

Flash Microcontroller Programming Specification

1.0 DEVICE OVERVIEW

This document includes the programming specifications for the following devices:

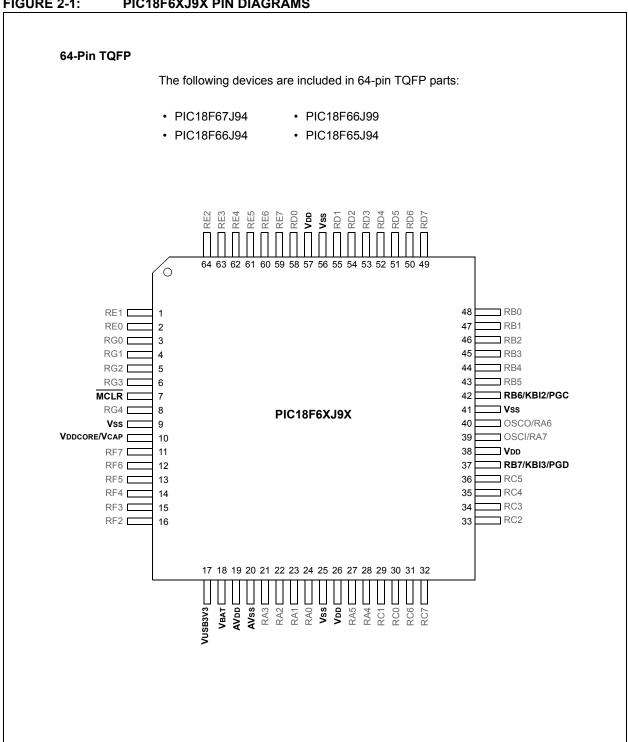
- PIC18F97J94
- PIC18F96J99
- PIC18F96J94
- PIC18F95J94
- PIC18F87J94
- PIC18F86J99
- PIC18F86J94
- 1 10 101 0000 1
- PIC18F85J94
- PIC18F67J94PIC18F66J99
- PIC18F66J94
- PIC18F65J94

2.0 PROGRAMMING OVERVIEW OF THE PIC18F97J94 FAMILY

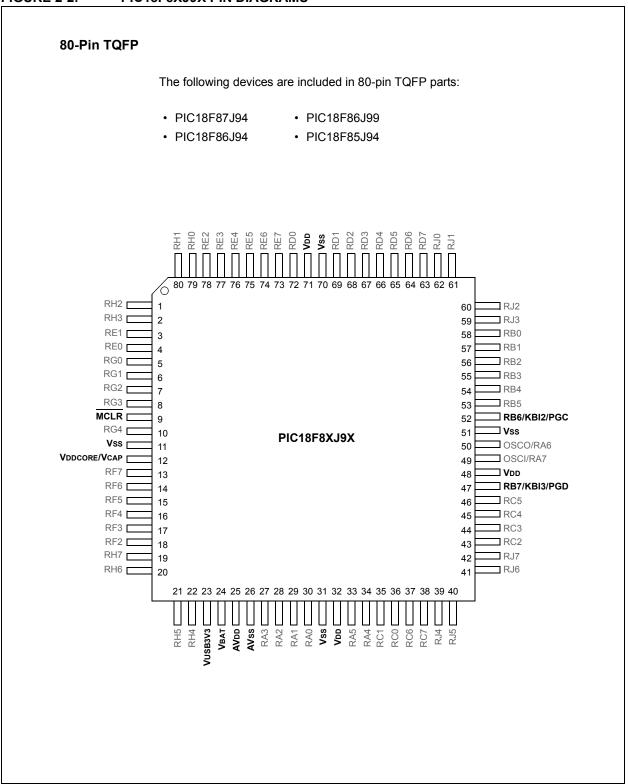
The PIC18F97J94 family devices are programmed using In-Circuit Serial Programming[™] (ICSP[™]). This programming specification applies to PIC18F97J94 family devices in all package types.

2.1 Pin Diagrams

The pin diagrams for the PIC18F97J94 family are shown in Figure 2-1, Figure 2-2 and Figure 2-3. The pins that are required for programming are listed in Table 2-1 and shown in bold lettering in the figures.


TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F97J94 FAMILY

Pin Name	During Programming			
Pin Name	Pin Name	Pin Type	Pin Description	
MCLR	MCLR	Р	Programming Enable	
VDD and AVDD ⁽¹⁾	Vdd	Р	Power Supply	
Vss and AVss ⁽¹⁾	Vss	Р	Ground	
VDDCORE/VCAP	VDDCORE	Р	Regulated Power Supply for Microcontroller Core	
	VCAP	I	Filter Capacitor for On-Chip Voltage Regulator	
RB6	PGC	I	Serial Clock	
RB7	PGD	I/O	Serial Data	
VUSB3V3	VUSB3V3	Р	P USB Voltage Supply	


Legend: I = Input, O = Output, P = Power

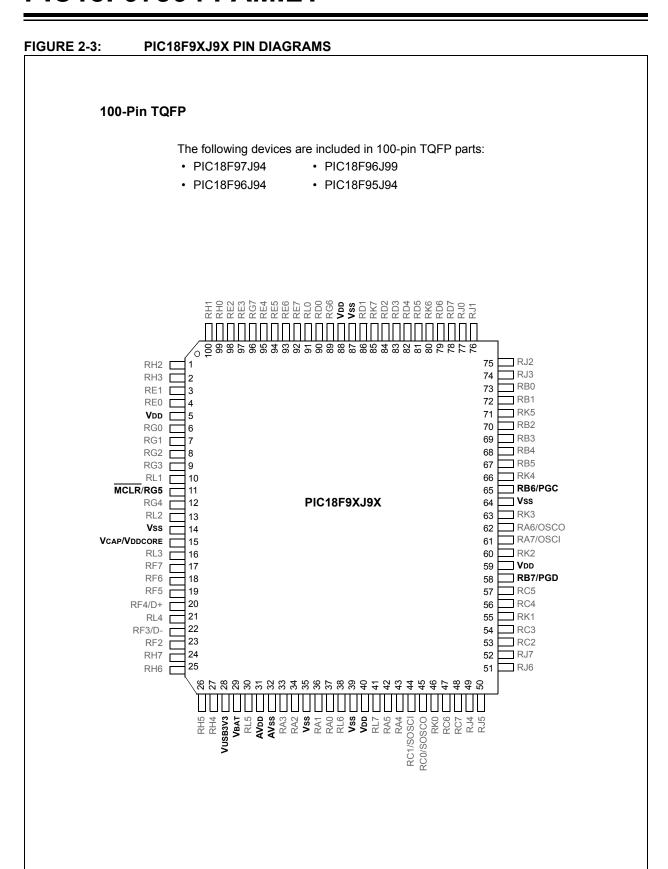

Note 1: All power supply and ground pins must be connected, including analog supplies (AVDD) and ground (AVSS).

