
Erasable
Programmable
Logic Device

Application
Note

Rev. 0424C–08/99
Using the Programmable Polarity Control

The output programmable polarity con-
trol in PLDs brings efficiency in logic
reduction and control of output polarity to
the customers. Unfortunately, it also
brings confusion to customers who are
not familiar with the software syntax to
properly configure the output polarity.

This application note shows the proper
usage of the popular ABEL™ and
CUPL™ syntax to configure the output
polarity of Atmel PLDs.

Configuring Polarity with
Atmel-ABEL™ (4.x or higher)
The optimization level best suited for
Atmel PLDs is the default option –
reduce by pin and auto polarity. This
reduction level will take advantage of the
polarity control when performing logic
optimization one output at a time. This
will override the ISTYPE ‘NEG’ and
ISTYPE ‘POS’ used in ABEL 3.x source
files (check the user manual on back-
ward compatibility for detail). Therefore,
the ‘NEG’ and ‘POS’ extensions are not
recommended.

The following examples have A, B, and
C defined as inputs and OUT or !OUT as
the output:

Case 1: (Combinatorial - no ISTYPE
definition or ISTYPE ‘COM’)

Declaration
OUT pin 14;
“assume 14 is an I/O pin

equations
OUT = A # B # C;

In this case, the compiler will consider
both Figure 1 (on-set) and Figure 2 (off-
set) and automatically select the imple-
mentation requiring fewer product terms
for the same function. The outcome is
represented by Figure 2. Since Figures 1
and 2 are each DeMorgan equivalent of
the other, either one is logically correct.

Case 2: (Combinatorial - ISTYPE
‘BUFFER’)

Declaration
OUT pin 14 ISTYPE ‘buffer’;
“assume 14 is an I/O pin
equations
OUT = A # B # C;

In this case, the compiler will only con-
sider the on-set because the ISTYPE
‘BUFFER’ overrides the automatic selec-
tion. The outcome is represented by
Figure 1.

Case 3a: (Combinatorial - ISTYPE
‘INVERT’)

Declaration
OUT pin 14 ISTYPE ‘invert’;
“assume 14 is an I/O pin
equations
OUT = A # B # C;

In this case, the compiler will only con-
sider Figure 2 (off-set) because the
ISTYPE ‘INVERT’ overrides the auto-
mat i c se lec t i on . The ou tcome i s
represented by Figure 2.

Figure 1.

Figure 2.
1

Case 3b: (Combinatorial - no ISTYPE definition)
Declaration
!OUT pin 14;
“assume 14 is an I/O pin
equations
OUT = A # B # C;

The compiler would pick Figure 3 to implement the logic
because it takes fewer product terms. In ABEL documenta-
tion, signals on the right side of the equation do not have “!”
as part of their names. ABEL preprocessor will remove the
“!” from the pin name on the right side of the equation and
replace all references on the left side with an additional “!”.
Logically, this does not change anything. It does, however,
tend to create some confusion reading the .DOC files. In
the source file, the user should still use whatever pin name
is given in the declaration section. All references to the pin
or .FB feedbacks will be adjusted by the software to reflect
the changes automatically.

Case 3c: (Combinatorial - ISTYPE ‘INVERT’)
Declaration
!OUT pin 14 ISTYPE ‘invert’;
“assume 14 is an I/O pin
equations
OUT = A # B # C;

The compiler would pick Figure 4 to implement the logic.

For combinatorial equations, it is best to leave out the
ISTYPE statement and let the optimizer choose the best
DeMorgan equivalent implementation.

Case 4: (Registered - no ISTYPE definition) Beware!
Declaration
OUT pin 14;
“assume 14 is an I/O pin
equations
OUT := A # B # C;
OUT.c = CLK;
OUT.ar = AR1;

The pre-processor will warn you for not specifying the
ISTYPE of the output. In this case, the compiler will use the
fewest product term implementation (Figure 6). This might
not be what the user is expecting.(1)

Note: 1. Figure 5 and Figure 6 do not product identical results.
In Figure 5, at power up or after a reset, the output
pin appears to be a “0”. Unlike Figure 5, Figure 6
powers up and resets to a “1” on the output. Preset
and preload behave differently between the two as
well. In some applications where power-up state of a
register is not important and it never resets or pre-
sets, Figures 5 and 6 become identical. Only in this
case are they logically equivalent. When using a reg-
istered output, always specify the ISTYPE desired.

Case 5: (Registered - ISTYPE ‘BUFFER’)
Declaration
OUT pin 14 ISTYPE ‘buffer’;
“assume 14 is an I/O pin
equations
OUT := A # B # C;
OUT.c = CLK;
OUT.ar = AR1;

The compiler will only consider Figure 5 (on-set) because
the ISTYPE ‘BUFFER’ overrides the automatic selection.

Case 6: (Registered - ISTYPE ‘INVERT’) Be careful!
Declaration
OUT pin 14 ISTYPE ‘invert’;
“assume 14 is an I/O pin
equations
OUT := A # B # C;
OUT.c = CLK;
OUT.ar = AR1;

The compiler will only consider Figure 6 (off-set) because
the ISTYPE ‘INVERT’ overrides the automatic selection
(see Note 1 on Case 4).

