B
AtmeL APPLICATION NOTE

Atmel AT03258: Using Low Power Modes in SAM4E
Microcontroller

Atmel 32-bit Microcontroller

Features

® | ow power modes in SAM4E
® Power supply in SAM4E

Introduction

The purpose of this application note is to explain how to use low power
modes in the Atmel SAM4E. The application note gives a brief description of
low power modes in SAM4E and system controller for reducing power
consumption. It includes how to enter and exit each low power mode, also
give some suggestions on using these low power modes in application.

42142A-SAM-06/2013

Table of Contents

1. Low Power Modes in SAMAE ... 3
2. POWEE SUPPIY ..ot 3
2.1 Supply Controller (SUPC) ...t 3

2.2 General Purpose Backup Registers (GPBR)coiiiiiiiiiiiiiiiiie e 5

2.3 Power Management Controller (PMC)ccooiiiiiiiiiieiieiee e 5
2.3.2 ClOCK SOUICES......eeeiiiiiiie ittt 6

2.3.3 Clock ConfIQUuIatioNS..........ueeiieeiiiiiiiii et 6

3. SIEEP MOUE.. .. 8
3.1 ENLEr SIEEP MOUE ...ooiiiiiiiieiie et 8

3.2 EXIESIEEP MOUE ...ttt 8

3.3 USING SIEEP MOUE ...t 8

4. WALt MOOE........ciiiiiiiiii e 9
4.1 ENter WAt MOUE ...ttt 9

4.2 EXIEWAIEIMOUEciiiiiiiiiiet ettt 9

4.3 USING WAt MOttt e e e e e e e e nes 10

5. BacCKUP MOAEoueiiii e 11
5.1 ENter BaCKUP MOccoiiiiiiiiii ettt e e 11

5.2 EXit BACKUP MOGEoiiiiiiiiiiiiee ettt 11

5.3 USING BACKUP MOcoiiiiiiiiiiiii et e e 11

6. REVISION HISIOMYvveiiiic e 12
Atmel Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE] 2

42142A-SAM-06/2013

1. Low Power Modes in SAM4E
SAM4E microcontroller family has various low power modes, including sleep mode, wait mode and backup mode.
Various low power modes are shown in Figure 1-1. Each low power mode can be entered from active mode and
wake up by related enabled wake-up event. The various low power modes will be described below in detail.
The Atmel Software Framework (ASF) provides API to implement low power mode functions.
Figure 1-1. Various Low Power Modes
Active Mode
R a a &
¥ o B o ‘%‘F &
@ °| |2 QO
Wait Mode Backup Mode Sleep Mode
2. Power Supply
For reducing power consumption, the system can use supply controller (SUPC) to control the supply voltage and
use power management controller (PMC) to control the clock of the system.
2.1 Supply Controller (SUPC)
The SUPC controls the supply voltage of the system and manages the backup mode by controlling the embedded
voltage regulator.
The SUPC starts up the device by enabling the voltage regulator. Then it generates the proper reset signals to the
core power supply.
The SUPC integrates the Slow Clock generator which is based on a 32 kHz crystal oscillator and an embedded 32
kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal oscillator
and select it as the Slow Clock source.
The SUPC embeds a supply monitor which is located in the VDDIO power supply and which monitors VDDIO
power supply. The supply monitor can be used to prevent the processor from falling into an unpredictable state if
the main power supply drops below a certain level.
Figure 2-1 gives an overview of the Supply Controller of SAM4E.
There are several types of power supply pins:
VDDCORE: powers the core, the first flash rail, the embedded memories and the peripherals
VDDIO: powers the peripherals I/O lines (Input/Output Buffers), USB transceiver, the second flash rail, the backup
part, 32 kHz crystal oscillator and oscillator pads
VDDIN: voltage regulator input, ADC, DAC and analog comparator power supply
VDDOUT: the output of the voltage regulator, intends to supply the core of the device
VDDPLL: powers the PLL, the Fast RC and the 3 to 20 MHz oscillator
Atmel Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE] 3
42142A-SAM-06/2013

The device can be divided into two power supply areas as shown in Figure 2-1: Backup Power Supply and Core
Power Supply.