FIGURE 2-1: **PIC18F6XJ9X PIN DIAGRAMS**

2.1.1 ON-CHIP VOLTAGE REGULATOR

All PIC18F97J94 family devices power their core digital logic at a nominal 1.8V. To simplify system design, all devices in the family incorporate an on-chip regulator that allows the device to run its core logic from VDD. For the PIC18F97J94 family, the regulator is always enabled, so there is no ENVREG pin on these devices.

The regulator provides power to the core from the other VDD pins. A low-ESR capacitor (such as ceramic or tantalum) must be connected to the VCAP pin. This helps to maintain the stability of the regulator.

The specifications for core voltage and capacitance are listed in Section 6.0 "AC/DC Characteristics and Timing Requirements".

2.2 Memory Maps

The PIC18F97J94 family devices offer a total of four program memory sizes, ranging from 32 Kbytes to 128 Kbytes. The memory sizes for different members of the family are shown in Table 2-2. The overall memory maps for all devices are shown in Figure 2-4.

For purposes of code protection, the program memory for every device is treated as a single block. Enabling code protection, thus protects the entire code memory and not just individual segments.

The Configuration Words for these devices are located at addresses, 300000h through 30000Fh. These are implemented as eight pairs of volatile memory registers. Each register is automatically loaded from a copy stored at the end of program memory. For this reason, the last eight words of the code space (also called the Flash Configuration Words) should be written with configuration data and not executable code. The offset addresses of the Flash Configuration Words are also listed in Table 2-2. Refer to Section 5.0 "Configuration Word" for more information.

Locations, 3FFFFEh and 3FFFFh, are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.1 "Device ID and Configuration Block Word"**. These Device ID bits read out normally, even after code protection.

2.2.1 MEMORY ADDRESS POINTER

Memory in the device address space (000000h to 3FFFFFh) is addressed via the Table Pointer register, which in turn, is comprised of three registers:

TBLPTRU at RAM address: 0FF8h
TBLPTRH at RAM address: 0FF7h
TBLPTRL at RAM address: 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr<21:16>	Addr<15:8>	Addr<7:0>

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

TABLE 2-2: PROGRAM MEMORY SIZES FOR PIC18F97J94 FAMILY DEVICES

Device	Program Memory (Kbytes)	Location of Flash Configuration Words	
PIC18F95J94			
PIC18F85J94	32	07FF0h:07FFFh	
PIC18F65J94			
PIC18F96J94			
PIC18F86J94	64	0FFF0h:0FFFFh	
PIC18F66J94			
PIC18F96J99			
PIC18F86J99	96	17FF0h:17FFFh	
PIC18F66J99			
PIC18F97J94			
PIC18F87J94	128	1FFF0h:1FFFFh	
PIC18F67J94			

FIGURE 2-4: MEMORY MAPS FOR PIC18F97J94 DEVICES⁽¹⁾

32K Devices	64K Devices	96K Devices	128K Devices	_ 000000h
Code Memory	Code Memory	Code Memory	Code Memory	
Flash Conf. Words				- 007FFFh
	Flash Conf. Words	 		- 00FFFFh
		Flash Conf. Words		- 017FFFh
			Flash Conf. Words	. ₋ 01FFFFh
Unimplemented Read as '0'	Unimplemented Read as '0'	Unimplemented Read as '0'	Unimplemented Read as '0'	
				1FFFFFh 200000h
Configuration Space	Configuration Space	Configuration Space	Configuration Space	
Configuration Words	Configuration Words	Configuration Words	Configuration Words	2FFFFFh 300000h 30000Fh
Configuration Space	Configuration Space	Configuration Space	Configuration Space	
Device IDs	Device IDs	Device IDs	Device IDs	3FFFFEh 3FFFFFh

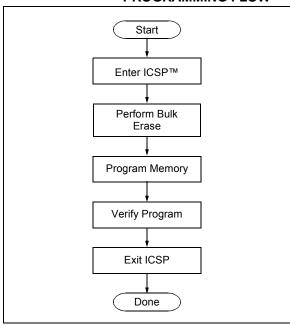

2.3 Overview of the Programming Process

Figure 2-5 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory is programmed. Since the only nonvolatile Configuration Words are within the code memory space, they too are programmed as if they were code. Code memory (including the Configuration Words) is then verified to ensure that programming was successful.

Note:

In order to maintain the endurance of the cells, each Flash byte should not be programmed more than twice between erase operations. A Bulk Erase of the device is required before attempting to modify the contents a third time.

FIGURE 2-5: HIGH-LEVEL PROGRAMMING FLOW

2.4 Entering and Exiting ICSP Program/Verify Mode

Entry into ICSP modes for PIC18F97J94 family devices is somewhat different than previous PIC18 devices. As shown in Figure 2-6, entering ICSP Program/Verify mode requires four steps:

- 1. Voltage is briefly applied to the \overline{MCLR} pin.
- 2. A 32-bit key sequence is presented on PGD.
- 3. Voltage is reapplied to $\overline{\text{MCLR}}$.
- 4. A single NOP is executed.

The programming voltage applied to MCLR is VIH, or usually, VDD. There is no minimum time requirement for holding at VIH. After VIH is removed, an interval of at least P19 must elapse before presenting the key sequence on PGD.

The key sequence is a specific 32-bit pattern, '0100 1101 0100 0011 0100 1000 0101 0000' (more easily remembered as 4D434850h in hexadecimal). The device will enter Program/Verify mode only if the sequence is valid. The Most Significant bit (MSb) of the most significant nibble must be shifted in first.

Once the <u>key</u> sequence is complete, VIH must be applied to $\overline{\text{MCLR}}$ and held at that level for as long as Program/Verify mode is to be maintained. An interval of at least time, P20 and P12, must elapse before presenting data on PGD. Signals appearing on PGD before P12 has elapsed may not be interpreted as valid. The first instruction after the key sequence should be a single NOP instruction made of 20 bit clocks of data 0.

On successful entry, the program memory can be accessed and programmed in serial fashion. While in the Program/Verify mode, all unused I/Os are placed in the high-impedance state.

Exiting Program/Verify mode is done by removing VIH from MCLR, as shown in Figure 2-7. The only requirement for exit is that an interval, P16, should elapse between the last clock, and the program signals on PGC and PGD before removing VIH.

When VIH is reapplied to $\overline{\text{MCLR}}$, the device will enter the ordinary operational mode and begin executing the application instructions.

