Altmel

Atmel SHART

SMART ARM-based Microcontrollers

AT06863: SAMA4L Peripheral Event Controller
(PEVC) Driver

APPLICATION NOTE

Introduction

This driver for Atmel® | SMART ARM®-based microcontrollers provides a
unified interface for the configuration and management of the Event
Channels.

The peripheral event generators and users are interconnected by a network
known as the Peripheral Event System.

The Peripheral Event System allows low latency peripheral-to-peripheral
signaling without CPU intervention, and without consuming system
resources such as bus or RAM bandwidth. This offloads the CPU and
system resources compared to a traditional interrupt-based software driven
system.

Devices from the following series can use this module:
* Atmel | SMART SAM4L

The outline of this documentation is as follows:
* Prerequisites
* Module Overview
» Special Considerations
» Extra Information
+ Examples
* APl Overview

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

Table of Contents

INEFOAUCTION. ... 1
1. SOMWAIE LICEBNSE.......ccoeeeeeeeee et e et e e e e e e e e e e ee e e e eaeeeeeees 4
B o =T =0 UL (=T 5
3. MOAUIE OVEIVIEW.oiiiiiiiii ittt e e 6
3.1, EVENECNANNEIS. ... e e 6

G Y o 0 LY RSP SSSTS 7

3.3, EVENE ShAPEI (EVS).. . ettt ettt e n e e et e e s et e e e e n e e e ne e e e ent e e e anteeeeneeeeennes 7
3.3.1. INPUt GlItCh FIEEr (IGF).....i ittt et 7

3.4, PhySiCal CONNECHION.cciiiiiiiieie e ettt ettt e e e et e e e e st e e e e e e esseaeeeeeassteeeeessntaeeeaesasnees 7

BT T @70)ailo 0] 4] aTo T =AY =T o1 (PSSR 7
3.5.1. SoUIrCe PErPhEral..........ouiiiiiiieiee et 7

3.5.2. EVENt SYSIEM..coiiiii s 7

3.5.3. Destination Peripheral..........cuuuiiiiiiiiiiiii et 8

4. Special Considerations..............oooviiiiiiiiiii 9
5. EXtra INfOrmation.........ooooo oo 10
B. EXAMPIES. 11
T APL OVEIVIEW......ieeeee ettt e e e e e e ettt e e e e e e e st e e e e e e e e s nnnnaeeaaaeens 12
7.1, Structure DefinitiONS.........ouiiiiiii e 12
711, Struct events_Ch_CONf.........oiiiii e 12

712, SHUCt €VENES _CONT......iiiiiiii e et a e e e araee s 12

7.2, MacCro DefiNItIONS.......coiiiiiiiie e 12
7.21. Macro EVENT_CHANNEL_N.......ooiiiiiiiie et s 12

7.2.2. Macro EVENT_GENERATOR_N.....ccoiiiiiiiiiii ittt 12

7.3, FUNCHON DEfINItIONS.eiiiiiieiieee ettt et e et e e et e e st e e e eneeeeenneeeennneas 12
7.3.1. Function events_ch_clear_overrun_status()........cccccovouierirriiiniiie e 12