Figure 2-1. Supply Controller of SAM4E

vDDIO

sm_on = SMSMPL controllg

—

Programmable
Supply sm_in
Monitor >

General Purpose

Supply
Controller

VROFF controlled

VDDIN

-

Software Controlled
Voltage Regulator

|| AFECO (Front-ena)
ADC+DAC

=

- AFECO (Front-end)
ADC+DAC

L]

ACC (Front-end)

DAC (Front-end)

F

VDDOUT

--------I

AFE1x

ADVREF
AFEDx

DACx

WKUPO - WKUP15

Backup Registers g VDDIO
PIO ABIC
SLCK__ | prelfealam Input/ Output Bufiers PIOX
ﬁ VDDIO
SLCK. rit_alarm
—— RTT > D DDM
USB
4| | DDP
on = XTALSEL
vddcore_nreset VDDCORE
XIN32 Dot 30 kil XTALSEL ¥ I—D(. -
Oscillator
X0uT32 -
bodcore c-Jn =1 BODDIS Brownout
Embedded | LPodcore_in Detector
32 kHz RC| _on= I XTALSH supc_interrupt
Oscillator
€| SRAM fe
Backup Power Supply
VDDIO Peripherals j—
vddcore_nreset R [EREE I Cortex-M)
— Reset > periph_nreset Processor] Matrix
Controller N
NRST - Peripheral
> Bridge
FSTTO-FSTT15 (Note 1)
>] Flash fe
Embedded SLCK_
418112 MHz
RC Main Clock
Oscillator MAINCK Master Clock 1
Power MCK
XN 3-20MHz Management
P{TAL Oscillator Controller
s SLCK Wat_chd og
Timer
MAINCK PLLACK
—* pLA Embedded
32kHz R .
P Reinforced
VDDEL| Oscillator Safety
Embedded Watchdog
4/8/12 MHz Timer
RC Oscillator - Core Power Supply

MNote1: FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP 15 Pins but are not physical

Atmel

Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE]

42142A-SAM-06/2013

2.2 General Purpose Backup Registers (GPBR)
The device embeds twenty 32-bit general-purpose backup registers which can store 80 bytes of user application
data. When system enters backup mode, the voltage regulator is disabled, and VDDCORE is off but the backup
registers remain powered by VDDIO. They retain the content when the system wakes up from backup mode.
It is possible to generate an immediate clear of the content of general purpose backup registers 0 to 9 (first half), if
a low power debounce event is detected on a wakeup pin, WKUPO or WKUPL1. The content of the other general-
purpose backup registers (second half) remains unchanged.
If a tamper event has been detected, it is not possible to write into general purpose backup registers while the
LPDBCSO or LPDBCSL1 flags are not cleared in supply controller status register (SUPC_SR).
2.3 Power Management Controller (PMC)
The PMC controls all system and peripheral clocks as shown in Figure 2.2. It can be used to adapt the system
frequency and to enable/disable the peripheral clocks. It acts an important role for optimizing power consumption.
Figure 2-2. General Clock Block Diagram of SAM4E
Clock Generator
XTALSEL Processar Processer Clock
i Clock L Holk
{Supply Controller) Controller
\H Sleep Mode it
Embedded
2kHzRC —] O
Oiseillator
Slow Clock Divider X
_| on — 8 F—— SysTick
XIN32 D aéLag i B J sLeK Mas“;g,::"g‘jg';"ﬁ”” Free Ru:gi:i Clock
XOUT32 D Oscillator MAINCK
”P;:;i:jra Master Clock
E MOSCSEL . 18432 164 MCK
4/8"M2 MHz -
East — 0 Peripherals
RC Oscillatod m FRES Clock Controller
Main Clock (PMC_PCERx) qpnjoFF
3-20 MHz MAINCK periph_clkl.]
Crystal
XN D R%g;nic _'J
xout _nat" rogrammal an T
D Oscillator aex Prog (PM?:EF%?(?;C trolle
MAINCK Frescaler ON/OFF
PLLA and Mnp2mme -1 L]
L »| Divider'2 PLLA Clock FLLACK 118,132 /84
PLLACK MCK
USE Clock Controller (PMC_USE)
e O"‘”CE USB FS Clock
MJ213..18 USE 48m
oo Joow
Power
Management
Controller
Atmel Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE] 5