FIGURE 2-6: ENTERING PROGRAM/VERIFY MODE

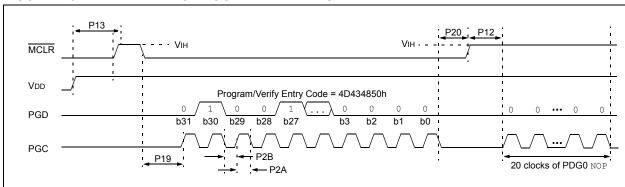
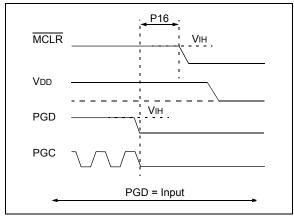



FIGURE 2-7: EXITING PROGRAM/VERIFY MODE

2.5 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC, and are Least Significant bit (LSb) first.

2.5.1 4-BIT COMMANDS

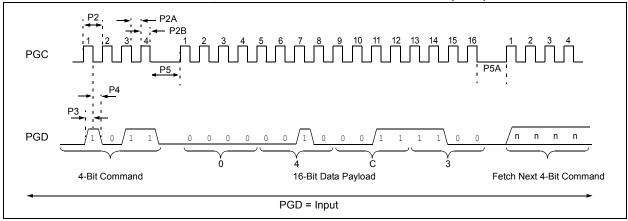
All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-3.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or eight bits of input data and eight bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-4. The 4-bit command is shown, Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown <MSB><LSB>. Figure 2-8 demonstrates how to serially present a 20-bit command/operand to the device.

2.5.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.


TABLE 2-3: COMMANDS FOR PROGRAMMING

Description	4-Bit Command
Core Instruction (shift in 16-bit instruction)	0000
Shift Out TABLAT Register	0010
Table Read	1000
Table Read, Post-Increment	1001
Table Read, Post-Decrement	1010
Table Read, Pre-Increment	1011
Table Write	1100
Table Write, Post-Increment by 2	1101
Table Write, Start Programming, Post-Increment by 2	1110
Table Write, Start Programming	1111

TABLE 2-4: SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101	3C 40	Table Write, post-increment by 2

FIGURE 2-8: TABLE WRITE, POST-INCREMENT BY TWO TIMING (1101)

3.0 DEVICE PROGRAMMING

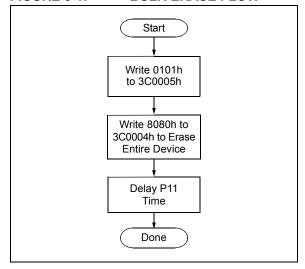
Programming includes the ability to erase or write the memory within the device.

3.1 ICSP Erase

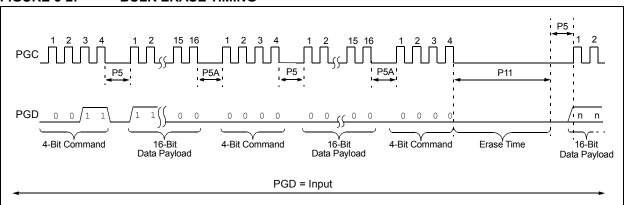
3.1.1 ICSP BULK ERASE

The PIC18F97J94 family devices may be Bulk Erased by writing 0180h to the table address, 3C0005h:3C0004h. The basic sequence is shown in Table 3-1 and demonstrated in Figure 3-1.

Since the code-protect Configuration bit is stored in the program code within code memory, a Bulk Erase operation will also clear any code-protect settings for the device.


The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4^{th} PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

Note: A Bulk Erase is the only way to reprogram the code-protect Configuration bit from an ON state to an OFF state.


TABLE 3-1: BULK ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction	
0000	0E 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 05	MOVLW 05h	
0000	6E F6	MOVWF TBLPTRL	
1100	01 01	Write 01h to 3C0005h	
0000	0E 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 04	MOVLW 04h	
0000	6E F6	MOVWF TBLPTRL	
1100	80 80	Write 80h TO 3C0004h to	
		erase entire device.	
		NOP	
0000	00 00	Hold PGD low until erase	
0000	00 00	completes.	

FIGURE 3-1: BULK ERASE FLOW

3.1.2 ICSP ROW ERASE

It is possible to erase a single row (512 bytes of data), provided the block is not code-protected. Rows are located at static boundaries, beginning at program memory address, 000000h, extending to the internal program memory limit (see Section 2.2 "Memory Maps").

The Row Erase duration is internally timed. After the WR bit in EECON1 is set, a NOP is issued, where the 4th PGC is held high for the duration of the Row Erase time, P10.

The code sequence to Row Erase a PIC18F97J94 family device is shown in Table 3-2. The flowchart, shown in Figure 3-3, depicts the logic necessary to completely erase a PIC18F97J94 family device. The timing diagram that details the "Row Erase" operation and Parameter P10, is shown in Figure 3-3.

Note: The TBLPTR register can point at any byte within the row intended for erase.

FIGURE 3-3: ROW ERASE CODE MEMORY FLOW

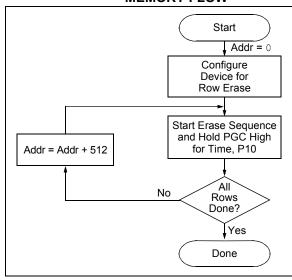


TABLE 3-2: ERASE CODE MEMORY CODE SEQUENCE

4-Bit Command	Data Payload	Core Instruction		
Step 1: Enable me	emory writes.			
0000	84 7F 6A 7F	BSF EECON1, WREN CLRF EECON1		
Step 2: Point to fir	Step 2: Point to first row in code memory.			
0000 0000 0000	6A F8 6A F7 6A F6	CLRF TBLPTRU CLRF TBLPTRH CLRF TBLPTRL		
Step 3: Enable erase and erase single row.				
0000 0000 0000 0000	88 7F 82 7F 00 00 00 00	BSF EECON1, FREE BSF EECON1, WR NOP NOP - hold PGC high for time P10.		
Step 4: Repeat Step 3 with Address Pointer incremented by 512 until all rows are erased.				

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write buffer for all PIC18F97J94 family devices is 64 bytes. It can be mapped to any integral boundary of 64 bytes, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the 64 bytes of code memory that contain the Table Pointer.

Write buffer locations are not cleared following a write operation. The buffer retains its data after the write is complete. This means that the buffer must be written with 64 bytes on each operation. If there are locations in the code memory that are to remain empty, the corresponding locations in the buffer must be filled with FFFFh. This avoids rewriting old data from the previous cycle.

The programming duration is internally timed. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

The code sequence to program a PIC18F97J94 family device is shown in Table 3-3. The flowchart shown in Figure 3-4 depicts the logic necessary to completely write a PIC18F97J94 family device. The timing diagram that details the Start Programming command and Parameter P9 is shown in Figure 3-5.

- Note 1: To maintain the endurance specification of the Flash program memory cells, each 64-byte block of program memory should never be programmed more than twice between erase operations. If any byte within a 64-byte block of program memory is written, that entire block must not be written to again until a Bulk Erase on the part, or a Row Erase on the row containing the modified 64-byte block, has been performed.
 - 2: The TBLPTR register must point to the same region when initiating the programming sequence, as it did when the write buffers were loaded.