Figure 3.

Figure 4.

Note: 1. The “buffer” or “invert” ISTYPE has no effect for com-
binatorial outputs in Atmel-ABEL 5.x.

Figure 5.

Figure 6.
CMOS PLD2

CMOS PLD
Case 7: (Registered - ISTYPE ‘BUFFER’) Confusing –
don’t use.

Declaration
!OUT pin 14 ISTYPE ‘buffer’;
“assume 14 is an I/O pin
equations
OUT := A # B # C;
OUT.c = CLK;
OUT.ar = AR1;

The compiler will only consider Figure 7 (on-set) because
the ISTYPE ‘BUFFER’ overrides the automatic selection.

Case 8: (Registered - ISTYPE ‘INVERT’)
Declaration
!OUT pin 14 ISTYPE ‘invert’;
“assume 14 is an I/O pin
equations
OUT := A # B # C;
OUT.c = CLK;
OUT.ar = AR1;

The compiler will only consider Figure 8 (off-set) because
the ISTYPE ‘INVERT’ overrides the automatic selection. In
ABEL documentation, the pin name will be stripped of the
“!”. It will replace all pin name references with an additional
“!” on the right-hand side of the equations.

Figure 7. Figure 8.

Note: 1. For cases 4 though 8, if you used the dot extension (.D, .T, etc.) in your output equations (like “Out.d = A # B # C;”), then the
compiler will only consider the “Buffer” condition (on-set) even when the “invert” ISTYPE is specified for these outputs. The
“Buffer” condition is also only considered when you specify REG_T, REG_G, REG_JK, or REG_SR in your ISTYPE
statement.

Configuring Polarity with Internal Nodes
Internal nodes do not have programmable polarity control.
Do not use any ISTYPE extensions. Think of it as “positive
logic” only.

Case 1: (Figure 9)
Declaration
OUT node 50;
“assume 50 is an internal node
equations
OUT = A # B # C;

Case 2: (Figure 10)
Declaration
OUT node 50;
“assume 50 is an internal node
equations
OUT.d = A # B # C;
OUT.c = CLK;
OUT.ar = AR1;

The above example is the only legal method of assigning
equations to nodes.

Figure 9. Figure 10.
3

Configuring Polarity with CUPL
Note that CUPL has no “buffer/invert” ISTYPE statement.
Output polarity is controlled by pin declaration versus equa-
tion polarity.

Case 1: (Combinatorial)
PIN 14 = OUTC; /* assume 14 is an I/O pin */
OUTC = A # B # C;

The compiler would choose Figure 11. It does not choose
the better DeMorgan equivalent automatically. If your equa-
tion does not fit, you should check to see if you can rewrite
it as:

PIN 14 = OUTC;
!OUTC = !A & !B & !C;

Case 2: (Combinatorial)
PIN 14 = !OUTC; /* assume 14 is an I/O pin */
OUTC = A # B # C;

The compiler would choose Figure 12. The difference
between the pin declaration (!OUTC) and the equation
name (OUTC) tells the compiler to have an inverter on the
output and to implement the equations as specified by the
equation.

Case 3: (Registered)
PIN 14 = OUTC; /* assume 14 is an I/O pin */
OUTC.d = A # B # C;
OUTC.ck = CLK;

The compiler would choose Figure 13. The pin name and
the equation name are identical; the compiler does not
place an inverter on the output.

Case 4: (Registered)
PIN 14 = !OUTC; /* assume 14 is an I/O pin */
OUTC.d = A # B # C;
OUTC.ck = CLK;

The compiler would choose Figure 14. The difference
between the pin declaration (!OUTC) and the equation
name (OUTC) tells the compiler to have an inverter on the
output and to implement the equations as specified by the
equation. CUPL maintains the !OUTC on the pinout dia-
gram documentation and equation name OUTC in the
reduced equation portion of the documentation.

Both ABEL and CUPL conventions for handling signal
polarity have drawn praises and criticisms. Help on the
software is readily available from Data I/O Corporation
(ABEL), Logical Devices, Incorporated (CUPL), and Atmel.
Don’t hesitate to call for help.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Polarity Control for Atmel’s Flash 16V8 and
20V8 Devices
This section discusses the ABEL and CUPL syntax for
devices with fixed inverting output buffers and output polar-
ity control such as Atmel’s Flash 16V8 and 20V8 devices.(1)

Configuring Polarity with ABEL

The following examples have A, B, and C defined as inputs
and OUT as the output. Only ISTYPE ‘Com’ for combinato-

rial or ISTYPE ‘Reg’ for registered outputs should be
used.(2) This allows ABEL to optimize the logic to generate
an implementation with the fewest number of product
terms.

Case 1: (Combinatorial - High-True Output)
Declaration
OUT pin 14 ISTYPE ‘Com’;
Equations
OUT = A # B # C;
CMOS PLD4

CMOS PLD
The compiler will pick Figure 15 to implement the logic. To
make the output high-true, the compiler will invert the logic
twice to obtain correct output polarity.