42142A-SAM-06/2013

2.3.2 Clock Sources

Normally, the system does not need to run at device’s maximum frequency. According to requirement of system
performance, proper Master Clock (MCK) needs to be found for optimizing power consumption. The user can
choose one of the following clocks as master clock source from clock generator.

® Slow clock
® Main clock
® PLL clock
2.3.2.1 Slow Clock
The Slow Clock is generated either by the Slow Clock Crystal Oscillator or by the Slow Clock RC Oscillator.

The selection between the RC and the crystal oscillator is made by writing the XTALSEL bit in the SUPC Control
Register (SUPC_CR).

2.3.2.2 Main Clock
The Main Clock has two sources:
® 4/8/12 MHz Fast RC Oscillator, which starts very quickly and is used at startup.
® 3to 20 MHz Crystal or Ceramic Resonator-based Oscillator, which can be bypassed.

The user can select the source of Main Clock by writing the MOSCSEL bit in the Clock Generator Main Oscillator
Register (CKGR_MOR).

The software can enable or disable the 4/8/12 MHz Fast RC Oscillator with the MOSCRCEN bit in the
CKGR_MOR. The user can also select the output frequency of the Fast RC Oscillator through MOSCRCEF bits in
CKGR_MOR, either 4 MHz, 8 MHz or 12 MHz are available.

The software can enables or disable the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator with the
MOSCXTEN bit in the CKGR_MOR. The Main Crystal Oscillator can be bypassed by setting MOSCXTBY and an
external clock must be connected on XIN.

2.3.2.3 PLL Clock

The PLL Clock signal has a frequency that depends on the Main Clock frequency and on the parameters DIV and
MUL. The factor applied to the source signal frequency is (MUL + 1) / DIV. For example, the Main Clock frequency
is 12MHz, and MUL = 19, DIV = 1, then the PLL Clock frequency is 12 * (19 + 1) / 1 = 240MHz.

2.3.3 Clock Configurations
2.3.3.1 Master Clock

The Master Clock Controller can configure the master clock (MCK) as shown in Figure 2-3.

Figure 2-3. Master Clock Controller

PMC_MCKR PMC_MCKR
| PRES
SLCK
MAINCK Master Clock -
Prescaler MCK
PLLACK
To the Processor

" Clock Controller (PCK)

Atmel Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE] 6

42142A-SAM-06/2013

2.3.3.2

2.3.3.3

2.3.3.4

2.3.35

The Master Clock is selected from one of the Clock Source: Slow Clock, Main Clock and PLL Clock.

The Master Clock selection is made by writing the Clock Source Selection field (CSS) in Master Clock Register
(PMC_MCKR). The prescaler supports the division by a power of 2 of the selected clock between 1 and 64, and
the division by 3. The PRES field in PMC_MCKR programs the prescaler.

Processor Clock
The Processor Clock can be disabled by executing the Wait For Interrupt (WFI) processor instruction.
The Processor Clock HCLK is enabled after a reset and is automatically re-enabled by any enabled interrupt.

The Processor Sleep Mode is achieved by disabling the Processor Clock, which is automatically re-enabled by any
enabled fast or normal interrupt, or by the reset of the product.