7.3.2. Function events_ch_clear_trigger_status()..........cocoeeiiiiiiiiiiiiieeie e 13

7.3.3. Function events_ch_configure()........ccoeuuiiiiiiiiiie e 13

7.3.4. Function events_ch_diSable().........cccuviiiiiiiiee e 13

7.3.5. Function events_ch_disable_software_trigger()..........ccccoerurireeniriiiniieeiee e 13

7.3.6. Function events_ch_enable()..........cocuriiiiiiiii e 14

7.3.7. Function events_ch_enable_software_trigger()........ccccceerrererieeiiiie e 14

7.3.8. Function events_ch_get_config_defaultS().......cc.ccoeeeriirrrniieie e 14

7.3.9. Function events_ch_is_enabled().........ccccuiiiiiiiiiiiiee e 14

7.3.10. Function events_ch_iS_OVEIrTUN()........coouiuiiiiiiiieiiie e 15

7.3.11. Function events_ch_is_ready().......ccocueeiiiiriiiiie et 15

7.3.12. Function events_ch_is triggered()..........ccoveiiieeiiiie e 16

7.3.13. Function events_ch_software_trigger()..........cccoeniiiiiiniiiiene e 16

7.3.14. Function events_diSable().........couruiiiiiiiiiii e 16

7.3.15. Function events_enable()........cceeiiiiiiiiiiee e 16

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 2

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

7.3.16. Function events_get_config_defaults().........cccceeriiiiiiiii e 17

7.3.17. FUNCHON €VENES_INIT()..rrrrieeieiiiiiee ettt e e st e e e e e e nnneee s 17

7.3.18. Function events_set_igf divider()..........ccoeeiiiiiiiie e 17

7.4, Enumeration DEfiNItIONS.ooiiiiiiiii ettt e e e eee e e et e e e nnaeeas 17
7.4.1. Enum events_igf diVIer.........cooiiiiiiiii e 17

7.4.2. EnumM events_igf EAQe. ... 18

8. Extra Information for Peripheral Event Controller Driver...........ccccevvvvvvvivieeveeeeeeneee. 19
< T B X o] o] 1) 4 1 PP SPPPPRTO 19
I B 1= o 1= g To [T o Tor = USSP 19
SR TR | c- SRR 19

< T /[To [N [1] (o] A SRR 19

9. Examples for Peripheral Event Controller Driver.............oooooeiiiiiiieee, 20
9.1. Quick Start Guide for the Peripheral Event Controller Driver............cccocveiiiieiiieeiieeeiee e 20

Sy O U T =TT SRS 20

9.1.2. BaSiC USE CaSE.....ueeiiiiiiiiiiii ettt et e e e et e e e e et e e e e e e e naaeaaaeaaas 20

0.1.3. SIUP SHEPS. ittt 20

S = =][U - Vo 1= T P RRS 21

9.2. Example for the Peripheral Event System - AST/PDCA........cocoi i 21

1S I0Z2% DR 1o o [¥ o3 1 (o] o PR 21

9.2.2. MAAIN FUlIES ..ottt e e e e e e e et e e e e et e e e e e nnaeeaans 21

9.2.3. Compilation INfOrmation..............ooiuiiiiiiiii e 22

9.2.4. Device INfOrMAatioN.c.oii e e eneeas 22

9.2.5. Configuration INformation............c.eooiiiiiiiiiii e 22

9.3. Example for the Peripheral Event System - GPIO/PDCA.........c.coiiiiiiiie e 22
9.3.1. INFOAUCTION. ...ttt ettt 22

S IR 0 Y = 1 I 1= S PSRRI 22

9.3.3. Compilation INfOrmMation.............cueeiiiiiii e 22

9.3.4. Device INfOrmMation.........ccoi i e ee e 22

9.3.5. Configuration INfOrmMation............c.eiiiiuiiiiiiii e 22

10. Document ReVision HiStOry........ccooi oo 24

Atmel

Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE]

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

3

1. Software License

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived from this software without
specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

AtmeL Atmel AT06863: SAMA4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 4

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

2. Prerequisites

There are no prerequisites for this module.

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 5

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

3.1.

Module Overview

Peripherals within the SAM4L device are capable of generating two types of actions in response to a
given stimulus; they can set a register flag for later intervention by the CPU (using interrupt or polling
methods), or they can generate event signals which can be internally routed directly to other peripherals
within the device. The use of events allows for direct actions to be performed in one peripheral in
response to a stimulus in another without CPU intervention. This can lower the overall power
consumption of the system if the CPU is able to remain in sleep modes for longer periods, and lowers the
latency of the system response.