TABLE 3-3: WRITE CODE MEMORY CODE SEQUENCE

4-Bit Command	Data Payload	Core Instruction	
Step 1: Enable wr	ites.		
0000	84 7F	BSF EECON1, WREN	
Step 2: Load write	e buffer.		
0000 0000 0000 0000 0000 0000 Step 3: Repeat fo	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6 r all but the last two bytes. Any</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL / unused locations should be filled with FFFFh.</addr[7:0]></addr[15:8]></addr[21:16]>	
1101	<msb><lsb></lsb></msb>	TBLWT *+ Write 2 bytes and post-increment address by 2.	
Step 4: Load write buffer for last two bytes.			
1111 0000	<msb><lsb> 00 00</lsb></msb>	TBLWT *+ Write 2 bytes and start programming. NOP - hold PGC high for time P9.	
To continue writing data, repeat Steps 2 through 4, where the Address Pointer is incremented by 2 at each iteration of the loop.			

FIGURE 3-4: PROGRAM CODE MEMORY FLOW

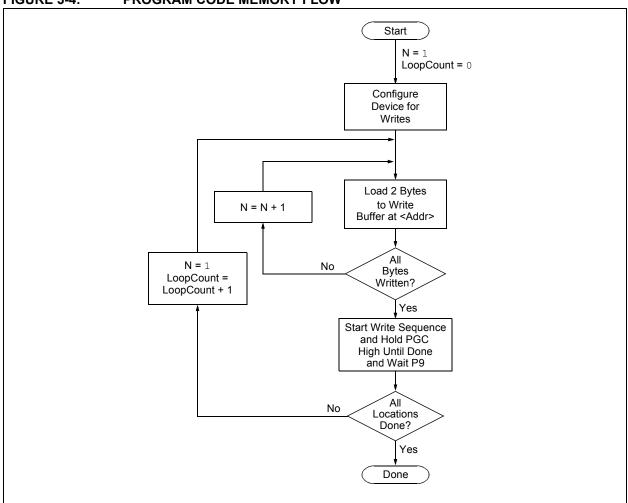
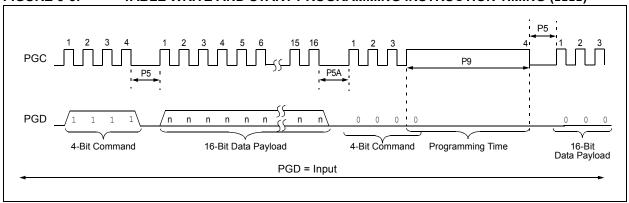



FIGURE 3-5: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)

3.2.1 MODIFYING CODE MEMORY

The previous programming example assumed that the device had been Bulk Erased prior to programming. It may be the case, however, that the user wishes to modify only a section of an already programmed device.

The appropriate number of bytes required for the erase buffer (512 bytes) must be read out of code memory (as described in **Section 4.2 "Verify Code Memory and Configuration Word"**) and buffered; modifications can be made on this buffer. Then, the row of code memory that was read out must be erased and rewritten with the modified data. The code sequence is shown in **Table 3-4**. The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

3.2.2 CONFIGURATION WORD PROGRAMMING

Since the Flash Configuration Words are stored in program memory, they are programmed as if they were program data. Refer to Section 3.2 "Code Memory Programming" and Section 3.2.1 "Modifying Code Memory" for methods and examples on programming or modifying program memory. Also, see Section 5.0 "Configuration Word" for additional information on the Configuration Words.

TABLE 3-4: MODIFYING CODE MEMORY

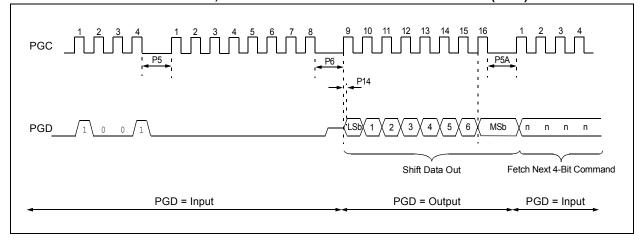
IADLE 3-4.	MODIFTING CODE MEMORY			
4-Bit Command	Data Payload	Core Instruction		
Step 1: Direct acc	Step 1: Direct access to code memory.			
0000	OE <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>		
0000	6E F8	MOVWF TBLPTRU		
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>		
0000	6E F7	MOVWF TBLPTRH		
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>		
0000	6E F6	MOVWF TBLPTRL		
Step 2: Set-up for	an erase.			
0000	84 7F	BSF EECON1, WREN		
0000	88 7F	BSF EECON1, FREE		
Step 3: Erase the	block of memory.			
0000	82 7F	BSF EECON1, WR		
0000	00 00	BSF NOP - hold PGC high for time P10.		
Step 4: Load write	e buffer. The correct bytes w	ill be selected based on the Table Pointer.		
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>		
0000	6E F8	MOVWF TBLPTRU		
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>		
0000	6E F7	MOVWF TBLPTRH		
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>		
0000	6E F6	MOVWF TBLPTRL		
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.		
•	•			
•	•	Repeat as many times as necessary to fill the write buffer.		
1111	<msb><lsb></lsb></msb>	Write 2 bytes and start programming.		
0000	00 00	NOP - hold PGC high for time P9.		
Step 5: Disable w	T			
0000	94 7F BCF EECON1, WREN			
Step 6: To continue modifying data, repeat, where the Address Pointer is incremented by 512 bytes at each iteration of the loop.				

4.0 READING THE DEVICE

4.1 Read Code Memory

Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (table read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.

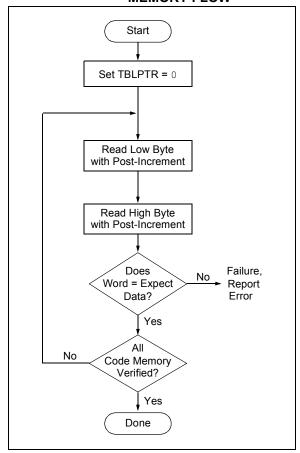
The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A


delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to reading the Configuration registers.

TABLE 4-1: READ CODE MEMORY SEQUENCE

4-Bit Command	Data Payload	Core Instruction	
Step 1: Set Table	Pointer.		
0000 0000 0000 0000 0000	OE <addr[21:16]> 6E F8 OE <addr[15:8]> 6E F7 OE <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW Addr[21:16] MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]>	
Step 2: Read memory and then shift out on PGD, LSb to MSb.			
1001	00 00	TBLRD *+	


4.2 Verify Code Memory and Configuration Word

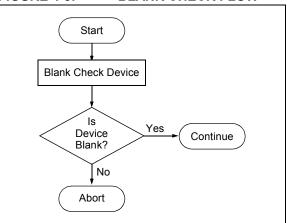
The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Because the Flash Configuration Words are stored at the end of program memory, it is verified with the rest of the code at this time.