Case 1a: (Combinatorial - Low-True Output)
Declaration
OUT pin 14 ISTYPE ‘Com’;
Equations
!OUT = A # B # C; “Equivalent to Out = !A & !B & !C

The compiler will pick Figure 16 to implement the logic. To
make the output low-true, put a “!” in front of OUT in the
logic equations section. The compiler will invert the logic
three times to obtain the correct output polarity.

Case 2: (Registered - High-true Output)
Declaration

OUT pin 14 ISTYPE ‘Reg’; “The ‘Reg’ ISTYPE should
be used

Equations

Out := A # B # C ; “‘:=’ is required to specify a
Registered Output

OUT.clk = clk;

OUT.ar = AR;

The compiler will choose Figure 17 to implement the logic.
To make the output high-true, the compiler will invert the
logic twice to obtain the correct output polarity.

Case 2a: (Registered - Low-True Output)
Declaration
OUT pin 14 ISTYPE ‘Reg’;
Equations
!OUT := A # B # C;“Equivalent to OUT.d = !A & !B & C
OUT.clk = clk;
OUT.ar = AR;

The compiler will choose Figure 18 to implement the logic.
To make the output low-true, put a “!” in front of OUT in the
logic equations section. The compiler will invert the logic
three times to obtain the correct output polarity.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Notes: 1. Because of the fixed inverting outputs, all flip-flops for these devices will reset during power up or through Asynchronous
Reset logic to a “High” or “1” state regardless or how the logic is implemented.

2. The compiler will not compile correctly if the ISTYPE such as ‘REG_D’, ‘Buffer’, ‘Invert’, ‘Pos’, or ‘Neg’ are used.
5

Configuring Polarity with CUPL
Polarity is controlled in CUPL at the pin declaration, just
like other Atmel PLD and CPLD devices. CUPL will opti-
mize the logic equations to match the pin polarity.(1)

Case 1: (Combinatorial - Active High)
Pin 14 = OUT
OUT = A # B # C;

The compiler will choose Figure 19 to implement the logic.
The pin polarity on the pin declaration indicates an active
high output, CUPL will invert the logic twice to obtain the
correct output polarity.

Case 1a: (Combinatorial - Active Low)
pin 14 = !OUT
OUT = A # B # C;

The compiler will choose Figure 20 to implement the logic.
The “!” on the OUT pin declaration indicates that an active
low output is required. CUPL will invert the logic once to
obtain the correct output polarity.

Case 2: (registered - Active High)
Pin 14 = Out;
OUT.d = A # B # C;
OUT.ck = clk;
OUT.ar = AR;

The compiler will choose Figure 21 to implement the logic.
CUPL will invert the logic twice to obtain the correct output
polarity.

Case 2a: (Registered - Active Low)
Pin 14 = !Out;
OUT.d = A # B # C;
OUT.ck = clk;
OUT.ar = AR;

The compiler will choose Figure 22 to implement the logic.
The “!” on the OUT pin declaration indicates that an active
low output is required. CUPL will invert the logic once to
obtain the correct output polarity.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Note: 1. Because of the fixed inverting outputs, all flip-flops for these devices will be reset during power up or through Asynchronous
Reset logic to a “High” or “1” state regardless of how the logic is implemented.
CMOS PLD6

© Atmel Corporation 1999.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

0424C–08/99/xM

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

	Configuring Polarity with Atmel-ABEL™ (4.x or higher)
	Case 1: (Combinatorial - no ISTYPE definition or ISTYPE ‘COM’)
	Case 2: (Combinatorial - ISTYPE ‘BUFFER’)
	Case 3a: (Combinatorial - ISTYPE ‘INVERT’)
	Case 3b: (Combinatorial - no ISTYPE definition)
	Case 3c: (Combinatorial - ISTYPE ‘INVERT’)
	Case 4: (Registered - no ISTYPE definition) Beware!
	Case 5: (Registered - ISTYPE ‘BUFFER’)
	Case 6: (Registered - ISTYPE ‘INVERT’) Be careful!
	Case 7: (Registered - ISTYPE ‘BUFFER’) Confusing – don’t use.
	Case 8: (Registered - ISTYPE ‘INVERT’)

	Configuring Polarity with Internal Nodes
	Case 1: (Figure 9)
	Case 2: (Figure 10)

	Configuring Polarity with CUPL
	Case 1: (Combinatorial)
	Case 2: (Combinatorial)
	Case 3: (Registered)
	Case 4: (Registered)

	Polarity Control for Atmel’s Flash 16V8 and 20V8 Devices
	Configuring Polarity with ABEL
	Case 1: (Combinatorial - High-True Output)
	Case 1a: (Combinatorial - Low-True Output)
	Case 2: (Registered - High-true Output)
	Case 2a: (Registered - Low-True Output)

	Configuring Polarity with CUPL
	Case 1: (Combinatorial - Active High)
	Case 1a: (Combinatorial - Active Low)
	Case 2: (registered - Active High)
	Case 2a: (Registered - Active Low)