The Peripheral Event System is comprised of a number of freely configurable Event Channels, plus a
number of fixed Event Users. Each Event Channel can be configured to select the input peripheral that
will generate the events on the channel, as well as the Event Shaper (EVS) and Input Glitch Filter (IGF)
operating modes. The fixed-function Event Users, connected to peripherals within the device, can then
subscribe to an Event Channel in a one-to-many relationship in order to receive events as they are
generated. An overview of the event system chain is shown in Figure 3-1 Module Overview on page

6.

Figure 3-1 Module Overview

User

Generator /
Al

Peripheral (&—— User/
Event System |— gt Generator

Generator

There are many different events that can be routed in the device, which can then trigger many different
actions. For example, an Analog Comparator module could be configured to generate an event when the
input signal rises above the compare threshold, which then triggers a Timer Counter module to capture
the current count value for later use.

Event Channels

The Peripheral Event Controller module in the SAM4L device consists of several channels, which can be
freely linked to an Event Generator (i.e. a peripheral within the device that is capable of generating
events). Each channel can be individually configured to select the generator peripheral, signal path, Event
Shaper (EVS), and Input Glitch Filter (IGF) applied to the input event signal, before being passed to any
event user(s).

Event Channels can support multiple users within the device in a standardized manner; when an Event
User is linked to an Event Channel, the channel will automatically handshake with all attached users to
ensure that all modules correctly receive and acknowledge the event.

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 6

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

3.2.

3.3.

3.3.1.

3.4.

3.5.

3.5.1.

3.5.2.

Event Users

Event Users are able to subscribe to an Event Channel, once it has been configured. Each Event User
consists of a fixed connection to one of the peripherals within the device (for example, an ADC module or
Timer module) and is capable of being connected to a single Event Channel.

Event Shaper (EVS)

The Peripheral Event Controller module contains Event Shapers (EVS) for external inputs and general
purpose waveforms (i.e. timer outputs or Generic Clocks) that require synchronisation and/or edge
detection prior to peripheral event propagation.

Each Event Shaper is responsible for shaping one generator input prior to it going through an Event
Channel.

Refer to the module configuration section at the end of the Peripheral Event Controller (PEVC) section in
the device datasheet for the specific configuration of Event Shapers and Input Glitch Filters.

Input Glitch Filter (IGF)

The Peripheral Event Controller module contains Input Glitch Filters (IGF) specifically to allow I/O inputs
to be sampled periodically. Input Glitch Filtering can be turned on or off in the Event Shaper associated
with the Event Channel.

Physical Connection

Figure 3-2 Physical Connection on page 7 shows how this module is interconnected within the device.

Figure 3-2 Physical Connection

Source PEVC Channel PEVC

Event Channels M) Event Users

Destination
Peripherals

Source
Peripherals

Configuring Events

Several steps are required to properly configure an event chain, so that hardware peripherals can
respond to events generated by each other, listed below.

Source Peripheral

1. The source peripheral (that will generate events) must be configured and enabled.
2. The source peripheral (that will generate events) must have an output event enabled.

Event System

1. The event system channel must be configured and enabled, with the correct source peripheral
selected as the channel's Event Generator.

2. The event system user must be configured and enabled, with the correct source Event Channel
selected as the source.

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 7

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

3.5.3. Destination Peripheral

1. The destination peripheral (that will receive events) must be configured and enabled.
2. The destination peripheral (that will receive events) must have an input event enabled.

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 8

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

4. Special Considerations

There are no special considerations for this module.

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 9

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

5. Extra Information

For extra information, see Exira Information for Peripheral Event Controller Driver. This includes:
* Acronyms

* Dependencies
* Errata
* Module History

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE]

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

10

6. Examples

For a list of examples related to this driver, see Examples for Peripheral Event Controller Driver.

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 1"

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

7.1.

71.1.

7.1.2.

7.2.

7.21.

7.2.2.

7.3.

7.3.1.

API Overview

Structure Definitions

Struct events_ch_conf

Configuration structure for an Event Channel.