The verify process is shown in the flowchart in Figure 4-2. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to **Section 4.1** "Read Code Memory" for implementation details of reading code memory.

Note: Because the Flash Configuration Word contains the device code protection bit, code memory should be verified immediately after writing if code protection is enabled. This is because the device will not be readable or verifiable if a device Reset occurs after the Flash Configuration Words (and the CP0 bit) have been cleared.

FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Blank Check


The term, "Blank Check", means to verify that the device has no programmed memory cells. All memories must be verified: code memory and Configuration bits. The Device ID registers (3FFFFEh:3FFFFh) should be ignored.

A "blank" or "erased" memory cell will read as '1', so Blank Checking a device merely means to verify that all bytes read as FFh. The overall process flow is shown in Figure 4-3.

Note: Following a device Bulk Erase, the Configuration Words will read as shown in Table 5-2.

Given that Blank Checking is merely code verification with FFh expect data, refer to Section 4.2 "Verify Code Memory and Configuration Word" for implementation details.

FIGURE 4-3: BLANK CHECK FLOW

5.0 CONFIGURATION WORD

The Configuration Words of the PIC18F97J94 family devices are implemented as volatile memory registers, as opposed to the programmable nonvolatile memory used in other PIC18 devices. All of the Configuration registers (CONFIG1L:CONFIG8H) are automatically loaded following each device Reset.

The data for these registers is taken from the eight Flash Configuration Words located at the end of program memory. Configuration data is stored in order, starting with CONFIG1L in the lowest Flash address and ending with CONFIG8H in the last address. The mapping to specific Configuration Words is shown in Table 5-1. Eight words are reserved in program memory (CONFIG1L through CONFIG8H) for device configuration. Users should always reserve these locations for Configuration Word data and write their application code accordingly.

The Configuration and Device ID registers are summarized in Table 5-2. A listing of the individual Configuration bits and their options is provided in Table 5-3.

TABLE 5-1: MAPPING OF THE FLASH
CONFIGURATION WORDS TO
THE CONFIGURATION
REGISTERS

REGISTERS					
Configuration Byte	Code Space Address ⁽¹⁾	Configuration Register Address			
CONFIG1L	XXFF0h	300000h			
CONFIG1H	XXFF1h	300001h			
CONFIG2L	XXFF2h	300002h			
CONFIG2H	XXFF3h	300003h			
CONFIG3L	XXFF4h	300004h			
CONFIG3H ⁽²⁾	XXFF5h	300005h			
CONFIG4L	XXFF6h	300006h			
CONFIG4H	XXFF7h	300007h			
CONFIG5L	XXFF8h	300008h			
CONFIG5H	XXFF9h	300009h			
CONFIG6L	XXFFAh	30000Ah			
CONFIG6H	XXFFBh	30000Bh			
CONFIG7L	XXFFCh	30000Ch			
CONFIG7H ⁽²⁾	XXFFDh	30000Dh			
CONFIG8L	XXFFEh	30000Eh			
CONFIG8H	XXFFFh	30000Fh			

Note 1: See Table 2-2 for the complete addresses within code space for specific devices and memory sizes.

2: Unimplemented in PIC18F97J94 family devices

TABLE 5-2: CONFIGURATION BITS AND DEVICE IDs

File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprog. Value
300000h	CONFIG1L	DEBUG	XINST	STVREN	_	_	_	_	_	111
300001h	CONFIG1H	(1)	(1)	(1)	(1)	(2)	CP0	BORV	BOREN	0111
300002h	CONFIG2L	IESO	_	CLKOEN	-	SOSCSEL	FOSC2	FOSC1	FOSC0	1111
300003h	CONFIG2H	(1)	(1)	(1)	(1)	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0	1111
300004h	CONFIG3L	_	_	FSCM1	FSCM0	_	_	POSCMD1	POSCMD0	1111
300005h	CONFIG3H	(1)	(1)	(1)	(1)	_	_	_	_	
300006h	CONFIG4L	WPFP7	WPFP6	WPFP5	WPFP4	WPFP3	WPFP2	WPFP1	WPFP0	1111 1111
300007h	CONFIG4H	(1)	(1)	(1)	(1)	_	WPCFG	WPEND	WPDIS	111
300008h	CONFIG5L	WAIT	BW	ABW1	ABW0	EASHFT	_	CINASEL	T5GSEL	1111 1-11
300009h	CONFIG5H	(1)	(1)	(1)	(1)	MSSPMSK1	MSSPMSK2	LS48MHZ	IOL1WAY	1111
30000Ah	CONFIG6L	WDPS3	WDPS2	WDPS1	WDPS0	WDTCLK1	WDTCLK0	WDTWIN1	WDTWIN0	1111 1111
30000Bh	CONFIG6H	(1)	(1)	(1)	(1)	WPSA	WINDIS	WDTEN1	WDTEN0	1111
30000Ch	CONFIG7L	_	ı	ı	DSBOREN	DSZPBOR	VBTBOR	1	RETEN	1 1101
30000Dh	CONFIG7H	(1)	(1)	(1)	(1)	_	_	_	_	
30000Eh	CONFIG8L	DSWDTPS4	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0		_	-	1111 1
30000Fh	CONFIG8H	(1)	(1)	(1)	(1)		_	DSWDTOSC	DSWDTEN	11
3FFFFEh	DEVID1 ⁽³⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-4
3FFFFFh	DEVID2(3)	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-4

Note 1: The value of these bits in program memory should always be '1'. This ensures that the location is executed as a NOP if it is accidentally executed.

^{2:} This bit should always be maintained as '0'.

^{3:} DEVID registers are read-only and cannot be programmed by the user.