Peripheral Clock

The peripheral clocks are automatically disabled after a reset. The user can individually enable and disable the
clock on the peripherals by writing into the Peripheral Clock Enable 0 (PMC_PCERQO), Peripheral Clock Enable 1
(PMC_PCER1) and Peripheral Clock Disable 0 (PMC_PCDRO), Peripheral Clock Disable 1 (PMC_PCDR1)
registers. In order to reduce power consumption, it is recommended to disable the clock of unused peripherals.

Programmable Clock Output

The PMC controls 3 signals to be output on external pins, PCKx. Each signal can be independently programmed
via the Programmable Clock Registers (PMC_PCKX).

PCKXx can be independently selected between the Slow Clock (SLCK), the Main Clock (MAINCK), the PLLA Clock
(PLLACK), and the Master Clock (MCK) by writing the CSS field in PMC_PCKx. Each output signal can also be
divided by a power of 2 between 1 and 64 by writing the PRES (Prescaler) field in PMC_PCKXx.

Each output signal can be enabled or disabled by writing 1 in the corresponding bit, PCKx of PMC_SCER and
PMC_SCDR, respectively.

USB Clock
The USB Clock Controller can configure the USB clock as shown in Figure 2-4.

Figure 2-4. USB Clock Controller

UsSBDIV

UsB B
Source | Divider . UDP Clock (UDPCK)
Clock Mf2/3,..016 UDP

The PLL is the USB source clock, so the user must program the PLL to generate an appropriate frequency
depending on the USBDIV bit in PMC_USB.

The USB device clock can be enabled by setting the UDP bit in PMC_SCER. To save power on this peripheral
when it is not used, the user can set the UDP bit in PMC_SCDR.

Atmel Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE] 7

42142A-SAM-06/2013

3. Sleep Mode

In Sleep mode, the execution of instructions is suspended because the core clock is stopped while the peripheral
clocks can be enabled. The purpose of sleep mode is to optimize power consumption of the device versus
response time. The core needs lowest wakeup time in this mode.

3.1 Enter Sleep Mode

Sleep mode is entered via Wait For Interrupt (WFI) instructions. This mode is achieved by disabling the core clock
using PMC. Following API could be used to enter sleep mode in ASF:

pmc_enable_sleepmode()

When Sleep mode is entered, the current instruction is finished before the clock is stopped, but this does not
prevent data transfers from other masters of the system bus.

3.2 Exit Sleep Mode

Sleep mode is exited from an interrupt if WFI instruction is used to enter this mode, or by the reset of the device.
The PMC automatically re-enables the processor clock and the core executes the next instruction of the program
counter.

3.3 Using Sleep Mode

In most applications, there are some polling loops for waiting for operation finish. For example, you need to send a
large amount of data via USART, the pseudo code might like this:

SendDataViaUSART()

{
Begin to send data via USART by PDC;
Wait for transfer finish;
Continue to execute next operation;

}

There are two ways for waiting for transfer finish:

® Polling loops, like while (transfer not finish) {1}

® Enter sleep mode and set the core be woken up by an interrupt when transfer finish.

By using polling loops, the instructions are still executed thereby increasing power consumption.

By using Sleep mode, the core clock is stopped thereby reducing power consumption while USART peripheral
clock is still working, so data transfer continues. When the transfer finishes, an interrupt will wake up the core
immediately.

So in the case of the core is not running while waiting for peripherals transfer data done (with DMA or PDC), it is
recommended to use the Sleep mode instead of polling loops.

Atmel Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE] 8

42142A-SAM-06/2013

4.1

4.2

Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a
powered state for a startup time of less than few hundred ps. Current Consumption in wait mode is typically few yA
(total current consumption) if the internal voltage regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and
memories power supplies are still powered. From this mode, a fast start-up is available.