Table 7-1 Members

e e omeinion

uint32_t channel_id Channel to configure (user)

uint32_t generator_id Event generator to connect to the channel
enum events_igf edge igf_edge Edge detection for Event Channels

bool shaper_enable Enable Event Shaper (EVS) or not

Struct events_conf

Configuration structure for event module.

Table 7-2 Members

me o e ek

enum events_igf divider igf_divider Input Glitch Filter divider

Macro Definitions
Macro EVENT_CHANNEL_N
#define EVENT CHANNEL N
Maximum number for Event Channels (users).
Macro EVENT_GENERATOR_N
#define EVENT GENERATOR N

Maximum number for event generator.

Function Definitions

Function events_ch_clear_overrun_status()

Clear the overrun status of an Event Channel.

void events ch clear overrun status(
uint32 t channel id)

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 12

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

7.3.2.

7.3.3.

7.3.4.

7.3.5.

Table 7-3 Parameters

[in] channel_id Event Channel ID

Function events_ch_clear_trigger_status()
Clear the trigger status of an Event Channel.

void events ch clear trigger status(
uint32 t channel id)

Table 7-4 Parameters

[in] channel_id Event Channel ID

Function events_ch_configure()

Configure an Event Channel.

void events ch configure(
struct events ch conf *const config)

Table 7-5 Parameters

[in, out] config Configuration settings for the Event Channel

Function events_ch_disable()
Disable an Event Channel.

void events ch disable(
uint32 t channel id)

Table 7-6 Parameters

[in] channel_id Event Channel ID

Function events_ch_disable_software_trigger()

Disable the software trigger for an Event Channel.

void events ch disable software trigger (
uint32 t channel id)

Table 7-7 Parameters

[in] channel_id Event Channel ID

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 13

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

7.3.6.

7.3.7.

7.3.8.

7.3.9.

Function events_ch_enable()

Enable an Event Channel.

void events ch enable (
uint32 t channel id)

Table 7-8 Parameters

[in] channel_id Event Channel ID

Function events_ch_enable_software_trigger()

Enable the software trigger for an Event Channel.

void events ch enable software trigger(
uint32 t channel id)

Table 7-9 Parameters

[in] channel_id Event Channel ID

Function events_ch_get_config_defaults()

Initialize an Event Channel configuration structure to defaults.

void events ch get config defaults(
struct events ch conf *const config)

The default configuration is as follows:
* Channel ID is initialized to invalid number
* Generator ID is initialized to invalid number
« Event shaper is disabled
* Event Input Glitch Filter is disabled

Table 7-10 Parameters

[out] config Configuration structure to initialize to default values

Function events_ch_is_enabled()

Get the status (enabled or disabled) of an Event Channel.

bool events ch is enabled(
uint32 t channel id)

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 14

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

7.3.10.

7.3.11.

Table 7-11 Parameters

[in] channel_id Event Channel ID

Returns
The Event Channel enabled/disabled status.

Table 7-12 Return Values

true Event Channel is enabled

false Event Channel is disabled

Function events_ch_is_overrun()
Get the overrun status of an Event Channel.

bool events ch is overrun (
uint32 t channel id)

Table 7-13 Parameters

[in] channel_id Event Channel ID

Returns
The Event Channel overrun status.

Table 7-14 Return Values

true A channel overrun event has occurred

false A channel overrun event has not occurred

Function events_ch_is_ready()
Get the busy status of an Event Channel.

bool events ch is ready(
uint32 t channel id)

Table 7-15 Parameters

[in] channel_id Event Channel ID

Returns
The Event Channel busy status.

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 15

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

7.3.12.

7.3.13.

7.3.14.

7.3.15.

Table 7-16 Return Values

true If the Event Channel is ready to be used

false If the Event Channel is currently busy

Function events_ch_is_triggered()
Get the trigger status of an Event Channel.

bool events ch is triggered(
uint32 t channel id)

Table 7-17 Parameters

[in] channel_id Event Channel ID

Returns
The Event Channel trigger status.

