filter families account for the effects that the
operation induces on input data sequences.

Furthermore, even though filtering consists on solving the difference equation stated above, several
implementations are available which are more efficient than direct computation of the difference
equation. Also, some other implementations are designed to execute the filtering operation under
the constraints imposed by fractional arithmetic.

All these considerations lead to a proliferation of filtering operations, of which a subset is provided
by the DSP Library.

5.3. Single Sample Filtering
The filtering functions provided in the DSP Library are designed for block processing. Each filter
function accepts an argument named numSamps which indicates the number of words of input data
(block size) to operate on. If single sample filtering is desired, set numSamps to 1. This will have the
effect of filtering one input sample, and the function will compute a single output sample from the
filter.

5.4. User Considerations
All the fractional filtering operations in this library rely on the values of either input parameters
or data structure elements to specify the number of samples to process and the sizes of the
coefficients and delay vectors. Based on these values, the following assumptions are made:

1. The sum of sizes of all the vectors (sample sequences) involved in a particular operation falls
within the range of available data memory for the target device.

2. The destination vector must be large enough to accept the results of an operation.
3. No boundary checking is performed by these functions. Out of range sizes (including zero length

vectors) as well as nonconforming use of source vectors and coefficient sets may produce
unexpected results.

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 41

4. It is recommended that the STATUS Register (SR) is examined after completion of each function
call. In particular, users can inspect the SA, SB and SAB flags after the function returns to
determine if saturation occurred.

5. Operations which return a destination vector can be nested. For instance, if:
a = Op1 (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a = Op1 (Op2 (d), Op3 (e, f))

6. All cycle count values for dsPIC33A are measured with PBU cache enabled and may differ
depending on the status of PBU cache or on the placement of vectors and code.

5.5. Functions
This section describes the individual functions for implementing filtering operations. For more
information on digital filters refer to Alan Oppenheim and Ronald Schafer’s “Discrete-Time Signal
Processing”, Prentice Hall, 1989. For implementation details of Least Mean Square FIR filters, please
refer to T. Hsia’s “Convergence Analysis of LMS and NLMS Adaptive Algorithms”, Proc. ICASSP,
pp. 667-670, 1983, as well as Sangil Park and Garth Hillman’s “On Acoustic-Echo Cancellation
Implementation with Multiple Cascadable Adaptive FIR Filter Chips”, Proc. ICASSP, 1989.

5.5.1. FIRStruct
Description

FIRStruct describes the filter structure for any of the FIR filters.

Declaration

typedef struct {
  int numCoeffs;
  fractional* coeffsBase;
  fractional* coeffsEnd;
  int coeffsPage;
  fractional* delayBase;
  fractional* delayEnd;
  fractional* delay;
} FIRStruct;

Parameters

Parameters Description

numCoeffs Number of filter coefficients (also M)

coeffsBase Base address for filter coefficients (also h)

coeffsEnd End address for filter coefficients

coeffsPage Coefficients buffer page number

delayBase Base address for delay buffer

delayEnd End address for delay buffer

delay Current value of delay pointer (also d)

Remarks

The number of filter coefficients is M.

Coefficients, h[m], defined in 0 ≤ m < M, either within X-Data space or program memory.

Delay buffer d[m], defined in 0 ≤ m < M, only in Y-Data space.

In case of dsPIC30F/33F/33E/33C, if the coefficients are stored in X-Data space, coeffsBase points to
the actual address where coefficients are allocated. If coefficients are stored in program memory,

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 42

coeffsBase is the offset from the program page boundary containing the coefficients to the address
in the page where coefficients are allocated. This latter value can be calculated using the inline
assembly operator psvoffset().

coeffsEnd is the address in X-Data space (or offset if in program memory) of the last byte of the filter
coefficients buffer.

If coefficients are stored in X-Data space, coeffsPage must be set to 0xFF00 (defined value
COEFFS_IN_DATA). If coefficients are stored in program memory, it is the program page number
containing the coefficients. This latter value can be calculated using the inline assembly operator
psvpage().

Because dsPIC33A family devices implement a non-paged linear RAM/Program memory space, the
coefficients point to the actual location, regardless of whether they are placed in program memory
or RAM. Hence, the structure member coeffsPage is ignored.

delayBase points to the actual address where the delay buffer is allocated.

delayEnd is the address of the last byte of the filter delay buffer.

When the coefficients and delay buffers are implemented as circular increasing modulo buffers,
both coeffsBase and delayBase must be aligned to a ‘zero’ power of two for each address (coeffsEnd
and delayEnd are odd addresses). Whether these buffers are implemented as circular increasing
modulo buffers or not is indicated in the remarks section of each FIR filter function description.
Since modulo addressing will not operate across page boundaries (with the exception of into and
out of default Page 0), coeffsBase and delayBase vectors in operations using modulo addressing must
be properly allocated.

When the coefficients and delay buffers are not implemented as circular (increasing) modulo
buffers, coeffsBase and delayBase do not need to be aligned to a ‘zero’ power of two address, and the
values of coeffsEnd and delayEnd are ignored within the particular FIR Filter function implementation.

5.5.2. FIR
Description

FIR applies an FIR filter to the sequence of source samples, places the results in the sequence of
destination samples and updates the delay values.

Prototype

fractional* FIR (int numSamps, fractional* dstSamps, fractional* srcSamps,
FIRStruct* filter);
Arguments

Parameters Description

numSamps Number of the input samples to filter (also N)

dstSamps Pointer to the destination samples (also y)

srcSamps Pointer to the source samples (also x)

filter Pointer to the FIRStruct filter structure

Return

Pointer to the base address of the destination sample.

Remarks

Number of filter coefficients is M.

Coefficients, h[m], defined in 0 ≤ m < M, implemented as a circular increasing modulo buffer.

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 43

Delay, d[m], defined in 0 ≤ m < M, implemented as a circular increasing modulo buffer. The Delay
vector must be placed in Y-data space.

Source samples, x[n], defined in 0 ≤ n < N.

Destination samples, y[n], defined in 0 ≤ n < N.

(See also FIRStruct, FIRStructInit and FIRDelayInit.)

For dsPIC33E/33C:

With coeffsPage pointing to the PSV page, the coefficients may be copied from PSV to the stack
depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE,

Where,

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with
the SetStackGuard function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

coeffsPage is ignored for dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
fir.s

• For dsPIC33A
fir_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 61 61 + N*(4 + M) if coefficients are
in data memory, or
68 + N*(9 + M) if coefficients in
program memory.

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 44

FIR (continued)
Device Program Words Cycles

dsPIC33E/33C 97 73 + N*(4 + M) if the coefficients
are in data memory, or
(101 + M) + N*(4 + M) if the
coefficients are in program memory
but copied into data memory, or
83 + N*(24 + M) if the coefficients
are in program memory and not copied
into data memory.

dsPIC33A 40 *See below

Cycle counts for dsPIC33A:

Source Vector Size Cycles if coefficients in X-mem Cycles if coefficients in P-mem

32 1222 3112
64 2376 6152

128 4676 12232
256 9288 24392
512 18500 48712

1024 36936 97352
2048 73796 194632

(*All values with numCoeffs = 32)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– MODCON - saved, used, restored
– XMODSTRT - saved, used, restored
– XMODEND - saved, used, restored
– YMODSTRT - saved, used, restored
– YMODEND - saved, used, restored
– PSVPAG - saved, used, restored
– DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• One level DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W7 - used, not restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– MODCON - saved, used, restored

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 45

– XMODSTRT - saved, used, restored
– XMODEND - saved, used, restored
– YMODSTRT - saved, used, restored
– YMODEND - saved, used, restored
– REPEAT instruction(s) usage – 1

5.5.3. FIRDecimate
Description

FIRDecimate decimates the sequence of the source samples at a rate of R to 1, or equivalently, it
downsamples the signal by a factor of R.

Effectively,

y[n] = x[Rn].

To diminish the effect of aliasing, the source samples are first filtered and then downsampled. The
decimated results are stored in the sequence of destination samples, and the delay values are
updated.

Prototype

fractional* FIRDecimate (int numSamps, fractional* dstSamps,
fractional* srcSamps, FIRStruct* filter, int rate);
Arguments

Parameters Description

numSamps Number of the output samples to filter (also N; with N being multiple of R)

dstSamps Pointer to the destination samples (also y)

srcSamps Pointer to the source samples (also x)

filter Pointer to the FIRStruct filter structure

rate Rate of decimation (downsampling factor, also R)

Return

Pointer to the base address of the destination sample.

Remarks

Number of filter coefficients is M, with M being an integer multiple of R.

Coefficients, h[m], defined in 0 ≤ m < M, are not implemented as a circular modulo buffer.

Delay, d[m], defined in 0 ≤ m < M, are not implemented as a circular modulo buffer.

Source samples, x[n], defined in 0 ≤ n < NR.

Destination samples, y[n], defined in 0 ≤ n < N.

(See also FIRStruct, FIRStructInit and FIRDelayInit.)

For dsPIC33E/33C:

With coeffsPage pointing to the PSV page, the coefficients may be copied from PSV to the stack
depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE,

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 46

Where,

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with
the SetStackGuard function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

The value of coeffsPage is ignored for dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
firdecim.s

• For dsPIC33A
firdecim_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 53 52 + N*(9+ 2M) if coefficients are
in data memory, or
55 + N*(13 + 2M) if coefficients in
program memory.

dsPIC33E/33C 96 61 + N*(10 + 2M) if the coefficients
are in data memory, or
(101 + M) + N*(10 + 2M) if the
coefficients are in program memory
but copied into data memory, or
71 + N*(25 + 2M) if the coefficients
are in program memory and not copied
into data memory.

dsPIC33A 30 *See below

Cycle counts for dsPIC33A:

Source Vector Size Cycles if coefficients in X-mem Cycles if coefficients in P-mem

32 2352 4240
64 4660 8432

128 9258 16816
256 18484 33584
512 36916 67120

1024 73780 134192
2048 147508 268336

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 47

(*All values with numCoeffs = 32; rate = 2)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– PSVPAG/DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• One level DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W11 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – 2

5.5.4. FIRDelayInit
Description

FIRDelayInit initializes to zero the delay values in an FIRStruct filter structure.

Prototype

void FIRDelayInit (FIRStruct* filter);
Arguments

Parameters Description

filter Pointer to FIRStruct filter structure

Returns

None.

Remarks

See description of FIRStruct structure above.

Note: FIR interpolator's delay is initialized by function FIRInterpDelayInit.

Source File

• For dsPIC30F/33F/33E/33C
firdelay.s

• For dsPIC33A
firdelay_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 7 11 + M

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 48

FIRDelayInit (continued)
Device Program Words Cycles

dsPIC33E/33C 10 20 + M
dsPIC33A 6 22 + M

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W2 - used, not restored
– DO and REPEAT instruction usage

• No level DO instruction
• One REPEAT instruction(s)

• For dsPIC33A
– W0…W2 - used, not restored
– REPEAT instruction(s) usage – 1

5.5.5. FIRInterpolate
Description

FIRInterpolate interpolates the sequence of the source samples at a rate of 1 to R, or
equivalently, it upsamples the signal by a factor of R.

Effectively,

y[n] = x[n/R].

To diminish the effect of aliasing, the source samples are first upsampled and then filtered. The
interpolated results are stored in the sequence of destination samples, and the delay values are
updated.

Prototype

fractional* FIRInterpolate (int numSamps, fractional* dstSamps,
fractional* srcSamps, FIRStruct* filter, int rate);
Arguments

Parameters Description

numSamps Number of the input samples to filter (also N; with N being multiple of R)

dstSamps Pointer to the destination samples (also y)

srcSamps Pointer to the source samples (also x)

filter Pointer to the FIRStruct filter structure

rate Rate of the interpolation (upsampling factor, also R)

Return

Pointer to the base address of the destination sample.

Remarks

Number of filter coefficients is M, with M being an integer multiple of R.

Coefficients, h[m], defined in 0 ≤ m < M, are not implemented as a circular modulo buffer.

Delay, d[m], defined in 0 ≤ m < M/R, are not implemented as a circular modulo buffer.

Source samples, x[n], defined in 0 ≤ n < N.

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 49

Destination samples, y[n], defined in 0 ≤ n < NR.

(See also FIRStruct, FIRStructInit and FIRInterpDelayInit.)

For dsPIC33E/33C -

With coeffsPage pointing to the PSV page, the coefficients may be copied from PSV to the stack
depending on the stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE,

Where,

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with
the SetStackGuard function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

The value of coeffsPage is ignored for dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
firinter.s

• For dsPIC33A
firinter_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 68 50 + 6*(M/R) + N*(14 + M/R + 3M
+ 4R) if coefficients are in data
memory, or
54 + 6*(M/R) + N*(14 + M/R + 4M
+ 4R) if coefficients in program
memory.

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 50

FIRInterpolate (continued)
Device Program Words Cycles

dsPIC33E/33C 127 61 + 8*(M/R) + N*(16 + M/R + 3M +
5R) if the coefficients are in data
memory, or
(86 + M) + 8*(M/R) + N*(16 + M/R +
3M + 5R) if the coefficients are in
program memory but copied into data
memory, or
76 + 8*(M/R) + N*(19 + M/R + 7M
+ 6R) if the coefficients are in
program memory and not copied into
data memory.

dsPIC33A 36 *See below

Cycle counts for dsPIC33A:

Source Vector Size Cycles if coefficients in X-mem Cycles if coefficients in P-mem

32 5344 9002
64 10624 17930

128 21184 35786
256 42304 71498
512 84544 142922

1024 169024 285770
2048 337984 571466

(*All values with numCoeffs = 32; rate = 2)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– PSVPAG/DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• Two level DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W12 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – 2

5.5.6. FIRInterpDelayInit
Description

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 51

FIRInterpDelayInit initializes to zero the delay values in an FIRStruct filter structure, optimized
for use with an FIR interpolating filter.

