Altmel

TRAINING MANUAL

Introduction to Basic RTOS Features using SAM4L-EK
FreeRTOS Port

AN-4590

Prerequisites

e Hardware Prerequisites
o Atmel® SAM4L-EK Evaluation Kit

e Software Prerequisites
e Atmel Studio 6.1 update 2.0 (build 2730) or higher
e Atmel Software Frameworks 3.11.0 or higher
e Latest J-Link / SAM-ICE™ Software & Documentation Pack
e Percepio FreeRTOS+Trace Analyzer 2.4.0 or higher

e Estimated Completion Time: 90 min

Introduction

The goal of this Hands-On is to:

e Explain how to Create and configure a FreeRTOS™ Project under AS 6.1

e Give an overview of FreeRTOS mechanism

e Explain how to use FreeRTOS and its Kernel Object

e Show how to make use of FreeRTOS+Trace for Real time project debugging

42247A - 02/2014

Table of Contents

PrereqUISITES ... 1
INEFOAUCTION ... 1
lcon Key 1dentifiers 3
1. Training Module Architecturecccoooviiiiiiiiiiic e 4
1.1 Atmel Studio Extension Delivery Case (.VSiX)......coocverieeiieieiienenennne 4
1.2 Atmel Training Executable Delivery Case (.eX€)ccccvveevcureeeeriunnenn. 4
2. PrereqUISItesouuuiiiii e 5
21 Fre@RTOSHTIACEveiiiiiieiie et s 5
3. INtrodUCHION .cceeiiiiiiiiiiiieieieeee e 6
3.1 What is a Real-time Application?.........cccceeeiiiiiiiieeee e, 6
3.2 Real Time Operating System and Multitasking.........cccccceeevviiivieennnnn. 6
3.3 FreeRTOS IntroducCtion...........c.oouiiiiiieiiie e 7
3.3.1 The FreeRTOS Kernelccccoiiiiiiiiiiiieiie e 7
3.3.2 FreeRTOS Tasks Management Mechanism...........cccccccoeeecvirvenene.nn. 9
3.3.3 Debugging a FreeRTOS Application..........cccceeeiiiieiiiiiiieeiiiieees 11

4. Assignment 1: Create and Configure Your FreeRTOS Project 13

4.1 Project Creation under Atmel Studio 6.1cccoviiiiiiiiii i 13
4.2 Project Clock Configurationcccoecuiveiiiiiie e 15
4.3 Add and Configure the FreeRTOS Kernel...........cccccovvveeeveeeiiiinnne, 16
4.4 Add Library for FreeRTOSHTrace.cccueiiiiiiiie e 20
4.5 Compile and Test Your FreeRTOS Projectccocoveiiiiiciineeenen. 25
5. Assignment 2: Create and Manage Taskscccccccvvvvevveenennnn. 30
5.1 Structure of @ TaskK.......cccoi i 30
5.2 Task Creation and Deletionccccooiiiiiiiiiincceec 31
5.3 Task Management ...t 32
5.4 Priority Settings and Round Robin..........ccoooiiiiiiiiii e 35
6. Assignment 3: Kernel Object Usagecccccoceeeiiieiiiiieeiiinnnnnn, 39
6.1 Software TIMer USAgecccoeiiiiiiiiiieiee e 39
6.2 Semaphore USAgEcccceeiiiiiiiiiiiiee et 43
6.3 Queue Managementc..oiiiiiiiiiiiee s 47
CONCIUSION ... 53
REVISION HIStOrYuiiii e 54
Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014

Page 2 of 55

Icon Key Ildentifiers

Icons are used to identify different assignment sections and reduce complexity.

These icons are:

n INFO
TIPS

%% TopoO
RESULT

n WARNING

a EXECUTE

Atmel

Delivers contextual information about a specific topic.

Highlights useful tips and techniques.

Highlights objectives to be completed.

Highlights the expected result of an assignment step.

Indicates important information.

Highlights actions to be executed out of the target when
necessary.

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 3 of 55

1. Training Module Architecture

This training material can be retrieved through different Atmel deliveries:

e As an Atmel Studio Extension (.vsix file) usually found on the Atmel Gallery web site
(http://gallery.atmel.com/) or using the Atmel Studio Extension manager

e As an Atmel Training Executable (.exe file) usually provided during Atmel Training sessions

Depending on the delivery type, the different resources needed by this training material (hands-on
documentation, datasheets, application notes, software & tools) will be found in different locations.

1.1 Atmel Studio Extension Delivery Case (.vsix)

Once the extension is installed, you can open and create the different projects using “New Example
Project from ASF..."in Atmel Studio.

ﬂ INFO The projects installed from an extension are usually under “Atmel Training >
Atmel Corp. Extension Name”.