Table 7-18 Return Values

true A channel event has occurred

false A channel event has not occurred

Function events_ch_software_trigger()
Trigger a Software Event for the corresponding Event Channel.

void events ch software trigger(
uint32 t channel id)

Table 7-19 Parameters

[in] channel_id Event Channel ID

Function events_disable()
Disable the events module.

void events disable(void)

Function events_enable()
Enable the events module.

void events enable(void)

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 16

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

7.3.16.

7.3.17.

7.3.18.

7.4.

7.41.

Function events_get_config_defaults()

Initialize an events configuration structure to defaults.

void events get config defaults(
struct events conf *const config)

The default configuration is as follows:
* Input Glitch Filter Divider is set to EVENT IGF _DIVIDER 1024

Table 7-20 Parameters

[out] config Configuration structure to initialize to default values

Function events_init()

Initialize the events module.

void events init(
struct events conf *const config)

Table 7-21 Parameters

[in] config Configuration structure to initialize to default values

Function events_set_igf_divider()

Set the Input Glitch Filter Divider.

void events set igf divider(
enum events igf divider divider)

Table 7-22 Parameters

[in] divider Input Glitch Filter divider

Note: As stated in the datasheet, there is one divider value for all Event Shaper (EVS) instances.

Enumeration Definitions

Enum events_igf_divider

Enumerate for the possible division ratios of an Input Glitch Filter.

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 17

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

Table 7-23 Members

Enum value Description

EVENT_IGF_DIVIDER _1 Select a prescaler division ratio of 1
EVENT_IGF_DIVIDER 2 Select a prescaler division ratio of 2
EVENT _IGF_DIVIDER 4 Select a prescaler division ratio of 4
EVENT_IGF_DIVIDER_8 Select a prescaler division ratio of 8
EVENT_IGF_DIVIDER_16 Select a prescaler division ratio of 16
EVENT _IGF_DIVIDER 32 Select a prescaler division ratio of 32
EVENT _IGF_DIVIDER 64 Select a prescaler division ratio of 64
EVENT_IGF_DIVIDER_128 Select a prescaler division ratio of 128
EVENT_IGF_DIVIDER_256 Select a prescaler division ratio of 256
EVENT IGF_DIVIDER 512 Select a prescaler division ratio of 512
EVENT _IGF_DIVIDER 1024 Select a prescaler division ratio of 1024
EVENT_IGF_DIVIDER_2048 Select a prescaler division ratio of 2048
EVENT_IGF_DIVIDER_4096 Select a prescaler division ratio of 4096
EVENT IGF_DIVIDER 8192 Select a prescaler division ratio of 8192
EVENT _IGF_DIVIDER 16384 Select a prescaler division ratio of 16384
EVENT_IGF_DIVIDER_32768 Select a prescaler division ratio of 32768

7.4.2. Enum events_igf_edge

Table 7-24 Members

Enum value Description

EVENT_IGF_EDGE_NONE Input Glitch Filter is disabled

EVENT _IGF_EDGE_RISING Event detection through Input Glitch Filter on rising edge
EVENT_IGF_EDGE_FALLING Event detection through Input Glitch Filter on falling edge
EVENT _IGF_EDGE_BOTH Event detection through Input Glitch Filter on both edges

AtmeL Atmel AT06863: SAMA4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 18

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

8.1.

8.2.

8.3.

8.4.

Extra Information for Peripheral Event Controller Driver

Acronyms

Below is a table listing the acronyms used in this module, along with their intended meanings.

ADC Analog to Digital Converter
AST Asynchronous Timer

EVS Event Shaper

IGF Input Glitch Filter

PDCA Peripheral DMA Controller

Dependencies

This driver has the following dependencies:

. None

Errata

There are no errata related to this driver.

Module History

An overview of the module history is presented in the table below, with details on the enhancements and
fixes made to the module since its first release. The current version of this corresponds to the newest
version in the table.

Changelog

Initial document release

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 19

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

9.1.

9.1.1.

9.1.2.

9.1.3.

9.1.3.1.

9.1.3.2.