Prototype

void FIRInterpDelayInit (FIRStruct* filter, int rate);
Arguments

Parameters Description

filter Pointer to the FIRStruct filter structure.

rate Rate of interpolation (upsampling factor, also R)

Returns

None.

Remarks

Delay, d[m], defined in 0 ≤ m < M/R, with M being the number of filter coefficients in the
interpolator. See the description of the FIRStruct structure above.

Source File

• For dsPIC30F/33F/33E/33C
firinterpdelay.s

• For dsPIC33A
firinterpdelay_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 13 10 + 7*(M/R)
dsPIC33E/33C 16 22 + 8*(M/R)

dsPIC33A 7 32 + M/R

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W4 - used, not restored
– DO and REPEAT instruction usage

• No level DO instruction
• One REPEAT instruction(s)

• For dsPIC33A
– W0…W3 - used, not restored
– REPEAT instruction(s) usage – 2

5.5.7. FIRLattice
Description

FIRLattice uses a lattice structure implementation to apply an FIR filter to the sequence of source
samples. It then places the results in the sequence of the destination samples and updates the delay
values.

Prototype

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 52

fractional* FIRLattice (int numSamps, fractional* dstSamps,
fractional* srcSamps, FIRStruct* filter);
Arguments

Parameters Description

numSamps Number of input samples to filter (also N; with N being multiple of R)

dstSamps Pointer to the destination samples (also y)

srcSamps Pointer to the source samples (also x)

filter Pointer to the FIRStruct filter structure

Return

Pointer to the base address of the destination sample.

Remarks

Number of the filter coefficients is M.

Coefficients, h[m], defined in 0 ≤ m < M, are not implemented as a circular modulo buffer.

Delay, d[m], defined in 0 ≤ m < M, are not implemented as a circular modulo buffer.

Source samples, x[n], defined in 0 ≤ n < N.

Destination samples, y[n], defined in 0 ≤ n < N.

(See also FIRStruct, FIRStructInit and FIRDelayInit.)

For dsPIC33E/33C -

With coeffsPage pointing to the PSV page, the coefficients may be copied from the PSV to the stack
depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE,

Where,

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with
the SetStackGuard function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

The value of the coeffsPage is ignored for dsPIC33A devices.

Source File

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 53

• For dsPIC30F/33F/33E/33C
firlatt.s

• For dsPIC33A
firlatt_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 54 47 + N*(4 + 7M) if coefficients are
in data memory, or
50 + N*(4 + 8M) if coefficients in
program memory.

dsPIC33E/33C 102 56 + N*(4 + 7M) if the coefficients
are in data memory, or
(81 + M) + N*(4 + 7M) if the
coefficients are in program memory
but copied into data memory, or
66 + N*(3 + 15M) if the coefficients
are in program memory and not copied
into data memory.

dsPIC33A 32 *See below

Cycle counts for dsPIC33A:

Source Vector Size Cycles if coefficients in X-mem Cycles if coefficients in P-mem

32 6410 10154
64 12782 20266

128 25518 40490
256 50990 80938
512 101934 161834

1024 203822 323626
2048 407597 647210

(*All values with numCoeffs = 32)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– PSVPAG/DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• Two level DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W10 - saved, used, restored
– ACCA - used, not restored

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 54

– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

5.5.8. FIRLMS
Description

FIRLMS applies an adaptive FIR filter to the sequence of source samples, stores the results in the
sequence of destination samples and updates the delay values.

The filter coefficients are also updated, at a sample-per-sample basis, using a Least Mean Square
algorithm applied according to the values of the reference samples.

Prototype

fractional* FIRLMS (int numSamps, fractional* dstSamps, fractional* srcSamps,
FIRStruct* filter, fractional* refSamps, fractional muVal);
Arguments

Parameters Description

numSamps Number of the input samples to filter (also N; with N being multiple of R)

dstSamps Pointer to the destination samples (also y)

srcSamps Pointer to the source samples (also x)

filter Pointer to the FIRStruct filter structure

refSamps Pointer to the reference samples (also r)

muVal Adapting factor (also mu)

Return

Pointer to the base address of the destination sample.

Remarks

Number of the filter coefficients is M.

Coefficients, h[m], defined in 0 ≤ m < M, are implemented as a circular modulo buffer.

Delay, d[m], defined in 0 ≤ m < M, is implemented as a circular modulo buffer, placed in Y-data
space.

Source samples, x[n], defined in 0 ≤ n < N.

Reference samples, r[n], defined in 0 ≤ n < N.

Destination samples, y[n], defined in 0 ≤ n < N.

Adaptation:

hm[n] = hm[n - 1] + mu * (r[n] - y[n]) * x[n - m] for 0 ≤ n < N, 0 ≤ m < M.

The operation could result in saturation if the absolute value of (r[n] - y[n]) is greater than or equal
to one.

Filter coefficients must not be allocated in the program memory, because in that case, their values
could not be adapted. If filter coefficients are detected as allocated in program memory, the
function returns NULL.

(See also FIRStruct, FIRStructInit and FIRInterpDelayInit.)

fractPage is ignored for dsPIC33A devices.

Source File

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 55

• For dsPIC30F/33F/33E/33C
firlms.s

• For dsPIC33A
firlms_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 76 67 + N*(13 + 5M)
dsPIC33E/33C 76 67 + N*(13 + 5M)

dsPIC33A 56 *See below

Cycle counts for dsPIC33A:

Source Vector Size Cycles if coefficients in X-mem

32 5586
64 11098

128 22102
256 44122
512 88150

1024 176218
2048 352342

(*All values with numCoeffs = 32)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W12 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– MODCON - saved, used, restored
– XMODSTRT - saved, used, restored
– XMODEND - saved, used, restored
– YMODSTRT - saved, used, restored
– YMODEND - saved, used, restored
– PSVPAG/DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• Two level DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W12 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– MODCON - saved, used, restored

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 56

– XMODSTRT - saved, used, restored
– XMODEND - saved, used, restored
– YMODSTRT - saved, used, restored
– YMODEND - saved, used, restored
– REPEAT instruction(s) usage – 1

5.5.9. FIRLMSNorm
Description

FIRLMSNorm applies an adaptive FIR filter to the sequence of the source samples, stores the results
in the sequence of destination samples and updates the delay values.

The filter coefficients are also updated, at a sample-per-sample basis, using a Normalized Least
Mean Square algorithm applied according to the values of the reference samples.

Prototype

fractional* FIRLMSNorm (int numSamps, fractional* dstSamps,
fractional* srcSamps, FIRStruct* filter, fractional* refSamps,
fractional muVal, fractional* energyEstimate);
Arguments

Parameters Description

numSamps Number of the input samples to filter (also N; with N being multiple of R)

dstSamps Pointer to the destination samples (also y)

srcSamps Pointer to the source samples (also x)

filter Pointer to the FIRStruct filter structure

refSamps Pointer to the reference samples (also r)

muVal Adapting factor (also mu)

energyEstimate Pointer to the estimated energy (e[N-1]) value for the last M input samples.

Return

Pointer to the base address of the destination sample.

Remarks

Number of the filter coefficients is M.

Coefficients, h[m], defined in 0 ≤ m < M, are implemented as a circular modulo buffer.

Delay, d[m], defined in 0 ≤ m < M, is implemented as a circular modulo buffer.

Source samples, x[n], defined in 0 ≤ n < N.

Reference samples, r[n], defined in 0 ≤ n < N.

Destination samples, y[n], defined in 0 ≤ n < N.

Adaptation:

hm[n] = hm[n - 1] + nu * (r[n] - y[n]) * x[n - m] for 0 ≤ n < N, 0 ≤ m < M.

Where,

With,

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 57

E[n] = E[n - 1] + (x[n])2 - (x[n - M - 1])2 an estimate of input signal energy.

On start up, energyEstimate should be initialized to the value of E[-1] (zero the first time the filter is
invoked). Upon return, energyEstimate is updated to the value E[N – 1] (which may be used as the
start-up value for a subsequent function call, if filtering an extension of the input signal).

The operation could result in saturation, if the absolute value of (r[n] – y[n]) is greater than or equal
to one.

Note: Another expression for the energy estimate is: E[n] = (x[n])2 + (x[n - 1])2 + … + (x[n - M + 2])2

Thus, to avoid saturation while computing the estimate, the input sample values should be bound
so that,

Filter coefficients must not be allocated in program memory, because in that case, their values could
not be adapted. If filter coefficients are detected as allocated in program memory, the function
returns NULL.

(See also FIRStruct, FIRStructInit and FIRInterpDelayInit.)

The value of coeffsPage is ignored for dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
firlms.s

• For dsPIC33A
firlms_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 91 66 + N(49 + 5M)
dsPIC33E/33C 94 72 + N*(49 + 5M)

dsPIC33A 74 *See below

Cycle counts for dsPIC33A:

Source Vector Size Cycles if coefficients in X-mem

32 6360
64 12636

128 25176
256 50268
512 100440

1024 200796
2048 401496

(*All values with numCoeffs = 32)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 58

– W8…W13 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– MODCON - saved, used, restored
– XMODSTRT - saved, used, restored
– XMODEND - saved, used, restored
– YMODSTRT - saved, used, restored
– YMODEND - saved, used, restored
– PSVPAG/DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• Two level DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W13 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– MODCON - saved, used, restored
– XMODSTRT - saved, used, restored
– XMODEND - saved, used, restored
– YMODSTRT - saved, used, restored
– YMODEND - saved, used, restored
– REPEAT instruction(s) usage – 2

5.5.10. FIRStructInit
Description

FIRStructInit initializes the values of the parameters in an FIRStruct FIR Filter structure.

Prototype

void FIRStructInit (FIRStruct* filter, int numCoeffs, fractional* coeffsBase,
int coeffsPage, fractional* delayBase);
Arguments

Parameters Description

filter Pointer to the FIRStruct filter structure.

numCoeffs Number of the filter coefficients (also M)

coeffsBase Base address for the filter coefficients (also h)

coeffsPage Coefficient buffer page number

delayBase Base address for delay buffer

Returns

None.

Remarks

See description of FIRStruct structure above.

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 59

Upon completion, FIRStructInit initializes the coeffsEnd and delayEnd pointers, accordingly. Also, the
delay is set equal to delayBase.

Source File

• For dsPIC30F/33F/33E/33C
firinit.s

• For dsPIC33A
firinit_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 10 19
dsPIC33E/33C 16 28

dsPIC33A 8 26

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W5 - used, not restored
– DO and REPEAT instruction usage

• No level DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W5 - used, not restored
– REPEAT instruction(s) usage – None

5.5.11. IIRCanonic
Description

IIRCanonic applies an IIR filter, using a cascade of canonic (direct form II) biquadratic sections, to
the sequence of the source samples. It places the results in the sequence of the destination samples
and updates the delay values.

Prototype

 typedef struct {
  int numSectionsLess1;
  fractional* coeffsBase;
  int coeffsPage;
  fractional* delayBase;
  int initialGain;
  int finalShift;
} IIRCanonicStruct;

fractional* IIRCanonic (int numSamps, fractional* dstSamps,
fractional* srcSamps, IIRCanonicStruct* filter);
Arguments

Filter Structure:

Parameters Description

numSectionsLess1 One less than the number of cascaded second order (biquadratic) sections (also S-1)

coeffsBase Pointer to filter coefficients (also {a, b}), either within X-Data or program memory

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 60

IIRCanonic (continued)
Parameters Description

coeffsPage Coefficients buffer page number, or if the coefficients are stored in a data space, then it is
the defined value, 0xFF00 (defined value COEFFS_IN_DATA).

delayBase Pointer to filter delay (also d), only in Y-Data

initialGain Initial gain value

finalShift Output scaling (shift left)

Filter Description:

Parameters Description

numSamps The number of input samples to filter (also N; with N being multiple of R)

dstSamps Pointer to the destination samples (also y)

srcSamps Pointer to the source samples (also x)

filter Pointer to the IIRCanonicStruct filter structure

Return

Pointer to the base address of the destination sample.

Remarks

There are five coefficients per second order (biquadratic) sections (generated externally) arranged in
the ordered set - {a2[s], a1[s], a0[s], b1[s], b0[s]}, 0 ≤ s < S.

The delay is made up of two words of filter state per section {d1[s], d2[s]}, 0 ≤ s < S.

Source samples, x[n], defined in 0 ≤ n < N.

Destination samples, y[n], defined in 0 ≤ n < N.

The initial gain value is applied to each input sample prior to entering the filter structure.

The output scale is applied as a shift to the output of the filter structure prior to storing the result in
the output sequence. It is used to restore the filter gain to 0 dB. Shift count may be zero; if not zero,
it represents the number of bits to shift: negative indicates shift left, positive is shift right.

For dsPIC33E/33C:

With coeffsPage pointing to the PSV page, the coefficients may be copied from the PSV to the stack
depending on stack space availability.

Conditions for the PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE,

Where,

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with
the SetStackGuard function. Care must be taken when modifying the STACK_GUARD.

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 61

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

The value of coeffsPage is ignored for dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
iircan.s

• For dsPIC33A
iircan_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 48 38 + N(8 + 7S) if coefficients are
in data memory, or
41 + N(9 + 12S) if coefficients are
in program memory.

dsPIC33E/33C 101 44 + N*(9 + 7S) if coefficients are
in data memory, or
(91 + 2*S) + N*(9 + 7S) if the
coefficients are in program memory
but copied into data memory, or
62 + N*(18 + 28S) if the
coefficients are in program memory
and not copied into data memory.

dsPIC33A 30 *See below

Cycle counts for dsPIC33A:

Source Vector Size Cycles if coefficients in X-mem Cycles if coefficients in P-mem

32 1920 3538
64 3818 7026

128 7594 14002
256 15146 27954
512 30250 55858

1024 60458 111666
2048 120874 223282

(*All values with S = 5)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– PSVPAG/DSRPAG - saved, used, restored

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 62

– DO and REPEAT instruction usage
• Two level DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W9 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

5.5.12. IIRCanonicInit
Description

IIRCanonicInit initializes to zero the delay values in an IIRCanonicStruct filter structure.