There are different projects which can be available depending on the extension:

e Hands-on Documentation: contains the documentation as required resources
e Hands-on Assignment: contains the initial project that may be required to start

e Hands-on Solution: contains the final application, which is a solution for this hands-on

ﬂ INFO Each time a reference is made to some resources in the following pages, the user
must refer to the Hands-on Documentation project folder.

1.2 Atmel Training Executable Delivery Case (.exe)

Depending on where the executable has been installed, you will find the following architecture, which is
composed by two main folders:

® AN-XXXX Hands-on: contains the initial project that may be required to start and a solution
® Resources: contains required resources (datasheets, software & tools...)

X RAINING
o — — - — i —
Organize = Include in library + Share with = B== = [@
o Favorites |;| Hame
Bl Desktop L AN-XX0X_Hands-on
4 Downloads) Resources
i# Dropbox
E:_'-‘l Recent Places
- 4 i b
b
n INFO Unless a specific location is specified, each time a reference is made to some

resources in the following pages, the user must refer to this Resources folder.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 4 of 55

http://gallery.atmel.com/�

2. Prerequisites

TIPS If you got an Atmel Training Executable (.exe), you will also find all the following
Software & Tools in the Resources\Software folder.

21 FreeRTOS+Trace

Debugging a Real-time application is a complex exercise due to multiple task management and Kernel
Object. For this purpose we will work with a tool called FreeRTOS+Trace.

l-l.l‘
LY TO DO Download and Install FreeRTOS+Trace 2.5.1 or higher.

e Go to http://percepio.com/tracealyzer/downloads/ and download the latest version
e Execute the FreeRTOSplusTrace-v2.5.1.exe file and follow the installation wizard

n INFO If prompted, select the free edition / 30 days evaluation option.

RESULT FreeRTOS+Trace is now installed on your computer.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 5 of 55

http://percepio.com/tracealyzer/downloads/�

3.1

3.2

Atmel

Introduction

The goal of this hands-on is to illustrate the basic functionality of the FreeRTOS Real Time Operating System
and show how to use them in a concrete application. For this purpose, the documentation will go through the
following points:

- How to create and configure a FreeRTOS project under Atmel Studio 6
- How to make use of Graphical debugging tool
- How to make use of FreeRTOS basic functionality in an embedded project

During this hands-on we will use a SAM4L-EK and the FreeRTOS kernel port available in Atmel Software
Framework (ASF). Before going into more details on FreeRTOS usage and features, it is important to
understand what are Real-time applications and Real Time Operating Systems.

What is a Real-time Application?

The main difference between a standard application and a Real-time application is the time constraint related
to actions to perform. In a Real-time application the time by which tasks will execute can be predicted
deterministically on the basis of knowledge about the system’s hardware and software. Typically, applications
of this type include a mix of both hard and soft real-time requirements.

e Soft real-time requirements are those that state a time deadline - but breaching the deadline
would not render the system useless. For example, responding to keystrokes too slowly may
make a system seem annoyingly unresponsive without actually making it unusable.

¢ Hard real-time requirements are those that state a time deadline - and breaching the deadline
would result in absolute failure of the system. For example, a driver’s airbag would be useless if it
responded to crash sensor inputs too slowly.

In order to fit with these time requirements, the usage of a Real Time Operating System (RTOS) is often
needed.

Real Time Operating System and Multitasking

The most basic feature, common to all operating system is the support for multitasking. On top of this, support
of networking, peripheral interfacing, user interface, printing, etc. can be added.

An embedded system may not require all of this, but need some of them. The types of operating systems
used in real-time embedded system often have only the fundamental function of support for multitasking.
These operating systems can vary in size, from 300 bytes to 10KB, so they are small enough to fit inside
internal microcontroller flash memory.

Embedded systems usually have access to only one processor, which serve many input and output paths.
Real Time Operating system must divide time between various activities in such way that all the deadlines
(requirements) are met.

A Real Time Operating system will always include the following features:

e Support of multiple task running concurrently

e A scheduler to determine which task should run

e Ability for the scheduler to preempt a running task
e Support for inter-task communication

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 6 of 55

3.3

3.3.1

Atmel

FreeRTOS Introduction

FreeRTOS is a real-time kernel (or real-time scheduler) on top of which Cortex®-M3/M4 microcontroller
applications can be built to meet their hard real-time requirements.

It allows Cortex-M3/M4 microcontroller applications to be organized as
a collection of independent tasks to be executed. As most Cortex-
M3/M4 microcontrollers have only one core, only one task can be
executed at a time.

The kernel decides which task should be executing by examining the
priority assigned to each by the application designer. In the simplest case, the application designer could
assign higher priorities to tasks that implement hard real-time requirements, and lower priorities to tasks that
implement soft real-time requirements. This would ensure that hard real-time tasks are always executed
ahead of soft real-time ones.