TABLE 5-3: PIC18F97J94 FAMILY BIT DESCRIPTIONS

Bit Name	Configuration Words	Description	
DEBUG	CONFIG1L	Background Debugger Enable bit 1 = Background debugger is disabled; RB6 and RB7 are configured as general purpose I/O pins 0 = Background debugger is enabled; RB6 and RB7 are dedicated to In-Circuit Debug	
XINST	CONFIG1L	Extended Instruction Set Enable bit 1 = Instruction set extension and Indexed Addressing mode are enabled 0 = Instruction set extension and Indexed Addressing mode are disabled (Legacy mode)	
STVREN	CONFIG1L	Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow is enabled 0 = Reset on stack overflow/underflow is disabled	
CP0	CONFIG4H	Code Protection bit 1 = Program memory is not code-protected 0 = Program memory is code-protected	
BORV	CONFIG1H	BOR Trip Point Select bit 1 = BOR trip point is 1.8V 0 = BOR trip point is 2.0V	
BOREN	CONFIG1H	Brown-out Reset Enable bit 1 = BORMV is enabled outside of Deep Sleep (BORMV is always disabled in Deep Sleep) 0 = BORMV is disabled	
IESO	CONFIG2L	Internal/External Oscillator Switchover bit 1 = Oscillator Switchover mode is enabled 0 = Oscillator Switchover mode is disabled	
CLKOEN	CONFIG2L	CLKO Enable Configuration bit 1 = CLKO output signal is active on the OSCO pin; the Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active 0 = CLKO output is disabled	
SOSCSEL	CONFIG2L	Secondary Oscillator Selection Configuration bit 1 = Low-Power Secondary Oscillator circuit is selected (typical IDD of 1 µA) 0 = Digital (SCLKI) mode	
FOSC<2:0>	CONFIG2L	Oscillator Selection bits 000 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator with divide-by-N and PLL module (FRCDIV+PLL) 010 = Primary Oscillator (MS, HS, EC) 011 = Primary Oscillator with PLL module (MS+PLL, HS+PLL, EC+PLL) 100 = Secondary Oscillator (SOSC) 101 = Low-Power RC Oscillator (LPRC) 110 = Fast RC Oscillator (FRC) divided by 16 (500 kHz) 111 = Fast RC Oscillator with divide-by-N (FRCDIV)	

Note 1: These bits are not available on 64-pin devices.

TABLE 5-3: PIC18F97J94 FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
PLLDIV<3:0>	CONFIG2H	Frequency Multiplier Select bits 1111 = No PLL used – PLLGO bit is not available to user 1110 = 8x PLL is selected 1101 = 6x PLL is selected 1100 = 4x PLL is selected 1011 = Reserved (do not use) 1010 = Reserved (do not use) 1000 = Reserved (do not use) 1011 = 96 MHz PLL is selected – Oscillator is divided by 12 (48 MHz input) 0110 = 96 MHz PLL is selected – Oscillator is divided by 10 (40 MHz input) 0101 = 96 MHz PLL is selected – Oscillator is divided by 6 (24 MHz input) 0100 = 96 MHz PLL is selected – Oscillator is divided by 5 (20 MHz input) 0011 = 96 MHz PLL is selected – Oscillator is divided by 4 (16 MHz input) 0010 = 96 MHz PLL is selected – Oscillator is divided by 3 (12 MHz input) 0010 = 96 MHz PLL is selected – Oscillator is divided by 2 (8 MHz input) 0001 = 96 MHz PLL is selected – Oscillator is divided by 2 (8 MHz input)
FSCM<1:0>	CONFIG3L	Clock Switching and Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor (FSCM) is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
POSCMD<1:0>	CONFIG3L	Primary Oscillator Configuration bits 11 = Primary Oscillator is disabled 10 = HS Oscillator mode is selected (10 MHz-40 MHz) 01 = MS Oscillator mode is selected (3.5 MHz-10 MHz) 00 = External Clock mode is selected
WPFP<7:0>	CONFIG4L	Write Protection Program Flash Pages bits (valid when WPDIS = 0) When WPEND = 0: Write/erase protection of Flash memory pages, starting at Page 0 and ending with Page WPFP<7:0>. When WPEND = 1: Write/erase protection of Flash memory pages, starting at Page WPFP<7:0> and ending with the last page in user Flash memory.
WPCFG	CONFIG4H	Write/Erase Protection Last Page in User Flash Memory bit 1 = Write/erase protection of last page is disabled, regardless of the WPFP<7:0> bits setting 0 = Write/erase protection of last page is enabled, regardless of the WPFP<7:0> bits setting
WPEND	CONFIG4H	Write Protection End Page bit 1 = Write/erase protection of Flash memory pages, starting at Page WPFP<7:0> and ending with the last page in user Flash memory 0 = Write/erase protection of Flash memory pages, starting at Page 0 and ending with Page WPFP<7:0>
WPDIS	CONFIG4H	Write Protection Disable bit 1 = WPFP<7:0>, WPEND and WPCFG bits are ignored 0 = WPFP<7:0>, WPEND and WPCFG bits are enabled – write-protect is active
WAIT ⁽¹⁾	CONFIG5L	External Bus Wait Enable bit 1 = Wait states for operations on External Memory Bus (EMB) are disabled 0 = Wait states for operations on External Memory Bus are enabled

Note 1: These bits are not available on 64-pin devices.

TABLE 5-3: PIC18F97J94 FAMILY BIT DESCRIPTIONS (CONTINUED)

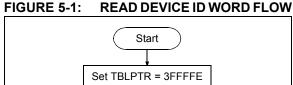
Bit Name	Configuration Words	Description	
BW ⁽¹⁾	CONFIG5L	Data Bus Width Select bit	
		1 = 16-Bit External Bus mode0 = 8-Bit External Bus mode	
ABW<1:0> ⁽¹⁾	CONFIG5L	External Memory Bus Configuration bits	
		 00 = Extended Microcontroller mode, 20-Bit Addressing mode 01 = Extended Microcontroller mode, 16-Bit Addressing mode 10 = Extended Microcontroller mode, 12-Bit Addressing mode 11 = Microcontroller mode – external bus is disabled 	
EASHFT ⁽¹⁾	CONFIG5L	External Address Bus Shift Enable bit	
		1 = Address shifting is enabled – address on external bus is offset to start at 000000h	
		0 = Address shifting is disabled – address on external bus reflects the PC value	
CINASEL	CONFIG5L	CxINA Gate Select bit	
		1 = C1INA and C3INA are both remapped to RA5 pin 0 = C1INA and C3INA are on their default pin locations	
T5GSEL	CONFIG5L	TMR5 Gate Select bit 1 = C1INA and C3INA are both remapped to RA5TMR5 pin; gate is driven by the T5G input 0 = C1INA and C3INA are both remapped to RA5TMR5 pin; gate is driven by the T3G input	
MSSPMSK1	CONFIG5H	MSSP1 7-Bit Address Masking Mode Enable bit	
		1 = 7-Bit Address Masking mode is enabled	
MSSPMSK2	CONFIG5H	0 = 5-Bit Address Masking mode is enabled	
WISSPINISKZ	CONFIGSH	MSSP2 7-Bit Address Masking Mode Enable bit 1 = 7-Bit Address Masking mode is enabled 0 = 5-Bit Address Masking mode is enabled	
LS48MHZ	CONFIG5H	USB Low-Speed Clock Select bit	
		1 = Divide-by-2 (P1 clock must be 12 MHz)0 = Divide-by-1 (P1 clock must be 6 MHz)	
IOL1WAY	CONFIG5H	IOLOCK Bit One-Way Set Enable bit 1 = The IOLOCK bit can only be set once (provided an unlocking sequence is executed); once IOLOCK is set, this prevents any possible future RP register changes 0 = The IOLOCK bit can be set and cleared as needed (provided an unlocking sequence is executed)	

Note 1: These bits are not available on 64-pin devices.