Prototype

void IIRCanonicInit(IIRCanonicStruct* filter);
Arguments

Parameters Description

filter Pointer to the IIRCanonicStruct filter structure

Returns

None.

Remarks

See description of IIRCanonic function above.

Two words of the filter state per second order section {d1[s], d2[s]}, 0 ≤ s < S.

Source File

• For dsPIC30F/33F/33E/33C
iircan.s

• For dsPIC33A
iircan_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 7 10 + 2*S
dsPIC33E/33C 10 22 + 2*S

dsPIC33A 6 28+S

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W1 - used, not restored
– DO and REPEAT instruction usage

• One level DOinstruction
• No REPEAT instruction(s)

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 63

• For dsPIC33A
– W0…W2 - used, not restored
– REPEAT instruction(s) usage – 1

5.5.13. IIRLattice
Description

IIRLattice uses a lattice structure implementation to apply an IIR filter to the sequence of the
source samples. It then places the results in the sequence of the destination samples and updates
the delay values.

Prototype

 typedef struct {
  int order;
 fractional* kappaVals;
 fractional* gammaVals;
 int coeffsPage;
 fractional* delay;
} IIRLatticeStruct;

fractional* IIRLattice (int numSamps, fractional* dstSamps,
fractional* srcSamps, IIRLatticeStruct* filter);
Arguments

Filter Structure:

Parameters Description

order Filter order (also M, M ≤ N; see FIRLattice for N)

kappaVals Base address for lattice coefficients (also k), either in X-Data or program memory

gammaVals Base address for ladder coefficients (also g), either in X-Data or program memory. If NULL, the
function will implement an all-pole filter.

CoeffsPage Coefficients buffer page number, or 0xFF00 (defined value COEFFS_IN_DATA) if coefficients in
the data space

delay Base address for delay (also d), only in Y-Data

Filter Description:

Parameters Description

numSamps Number of input samples to filter (also N; with N being multiple of R)

dstSamps Pointer to the destination samples (also y)

srcSamps Pointer to the source samples (also x)

filter Pointer to the IIRLatticeStruct filter structure

Return

Pointer to the base address of the destination sample.

Remarks

Lattice coefficients, k[m], defined in 0 ≤ m ≤ M.

Ladder coefficients, g[m], defined in 0 ≤ m ≤ M (unless if implementing an all-pole filter).

Delay, d[m], defined in 0 ≤ m ≤ M.

Source samples, x[n], defined in 0 ≤ n < N.

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 64

Destination samples, y[n], defined in 0 ≤ n < N.

Note: The fractional implementation provided with this library is prone to saturation.

Appropriately scaling the input signal, prior to applying the filter, should prevent the fractional
implementation from saturating.

For dsPIC33E/33C -

With coeffsPage pointing to the PSV page, the coefficients may be copied from PSV to the stack
depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE,

Where,

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with
the SetStackGuard function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

The value of coeffsPage is ignored for dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
iirlatt.s

• For dsPIC33A
iirlatt_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 78 48 + N(16 + 7M) if coefficients are
in data memory, or
51 + N(16 + 8M) if coefficients are
in program memory.
M is filter order.

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 65

IIRLattice (continued)
Device Program Words Cycles

dsPIC33E/33C 170 54 + N(18 + 7M) if coefficients are
in data memory, or
(101 + 2*M) + N*(18 + 7M) if the
coefficients are in program memory
but copied into data memory, or
67 + N(30 + 11M) if the coefficients
are in program memory and not copied
into data memory.
M is filter order.

dsPIC33A 31 *See below

Cycle counts for dsPIC33A:

Source Vector Size Cycles if coefficients in X-mem Cycles if coefficients in P-mem

32 9586 15290
64 19122 30522

128 38194 60986
256 76338 121914
512 152626 243770

1024 305202 487482
2048 610254 774906

(*All values with M = 32)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– PSVPAG/DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• Two level DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

5.5.14. IIRLatticeInit
Description

IIRLatticeInit initializes to zero the delay values in an IIRLatticeStruct filter structure.

Prototype

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 66

void IIRLatticeInit(IIRLatticeStruct* filter);
Arguments

Parameters Description

filter Pointer to the IIRLatticeStruct filter structure.

Returns

None.

Remarks

See description of IIRLattice function above.

Source File

• For dsPIC30F/33F/33E/33C
iirlatt.s

• For dsPIC33A
iirlatt_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 6 10 + M
dsPIC33E/33C 9 20 + M

dsPIC33A 5 24 + M

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W2 - used, not restored
– DO and REPEAT instruction usage

• No DO Instruction
• One REPEAT instruction(s)

• For dsPIC33A
– W0…W2 - used, not restored
– REPEAT instruction(s) usage – 1

5.5.15. IIRTransposed
Description

IIRTransposed applies an IIR filter, using a cascade of transposed (direct form II) biquadratic
sections, to the sequence of the source samples. It places the results in the sequence of the
destination samples and updates the delay values.

Prototype

 typedef struct {
 int numSectionsLess1;
 fractional* coeffsBase;
 int coeffsPage;
 fractional* delayBase1;
 fractional* delayBase2;
 int finalShift;
} IIRTransposedStruct;

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 67

fractional* IIRTransposed (int numSamps, fractional* dstSamps,
fractional* srcSamps, IIRTransposedStruct* filter);
Arguments

Filter Structure:

Parameters Description

numSectionsLess1 One less than the number of cascaded second order (biquadratic) sections (also S-1)

coeffsBase Pointer to filter coefficients (also {a, b}), either in X-Data or program memory

coeffsPage Coefficient buffer page number, or 0xFF00 (defined value COEFFS_IN_DATA) if coefficients
in the data space

delayBase1 Pointer to filter state 1, with one word of delay per second order section (also d1), only in
Y-Data

delayBase2 Pointer to filter state 2, with one word of delay per second order section (also d2), only in
Y-Data

finalShift Output scaling (shift left)

Filter Description:

Parameters Description

numSamps Number of input samples to filter (also N; with N being multiple of R)

dstSamps Pointer to the destination samples (also y)

srcSamps Pointer to the source samples (also x)

filter Pointer to the IIRTransposedStruct filter structure

Return

Pointer to the base address of the destination sample.

Remarks

There are five coefficients per second order (biquadratic) sections (generated externally) arranged in
the ordered set - {b0[s], b1[s], a1[s], b2[s], a2[s]}, 0 ≤ s < S.

The delay is made up of two words of the filter state per section {d1[s], d2[s]}, 0 ≤ s < S.

Source samples, x[n], defined in 0 ≤ n < N.

Destination samples, y[n], defined in 0 ≤ n < N.

The output scale is applied as a shift to the output of the filter structure prior to storing the result in
the output sequence. It is used to restore the filter gain to 0 dB. The shift count may be zero; if not
zero, it represents the number of bits to shift: negative indicates shift left, positive is shift right.

For dsPIC33E/33C -

With coeffsPage pointing to the PSV page, the coefficients may be copied from PSV to the stack
depending on stack space availability.

Conditions for the PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE,

Where,

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 68

• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with
the SetStackGuard function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

The value of the coeffsPage is ignored for dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
iirtrans.s

• For dsPIC33A
iirtrans_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 54 47 + N*(4 + 7M) if coefficients are
in data memory, or
50 + N*(4 + 8M) if coefficients in
program memory.

dsPIC33E/33C 102 56 + N*(4 + 7M) if the coefficients
are in data memory, or
(81 + M) + N*(4 + 7M) if the
coefficients are in program memory
but copied into data memory, or
66 + N*(3 + 15M) if the coefficients
are in program memory and not copied
into data memory.

dsPIC33A 32 *See below

Cycle counts for dsPIC33A:

Source Vector Size Cycles if coefficients in X-mem Cycles if coefficients in P-mem

32 2508 4112
64 4972 8176

128 9900 16304
256 19756 32560
512 39468 65072

1024 78892 130096
2048 157740 260144

(*All values with S = 5)

System resource usage

• For dsPIC30F/33F/33E/33C

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 69

– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– PSVPAG/DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• Two level DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W10 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – None

5.5.16. IIRTransposedInit
Description

IIRTransposedInit initializes to zero the delay values in an IIRTransposedStruct filter structure.

Prototype

void IIRTransposedInit (IIRTransposedStruct* filter);
Arguments

Parameters Description

filter Pointer to the IIRTransposedStruct filter structure.

Returns

None.

Remarks

The delay is made up of two independent buffers, each buffer containing one word of filter state per
section {d2[s], d1[s]}, 0 ≤ s < S.

See description of IIRTransposed function above.

Source File

• For dsPIC30F/33F/33E/33C
iirtrans.s

• For dsPIC33A
iirtrans_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 8 11 + 2*S
dsPIC33E/33C 11 21 + 2*S

dsPIC33A 8 18 + 2*S

System resource usage

Filtering Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 70

• For dsPIC30F/33F/33E/33C
– W0…W2 - used, not restored
– DO and REPEAT instruction usage

• One DO instruction
• No REPEAT instruction(s)

• For dsPIC33A
– W0…W3 - used, not restored
– REPEAT instruction(s) usage – 2

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 71

6. Transform Functions
Function Description Target device

BitReverseComple
x

Reorganizes, in place, the elements of a complex vector in bit-
reverse order.

dsPIC30F/33F/33E/33C/33A

BitReverseReal32bI
P

Reorganizes, in place, the elements of a 32-bit real vector in
bit-reverse order.

dsPIC30F/33F/33E/33C

CosFactorInit Generates the first half of the set of cosine factors required by
a Type II Discrete Cosine Transform and places the result in the
complex destination vector.

dsPIC30F/33F/33E/33C/33A

DCT Computes the Discrete Cosine Transform of a source vector
and stores the results in the destination vector.

dsPIC30F/33F/33E/33C/33A

DCTIP Computes the Discrete Cosine Transform of a source vector in
place.

dsPIC30F/33F/33E/33C/33A

FFTComplex Computes the Fast Fourier Transform of a source
complex vector and stores the results in the destination
complex vector.

dsPIC30F/33F/33E/33C/33A

FFTComplexIP Computes the Fast Fourier Transform of a source complex
vector in place.

dsPIC30F/33F/33E/33C/33A

IFFTComplex Computes the Inverse Fast Fourier Transform of a source
complex vector and stores the results in the destination
complex vector.

dsPIC30F/33F/33E/33C/33A

IFFTComplexIP Computes the Inverse Fast Fourier Transform of a source
complex vector in place.

dsPIC30F/33F/33E/33C/33A

FFTReal32b Computes the 32-bit Fast Fourier Transform of a 32-bit
real source vector and stores the results in the 32-bit real
destination vector.

dsPIC30F/33F/33E/33C

FFTReal32bIP Computes the 32-bit Fast Fourier Transform of a 32-bit real
source vector in place.

dsPIC30F/33F/33E/33C

IFFTReal32b Computes the 32-bit Inverse Fast Fourier Transform of a 32-
bit real source vector and stores the results in the 32-bit real
destination vector.

dsPIC30F/33F/33E/33C

IFFTReal32bIP Computes the 32-bit Inverse Fast Fourier Transform of a 32-bit
real source vector in place.

dsPIC30F/33F/33E/33C

FFTComplex32bIP Computes the 32-bit Fast Fourier Transform of a source
complex vector in place.

dsPIC30F/33F/33E/33C

IFFTComplex32bIP Computes the 32-bit Inverse Fast Fourier Transform of a source
complex vector in place.

dsPIC30F/33F/33E/33C

FFTRealIP Computes the 32-bit Fast Fourier Transform of a 32-bit real
source vector in place.

dsPIC33A

FFTReal Computes the Fast Fourier Transform of a 32-bit real
source vector and stores the results in the 32-bit real
destination vector.

dsPIC33A

IFFTRealIP Computes, in place, the inverse Fast Fourier Transform of a
source complex vector, which was derived out a real-vector
using FFTReal function.

dsPIC33A

IFFTReal Computes the inverse Fast Fourier Transform of a source
complex vector, which was derived out of a real-vector using
FFTReal function.

dsPIC33A

SquareMagnitudeC
omplex

Computes the squared magnitude of each element in a complex
source vector.

dsPIC30F/33F/33E/33C/33A

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 72

Transform Functions (continued)
Function Description Target device

SquareMagnitudeC
omplex32bIP

Computes the 32-bit squared magnitude of each element in a
32-bit complex source vector.

dsPIC30F/33F/33E/33C

TwidFactorInit Generates the first half of the set of twiddle factors required
by a Discrete Fourier Transform or Discrete Cosine Transform,
and places the result in the complex destination vector.

dsPIC30F/33F/33E/33C/33A

6.1. Fractional Transform Operations
A fractional transform is a linear, time invariant, discrete operation that when applied to a
fractional time domain sample sequence, results in a fractional frequency in the frequency domain.
Conversely, an inverse fractional transform operation, when applied to frequency domain data,
results in its time domain representation.

A set of transforms (and a subset of inverse transforms) are provided by the DSP Library. The
first set applies a Discrete Fourier Transform (or its inverse) to a complex data set (see Fractional
Complex Vectors). The second set applies a Type II Discrete Cosine Transform (DCT) to a real valued
sequence. These transforms have been designed to either operate out-of-place or in-place. The
former type populates an output sequence with the results of the transformation. In the latter, the
input sequence is (physically) replaced by the transformed sequence. For out-of-place operations,
enough memory to accept the results of the computation must be provided.

The transforms make use of factors (or constants) which must be supplied to the transforming
function during its initialization. These transform factors, which are complex data sets, are
computed in floating-point arithmetic and then transformed into fractionals for use by the
operations. To avoid excessive computational overhead when applying a transformation, a
particular set of transform factors could be generated once and used many times during the
execution of the program. Thus, it is advisable to store the factors returned by any of the
initialization operations in a permanent (static) complex vector. It is also advantageous to generate
the factors “off-line”, place them in program memory and use them when the program is later
executing. This way, not only cycles, but also RAM memory are saved when designing an application
which involves transformations.