Examples for Peripheral Event Controller Driver

This is a list of the available Quick Start Guides (QSGs) and example applications for SAM4L Peripheral
Event Controller (PEVC) Driver. QSGs are simple examples with step-by-step instructions to configure
and use this driver in a selection of use cases. Note that a QSG can be compiled as a standalone
application or be added to the user application.

* Quick Start Guide for the Peripheral Event Controller Driver

* Example for the Peripheral Event System - AST/PDCA

+ Example for the Peripheral Event System - GPIO/PDCA

Quick Start Guide for the Peripheral Event Controller Driver

This is the quick start guide for the SAMA4L Peripheral Event Controller (PEVC) Driver, with step-by-step
instructions on how to configure and use the driver for a specific use case.

The use cases contain several code fragments. The code fragments in the steps for setup can be copied
into a custom initialization function, while the steps for usage can be copied into, e.g., the main
application function.

Use Cases

. Basic Use Case

Basic Use Case

This use case will demonstrate how to use the Peripheral Event Controller on SAM4L_EK. In this use
case, one Event Channel is configured as:

* Configure AST periodic event 0 as a generator
* Configure PDCA channel 0 as a user to transfer one word
* Enable the event shaper for the generator

Setup Steps
Prerequisites

This module requires the following service:
* Clock Management (Sysclock)

Code Example

Copy-paste the following setup code to your application:

static void init events (void)

{
struct events conf events config;
struct events ch conf ch config;

/* Initialize event module */

events get config defaults (&events config);
events init (&events confiq);

events enable () ;

/*

* Configure an event channel

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 20

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

}

* - AST p
* - PDCA
=)

events ch
ch config.
ch config.
ch config.
ch config.
events ch

/* Enable
events ch

eriodic event 0 --- Generator
channel 0 -—— User

get config defaults(&ch config);
channel id = PEVC ID USER PDCA 0;
generator id = PEVC ID GEN AST 2;
shaper enable = true;

igf edge = EVENT IGF EDGE_NONE;
configure (&ch config);

the channel */
enable (PEVC_ID USER_PDCA 0) ;

Add this to the main loop or a setup function:

/* Initialize AST as event generator. */
init ast();

/* Initialise events for this example. */
init events();

/* Initialize the PDCA as event user */
init pdca();

9.1.3.3. Workflow

9.1.4.

9.2.

9.21.

9.2.2,

Atmel

1.

2.

3.

init ast()

Initialize AST to generate periodic event 0. see sam/drivers/events/example1 for more detail:

r

Initialize the event module and enable it:

init events();

Initialize PDCA channel 0 to transfer data to USART. see sam/drivers/events/example1 for more
detail:

init pdcal();

Basic Usage

After the channel is configured correctly and enabled, each time a new event from AST occurs, a

character is sent to the USART via PDCA without the use of the CPU.

Example for the Peripheral Event System - AST/PDCA

Introduction

This example shows how to use the Peripheral Event Controller. In the example, the AST generates a
periodic event which is transmitted to the PDCA. Each time a new event occurs, a character is sent to the
USART without the use of the CPU. The main loop of the function is a delay 500ms and toggle a LED
continuously to show CPU activity.

Main Files

events.c: Events driver
events.h: Events driver header file

Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 21

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

* events_example1.c: Events example 1 application

9.2.3. Compilation Information

This software is written for GNU GCC and IAR Embedded Workbench® for Atmel®. Other compilers may
or may not work.

9.2.4. Device Information

SAMA4L device can be used.

9.2.,5. Configuration Information

This example has been tested with the following configuration:
+ PC terminal settings:
* 115200 baud

« 8 data bits
* no parity bit
1 stop bit

* no flow control

9.3. Example for the Peripheral Event System - GPIO/PDCA

9.3.1. Introduction

This example shows how to use the Peripheral Event Controller. In the example, an I/O pin is configured
to trigger a GPIO event when detecting a falling edge. Each time a new event occurs, it will trigger the
PDCA to send a character to the USART without CPU usage.