Enter Wait Mode

Wait mode is entered via WAITMODE =1 (wait mode bit in CKGR_MOR). The Fast RC Oscillator is disabled by the
PMC automatically when entering wait mode. The step of entering Wait mode as below:

® Select the 4/8/12 MHz fast RC oscillator as Main Clock
® Setthe FLPM bit field in the PMC Fast Startup Mode Register (PMC_FSMR)

® Set Flash Wait State at 0.

® Setthe WAITMODE bit = 1 in the PMC Main Oscillator Register (CKGR_MOR)

® Wait for Master Clock Ready MCKRDY=1 in the PMC Status Register (PMC_SR)

Note: Internal main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and
the
effective entry in wait mode. Depending on the user application, waiting for MOSCRCEN bit to be cleared

recommended to ensure that the core will not execute undesired instructions.

In most applications, the external XTAL oscillator is used instead of on-chip RC oscillator for accurate clock. Before
entering wait mode, it needs switch MCK from external XTAL oscillator to Fast RC oscillator. Switching Main Clock
source will cause MCK unstable, so switching MCK source to stable Slow Clock is necessary before this operation.
After Main Clock becomes stable, it needs switch MCK source back to Main Clock. The implementation is by
calling following API:

pmc_switch_mck_to_sclk(PMC_MCKR_PRES_CLK 1);
pmc_switch_mainck _to_fastrc(CKGR_MOR_MOSCRCF_4 MHz);
pmc_switch_mck_to_mainck(PMC_PCK_PRES CLK_1);

Note: PMC_MCKR_PRES_CLK_ 1 indicates the master clock is equal to selected clock.
CKGR_MOR_MOSCRCF_4 MHz indicates the main clock is selected to 4MHz Fast RC oscillator.

The following API could be used to enter wait mode in ASF:

pmc_enable_waitmode()

Exit Wait Mode

Wait mode can be exited from several asynchronous fast start-up sources that have to be programmed prior to
entering this mode, include:

® WKUPO-15 pins
® RTTor RTC alarm
® USB Wake-up

As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz fast RC
oscillator, switches the master clock on this 4/8/12 MHz clock and re-enables the processor clock, then the core
executes the next instruction of the program counter.

Atmel Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE] 9

42142A-SAM-06/2013

4.3 Using Wait Mode

Some applications are not running all the time. For example, an alarm application waits for signal from a sensor to
wake up the microcontroller to launch a task. In this case, the microcontroller can be suspended during idle time
and woken up in time when specific event happens. Both Sleep mode and Wait mode may be used for reducing
power consumption. Some main factors should be considered:

® Wake-up source
® Power consumption
® Wake-up time

If the wakeup source is an interrupt in the application, only Sleep mode can be used because Wait mode can only
be woken up by programmed events.

For power consumption, in Wait mode, current consumption is typically 50 yA when the internal voltage regulator is
used. In Sleep mode, current consumption depends on master clock and peripherals in usage. The current
consumption in Sleep mode is as low as Wait mode only when the master clock is running at 500Hz with all
peripherals clock off. The higher master clock frequency, the higher power consumption in Sleep mode.

The microcontroller can be woken up in several microseconds in both Sleep and Wait mode. When waking up from
Sleep mode, the core clock is re-enabled by PMC automatically. But in Wait mode, it needs more time. When
waking up from Wait mode, the PMC automatically restarts the embedded 4/8/12 MHz fast RC oscillator, then
switches the master clock to this clock. Normally, user needs to switch master clock to PLL clock to get higher
frequency.

In short, the trade-off between wakeup time and power consumption must be taken into account when both Sleep
mode and Wait mode can be used in the application. Generally, Wait mode can save more power than Sleep mode
but Sleep mode has faster startup time than Wait mode.

Atmel Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE] 10

42142A-SAM-06/2013

5. Backup Mode
The purpose of backup mode is to achieve the lowest power consumption in a system but not requiring fast startup
time. Backup mode is based on the Cortex-M4 deep-sleep mode with the voltage regulator disabled (no power
supply for VDDCORE and VDDPLL). The core power supply domain is powered off and the SRAM, flash memory,
PLL and peripherals are also switched off. The backup power supply domain is still powered so the Supply
Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz oscillator are running.