6.2. Fractional Complex Vectors
A complex data vector is represented by a data set in which every pair of values represent an
element of the vector. The first value in the pair is the real part of the element, and the second
its imaginary part. Both the real and imaginary parts are stored in memory using one word for
each and must be interpreted as 1.15/1.31 fractionals. As with the fractional vector, the fractional
complex vector stores its elements consecutively in memory.

The organization of data in a fractional complex vector may be addressed by the following data
structure:

#ifdef fractional
 #ifndef fractcomplex
 typedef struct {
 fractional real;
 fractional imag;
 } fractcomplex;
 #endif
#endif

6.3. User Considerations
When using transform functions, consider the following:

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 73

1. No boundary checking is performed by these functions. Out of range sizes (including zero length
vectors) as well as nonconforming use of source complex vectors and factor sets may produce
unexpected results.

2. It is recommended that the STATUS Register (SR) is examined after the completion of each
function call. In particular, users can inspect the SA, SB and SAB flags after the function returns
to determine if saturation occurred.

3. The input and output complex vectors involved in the family of transformations must be
allocated in Y-Data memory. Transform factors may be allocated either in X-Data or program
memory.

4. Because Bit-Reverse Addressing requires the vector set to be modulo aligned, the input and
output complex vectors in operations using either explicitly or implicitly the BitReverseComplex
function must be properly allocated.

5. Operations which return a destination complex vector can be nested. For instance, if:
a = Op1 (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a = Op1 (Op2 (d), Op3 (e, f)).

6. All cycle count values for dsPIC33A are measured with PBU cache enabled and may differ
depending on the status of PBU cache or on the placement of vectors and code.

6.4. Functions

6.4.1. BitReverseComplex
Description

BitReverseComplex reorganizes, in place, the elements of a complex vector in bit-reverse order.

Prototype

fractcomplex* BitReverseComplex (int log2N, fractcomplex* srcCV);
Arguments

Parameters Description

log2N Base 2 logarithm of N (N = number of complex elements in source vector)

srcCV Pointer to source complex vector

Returns

Pointer to the base address of the source complex vector.

Remarks

N must be an integer power of 2.

The srcCV vector must be allocated at a modulo alignment of N.

This function operates in place.

Source File

• For dsPIC30F/33F/33E/33C
bitrev.s

• For dsPIC33A
bitrev_aa.s

Function Profile

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 74

Program Words
dsPIC30F/33F dsPIC33E/33C dsPIC33A

27 33 18

Cycle count

Transform Size dsPIC30F/33F dsPIC33E/33C dsPIC33A

32 245 294 306
64 485 566 594
128 945 1098 1154
256 1905 2186 2306
512 3785 4338 4578
1024 7625 8690 9186
2048 15225 17346 18338

System resource usage

• For dsPIC30F/33F/33E/33C
– W0..W7 - used, not restored
– XBREV - saved, used, restored
– MODCON - saved, used, restored
– DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• One level DO instruction
• For dsPIC33A

– W0..W6 - used, not restored
– XBREV - saved, used, restored
– MODCON - saved, used, restored
– REPEAT instruction usage – None

6.4.2. BitReverseReal32bIP
Description

BitReverseReal32bIP reorganizes, in place, the elements of a 32-bit real vector in bit-reverse
order.

Prototype

long* BitReverseReal32bIP (int log2N, long* srcV);
Arguments

Parameters Description

log2N Based 2 logarithm of N (N = number of a 32-bit real source vector)

srcV Pointer to a 32-bit real source vector

Returns

Pointer to the base address of the source real vector.

Remarks

N must be an integer power of 2.

The srcV vector must be allocated at a modulo alignment of N.

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 75

This function operates in place.

Source File

• For dsPIC30F/33F/33E/33C
rbrev32b.s

Function Profile

Program Words
dsPIC30F/33F dsPIC33E/33C dsPIC33A

33 39 N/A

Cycle count

Transform Size dsPIC30F/33F dsPIC33E/33C dsPIC33A

32 325 372

N/A

64 677 756
128 1333 1484
256 2741 3020
512 5461 6012
1024 11093 12156

System resource usage

• For dsPIC30F/33F/33E/33C
– W0..W7 - used, not restored
– XBREV - saved, used, restored
– MODCON - saved, used, restored
– DSRPAG- saved, used, restored
– DO and REPEAT instruction usage

• One level DO instruction

6.4.3. CosFactorInit
Description

CosFactorInit generates the first half of the set of cosine factors required by a Type II Discrete
Cosine Transform and places the result in the complex destination vector.

Effectively, the set contains the values:

Prototype

fractcomplex* CosFactorInit (int log2N, fractcomplex* cosFactors);
Arguments

Parameters Description

log2N Based 2 logarithm of N (N = number of complex factors needed by a DCT)

cosFactors Pointer to complex cosine factors

Returns

Pointer to the base address of the cosine factors.

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 76

Remarks

N must be an integer power of 2.

Only the first N/2 cosine factors are generated.

A complex vector of size N/2 must have already been allocated and assigned to cosFactors prior to
invoking the function. The complex vector should reside in X-Data memory.

Factors are computed in floating-point arithmetic and converted to 1.15/1.31 complex fractionals.

Source File

• For dsPIC30F/33F/33C/33E – initcosf.c
• For dsPIC33A – initcosf_aa.c

6.4.4. DCT
Description

DCT computes the Discrete Cosine Transform of a source vector.

Prototype

fractcomplex* DCT (int log2N, fractional* dstCV, fractcomplex* srcCV,
fractcomplex* cosFactors, fractcomplex* twidFactors, int factPage);
Arguments

Parameters Description

log2N Base 2 logarithm of N (number of complex elements in source vector)

dstCV Pointer to the destination vector

srcCV Pointer to the source vector

cosFactors Pointer to the cosine factors

twidFactors Pointer to the twiddle factors

factPage Memory page for the transform factors

Return

Pointer to the base address of the destination sample.

Remarks

This function internally uses DCTIP and the VectorZeroPad function.

N must be an integer power of 2.

A vector of size 2N elements must already have been allocated and assigned to dstCV.

The dstCV vector must be allocated in the Y-Data space with address alignment to a modulo of N.

The results of the computation are stored in the first N elements of destination vector.

To avoid saturation (overflow) during computation, the values of the source vector should be in the
range [-0.5, 0.5].

Only the first N/2 cosine factors are needed.

Only the first N/2 twiddle factors are needed.

For dsPIC30F/33F/33E/33C:

If the transform factors are stored in X-Data space, cosFactors and twidFactors point to the actual
address where the factors are allocated. If the transform factors are stored in program memory,

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 77

cosFactors and twidFactors are the offset from the program page boundary where the factors are
allocated. This latter value can be calculated using the inline assembly operator psvoffset().

If the transform factors are stored in X-Data space, factPage must be set to 0xFF00 (defined value
COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page number
containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

For dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied from
PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE,

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

Because dsPIC33A family devices implement a non-paged linear RAM/Program memory space, the
cosFactors and twidFactors arguments point to the actual location, regardless of whether the factors
are stored in program memory or RAM. Hence, the fractpage argument is ignored.

The twiddle factors must be initialized with conjFlag set to a value different than zero.

Output is scaled by the factor of N.

Source File

• For dsPIC30F/33F/33E/33C
dctoop.s

• For dsPIC33A
dctoop_aa.s

Function Profile

dsPIC30F/33F dsPIC33E/33C dsPIC33A

Program Words 172 342 64
Cycle Count 22 29 33

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 78

Notes: 
1. The above-mentioned program word and cycle counts pertains solely to DCT. However, as this

function inherently utilizes DCTIP and VectorZeroPad, the respective counts for DCTIP and
VectorZeroPad must also be considered.

2. In the description of DCTIP and VectorZeroPad, the number of cycles reported includes
four cycles of C-function call overhead. Thus, the number of actual cycles from DCTIP and
VectorZeroPad to add to DCT is 2x4 less than whatever number is reported for a stand-alone
DCTIP/VectorZeroPad

System resource usage

The below system resource usages exclude that of DCTIP and VectorZeroPad.

• For dsPIC30F/33F/33E/33C/33A
– W0…W5 - used, not restored
– DO and REPEAT instruction usage - None

6.4.5. DCTIP
Description

DCTIP computes the Discrete Cosine Transform of a source vector in place.

Prototype

fractcomplex * DCTIP (int log2N, fractcomplex* srcCV, fractcomplex*
cosFactors, fractcomplex* twidFactors, int factPage);
Arguments

Parameters Description

log2N Base 2 logarithm of N (number of complex elements in source vector)

srcCV Pointer to the source vector

cosFactors Pointer to the cosine factors

twidFactors Pointer to the twiddle factors

factPage Memory page for the transform factors

Return

Pointer to the base address of the destination sample.

Remarks

N must be an integer power of 2.

This function expects that the source vector has been zero padded to length 2N.

The srcCV vector must be allocated in the Y-Data space with address alignment to a modulo of N.

The results of computation are stored in the first N elements of the source vector.

To avoid saturation (overflow) during computation, the values of the source vector should be in the
range [-0.5, 0.5].

Only the first N/2 cosine factors are needed.

Only the first N/2 twiddle factors are needed.

For dsPIC30F/33F/33E/33C:

If the transform factors are stored in X-Data space, cosFactors and twidFactors point to the actual
address where the factors are allocated. If the transform factors are stored in program memory,

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 79

cosFactors and twidFactors are the offset from the program page boundary where the factors are
allocated. This latter value can be calculated using the inline assembly operator psvoffset().

If the transform factors are stored in X-Data space, factPage must be set to 0xFF00 (defined value
COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page number
containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

For a dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied
from PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If that happens, increase the STACK_GUARD value.

Because dsPIC33A family devices implement a non-paged linear RAM/Program memory space, the
cosFactors and twidFactors arguments point to the actual location, regardless of whether the factors
are stored in program memory or RAM. Hence, the fractpage argument is ignored.

The twiddle factors must be initialized with conjFlag set to a value different than zero.

Output is scaled by the factor of N.

Source File

• For dsPIC30F/33F/33E/33C
dct.s

• For dsPIC33A
dct_aa.s

Function Profile

Program Words
dsPIC30F/33F dsPIC33E/33C dsPIC33A

172 342 64

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 80

Cycle count

Transform Size dsPIC30F/33F

Cycles if Twiddle Factors in X-
mem

Cycles if Twiddle Factors in P-mem

32 2,266 2,467
64 4,904 5,361
128 10,704 11,737
256 23,402 25,715
512 50,944 56,073
1024 110,424 121,697
2048 238,038 262,637

Cycle count

Transform Size dsPIC33E/33C

Cycles if Twiddle
Factors in X-mem

Cycles if Twiddle
Factors copied from P-

mem to stack

Cycles if Twiddle
Factors in P-mem

32 2,395 2,517 3,897
64 5,123 5,309 8,609
128 11,105 11,419 19,071
256 24,157 24,727 42,107
512 52,413 53,495 92,404
1024 113,314 115,420 201,456
2048 243,784 247,938 436,394

Cycle count

Transform Size dsPIC33A

Cycles if Twiddle Factors in X-
mem

Cycles if Twiddle Factors in P-mem

32 2,468 3,556
64 5,350 7,926
128 11,668 17,636
256 25,478 39,062
512 55,364 85,844
1024 119,798 187,398
2048 257,812 406,308

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– PSVPAG/DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• One level DO instruction
• One REPEAT instruction

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 81

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W11 - saved, used, restored
– ACCA - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – 1

6.4.6. FFTComplex
Description

FFTComplex computes the Fast Fourier Transform of a source complex vector.

Prototype

fractcomplex* FFTComplex(int log2N, fractcomplex* dstCV, fractcomplex* srcCV,
fractcomplex* twidFactors, int factPage);
Arguments

Parameters Description

log2N Base 2 logarithm of N (number of complex elements in source vector)

dstCV Pointer to the destination vector

srcCV Pointer to the source vector

twidFactors Pointer to twiddle factors

factPage Memory page for twiddle factors

Return

Pointer to the base address of the destination sample.

Remarks

N must be an integer power of 2.

This function internally calls VectorCopy, FFTComplexIP and BitReversal functions.

This function operates out of place. A complex vector, large enough to receive the results of the
operation, must already have been allocated and assigned to dstCV.

The elements in the source complex vector are expected in a natural order, and the resulting
transform in the destination vector is stored back in a natural order.

The dstCV vector must be allocated in the Y-Data space with address alignment to a modulo of N.

To avoid saturation (overflow) during computation, the values of the source vector should be in the
range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

For dsPIC30F/33F/33E/33C:

If the transform factors are stored in X-Data space, twidFactors point to the actual address where
the factors are allocated. If the transform factors are stored in program memory, twidFactors are the
offset from the program page boundary where the factors are allocated. This latter value can be
calculated using the inline assembly operator psvoffset().

If the transform factors are stored in X-Data space, factPage must be set to 0xFF00 (defined value
COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page number
containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 82

For a dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied
from PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

Because dsPIC33A family devices implement a non-paged linear RAM/Program memory space, the
twidFactors argument points to the actual location, regardless of whether the factors are stored in
program memory or RAM. Hence, the fractpage argument is ignored.

The twiddle factors must be initialized with the conjFlag set to zero.

The output is scaled by the factor of N.

Please refer to Technical Brief TB3141 for a detailed FFT implementation guide on dsPIC DSCs.

Source File

• For dsPIC30F/33F/33E/33C
fftoop.s

• For dsPIC33A
fftoop_aa.s

Function Profile

dsPIC30F/33F dsPIC33E/33C dsPIC33A

Program Words 17 17 9
Cycle Count 23 23 36

Notes: 
1. The above-mentioned program word and cycle counts pertain solely to FFTComplex. However,

as this function inherently utilizes VectorCopy, FFTComplexIP and BitReversalComplex,
the respective counts for these functions must also be considered.