9.3.2. Main Files

e events.c: Events driver
. events.h: Events driver header file
* events_example2.c: Events example 2 application

9.3.3. Compilation Information

This software is written for GNU GCC and IAR Embedded Workbench for Atmel. Other compilers may or
may not work.

9.3.4. Device Information

SAMA4L device can be used.

9.3.5. Configuration Information

This example has been tested with the following configuration:
+ PC terminal settings:
* 115200 baud

« 8 data bits
* no parity bit
1 stop bit

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 22

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

¢ no flow control

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 23

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

10. Document Revision History

Doc. Rev. ‘ Date ‘ Comments ‘

42312B 07/2015 | Updated title of application note and added list of supported devices

42312A 05/2014 Initial document release

AtmeL Atmel AT06863: SAM4L Peripheral Event Controller (PEVC) Driver [APPLICATION NOTE] 24

Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_AT06863_Application Note-07/2015

Atmel | Enabiing Unlimited Possibilities’ fl¥lin]3[o]w
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42312B-SAM4L-Peripheral-Event-Controller-PEVC-Driver_ AT06863_Application Note-07/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected®, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Software License
	2. Prerequisites
	3. Module Overview
	3.1. Event Channels
	3.2. Event Users
	3.3. Event Shaper (EVS)
	3.3.1. Input Glitch Filter (IGF)

	3.4. Physical Connection
	3.5. Configuring Events
	3.5.1. Source Peripheral
	3.5.2. Event System
	3.5.3. Destination Peripheral

	4. Special Considerations
	5. Extra Information
	6. Examples
	7. API Overview
	7.1. Structure Definitions
	7.1.1. Struct events_ch_conf
	7.1.2. Struct events_conf

	7.2. Macro Definitions
	7.2.1. Macro EVENT_CHANNEL_N
	7.2.2. Macro EVENT_GENERATOR_N

	7.3. Function Definitions
	7.3.1. Function events_ch_clear_overrun_status()
	7.3.2. Function events_ch_clear_trigger_status()
	7.3.3. Function events_ch_configure()
	7.3.4. Function events_ch_disable()
	7.3.5. Function events_ch_disable_software_trigger()
	7.3.6. Function events_ch_enable()
	7.3.7. Function events_ch_enable_software_trigger()
	7.3.8. Function events_ch_get_config_defaults()
	7.3.9. Function events_ch_is_enabled()
	7.3.10. Function events_ch_is_overrun()
	7.3.11. Function events_ch_is_ready()
	7.3.12. Function events_ch_is_triggered()
	7.3.13. Function events_ch_software_trigger()
	7.3.14. Function events_disable()
	7.3.15. Function events_enable()
	7.3.16. Function events_get_config_defaults()
	7.3.17. Function events_init()
	7.3.18. Function events_set_igf_divider()

	7.4. Enumeration Definitions
	7.4.1. Enum events_igf_divider
	7.4.2. Enum events_igf_edge

	8. Extra Information for Peripheral Event Controller Driver
	8.1. Acronyms
	8.2. Dependencies
	8.3. Errata
	8.4. Module History

	9. Examples for Peripheral Event Controller Driver
	9.1. Quick Start Guide for the Peripheral Event Controller Driver
	9.1.1. Use Cases
	9.1.2. Basic Use Case
	9.1.3. Setup Steps
	9.1.3.1. Prerequisites
	9.1.3.2. Code Example
	9.1.3.3. Workflow

	9.1.4. Basic Usage

	9.2. Example for the Peripheral Event System - AST/PDCA
	9.2.1. Introduction
	9.2.2. Main Files
	9.2.3. Compilation Information
	9.2.4. Device Information
	9.2.5. Configuration Information

	9.3. Example for the Peripheral Event System - GPIO/PDCA
	9.3.1. Introduction
	9.3.2. Main Files
	9.3.3. Compilation Information
	9.3.4. Device Information
	9.3.5. Configuration Information

	10. Document Revision History