The FreeRTOS Kernel

FreeRTOS kernel is target independent and is distributed under the Atmel Software Framework as an
independent module. This module can be added in any standard project using the ASF wizard available under
Atmel Studio or can be added manually when using the standalone version of ASF under IAR™.

The FreeRTOS module is made of the following source files.

FreeRTOS.h

—

stddef.h projdefs_h FreeRTOSConfig.h portable.h

portmacro.h mpu_wrappers.h

list.c croutine.c timers.c heap_3.c queue.c tasks.c

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 7 of 55

The Cortex-M3/M4 port includes all the standard FreeRTOS features:

Pre-emptive or co-operative operation
Very flexible task priority assignment
Queues

Binary semaphores

Counting semaphores

Recursive semaphores

Mutexes

Tick hook functions

Idle hook functions

Stack overflow checking

Trace hook macros

FreeRTOS can be configured to exclude unused functionality from compiling and so reduce its memory

footprint.

o INFO The FreeRTOS kernel is released under GPL with exception, allowing user

Atmel

applications to stay closed source. The BSP part is a mix of GPL with exception
license and code provided by the different hardware manufacturers.

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 8 of 55

3.3.2 FreeRTOS Tasks Management Mechanism

FreeRTOS allows an unlimited number of tasks to be run as long as hardware and memory can handle them.
As a real-time operating system, FreeRTOS is able to handle both cyclic and acyclic tasks.

The figure below illustrates the memory allocation of tasks in RAM.

configTOTAL_HEAP_SIZE
| Filo_|
| TCB |
| Fio | | Filo |
[TC8 | | TCB |

The RTOS kernel allocates RAM each time a task or a kernel object is created. The section allocated to a
task or an object is called a stack. The size of this stack is configurable at task creation. The stack contains
the “Task File” and the” Task Control Board” (TCB) that allows the kernel to handle the task. All stacks are
stored in a section called HEAP. The HEAP management is done according to the Heap_x.c file included with
the kernel. The selection of Heap_x.c file should be done according to application requirement.

o Heap_1.c: This is the simplest implementation of all. It does not permit memory to be freed once it has
been allocated.

o Heap_2.c: This scheme uses a best fit algorithm and, unlike scheme 1, allows previously allocated
blocks to be freed. It does not, however, combine adjacent free blocks into a single large
block.

o Heap_3.c: This implements a simple wrapper for the standard C library malloc() and free() functions
that will, in most cases, be supplied with your chosen compiler. The wrapper simply makes
the malloc() and free() functions thread safe.

o Heap_4.c: This scheme uses a first fit algorithm and, unlike scheme 2, does combine adjacent free
memory blocks into a single large block (it does include a coalescence algorithm).

In all cases except Heap_3.c, the total amount of available heap space is set by "configTOTAL_HEAP_SIZE”
defined in FreeRTOSConfig.h.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 9 of 55

The different states are illustrated in the figure below.

s ™\
Mot running
— Suspended —1
~ “‘\
/ L) Vtask Suspend(}-..,.
/ VitaskSuspend() called \
/ called \
ViaskResume() |
y called
|" ™~
| Schedbiler .
| Ready activity Running
il
' A
.'
\ VtaskSuspend() Event |
b, called Blocking APl /
\ function calle/df
\\‘“n.m__ -
~— 1 Blocked —
L. A

At application level there are two possible states for a task: Running and Not Running.

At scheduler level, “Not Running” state is divided in three:

e Suspend: Task has been suspended (deactivated) by the application
e Blocked: Task is blocked and waiting for synchronization event

e Ready: Ready to execute, but a task with higher priority is running

Task scheduling aims to decide which task in “Ready” state has to be run at a given time. FreeRTOS
achieves this purpose with priorities given to tasks while they are created. Priority of a task is the only element
the scheduler takes into account to decide which task has to be switched in. Every clock tick makes the
scheduler to decide which task has to be woken up.

Rtos Tick

E » Time

Kernel (0) @
A

Task 1 (N) _’ E

Task 2 (N+1) i Yo—
v !
Priority

Atmel

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 10 of 55

3.3.3

Atmel

Debugging a FreeRTOS Application

Debugging a Real-time application is a complex exercise due to multiple task management and Kernel
Object. For this purpose we will work with a tool called FreeRTOS+Trace.

FreeRTOS+Trace rely on a trace recorder library for FreeRTOS developed by Percepio, in partnership with
the FreeRTOS team. This Library will allow to records the FreeRTOS kernel events in a dedicated RAM
section.