2. In the description of VectorCopy, FFTComplexIP and BitReversalComplex, the number
of cycles reported includes four cycles of C-function call overhead. Thus, the number of actual
cycles from these function to add to FFTComplex is 3x4 less than whatever number is reported
for a stand-alone FFTComplex.

https://www.microchip.com/en-us/application-notes/tb3141

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 83

System resource usage

The below system resource usages exclude that of VectorCopy, FFTComplexIP and BitReversalComplex.

• For dsPIC30F/33F/33E/33C/33A
– W0…W4 - used, not restored
– DO and REPEAT instruction usage - None

6.4.7. FFTComplexIP
Description

FFTComplexIP computes the Fast Fourier Transform of a source complex vector in place.

Prototype

fractcomplex* FFTComplexIP (int log2N, fractcomplex* srcCV, fractcomplex*
twidFactors, int factPage);
Arguments

Parameters Description

log2N Base 2 logarithm of N (number of complex elements in source vector)

srcCV Pointer to the source vector

twidFactors Pointer to twiddle factors

factPage Memory page for twiddle factors

Return

Pointer to the base address of the destination sample.

Remarks

N must be an integer power of 2.

The elements in the source complex vector are expected in a natural order. The resulting transform
is stored in bit-reverse order.

The srcCV vector must be allocated in the Y-Data space with address alignment to a modulo of N.

To avoid saturation (overflow) during computation, the values of the source vector should be in the
range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

For dsPIC30F/33F/33E/33C:

If the transform factors are stored in X-Data space, twidFactors point to the actual address where
the factors are allocated. If the transform factors are stored in program memory, twidFactors are the
offset from the program page boundary where the factors are allocated. This latter value can be
calculated using the inline assembly operator psvoffset().

If the transform factors are stored in X-Data space, factPage must be set to 0xFF00 (defined value
COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page number
containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

For dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied from
PSV to the stack depending on stack space availability.

Conditions for the PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 84

SP+TABLE_SIZE < __YDATA_BASE

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

Because dsPIC33A family devices implement a non-paged linear RAM/Program memory space, the
twidFactors argument points to the actual location, regardless of whether the factors are stored in
program memory or RAM. Hence, the fractpage argument is ignored.

The twiddle factors must be initialized with conjFlag set to zero.

Output is scaled by the factor of N.

Please refer to Technical Brief TB3141 for detailed FFT implementation guide on dsPIC DSCs.

Source File

• For dsPIC30F/33F/33E/33C
fft.s

• For dsPIC33A
fft_aa.s

Function Profile

Program Words
dsPIC30F/33F dsPIC33E/33C dsPIC33A

65 131 46

Cycle count

Transform Size (N) dsPIC30F/33F

Cycles if Twiddle Factors in X-
mem

Cycles if Twiddle Factors in P-mem

32 1,669 1,835
64 3,807 4,197
128 8,617 9,519
256 19,315 21,369
512 42,877 47,491
1024 94,357 104,603
2048 206,011 228,544

https://www.microchip.com/en-us/application-notes/tb3141

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 85

Cycle count

Transform Size (N) dsPIC33E/33C

Cycles if Twiddle
Factors in X-mem

Cycles if Twiddle
Factors copied from P-

mem to stack

Cycles if Twiddle
Factors in P-mem

32 1,717 1,779 3,011
64 3,889 3,983 6,975
128 8,765 8,923 15,947
256 19,593 19,879 35,991
512 43,413 43,955 80,316
1024 95,418 96,472 177,374
2048 208,120 210,198 388,407

Cycle count

Transform Size (N) dsPIC33A

Cycles if Twiddle Factors in X-
mem

Cycles if Twiddle Factors in P-mem

32 1,780 2,318
64 4,060 5,356
128 9,188 12,228
256 20,588 27,564
512 45,684 61,428
1024 100,476 135,548
2048 219,268 296,580

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA/ACCB - used, not restored
– CORCON - saved, used, restored
– PSVPAG/DSRPAG - saved, used, restored
– DO and REPEAT instruction usage

• One level DO instruction
• One REPEAT instruction

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA/ACCB - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – 1

6.4.8. IFFTComplex
Description

IFFTComplex computes the inverse Fast Fourier Transform of a source complex vector.

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 86

Prototype

fractcomplex* IFFTComplex(int log2N, fractcomplex* dstCV, fractcomplex*
srcCV, fractcomplex* twidFactors, int factPage);
Arguments

Parameters Description

log2N Base 2 logarithm of N (number of complex elements in source vector)

dstCV Pointer to the destination vector

srcCV Pointer to the source vector

twidFactors Pointer to twiddle factors

factPage Memory page for twiddle factors

Return

Pointer to the base address of the destination sample.

Remarks

N must be an integer power of 2.

This function internally calls VectorCopy and IFFTComplexIP functions.

This function operates out of place. A complex vector, large enough to receive the results of the
operation, must already have been allocated and assigned to dstCV.

The source array is expected to be in a natural order. Similarly, the resultant array will be stored
back in a natural order as well.

The dstCV vector must be allocated in the Y-Data space with address alignment to a modulo of N.

To avoid saturation (overflow) during computation, the values of the source vector should be in the
range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

For dsPIC30F/33F/33E/33C:

If the transform factors are stored in X-Data space, twidFactors point to the actual address where
the factors are allocated. If the transform factors are stored in program memory, twidFactors are the
offset from the program page boundary where the factors are allocated. This latter value can be
calculated using the inline assembly operator psvoffset().

If the transform factors are stored in X-Data space, the factPage must be set to 0xFF00 (defined
value COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page
number containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

For a dsPIC33E/33C target with the factPage pointing to the PSV page, the coefficients may be copied
from PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE

Where,

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 87

• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

Because dsPIC33A family devices implement a non-paged linear RAM/Program memory space, the
twidFactors argument points to the actual location, regardless of whether the factors are stored in
program memory or RAM. Hence, the fractpage argument is ignored.

The twiddle factors must be initialized with conjFlag set to a value other than zero.

Output is scaled by the factor of N.

Please refer to Technical Brief TB3141 for a detailed FFT implementation guide on dsPIC DSCs.

Source File

• For dsPIC30F/33F/33E/33C
ifftoop.s

• For dsPIC33A
ifftoop_aa.s

Function Profile

dsPIC30F/33F dsPIC33E/33C dsPIC33A

Program Words 12 12 10
Cycle Count 15 24 30

Notes: 
1. The above-mentioned program word and cycle counts pertain solely to IFFTComplex. However,

as this function inherently utilizes VectorCopy and IFFTComplexIP, the respective counts
for these functions must also be considered.

2. In the description of VectorCopy and IFFTComplexIP , the number of cycles reported
includes four cycles of C-function call overhead. Thus, the number of actual cycles from these
functions to add to IFFTComplex is 2x4 less than whatever number is reported for a stand-
alone IFFTComplex.

System resource usage

The following system resource usages exclude that of VectorCopy and IFFTComplexIP.

• For dsPIC30F/33F/33E/33C/33A
– W0…W4 - used, not restored
– DO and REPEAT instruction usage - None

6.4.9. IFFTComplexIP
Description

IFFTComplexIP computes the inverse Fast Fourier Transform of a source complex vector in place.

Prototype

https://www.microchip.com/en-us/application-notes/tb3141

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 88

fractcomplex* IFFTComplexIP(int log2N, fractcomplex* srcV, fractcomplex*
twidFactors, int factPage);
Arguments

Parameters Description

log2N Base 2 logarithm of N (number of complex elements in source vector)

srcV Pointer to the source vector

twidFactors Pointer to twiddle factors

factPage Memory page for twiddle factors

Return

Pointer to the base address of the destination sample.

Remarks

N must be an integer power of 2.

This function internally calls BitReversalComplex and FFTComplexIP functions.

This function operates in place.

The elements in the source complex vector are expected in a natural order, and the resulting
transform will be stored back in natural order.

The dstV vector must be allocated in the Y-Data space with address alignment to a modulo of N.

To avoid saturation (overflow) during computation, the values of the source vector should be in the
range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

For dsPIC30F/33F/33E/33C:

If the transform factors are stored in X-Data space, twidFactors point to the actual address where
the factors are allocated. If the transform factors are stored in program memory, twidFactors are the
offset from the program page boundary where the factors are allocated. This latter value can be
calculated using the inline assembly operator psvoffset().

If the transform factors are stored in X-Data space, the factPage must be set to 0xFF00 (defined
value COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page
number containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

For a dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied
from PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 89

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

Because dsPIC33A family devices implement a non-paged linear RAM/Program memory space, the
twidFactors argument points to the actual location, regardless of whether the factors are stored in
program memory or RAM. Hence, the fractpage argument is ignored.

The twiddle factors must be initialized with the conjFlag set to a value other than zero.

Output is scaled by the factor of N.

Please refer to Technical Brief TB3141 for a detailed FFT implementation guide on dsPIC DSCs.

Source File

• For dsPIC30F/33F/33E/33C
ifft.s

• For dsPIC33A
ifft_aa.s

Function Profile

dsPIC30F/33F dsPIC33E/33C dsPIC33A

Program Words 11 11 6
Cycle Count 15 20 27

Notes: 
1. The above-mentioned program word and cycle counts pertains solely to IFFTComplexIP.

However, as this function inherently utilizes BitReversalComplex and FFTComplexIP, the
respective counts for these functions must also be considered.

2. In the description of BitReversalComplex and FFTComplexIP , the number of cycles
reported includes four cycles of C-function call overhead. Thus, the number of actual cycles
from these function to add to IFFTComplexIP is 2x4 less than whatever number is reported for
a stand-alone IFFTComplexIP.

System resource usage

The below system resource usages exclude that of BitReversalComplex and FFTComplexIP.

• For dsPIC30F/33F/33E/33C/33A
– W0…W1 - used, not restored
– DO and REPEAT instruction usage - None

6.4.10. FFTReal32b
Description

FFTReal32b computes the 32-bit Fast Fourier Transform of a 32-bit real source vector and stores
the results in the 32-bit real destination vector. It is based on the efficient computation of FFT of a
2N point real vector using N point complex FFT and additional computations called split functions.

Prototype

https://www.microchip.com/en-us/application-notes/tb3141

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 90

long* FFTReal32b (int log2N-1, int N, long* dstCV, long* srcCV,
long* twidFactors, int factPage);
Arguments

Parameters Description

log2N-1 Base 2 logarithm of N minus 1 (log2(N) - 1)

N Number of 32-bit elements in real source vector

dstV Pointer to the destination vector

srcV Pointer to the source vector

twidFactors Pointer to twiddle factors

factPage Memory page for twiddle factors

Return

Pointer to the base address of 32-bit destination sample.

Remarks

N must be an integer power of 2.

This function operates out of place. A 32-bit real vector, large enough to receive the results of the
operation, must already have been allocated and assigned to dstCV.

The elements in the 32-bit source real vector are expected in a natural order.

The elements in the 32-bit destination real vector are generated in a natural order.

To avoid saturation (overflow) during computation, the magnitude of the values of the source 32-bit
vector should be in the range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

If the twiddle factors are stored in X-Data space, twidFactors points to the actual address where the
factors are allocated. If the twiddle factors are stored in program memory, twidFactors is the offset
from the program page boundary where the factors are allocated. This latter value can be calculated
using the inline assembly operator psvoffset().

If the twiddle factors are stored in X-Data space, the factPage must be set to 0xFF00 (defined
value COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page
number containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

Twiddle factors for 32bit FFT/iFFT can be imported from dsp_factors_32b.h in "c:\Program
Files\Microchip\xc-dsc\3.xy\support\generic\h" path.

For a dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied
from PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 91

• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

Output is scaled by the factor of N.

Notes: 
1. This function currently support operations on source vectors of size up to 1024 only.
2. This function is applicable only to dsPIC30F/33F/33E/33C family of devices. Refer to FFTReal

function for equivalent functionality pertaining to dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
fft32oop.c

Function Profile

dsPIC30F/33F dsPIC33E/33C dsPIC33A

Program Words 38 38 N/A
Cycle Count 11 13 N/A

Notes: 
1. The above-mentioned program word and cycle counts pertain solely to FFTReal32b. However,

as this function inherently utilizes VectorCopy and FFTReal32IP, the respective counts for
these functions must also be considered.

2. In the description of VectorCopy and FFTReal32b , the number of cycles reported includes
four cycles of C-function call overhead. Thus, the number of actual cycles from these function
to add to FFTReal32b is 2x4 less than whatever number is reported for a stand-alone
FFTReal32b.

6.4.11. FFTReal32bIP
Description

FFTReal32bIP computes the 32-bit Fast Fourier Transform of a 32-bit real source vector in place. It
is based on the efficient computation of FFT of a 2N point real vector using N point complex FFT and
additional computations called split functions.

Prototype

long* FFTReal32b (int log2N-1, int N, long* srcCV, long* twidFactors,
int factPage);
Arguments

Parameters Description

log2N-1 Base 2 logarithm of N minus 1 (log2(N) - 1)

N Number of 32-bit elements in the real source vector

srcV Pointer to the source vector

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 92

FFTReal32bIP (continued)
Parameters Description

twidFactors Pointer to twiddle factors

factPage Memory page for twiddle factors

Return

Pointer to the base address of the 32-bit destination sample.

Remarks

N must be an integer power of 2.

This function operates in place.

The elements in the 32-bit source real vector are expected in a natural order.

The elements in the 32-bit destination real vector are generated in a natural order.

To avoid saturation (overflow) during computation, the magnitude of the values of the source 32-bit
vector should be in the range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

If the twiddle factors are stored in X-Data space, twidFactors points to the actual address where the
factors are allocated. If the twiddle factors are stored in program memory, twidFactors is the offset
from the program page boundary where the factors are allocated. This latter value can be calculated
using the inline assembly operator psvoffset().

If the twiddle factors are stored in X-Data space, the factPage must be set to 0xFF00 (defined
value COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page
number containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

Twiddle factors for 32bit FFT/iFFT can be imported from dsp_factors_32b.h in "c:\Program
Files\Microchip\xc-dsc\3.xy\support\generic\h" path.