TABLE 5-3: PIC18F97J94 FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description	
WDPS<3:0>	CONFIG6L	Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 1010 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 1010 = 1:4 0001 = 1:2 0000 = 1:1	
WDTCLK<1:0>	CONFIG6L	Watchdog Timer Clock Source bits 00 = Use P1 clock when system clock is not INTOSC/LPRC and device is not in Sleep – otherwise, use INTOSC/LPRC 01 = SOSC clock source 10 = INTOSC/LPRC clock source 11 = FRC when WINDIS = 0, system clock is not INTOSC/LPRC and device is not in Sleep – otherwise, use INTOSC/LPRC	
WDTWIN<1:0>	CONFIG6L	Watchdog Timer Window Width bits 00 = 75% 01 = 50% 10 = 37.5% 11 = 25%	
WPSA	CONFIG6H	WDT Prescaler bit 1 = WDT prescaler ratio of 1:128 0 = WDT prescaler ratio of 1:32	
WINDIS	CONFIG6H	Windowed Watchdog Timer disable bit 1 = Standard WDT is selected – windowed WDT is disabled 0 = Windowed WDT is enabled – note that executing a CLRWDT instruction while the WDT is disabled in hardware, software (FWDTEN<1:0> = 00 and SWDTEN (RCON<5> = 0, will not cause a device Reset	
WDTEN<1:0>	CONFIG6H	Watchdog Timer Enable bits 11 = WDT is enabled in hardware 10 = WDT is controlled with the SWDTEN bit setting 01 = WDT is only enabled while device is active and disabled in Sleep; SWDTEN bit is disabled 00 = WDT is disabled in hardware; SWDTEN bit is disabled	
DSBITEN	CONFIG7L	Deep Sleep Enable bit 1 = Deep Sleep is controlled by the register bit, DSEN 0 = Deep Sleep operation is always disabled	
DSBOREN	CONFIG7L	Deep Sleep BOR Enable bit 1 = BOR is enabled in Deep Sleep 0 = BOR is disabled in Deep Sleep (does not effect operation in non-Deep Sleep modes)	

Note 1: These bits are not available on 64-pin devices.


TABLE 5-3: PIC18F97J94 FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description		
VBTBOR	CONFIG7L	VBAT BOR Enable bit 1 = VBAT BOR is enabled 0 = VBAT BOR is disabled		
RETEN	CONFIG7L	Retention Voltage Regulator Control Enable bit 1 = Retention feature is not available 0 = Retention feature is available and controlled by SRETEN during Sleep		
DSWDTPS<4:0>	CONFIG8L	Deep Sleep Watchdog Timer Postscale Select bits The DS WDT prescaler is 32; this creates an approximate base time unit of 1 ms. 11111 = 1:2 ³⁶ (25.7 days) 11110 = 1:2 ³⁴ (6.4 days) 11101 = 1:2 ³⁴ (6.4 days) 11100 = 1:2 ³¹ (77.0 hours) 11011 = 1:2 ³² (38.5 hours) 11010 = 1:2 ³¹ (19.2 hours) 11001 = 1:2 ³⁰ (9.6 hours) 11001 = 1:2 ²⁹ (4.8 hours) 11010 = 1:2 ²⁹ (4.8 hours) 10110 = 1:2 ²⁷ (72.2 minutes) 10110 = 1:2 ²⁸ (36.1 minutes) 10101 = 1:2 ²⁴ (9.0 minutes) 10010 = 1:2 ²⁵ (18.0 minutes) 10010 = 1:2 ²⁷ (4.5 minutes) 10010 = 1:2 ²⁹ (33.825s) 10110 = 1:2 ¹⁹ (16.912s) 01110 = 1:2 ¹⁸ (8.456s) 01100 = 1:2 ¹⁷ (4.228s) 01011 = 1:65536 (2.114s) 01010 = 1:32768 (1.057s) 01011 = 1:6484 (528.5 ms) 00101 = 1:2048 (66.1 ms) 00101 = 1:1024 (33 ms) 00101 = 1:128 (4.1 ms) 00011 = 1:256 (8.3 ms) 00010 = 1:512 (16.5 ms) 00011 = 1:256 (8.3 ms) 00010 = 1:32 (1 ms)		
DSWDTOSC	CONFIG8H	DSWDT Reference Clock Select bit 1 = DSWDT uses INTOSC/LPRC as the reference clock 0 = DSWDT uses T1OSC/SOSC as the reference clock		
DSWDTEN	CONFIG8H	Deep Sleep Watchdog Timer Enable bit 1 = DSWDT is enabled 0 = DSWDT is disabled		

Note 1: These bits are not available on 64-pin devices.

5.1 **Device ID**

The Device ID Word for PIC18F97J94 family devices is located at: 3FFFFEh:3FFFFh. These read-only bits may be used by the programmer to identify what device type is being programmed and read out normally even after for r com fami

TABLE 5-4: DEVICE ID VALUE

read out normally, even er code protection has been enabled. The process reading the Device IDs is shown in Figure 5-1. A mplete list of Device ID values for PIC18F97J94 nily devices is presented in Table 5-4.	Read Low Byte with Post-Increment Read High Byte with Post-Increment
	Done
DIE 6.4. DEVICE ID VALUE	

Davisa	Device ID Value		
Device -	DEVID2	DEVID1	
PIC18F97J94	62h	101x xxxx	
PIC18F96J99	62h	110x xxxx	
PIC18F96J94	62h	111x xxxx	
PIC18F95J94	63h	000x xxxx	
PIC18F87J94	63h	001x xxxx	
PIC18F86J99	63h	010x xxxx	
PIC18F86J94	63h	011x xxxx	
PIC18F85J94	63h	100x xxxx	
PIC18F67J94	63h	101x xxxx	
PIC18F66J99	63h	110x xxxx	
PIC18F66J94	63h	111x xxxx	
PIC18F65J94	64h	000x xxxx	

Legend: The 'x's in DEVID1 are reserved for the device revision code.

5.2 Checksum Computation

The checksum is calculated by summing the following:

- · The contents of all code memory locations
- The Configuration Block (CFGB), appropriately masked
- ID locations

The Least Significant 16 bits of this sum are the checksum.

The Configuration Block for PIC18F97J94 family devices is located at 300000h:300000Fh. To compute the CFG80/100-pin checksum, perform a logical AND between each byte of data in the Configuration Word location and its corresponding hex value in the CFG80/100-pin column as shown in Table 5-5. To compute the CFG64-pin checksum, perform a logical AND between each byte of data in the Configuration Word location and its corresponding hex value in the CFG64-pin column as shown in Table 5-5.