5.1 Enter Backup Mode
Backup mode is entered by using the VROFF bit of Supply Controller (SUPC_CR) and with the SLEEPDEEP bit in
the Cortex-M4 System Control Register set to 1. The following API could be used to enter Backup Mode in ASF.

pmc_enable_backupmode ()

5.2 Exit Backup Mode
Backup mode can be exited from several wake-up sources that must first be programmed prior to entering this
mode, including:
® WKUPENO-15 pins (level transition, configurable debouncing)
® RTC alarm
® RTT alarm
® Supply Monitor alarm
When waking up from Backup mode, the program execution restarts in the same way as system startup except
backup region (RTC, RTT, GPBR and Supply Controller) are not reset.

5.3 Using Backup Mode
In some applications, very low power consumption is necessary. In this case, the Backup mode can be considered.
In Backup mode, RTT and RTC can keep running and some important data can be stored in GPBR. Please make
sure that the backup supply domain is still powered when entering Backup mode.

Atmel Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE] 11

42142A-SAM-06/2013

6. Revision History

Doc.Rev Comments

42142A 06/2013 Initial revision

Atmel Atmel AT03258: Using Low Power Modes in SAM4E Microcontroller [APPLICATION NOTE] 12

42142A-SAM-06/2013

AtmeL Enabling Unlimited Possibilities®

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K.

2325 Orchard Parkway Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Building
San Jose, CA 95131 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki

USA 418 Kwun Tong Road D-85748 Garching b. Munich Shinagawa-ku, Tokyo 141-0032
Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81)(3) 6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81)(3) 6417-0370

Fax: (+852) 2722-1369

© 2013 Atmel Corporation. All rights reserved. / Rev.: 42142A-SAM-06/2013

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/

	1. Low Power Modes in SAM4E
	2. Power Supply
	For reducing power consumption, the system can use supply controller (SUPC) to control the supply voltage and use power management controller (PMC) to control the clock of the system.
	2.1 Supply Controller (SUPC)
	2.2 General Purpose Backup Registers (GPBR)
	2.3 Power Management Controller (PMC)
	The PMC controls all system and peripheral clocks as shown in Figure 2.2. It can be used to adapt the system frequency and to enable/disable the peripheral clocks. It acts an important role for optimizing power consumption.
	2.3.2 Clock Sources
	Normally, the system does not need to run at device’s maximum frequency. According to requirement of system performance, proper Master Clock (MCK) needs to be found for optimizing power consumption. The user can choose one of the following clocks as m...
	 Slow clock
	 Main clock
	 PLL clock
	2.3.2.1 Slow Clock
	The Slow Clock is generated either by the Slow Clock Crystal Oscillator or by the Slow Clock RC Oscillator.
	The selection between the RC and the crystal oscillator is made by writing the XTALSEL bit in the SUPC Control Register (SUPC_CR).

	2.3.2.2 Main Clock
	The Main Clock has two sources:
	 4/8/12 MHz Fast RC Oscillator, which starts very quickly and is used at startup.
	 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator, which can be bypassed.
	The user can select the source of Main Clock by writing the MOSCSEL bit in the Clock Generator Main Oscillator Register (CKGR_MOR).
	The software can enable or disable the 4/8/12 MHz Fast RC Oscillator with the MOSCRCEN bit in the CKGR_MOR. The user can also select the output frequency of the Fast RC Oscillator through MOSCRCF bits in CKGR_MOR, either 4 MHz, 8 MHz or 12 MHz are ava...
	The software can enables or disable the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator with the MOSCXTEN bit in the CKGR_MOR. The Main Crystal Oscillator can be bypassed by setting MOSCXTBY and an external clock must be connected on XIN.