For a dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied
from PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 93

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

Output is scaled by the factor of N.

Notes: 
1. This function currently support operations on the source vectors of size up to 1024 only.
2. This function is applicable only to the dsPIC30F/33F/33E/33C family of devices. Refer to FFTReal

function for equivalent functionality pertaining to dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
fft32.c

Function Profile

dsPIC30F/33F dsPIC33E/33C dsPIC33A

Program Words 23 23 N/A

Note: 
1. The above-mentioned program word counts pertains solely to FFTReal32b. However, as this

function inherently utilizes bit-reverse, N point complex FFT and split functions,
the respective counts for these functions must also be considered.

6.4.12. IFFTReal32b
Description

IFFTReal32b computes the 32-bit inverse Fourier Transform of a 32-bit complex source vector
(which was derived out of real vector using FFTReal32b) and stores the results in the 32-bit real
destination vector. It is based on the efficient computation of IFFT of a 2N point real vector using a N
point complex IFFT and additional computations called de-split functions.

Prototype

long* IFFTReal32b (int log2N-1, int N, long* dstCV, long* srcCV,
long* twidFactors, int factPage);
Arguments

Parameters Description

log2N-1 Base 2 logarithm of N minus 1 (log2(N) - 1)

N Number of 32-bit elements in the source vector

dstV Pointer to the real destination vector

srcV Pointer to the complex source vector

twidFactors Pointer to twiddle factors

factPage Memory page for twiddle factors

Return

Pointer to the base address of the 32-bit destination sample.

Remarks

N must be an integer power of 2.

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 94

This function operates out of place. A 32-bit real vector, large enough to receive the results of the
operation, must already have been allocated and assigned to dstCV.

The elements in the 32-bit source complex vector (output of FFTReal32b) are expected in a natural
order.

The elements in the 32-bit destination real vector are generated in a natural order.

To avoid saturation (overflow) during computation, the magnitude of the values of the source 32-bit
vector should be in the range of [-0.5, 0.5].

If the twiddle factors are stored in X-Data space, twidFactors points to the actual address where the
factors are allocated. If the twiddle factors are stored in program memory, twidFactors is the offset
from the program page boundary where the factors are allocated. This latter value can be calculated
using the inline assembly operator psvoffset().

If the twiddle factors are stored in X-Data space, factPage must be set to 0xFF00 (defined value
COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page number
containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

Twiddle factors for 32bit FFT/iFFT can be imported from the dsp_factors_32b.h in "c:\Program
Files\Microchip\xc-dsc\3.xy\support\generic\h" path.

For dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied from
PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

Output is scaled by the factor of N.

Notes: 
1. This function currently support operations on source vectors of size up to 1024 only.
2. This function is applicable only to the dsPIC30F/33F/33E/33C family of devices. Refer to the

IFFTReal function for equivalent functionality pertaining to dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 95

ifft32oop.c
Function Profile

dsPIC30F/33F dsPIC33E/33C dsPIC33A/

Program Words 38 38 N/A
Cycle Count 11 13 N/A

Notes: 
1. The above-mentioned program word and cycle counts pertain solely to IFFTReal32b. However,

as this function inherently utilizes VectorCopyand IFFTReal32IP, the respective counts for
these functions must also be considered.

2. In the description of VectorCopy and IFFTReal32b, the number of cycles reported includes
four cycles of C-function call overhead. Thus, the number of actual cycles from these functions
to add to IFFTReal32b is 2x4 less than whatever number is reported for a stand-alone
IFFTReal32b.

6.4.13. IFFTReal32bIP
Description

IFFTReal32bIP computes the 32-bit inverse Fourier Transform of a 32-bit complex source vector
(which was derived out of real vector using FFTReal32b) and stores the results in place. It is based
on the efficient computation of IFFT of a 2N point real vector using the N point complex IFFT and
additional computations called de-split functions.

Prototype

long* IFFTReal32b (int log2N-1, int N, long* srcCV, long* twidFactors,
int factPage);
Arguments

Parameters Description

log2N-1 Base 2 logarithm of N minus 1 (log2(N) - 1)

N Number of the 32-bit elements in the real source vector

srcV Pointer to the complex source vector

twidFactors Pointer to twiddle factors

factPage Memory page for twiddle factors

Return

Pointer to the base address of the 32-bit destination sample.

Remarks

N must be an integer power of 2.

This function operates in place.

The elements in the 32-bit source complex vector (output of FFTReal32b) are expected in a natural
order.

The elements in the 32-bit real vector are generated in a natural order.

To avoid saturation (overflow) during computation, the magnitude of the values of the source 32-bit
vector should be in the range [-0.5, 0.5].

If the twiddle factors are stored in X-Data space, twidFactors points to the actual address where the
factors are allocated. If the twiddle factors are stored in program memory, twidFactors is the offset

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 96

from the program page boundary where the factors are allocated. This latter value can be calculated
using the inline assembly operator psvoffset().

If the twiddle factors are stored in X-Data space, factPage must be set to 0xFF00 (defined value
COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page number
containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

Twiddle factors for 32bit FFT/iFFT can be imported from dsp_factors_32b.h in "c:\Program
Files\Microchip\xc-dsc\3.xy\support\generic\h" path.

For dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied from
PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

Output is scaled by the factor of N.

Notes: 
1. This function currently support operations on source vectors of size up to 1024 only.
2. This function is applicable only to the dsPIC30F/33F/33E/33C family of devices. Refer to the

IFFTRealIP function for equivalent functionality pertaining to dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
ifft32.c

Function Profile

dsPIC30F/33F dsPIC33E/33C dsPIC33A

Program Words 23 23 N/A

Note: 
1. The above-mentioned program word counts pertain solely to IFFTReal32b. However, as

this function inherently utilizes bit-reverse, N point complex IFFT and de-split
functions, the respective counts for these functions must also be considered.

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 97

6.4.14. FFTComplex32bIP
Description

FFTComplex32bIP computes the Fast Fourier Transform of a 32-bit complex source vector and
stores the results in place.

Prototype

long* FFTComplex32bIP (int log2N-1, int N, long* srcCV, long* twidFactors,
int factPage);
Arguments

Parameters Description

log2N-1 Base 2 logarithm of N minus 1 (log2(N) - 1)

N Number of the 32-bit elements in the complex source vector

srcV Pointer to the source vector

twidFactors Pointer to twiddle factors

factPage Memory page for twiddle factors

Return

Pointer to the base address of the 32-bit destination sample.

Remarks

N must be an integer power of 2.

The elements in the source complex vector are expected in a natural order. The resulting transform
is stored in a bit-reverse order.

To avoid saturation (overflow) during computation, the magnitude of the values of the source
complex vector should be in the range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

If the twiddle factors are stored in X-Data space, twidFactors points to the actual address where the
factors are allocated. If the twiddle factors are stored in program memory, twidFactors is the offset
from the program page boundary where the factors are allocated. This latter value can be calculated
using the inline assembly operator psvoffset().

If the twiddle factors are stored in X-Data space, factPage must be set to 0xFF00 (defined value
COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page number
containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

Twiddle factors for 32bit FFT/iFFT can be imported from dsp_factors_32b.h in "c:\Program
Files\Microchip\xc-dsc\3.xy\support\generic\h" path.

For dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied from
PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 98

• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

Output is scaled by the factor of N.

Notes: 
1. This function currently support operations on the source vectors of a size up to 1024 only.
2. This function is applicable only to the dsPIC30F/33F/33E/33C family of devices. The functionality

of this function is implemented by the FFTComplex function for dsPIC33A devices.

Source File

• For dsPIC30F/33F/33E/33C
cplxFft32b.s

System Resource

• W0…W7 - used, not restored
• W8…W14 - saved, used, restored
• ACCA/ACCB - used, not restored
• CORCON - saved, used, restored
• DSRPAG/PSVPAG - saved, used, restored
• DO and REPEAT instructions

– Two level DO instructions

6.4.15. IFFTComplex32bIP
Description

IFFTComplex32bIP computes the inverse Fast Fourier Transform of a 32-bit complex source vector
and stores the results in place.

Prototype

long* IFFTComplex32bIP (int log2N-1, int N, long* srcCV, long* twidFactors,
int factPage);
Arguments

Parameters Description

log2N-1 Base 2 logarithm of N minus 1 (log2(N) - 1)

N Number of 32-bit elements in the complex source vector

srcV Pointer to the source vector

twidFactors Pointer to twiddle factors

factPage Memory page for twiddle factors

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 99

Return

Pointer to the base address of the 32-bit destination sample.

Remarks

N must be an integer power of 2.

The elements in the source complex vector are expected in a natural order. The resulting transform
is stored in bit-reverse order.

To avoid saturation (overflow) during computation, the magnitude of the values of the source
complex vector should be in the range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

If the twiddle factors are stored in the X-Data space, twidFactors points to the actual address where
the factors are allocated. If the twiddle factors are stored in program memory, twidFactors is the
offset from the program page boundary where the factors are allocated. This latter value can be
calculated using the inline assembly operator psvoffset().

If the twiddle factors are stored in the X-Data space, factPage must be set to 0xFF00 (defined
value COEFFS_IN_DATA). If they are stored in program memory, factPage is the program page
number containing the factors. This latter value can be calculated using the inline assembly operator
psvpage().

Twiddle factors for the 32bit FFT/iFFT can be imported from dsp_factors_32b.h in "c:\Program
Files\Microchip\xc-dsc\3.xy\support\generic\h" path.

For the dsPIC33E/33C target with factPage pointing to the PSV page, the coefficients may be copied
from PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE

Where:

• SP - Stack Pointer
• TABLE_SIZE - Size of the coefficient vector in PSV
• STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
• SPLIM - Stack Pointer Limit
• __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with the SetStackGuard
function. Care must be taken when modifying the STACK_GUARD.

• Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

• Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

Output is scaled by the factor of N.

Notes: 
1. This function currently support operations on the source vectors of size up to 1024 only.
2. This function is applicable only to the dsPIC30F/33F/33E/33C family of devices. The functionality

of this function is implemented by the FFTComplex function for dsPIC33A devices.

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 100

Source File

• For dsPIC30F/33F/33E/33C
cplxiFft32b.s

System Resource

• W0…W7 - used, not restored
• W8…W14 - saved, used, restored
• ACCA/ACCB - used, not restored
• CORCON - saved, used, restored
• DSRPAG/PSVPAG - saved, used, restored
• DO and REPEAT instructions

– Two level DO instructions

6.4.16. FFTRealIP
Description

FFTRealIP computes the Fast Fourier Transform of a source real vector in place. The algorithm to
compute FFT on real data is based on the efficient computation of FFT of a 2N point real vector using
a N point complex FFT with additional computations called split functions.

Prototype

fractcomplex* FFTRealIP (int log2N, fractional* srcV, fractcomplex*
twidFactors);
Arguments

Parameters Description

log2N Base 2 logarithm of N (number of complex elements in source vector)

srcV Pointer to the real source vector

twidFactors Pointer to the complex twiddle factors

Return

Pointer to the base address of the complex destination sample.

Remarks

N must be an integer power of 2.

The elements in the source complex vector are expected in a natural order and the resultant vector
likewise returned in a natural order. The resulting transform is a complex vector of size N/2 + 1
stored in the same location as that of the source vector. Since the second half of the resulting
transform is a conjugate of first half, only N/2 complex elements are returned.

This function operates in-place. srcV must be a non-complex vector with N elements. The additional
space of 2 words must be allocated to srcV to hold the (N/2)th element of the destination complex
vector.

The srcV vector must be allocated in the Y-Data space with address alignment to a modulo of N.

To avoid saturation (overflow) during computation, the values of the source vector should be in the
range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

This function internally utilizes the BitReversal function.

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 101

The twiddle factors must be initialized with the conjFlag set to zero.

Output is scaled by the factor of N.

Source File

• For dsPIC30F/33F/33E/33C
N/A

• For dsPIC33A
rfft_aa.s

Function Profile

Program Words

dsPIC30F/33F dsPIC33E/33C dsPIC33A

N/A N/A 115 + program word counts
of BitReversalComplex
function

Cycle count

Transform Size (N) dsPIC33A

Cycles if Twiddle Factors in X-
mem

Cycles if Twiddle Factors in P-mem

32 1,198 1,692
64 2,551 3,726
128 5,559 8,328
256 12,122 18,587
512 26,418 40,824
1024 57,319 89,418
2048 123,684 194,600

Note: The above cycle count values include cycles of the BitReversal function that is internally used.

System resource usage

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W14 - saved, used, restored
– ACCA/ACCB - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – 1
– Plus resources used by the BitReversalComplex function

6.4.17. FFTReal
Description

FFTReal computes the Fast Fourier Transform of a source real vector out of place. The algorithm to
compute FFT on real data is based on the efficient computation of FFT of a 2N point real vector using
a N point complex FFT with additional computations called split functions.

Prototype

fractcomplex* FFTReal (int log2N, fractional* srcV, fractcomplex* dstCV,
fractcomplex* twidFactors);
Arguments

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 102

Parameters Description

log2N Base 2 logarithm of N (number of complex elements in source vector)

srcV Pointer to the real source vector.

dstCV Pointer to the destination complex vector.

twidFactors Pointer to complex twiddle factors.

Return

Pointer to the base address of the complex destination sample.

Remarks

N must be an integer power of 2.

srcV must be a non-complex vector with N elements.

dstCV must be a complex vector of size N/2 + 1.

The elements in the source complex vector are expected in a natural order and the resultant vector
likewise returned in a natural order. The resulting transform is a complex vector of size N/2 + 1.
Since the second half of the resulting transform is a conjugate of the first half, only N/2 complex
elements are returned.

The srcV vector must be allocated at a modulo alignment of N in y-memory space.

To avoid saturation (overflow) during computation, the values of the source vector should be in the
range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

This function internally utilizes the VectorCopy and FFTRealIP functions.

The twiddle factors must be initialized with the conjFlag set to zero.

Output is scaled by the factor of N.