Sum the AND'ed values of all Configuration Words as part of the checksum calculation.

Table 5-6 describes how to calculate the checksum for each device.

Note: The checksum calculation differs depending on the code-protect setting. Since the code memory locations read out differently depending on the code-protect setting, the table describes how to manipulate the actual code memory values to simulate the values that would be read from a protected device. When calculating a checksum by reading a device, the entire code memory can simply be read and summed.

TABLE 5-5: CONFIGURATION WORD LOCATION OF CFG80/100 AND CFG64 PINS

Configuration Word	Location	CFG80/100 Pin	CFG64 Pin
CW1	Last Location – 16	FFE0h	FFE0h
CW2	Last Location – 14	FFAFh	FFAFh
CW3	Last Location – 12	F033h	F033h
CW4	Last Location – 10	F7FFh	F7FFh
CW5	Last Location – 8	FFFBh	FF03h
CW6	Last Location – 6	FFFFh	FFFFh
CW7	Last Location – 4	F01Dh	F01Dh
CW8	Last Location – 2	F3F8h	F3F8h

TABLE 5-6: CHECKSUM EQUATION FOR PIC18F97J94 FAMILY

Family Device		Read Code Protection	Checksum Computation	Blank Checksum	
	PIC18F97J94	Disabled	CFG80/100 + SUM (00000h:1FFEFh)	0xFD9E	
		Enabled	0000h		
	PIC18F96J99	Disabled	CFG80/100 + SUM (00000h:17FEFh) 0x7[
		Enabled	0000h		
	PIC18F96J94	Disabled	CFG80/100 + SUM (00000h:0FFEFh)	0xFD9E	
		Enabled	0000h		
	PIC18F95J94	Disabled	CFG80/100 + SUM (00000h:07FEFh)	:07FEFh) 0x7D9E	
		Enabled	0000h		
	PIC18F87J94	Disabled	CFG80/100 + SUM (00000h:1FFEFh)	0xFD9E	
		Enabled	0000h		
	PIC18F86J99	Disabled	CFG80/100 + SUM (00000h:17FEFh)	0x7D9E	
PIC18F97J94		Enabled	0000h		
PIC 10F9/J94	PIC18F86J94	Disabled	CFG80/100 + SUM (00000h:0FFEFh)	0xFD9E	
		Enabled	0000h		
	PIC18F85J94	Disabled	CFG80/100 + SUM (00000h:07FEFh)	0x7D9E	
		Enabled	0000h		
	PIC18F67J94	Disabled	CFG60 + SUM (00000h:1FFEFh)	0xFCA6	
		Enabled	0000h		
	PIC18F66J99	Disabled	CFG60 + SUM (00000h:17FEFh)	0x7CA6	
		Enabled	0000h		
	PIC18F66J94	Disabled	CFG60 + SUM (00000h:0FFEFh)	0xFCA6	
		Enabled	0000h		
	PIC18F65J94	Disabled	CFG60 + SUM (00000h:07FEFh)	0x7CA6	
		Enabled	0000h		

Legend:ItemDescription

SUM(a:b) = Byte sum of locations, a to b, inclusive (all three bytes of code memory)

+ = Addition

6.0 AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS

Standard Operating Conditions

Operating Temperature: +25°C is recommended **Param Symbol** Units Conditions Characteristic Min. Max. No. Normal programming⁽¹⁾ Vdd Supply Voltage During Programming D111 2.20 3.60 D112 IРР Programming Current on MCLR 5 μΑ Supply Current During Programming D113 IDDP 16 mΑ D031 V_{IL} Input Low Voltage Vss 0.2 VDD V D041 Vін Input High Voltage 0.8 VDD Vnn ٧ D080 Output Low Voltage ٧ IOL = 8.5 mA @ 3.6V Vol 0.4 D090 Output High Voltage ٧ IOH = -3.0 mA @ 3.6V Vон 3.0 D012 CIO Capacitive Loading on I/O Pin (PGEDx) 50 pF To meet AC specifications D013 CF Filter Capacitor Value on VCAP 10 μF Required for controller core D014 CDEC Decoupling capacitance between VDD and VSS 1 μF P1 **TPGEC** Serial Clock (PGCx) Period 100 ICSP™ mode ns ICSP mode P1A **TPGECL** Serial Clock (PGCx) Low Time 40 ns P₁B **TPGECH** Serial Clock (PGCx) High Time 40 ns ICSP mode P2 Input Data Setup Time to Serial Clock ↑ 15 TSET1 ns Р3 THLD1 Input Data Hold Time from PGCx ↑ 15 ns Delay Between 4-Bit Command and Command TDLY1 40 ns Operand P4A TDLY1A Delay Between 4-Bit Command Operand and 40 ns Next 4-Bit Command P5 TDLY2 20 ns to First PGC ↑ of the Read of Data Word VDD ↑ Setup Time to MCLR P6 TSET2 100 ns Ρ7 THLD2 Input Data Hold Time from MCLR 25 ms Р8 Delay Between Last PGCx ↓ of Command Byte 12 TDLY3 μs to PGC ↑ of the Programming Executive PΘ TDLY4 **Programming Executive Command** 40 μs Processing Time P10 TDLY6 PGCx Low Time After Programming 400 ns P11 TDLY7 Chip Erase Time 20 40 ms P12 TDLY8 20 40 Page Erase Time ms P13 TDLY9 Row Programming Time 1.5 ms P14 TR MCLR Rise Time to Enter ICSP mode 1.0 us P15 **TVALID** Data Out Valid from PGCx ↑ 10 ns P16 TDLY10 Delay Between Last PGCx ↓ and MCLR ↓ 0 s P17 THLD3 MCLR ↓ to VDD ↓ 100 ns Delay from First $\overline{MCLR} \downarrow$ to First PCGx \uparrow for P18 TKEY1 10 ms the Key Sequence on PGDx Delay from Last PGCx ↓ for the Key Sequence P19 TKEY2 1 ms on PGDx to the Second MCLR ↑ P20 TDLY11 Delay Between the PGDx ↓ by the Programming 23 us Executive to PGDx, Driven by Host P21 Delay Between Programming Executive TDLY12 8 Command Response Words

Note 1: VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be within ±0.3V of VDD and Vss, respectively. When the internal voltage regulator is enabled, the nominal VCAP is 1.8V.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2012-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620778173

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support
Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323

Fax: 317-773-5453 Los Angeles

Mission Viejo, CA Tel: 949-462-9523

Fax: 949-462-9523

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - ChengduTel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870

Fax: 60-4-227-4068

Philippines - Manila
Tal: 63-2-634-0065

Tel: 63-2-634-9065 Fax: 63-2-634-9069 **Singapore**

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 **Thailand - Bangkok**

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13