	2.3.2.3 PLL Clock
	The PLL Clock signal has a frequency that depends on the Main Clock frequency and on the parameters DIV and MUL. The factor applied to the source signal frequency is (MUL + 1) / DIV. For example, the Main Clock frequency is 12MHz, and MUL = 19, DIV = ...

	2.3.3 Clock Configurations
	2.3.3.1 Master Clock
	The Master Clock Controller can configure the master clock (MCK) as shown in Figure 2-3.
	The Master Clock is selected from one of the Clock Source: Slow Clock, Main Clock and PLL Clock.
	The Master Clock selection is made by writing the Clock Source Selection field (CSS) in Master Clock Register (PMC_MCKR). The prescaler supports the division by a power of 2 of the selected clock between 1 and 64, and the division by 3. The PRES field...

	2.3.3.2 Processor Clock
	The Processor Clock can be disabled by executing the Wait For Interrupt (WFI) processor instruction.
	The Processor Clock HCLK is enabled after a reset and is automatically re-enabled by any enabled interrupt.
	The Processor Sleep Mode is achieved by disabling the Processor Clock, which is automatically re-enabled by any enabled fast or normal interrupt, or by the reset of the product.

	2.3.3.3 Peripheral Clock
	The peripheral clocks are automatically disabled after a reset. The user can individually enable and disable the clock on the peripherals by writing into the Peripheral Clock Enable 0 (PMC_PCER0), Peripheral Clock Enable 1 (PMC_PCER1) and Peripheral C...

	2.3.3.4 Programmable Clock Output
	The PMC controls 3 signals to be output on external pins, PCKx. Each signal can be independently programmed via the Programmable Clock Registers (PMC_PCKx).
	PCKx can be independently selected between the Slow Clock (SLCK), the Main Clock (MAINCK), the PLLA Clock (PLLACK), and the Master Clock (MCK) by writing the CSS field in PMC_PCKx. Each output signal can also be divided by a power of 2 between 1 and 6...
	Each output signal can be enabled or disabled by writing 1 in the corresponding bit, PCKx of PMC_SCER and PMC_SCDR, respectively.

	2.3.3.5 USB Clock
	The USB Clock Controller can configure the USB clock as shown in Figure 2-4.
	The PLL is the USB source clock, so the user must program the PLL to generate an appropriate frequency depending on the USBDIV bit in PMC_USB.
	The USB device clock can be enabled by setting the UDP bit in PMC_SCER. To save power on this peripheral when it is not used, the user can set the UDP bit in PMC_SCDR.

	3. Sleep Mode
	In Sleep mode, the execution of instructions is suspended because the core clock is stopped while the peripheral clocks can be enabled. The purpose of sleep mode is to optimize power consumption of the device versus response time. The core needs lowes...
	3.1 Enter Sleep Mode
	Sleep mode is entered via Wait For Interrupt (WFI) instructions. This mode is achieved by disabling the core clock using PMC. Following API could be used to enter sleep mode in ASF:
	When Sleep mode is entered, the current instruction is finished before the clock is stopped, but this does not prevent data transfers from other masters of the system bus.

	3.2 Exit Sleep Mode
	Sleep mode is exited from an interrupt if WFI instruction is used to enter this mode, or by the reset of the device. The PMC automatically re-enables the processor clock and the core executes the next instruction of the program counter.

	3.3 Using Sleep Mode
	In most applications, there are some polling loops for waiting for operation finish. For example, you need to send a large amount of data via USART, the pseudo code might like this:
	There are two ways for waiting for transfer finish:
	 Polling loops, like while (transfer not finish) {1}
	 Enter sleep mode and set the core be woken up by an interrupt when transfer finish.
	By using polling loops, the instructions are still executed thereby increasing power consumption.
	By using Sleep mode, the core clock is stopped thereby reducing power consumption while USART peripheral clock is still working, so data transfer continues. When the transfer finishes, an interrupt will wake up the core immediately.
	So in the case of the core is not running while waiting for peripherals transfer data done (with DMA or PDC), it is recommended to use the Sleep mode instead of polling loops.