Source File

• For dsPIC30F/33F/33E/33C
N/A

• For dsPIC33A
rfft_aa.s

Function Profile

Program Words

dsPIC30F/33F dsPIC33E/33C dsPIC33A

N/A N/A 10 + program word
counts of FFTRealIP and
VectorCopy functions.

Cycle count
dsPIC33A

Cycle counts of VectorCopy + FFTRealIP + 16

Note: The cycle counts of VectorCopy and FFTRealIP, in their respective sections, include function
call and return overheads. Hence, ~4 cycle from each of these will have to be subtracted while
calculating the total cycle counts of the FFTReal function.

System resource usage

• For dsPIC33A
– W0…W3 - used, not restored

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 103

– Plus resources used by VectorCopy and FFTRealIP functions

6.4.18. IFFTRealIP
Description

IFFTRealIP computes the inverse Fast Fourier Transform of a source complex vector, which was
derived out of a real-vector using the FFTReal function. The algorithm to compute IFFT is based on
the efficient computation of IFFT of a 2N point complex vector using the N point complex FFT with
additional computations called split functions.

Prototype

fractional* IFFTRealIP (int log2N, fractcomplex* srcCV, fractcomplex*
twidFactors);
Arguments

Parameters Description

log2N Base 2 logarithm of N (number of complex elements in source vector)

srcCV Pointer to the complex source vector.

twidFactors Pointer to complex twiddle factors.

Return

Pointer to the base address of the real destination sample.

Remarks

N must be an integer power of 2.

The complex srcCV vector must be of size N/2 + 1, holding zero to N/2 elements.

The elements in the source complex vector are expected in a natural order and the resultant vector
likewise returned in a natural order. The resulting transform is a real vector of size N stored in the
same location as that of the source complex vector.

This function operates in-place. srcV must be a complex vector with N/2 + 1 elements. The resultant
vector will be a real-vector of size N stored in same location as that of complex srcCV vector.

The dstCV vector must be allocated at a modulo alignment of N in y-memory space.

To avoid saturation (overflow) during computation, the values of the source vector should be in the
range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

This function internally utilizes the BitReversal function and parts of the FFTReal function.

The twiddle factors must be initialized with conjFlag set to a value other than zero.

Output is scaled by the factor of N.

Source File

• For dsPIC30F/33F/33E/33C
N/A

• For dsPIC33A
irfft_aa.s

Function Profile

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 104

Program Words

dsPIC30F/33F dsPIC33E/33C dsPIC33A

N/A N/A 68 + program word counts
of BitReversalComplex
functions

Cycle count

Transform Size (N) dsPIC33A

Cycles if Twiddle Factors in X-
mem

Cycles if Twiddle Factors in P-mem

32 1,229 1,712
64 2,599 3,770
128 5,629 8,390
256 12,250 18,618
512 26,768 41,160
1024 57,970 90,095
2048 125,050 195,958

Note: The above cycle count values include cycles of BitReversalComplex functions that are internally
used.

System resource usage

• For dsPIC33A
– W0…W7 - used, not restored
– W8…W9 - saved, used, restored
– ACCA/ACCB - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction(s) usage – 1
– Plus resources used by the BitReversalComplex function.

6.4.19. IFFTReal
Description

IFFTReal computes the inverse Fast Fourier Transform of a source complex vector, which was
derived out of a real-vector using the FFTReal function. The algorithm to compute IFFT is based on
the efficient computation of IFFT of a 2N point complex vector using the N point complex FFT with
additional computations called split functions.

Prototype

fractional * IFFTReal (int log2N, fractcomplex* srcCV, fractional* dstV,
fractcomplex* twidFactors);
Arguments

Parameters Description

log2N Base 2 logarithm of N (number of complex elements in the source vector)

srcCV Pointer to the complex source vector of size N/2 + 1.

dstV Pointer to the destination real vector of size N.

twidFactors Pointer to complex twiddle factors.

Return

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 105

Pointer to the base address of the complex destination sample.

Remarks

N must be an integer power of 2.

srcCV must be a complex vector with N/2 + 1 elements.

dstV must be a real vector of size N.

The elements in the source complex vector are expected in a natural order and the resultant vector
likewise returned in a natural order. The resulting transform is a real vector of size N.

The dstV vector must be allocated at a modulo alignment of N in y-memory space.

To avoid saturation (overflow) during computation, the values of the source vector should be in the
range [-0.5, 0.5].

Only the first N/2 twiddle factors are needed.

This function internally utilizes VectorCopy and IFFTRealIP functions.

The twiddle factors must be initialized with conjFlag set to a value other than zero.

Output is scaled by the factor of N.

Source File

• For dsPIC30F/33F/33E/33C
N/A

• For dsPIC33A
irfft_aa.s

Function Profile

Program Words
dsPIC30F/33F dsPIC33E/33C dsPIC33A

N/A N/A 11

Cycle count
dsPIC33A

Cycle counts of VectorCopy + IFFTRealIP + 17

Note: The cycle counts of VectorCopy and FFTRealIP, in their respective sections, include function
call and return overheads. Hence, ~4 cycle from each of these will have to be subtracted while
calculating the total cycle counts of the FFTReal function.

System resource usage

• For dsPIC33A
– W0…W3 - used, not restored
– Plus resources used by VectorCopy and IFFTRealIP functions.

6.4.20. SquareMagnitudeComplex
Description

SquareMagnitudeCplx computes the squared magnitude of each element in a complex source
vector.

Prototype

fractional* SquareMagnitudeCplx (numElems, fractcomplex* srcV,
fractional* dstV);
Arguments

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 106

Parameters Description

numElems Number of complex elements in the source vector

srcV Pointer to the fractcomplex source vector

dstV Pointer to the fractional destination vector

Return

Pointer to the base address of the destination sample.

Remarks

If the sum of squares of the real and imaginary parts of a complex element in the source vector is
larger than the max value of supported fractional data ((1 - 2-15) or (1 - 2-31)), this operation results in
saturation.

This function can be used to operate in-place on a source data set.

Source File

• For dsPIC30F/33F/33E/33C
cplxsqrmag.s

• For dsPIC33A
cplxsqrmag_aa.s

Function Profile

dsPIC30F/33F dsPIC33E/33C dsPIC33A

Program Words 19 26 15
Cycle Count 25 + 4(numElems) 34 + 4(numElems) 34 + 3.5(numElems)

System resource usage

• For dsPIC30F/33F/33E/33C
– W0, W1, W2, W4, W5 - used, not restored
– W10 - saved, used, restored
– ACCA - used, not restored
– DO and REPEAT instruction usage
– • One level DO instruction

• For dsPIC33A
– W0…W4 - used, not restored
– W13 - saved, used, restored
– ACCA/ACCB - used, not restored
– REPEAT instruction usage – None

6.4.21. SquareMagnitudeComplex32bIP
Description

SquareMagnitudeCplx32bIP computes the 32-bit squared magnitude of each element in a 32-bit
complex source vector.

Prototype

long* MagnitudeCplx32bIP (int numElems, long* srcV);
Arguments

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 107

Parameters Description

numElems Number of the complex elements in the source vector.

srcV Pointer to the 32-bit source vector

Return

None.

Remarks

If the sum of squares of the real and imaginary parts of a complex element in the source vector is
larger than 1-2-31, this operation results in saturation.

This function operates in-place on a source data set.

Note: The functionality of this function is covered by squareMagnitudeComplex in dsPIC33A. Hence,
it is not applicable for the dsPIC33A family of devices.

Source File

• For dsPIC30F/33F/33E/33C
cplxmag32b.s

6.4.22. TwidFactorInit
Description

TwidFactorInit generates the first half of the set of twiddle factors required by a Discrete Fourier
Transform or Discrete Cosine Transform, and places the result in the complex destination vector.

Effectively, the set contains the values:

• For conjFlag = 0:

• For conjFlag != 0:

Prototype

fractcomplex* TwidFactorInit (int log2N, fractcomplex* twidFactors, int
conjFlag);
Arguments

Parameters Description

log2N Based 2 logarithm of N (N = number of complex factors needed by a FFT)

twidFactors Pointer to the complex twiddle factors

conjFlag Flag to indicate whether or not conjugate values are to be generated

Returns

Pointer to the base address of twiddle factors.

Remarks

Transform Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 108

N must be an integer power of 2.

Only the first N/2 twiddle factors are generated.

The value of conjFlag determines the sign in the argument of the exponential function. For forward
Fourier Transforms, conjFlag should be set to ‘0’. Inverse Fourier transforms itself, and Discrete
Cosine transforms, conjFlag should be set to ‘1’.

A complex vector of size N/2 must have already been allocated and assigned to twidFactors prior to
invoking the function. The complex vector should be allocated in X-Data memory.

Factors computed in floating-point arithmetic and converted to 1.15/1.31 complex fractionals.

Source File

• For dsPIC30F/33F/33C/33E – inittwid.c
• For dsPIC33A – inittwid_aa.c

Control Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 109

7. Control Functions
Function Description

PIDInit Clears the delay line elements in the 3-element array located in Y-space and pointed to by
controlHistory. It also clears the current PID output element, controlOutput.

PIDCoeffCalc PIDInit computes the PID coefficients based on values of Kp, Ki and Kd provided by the user.

PID Computes the controlOutput.

7.1. Proportional Integral Derivative (PID) Control
This section describes functions provided in the DSP library that aid the implementation of closed-
loop control systems. A complete discussion of Proportional Integral Derivative (PID) controllers is
beyond the scope of this documentation, but this section provides some guidelines for tuning PID
controllers.

7.1.1. PID Controller Background
A PID controller responds to an error signal in a closed control loop and attempts to adjust the
controlled quantity in order to achieve the desired system response. The controlled parameter
can be any measurable system quantity, such as speed, voltage or current. The output of the
PID controller can control one or more system parameters that will affect the controlled system
quantity. For example, a speed control loop in a Sensorless Brushless DC motor application can
control the PWM duty cycle directly, or it can set the current demand for an inner control loop that
regulates the motor currents. The benefit of the PID controller is that it can be adjusted empirically
by adjusting one or more gain values and observing the change in system response.

A digital PID controller is executed at a periodic sampling interval, and it is assumed that the
controller is executed frequently enough so that the system can be properly controlled. For
example, the current controller in the Sensorless Brushless DC motor application is executed
in every PWM cycle, since the motor can change very rapidly. The speed controller in such an
application is executed at the medium event rate (100 Hz) because motor speed changes will occur
relatively slowly due to mechanical time constants.

The error signal is formed by subtracting the desired setting of the parameter to be controlled from
the actual measured value of that parameter. This sign of the error indicates the direction of change
required by the control input.

The Proportional (P) term of the controller is formed by multiplying the error signal by a P gain. This
will cause the PID controller to produce a control response that is a function of the error magnitude.
As the error signal becomes larger, the P term of the controller becomes larger to provide more
correction.

The effect of the P term will tend to reduce the overall error as time elapses. However, the effect
of the P term will reduce as the error approaches zero. In most systems, the error of the controlled
parameter will get very close to zero but will not converge. The result is a small remaining steady
state error. The Integral (I) term of the controller is used to fix small steady state errors. The I
term takes a continuous running total of the error signal. Therefore, a small steady state error will
accumulate into a large error value over time. This accumulated error signal is multiplied by an I
gain factor and becomes the I output term of the PID controller.

The Differential (D) term of the PID controller is used to enhance the speed of the controller and
responds to the rate of change of the error signal. The D term input is calculated by subtracting
the present error value from a prior value. This delta error value is multiplied by a D gain factor
that becomes the D output term of the PID controller. The D term of the controller produces more
control output the faster the system error is changing.

Control Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 110

It should be noted that not all PID controllers will implement the D or, less commonly, the I terms.
For example, the speed controller in a Brushless DC motor application described in Microchip
Application Note AN901 does not have a D term due to the relatively slow response time of motor
speed changes. In this case, the D term could cause excessive changes in PWM duty cycle that could
affect the operation of the sensorless algorithm and produce overcurrent trips.

7.1.2. Adjusting PID Gains
The P gain of a PID controller will set the overall system response. When first tuning a controller, the
I and D gains should be set to zero. The P gain can then be increased until the system responds well
to set point changes without excessive overshoot or oscillations. Using lower values of P gain will
‘loosely’ control the system, while higher values will give ‘tighter’ control. At this point, the system will
probably not converge to the set point.

After a reasonable P gain is selected, the I gain can be slowly increased to force the system error to
zero. Only a small amount of I gain is required in most systems. Note that the effect of the I gain,
if large enough, can overcome the action of the P gain, slow the overall control response and cause
the system to oscillate around the set point. If this occurs, reducing the I gain and increasing the P
gain will usually solve the problem.

After the P and I gains are set, the D gain can be set. The D term will speed up the response
of control changes, but it should be used sparingly because it can cause very rapid changes in
the controller output. This behavior is called ‘set point kick’. The set point kick occurs because
the difference in system error becomes instantaneously very large when the control set point
is changed. In some cases, damage to system hardware can occur. If the system response is
acceptable with the D gain set to zero, then omit the D gain.

Figure 7-1. PID Control System

7.1.3. PID Library Functions and Data Stuctures
The DSP library provides a PID Controller function, PID (tPID*), to perform a PID operation. The
function uses a data structure defined in the header file dsp.h, which has the following form:

 typedef struct {
  fractional* abcCoefficients;
  fractional* controlHistory;
  fractional controlOutput;
  fractional measuredOutput;

https://www.microchip.com/en-us/application-notes/an901

Control Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 111

  fractional controlReference;
} tPID;

Prior to invoking the PID() function, the application should initialize the data structure of
type tPID. This is done in the following steps:

1. Calculate coefficients from PID Gain values The element abcCoefficients in the data structure
of type tPID is a pointer to A, B and C coefficients located in X-Data space. These coefficients
are derived from the PID gain values, Kp, Ki and Kd, shown in Figure 7-1, as follows: A = Kp +
Ki + Kd B = -(Kp + 2*Kd) C = Kd To derive the A, B and C coefficients, the DSP library
provides a function, PIDCoeffCalc.

2. Clear the PID State Variables The structural element controlHistory is a pointer to a history
of three samples located in Y-Data space, with the first sample being the most recent (current).
These samples constitute a history of current and past differences between the Reference Input
and the Measured Output of the plant function. The PIDInit function clears the elements
pointed to by controlHistory. It also clears the controlOutput element in the tPID data
structure.

Note: For the dsPIC30F, dsPIC33F, dsPIC33C and dsPIC33E family of devices, all fractional input and
output arguments utilize the 1.15 fixed-point data type format. In contrast, for the dsPIC33A series,
the 1.31 fixed-point data type format is used for these arguments.

7.2. Functions

7.2.1. PIDInit
Description

This routine clears the delay line elements in the three-element array located in Y-Data space and
pointed to by controlHistory. It also clears the current PID output element, controlOutput.

Prototype

void PIDInit (tPID *fooPIDStruct);
Arguments

Parameters Description

fooPIDStruct A pointer to a PID data structure of type tPID

Returns

None

Remarks

None

Source File

• For dsPIC30F/33F/33E/33C
pid.s

• For dsPIC33A
pid_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 11 13
dsPIC33E/33C 14 21

Control Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 112

PIDInit (continued)
Device Program Words Cycles

dsPIC33A 6 10

System resource usage

• For dsPIC30F/33F/33E/33C
– W0 - used, not restored
– DO and REPEAT instruction usage – None

• For dsPIC33A
– W0 - used, not restored.
– REPEAT instruction usage – None

7.2.2. PIDCoeffCalc
Description

PIDCoeffCalc computes the PID coefficients based on values of Kp, Ki and Kd provided by the
user.

abcCoefficients[0] = Kp + Ki + Kd
abcCoefficients[1] = -(Kp + 2*Kd)
abcCoefficients[2] = Kd
This routine also clears the delay line elements in the array ControlDifference as well as clears
the current PID output element, ControlOutput.

Prototype

void PIDCoeffCalc (fractional *fooPIDGainCoeff, tPID *fooPIDStruct);
Arguments

Parameters Description

fooPIDGainCoeff Pointer to an input array containing Kp, Ki, Kd coefficients in order [Kp, Ki, Kd]
fooPIDStruct Pointer to a PID data structure of type tPID

Returns

None

Remarks

PID coefficient array elements may be subject to saturation depending on values of Kp, Ki, Kd.

Source File

• For dsPIC30F/33F/33E/33C
pid.s

• For dsPIC33A
pid_aa.s

Function Profile

Device Program Words Cycles

dsPIC30F/33F 18 20
dsPIC33E/33C 21 28

Control Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 113

PIDCoeffCalc (continued)
Device Program Words Cycles

dsPIC33A 15 28

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W2 - used, not restored
– ACCA, ACCB - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT instruction usage – None

• For dsPIC33A
– W0 - used, not restored
– ACCA, ACCB - used, not restored
– CORCON - saved, used, restored
– REPEAT instruction usage – None

7.2.3. PID
Description

PID computes the controlOutput element of the data structure tPID:

controlOutput[n] = controlOutput[n-1]
 + controlHistory[n] * abcCoefficient[0]
 + controlHistory[n-1] * abcCoefficient[1]
 + controlHistory[n-2] * abcCoefficient[2]
//where
abcCoefficient[0] = Kp + Ki + Kd
abcCoefficient[1] = -(Kp + 2*Kd)
abcCoefficient[2] = Kd
ControlHistory[n] = MeasuredOutput[n] - ReferenceInput[n]

Prototype

void PID (tPID* fooPIDStruct);
Arguments

Parameters Description

fooPIDStruct A pointer to a PID data structure of type tPID

Returns

Pointer to fooPIDStruct

Remarks

controlOutput element is updated by the PID() routine. The controlOutput will be subject to
saturation.

Source File

• For dsPIC30F/33F/33E/33C
pid.s

• For dsPIC33A
pid_aa.s

Control Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 114

Function Profile

Device Program Words Cycles

dsPIC30F/33F 28 33
dsPIC33E/33C 31 42

dsPIC33A 22 34

System resource usage

• For dsPIC30F/33F/33E/33C
– W0…W5 - used, not restored
– W8, W10 - saved, used, restored
– ACCA, ACCB - used, not restored
– CORCON - saved, used, restored
– DO and REPEAT - instruction usage – None

• For dsPIC33A
– W0…W7 - used, not restored.
– ACCA, ACCB - used, not restored
– CORCON - saved, used, restored
– REPEAT - instruction usage – None

Conversion Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 115

8. Conversion Functions
8.1. Functions

Function Description

Fract2Float Converts a 1.15/1.31 fractional value to an IEEE floating-point single-precision value.

Float2Fract Converts a IEEE floating-point single-precision value to 1.15/1.31 fractional.

8.1.1. Fract2Float
Description

This function converts a 1.15/1.31 fractional value to an IEEE floating-point single-precision value.

Prototype

float Fract2Float (fractional aVal);
Arguments

Parameters Description

aVal 1.15/1.31 fractional numbers depending on device family.
• For dsPIC30F/33F/33E/33C –

1.15 fractional number in the implicit range [-1, 1 – 2-15]
• For dsPIC33A –

1.31 fractional number in the implicit range [-1, 1 – 2-31]

Returns

IEEE floating-point single-precision value in range

• [-1, 1 – 2-15] for 1.15 fractional input
• [-1, 4.656613 x 10-10] for 1.31 fractional input

Remarks

The conversion is performed using a hardware floating-point unit for the dsPIC33A, while other
dsPIC DSCs utilize convergent rounding and saturation mechanisms.

Source File

• For dsPIC30F/33F/33E/33C
– flt2frct.c

• For dsPIC33A
– flt2frct_aa.s

System resource usage

• For dsPIC30F/33F/33E/33C
– W0..W7 - used, not restored
– W8..W14 - saved, used, restored
– DO and REPEAT - instruction usage – None

• For dsPIC33A
– W0 – used, not restored
– F0 – F1 used, not restored
– REPEAT instruction usage – None

Conversion Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 116

8.1.2. Float2Fract
Description

This function converts a IEEE floating-point single-precision value to a 1.15/1.31 fractional value.

Prototype

fractional Float2Fract (float aVal);
Arguments

Parameters Description

aVal IEEE floating-point single-precision value in range
• [-1, 1 – 2-15] for dsPIC30F/33F/33E/33C.
• [-1, 4.656613 x 10-10] for dsPIC33A.

Returns

1.15/1.31 fractional numbers depending on the device family.

• For dsPIC30F/33F/33E/33C – 1.15 fractional number in the implicit range [-1, 1 – 2-15]
• For dsPIC33A – 1.31 fractional number in the implicit range [-1, 1 – 2-31]

Remarks

The conversion is performed using a hardware floating-point unit in case of dsPIC33A and
convergent rounding and saturation mechanisms for other devices.

Source File

• For dsPIC30F/33F/33E/33C
– frct2flt.c

• For dsPIC33A
– frct2flt_aa.s

System resource usage

• For dsPIC30F/33F/33E/33C
– W0..W7 - used, not restored
– W8..W14 - saved, used, restored
– DO and REPEAT - instruction usage – None

• For dsPIC33A
– W0 – used, not restored
– F0 – F2 used, not restored
– REPEAT instruction usage – None

Stack Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 117

9. Stack Functions
This section describes the stackGuard function which is used to modify the stack guard value.

9.1. SetStackGuard
Description

This function modifies the stack guard value.

Prototype

void SetStackGuard (unsigned intstackGuard);
Arguments

Parameters Description

stackGuard Stack guard value

Returns

None

Remarks

For a dsPIC33E/33C target with the factPage pointing to the PSV page, the coefficients may be copied
from PSV to the stack depending on stack space availability.

Conditions for PSV to the stack copy are:

SP+TABLE_SIZE+STACK_GUARD < SPLIM and

SP+TABLE_SIZE < __YDATA_BASE, where

1. SP - Stack Pointer
2. TABLE_SIZE - Size of the coefficient vector in PSV
3. STACK_GUARD - Buffer space on the stack beyond the coefficient vector to be copied from PSV
4. SPLIM - Stack Pointer Limit
5. __YDATA_BASE - Base address of Y memory

STACK_GUARD has a default value of 2048 words but can be modified with
the SetStackGuard function. Care must be taken when modifying the STACK_GUARD.

Larger values imply that more stack space is reserved for interrupts, etc. SPLIM will more likely
be exceeded, and the code will run out of PSV. This will increase the cycle count. If this happens,
decrease the STACK_GUARD value.

Smaller values imply that less stack space is reserved for interrupts, etc. SPLIM is less likely to be
exceeded, and the code will run out of RAM. Stack overflows may occur since there is less buffer
space. If this happens, increase the STACK_GUARD value.

Source File

stackguard.s
Function Profile

Device Program Words Cycles

dsPIC30F/33F 2 4
dsPIC33E/33C 2 7

dsPIC33A N/A N/A

Stack Functions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 118

System resource usage

W0 – used, not modified

DO and REPEAT instructions - Not used

Note: 
1. In case of dsPIC33A, the coefficients are not copied onto the stack since it allows coefficients to

be read directly from program memory. Hence, STACK_GUARD and the SetStackGuard function
are rendered obsolete for these devices.

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS70005593B - 119

Microchip Information
Trademarks
The “Microchip” name and logo, the “M” logo, and other names, logos, and brands are registered
and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or
subsidiaries in the United States and/or other countries (“Microchip Trademarks”). Information
regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-
information/microchip-trademarks.

ISBN: 979-8-3371-1017-2

Legal Notice
This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information
in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP’S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR
ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within

operating specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the

code protection features of Microchip products are strictly prohibited and may violate the Digital
Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

	DSP Library User Guide for dsPIC® Digital Signal Controllers
	Introduction
	Table of Contents
	1. DSP Library for dsPIC® Digital Signal Controllers
	1.1. C Code Applications
	1.2. Using the DSP Library
	1.2.1. Building with the DSP Library
	1.2.2. Memory Models
	1.2.3. DSP Library Function Calling Convention
	1.2.4. Data Types
	1.2.5. Data Memory Usage
	1.2.6. CORCON Register Usage
	1.2.7. Overflow and Saturation Handling
	1.2.8. Integrating with Interrupts and an RTOS
	1.2.9. Rebuilding the DSP Library
	1.2.10. DSP Library Functions

	2. Vector Functions
	2.1. Fractional Vector Operations
	2.2. Additional Remarks
	2.3. Functions
	2.3.1. VectorAdd
	2.3.2. VectorConvolve
	2.3.3. VectorCopy
	2.3.4. VectorCorrelate
	2.3.5. VectorDotProduct
	2.3.6. VectorMax
	2.3.7. VectorMin
	2.3.8. VectorMultiply
	2.3.9. VectorNegate
	2.3.10. VectorPower
	2.3.11. VectorScale
	2.3.12. VectorSubtract
	2.3.13. VectorZeroPad

	3. Window Functions
	3.1. Window Operations
	3.2. User Considerations
	3.3. Functions
	3.3.1. BartlettInit
	3.3.2. BlackmanInit
	3.3.3. HammingInit
	3.3.4. HanningInit
	3.3.5. KaiserInit
	3.3.6. VectorWindow

	4. Matrix Functions
	4.1. Functions
	4.2. Fractional Matrix Operations
	4.3. User Considerations
	4.4. Additional Remarks
	4.5. Functions
	4.5.1. MatrixAdd
	4.5.2. MatrixMultiply
	4.5.3. MatrixScale
	4.5.4. MatrixSubtract
	4.5.5. MatrixTranspose
	4.5.6. MatrixInvert

	5. Filtering Functions
	5.1. Fractional Filter Operations
	5.2. FIR and IIR Filter Implementations
	5.3. Single Sample Filtering
	5.4. User Considerations
	5.5. Functions
	5.5.1. FIRStruct
	5.5.2. FIR
	5.5.3. FIRDecimate
	5.5.4. FIRDelayInit
	5.5.5. FIRInterpolate
	5.5.6. FIRInterpDelayInit
	5.5.7. FIRLattice
	5.5.8. FIRLMS
	5.5.9. FIRLMSNorm
	5.5.10. FIRStructInit
	5.5.11. IIRCanonic
	5.5.12. IIRCanonicInit
	5.5.13. IIRLattice
	5.5.14. IIRLatticeInit
	5.5.15. IIRTransposed
	5.5.16. IIRTransposedInit

	6. Transform Functions
	6.1. Fractional Transform Operations
	6.2. Fractional Complex Vectors
	6.3. User Considerations
	6.4. Functions
	6.4.1. BitReverseComplex
	6.4.2. BitReverseReal32bIP
	6.4.3. CosFactorInit
	6.4.4. DCT
	6.4.5. DCTIP
	6.4.6. FFTComplex
	6.4.7. FFTComplexIP
	6.4.8. IFFTComplex
	6.4.9. IFFTComplexIP
	6.4.10. FFTReal32b
	6.4.11. FFTReal32bIP
	6.4.12. IFFTReal32b
	6.4.13. IFFTReal32bIP
	6.4.14. FFTComplex32bIP
	6.4.15. IFFTComplex32bIP
	6.4.16. FFTRealIP
	6.4.17. FFTReal
	6.4.18. IFFTRealIP
	6.4.19. IFFTReal
	6.4.20. SquareMagnitudeComplex
	6.4.21. SquareMagnitudeComplex32bIP
	6.4.22. TwidFactorInit

	7. Control Functions
	7.1. Proportional Integral Derivative (PID) Control
	7.1.1. PID Controller Background
	7.1.2. Adjusting PID Gains
	7.1.3. PID Library Functions and Data Stuctures

	7.2. Functions
	7.2.1. PIDInit
	7.2.2. PIDCoeffCalc
	7.2.3. PID

	8. Conversion Functions
	8.1. Functions
	8.1.1. Fract2Float
	8.1.2. Float2Fract

	9. Stack Functions
	9.1. SetStackGuard

	Microchip Information