	4. Wait Mode
	The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than few hundred μs. Current Consumption in wait mode is typically few μA (total current consumption...
	In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered. From this mode, a fast start-up is available.
	4.1 Enter Wait Mode
	Wait mode is entered via WAITMODE =1 (wait mode bit in CKGR_MOR). The Fast RC Oscillator is disabled by the PMC automatically when entering wait mode. The step of entering Wait mode as below:
	 Select the 4/8/12 MHz fast RC oscillator as Main Clock
	 Set the FLPM bit field in the PMC Fast Startup Mode Register (PMC_FSMR)
	 Set Flash Wait State at 0.
	 Set the WAITMODE bit = 1 in the PMC Main Oscillator Register (CKGR_MOR)
	 Wait for Master Clock Ready MCKRDY=1 in the PMC Status Register (PMC_SR)
	In most applications, the external XTAL oscillator is used instead of on-chip RC oscillator for accurate clock. Before entering wait mode, it needs switch MCK from external XTAL oscillator to Fast RC oscillator. Switching Main Clock source will cause ...
	The following API could be used to enter wait mode in ASF:

	4.2 Exit Wait Mode
	Wait mode can be exited from several asynchronous fast start-up sources that have to be programmed prior to entering this mode, include:
	 WKUP0-15 pins
	 RTT or RTC alarm
	 USB Wake-up
	As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz fast RC oscillator, switches the master clock on this 4/8/12 MHz clock and re-enables the processor clock, then the core executes the next instruct...

	4.3 Using Wait Mode
	Some applications are not running all the time. For example, an alarm application waits for signal from a sensor to wake up the microcontroller to launch a task. In this case, the microcontroller can be suspended during idle time and woken up in time ...
	 Wake-up source
	 Power consumption
	 Wake-up time
	If the wakeup source is an interrupt in the application, only Sleep mode can be used because Wait mode can only be woken up by programmed events.
	For power consumption, in Wait mode, current consumption is typically 50 μA when the internal voltage regulator is used. In Sleep mode, current consumption depends on master clock and peripherals in usage. The current consumption in Sleep mode is as l...
	The microcontroller can be woken up in several microseconds in both Sleep and Wait mode. When waking up from Sleep mode, the core clock is re-enabled by PMC automatically. But in Wait mode, it needs more time. When waking up from Wait mode, the PMC au...
	In short, the trade-off between wakeup time and power consumption must be taken into account when both Sleep mode and Wait mode can be used in the application. Generally, Wait mode can save more power than Sleep mode but Sleep mode has faster startup ...

	5. Backup Mode
	The purpose of backup mode is to achieve the lowest power consumption in a system but not requiring fast startup time. Backup mode is based on the Cortex-M4 deep-sleep mode with the voltage regulator disabled (no power supply for VDDCORE and VDDPLL). ...
	5.1 Enter Backup Mode
	Backup mode is entered by using the VROFF bit of Supply Controller (SUPC_CR) and with the SLEEPDEEP bit in the Cortex-M4 System Control Register set to 1. The following API could be used to enter Backup Mode in ASF.

	5.2 Exit Backup Mode
	Backup mode can be exited from several wake-up sources that must first be programmed prior to entering this mode, including:
	 WKUPEN0-15 pins (level transition, configurable debouncing)
	 RTC alarm
	 RTT alarm
	 Supply Monitor alarm
	When waking up from Backup mode, the program execution restarts in the same way as system startup except backup region (RTC, RTT, GPBR and Supply Controller) are not reset.

	5.3 Using Backup Mode
	In some applications, very low power consumption is necessary. In this case, the Backup mode can be considered. In Backup mode, RTT and RTC can keep running and some important data can be stored in GPBR. Please make sure that the backup supply domain ...

	6. Revision History