Dedicated PC software will then dump this trace and gives several graphical trace views that explain what
happened, showing tasks, interrupts, system calls, and selected application events. This can be used as a lab
tool during debug sessions or even in deployed use as a crash recorder if you have storage on the device.

Application
FreeRTOS+Trace

Recorded Data

Trace Recorder
FreeRTOS

The main trace view shows all recorded events visualized on a common vertical time-line, tasks and events
can be clicked and highlighted for additional information, including timing and dependencies. This gives a
detailed understanding when zoomed in on specific intervals, and naturally transforms into an overview when
zooming out.

s ™
[Eh FreeRTOS+Trace - J-Linkdump “ Elﬁg
File Find View Bookmarks J-Link Help
=] - |2 | | Actor Information
B (startup) - (No Actor Selected)
l Tmr Svec
manﬁgerl
= - -
— .
Navigation
o= | |
l ‘Worker 2
View size |2500.044 (s.ms.s)
‘Worker 1
i W Grg [1000000 () ¥ Auo
= E m = Zoom In | Zoom Out |
Yiew Fiter
B[] Actor Instances: 110 of 110
-] Keme! Notices: 0 of 104
D Kemel Objects Uses (N/A)
i [[] Kemel Service Calls (N/A)
L - -
™ 2,000.000
l ‘Worker 1
-

29.966 (ms.us)

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 11 of 55

Altmel

e CPU Load

e Timing variation

e Communication flow
e Synchronized view

e Communication flow
e Kernel Object History

n

EEr] ey

[|

e T NI
Comen i e P
o) BARR

LT b UL ok b, P 1, e i i " 3138 00

b
[St

E_’h-\.l— ILIEE
ana Bwkie Cawm o
Traves. &
i
B S
i
-
B
]] I e
" 5 " Bir
u |} “u | ==
(2] .- ﬂ
[AR o e
[!'
(=
. . i
H " %
& o
3] ¥ LR}
El R N | " - -
L L] £
X] AR e

In addition to generic task view FreeRTOS+Trace Analyzer allows to analyze:

| S
;

[T b -

-
[
e
azme| g

] .
1 o -

W e -
s

o | BIAL, b a2, By T o]

Fir Vs ldebeien Ve Dy Do

AN-4590 — TRAINING MANUAL: 42247A - 02/2014

Page 12 of 55

http://percepio.com/docs/images/FreeRTOS/cpuloadgraph.png�
http://percepio.com/docs/images/FreeRTOS/actorinstancegraph.png�
http://percepio.com/docs/images/FreeRTOS/horizontal_trace_view_and_kernel_object_utilization.png�
http://percepio.com/docs/images/FreeRTOS/commflow.png�

4. Assignment 1: Create and Configure Your FreeRTOS Project
Now that we know the basics of FreeRTOS, we can start with our first assignment.

This assignment will guide you through the process of creating a new FreeRTOS project from a pre-built
Atmel board template under Atmel Studio 6. It will explain all mandatory steps to be applied each time you
create a FreeRTOS project.

This assignment is split into four sections, which explain how to:
e Create the project under Atmel Studio 6.1
e Perform basic configuration of GPIOs and Clocks

e Integrate FreeRTOS Kernel
e Configure FreeRTOS+Trace tool

4.1 Project Creation under Atmel Studio 6.1

Atmel Studio embeds different pre-built project templates available when creating a new project from the
Atmel Studio home page. These templates are of the following types:

e Atmel board: Lists all the templates linked to Atmel Evaluation kits
e User board: Lists all the templates linked to Custom board
e Atmel Studio solution: Blank solution template

For this hands-on, we will start from the SAM4L-EK template project available in Atmel Board Templates list.

"o
k—‘" TO DO Create a new project from the Atmel Board template.

e Open Atmel Studio 6.1

e (Click on New Project... (or File > New > Project...)

Start Page X EuElKs ASF Wizard

@ Mew Project...

Mew Example Project from ASF...

—
@ Open Project...

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 13 of 55

e Select “Atmel Boards > SAM4L-EK — ATSAM4LCA4C”

e Rename the Project to “Hands-on Assignment”

New Project ‘ I
Sort by; o
SAM3S-EK - ATSAM3SAC C/Cer
h SAM3S-EK2 - ATSAM3SDEC C/Cs+
m SAM3U-EK - ATSAM3UE C/Cer
Atmel Studio Selution
h SAM3K-EK - ATSAM3XSH C/Crs
1 SAM4C-EK - ATSAMACLEC O C/C++
! SAMAE-EK - ATSAMMELGE /G

SAN4L Xplained Pro - ATSAMMLCAC C/Cee

& SAMA4LS Xplained Pro - ATSAMALCSC C/Cre

| l SAN4L-EK - ATSAMALCAC C/Cre

& SAMAN Xplained Pro - ATSAMANIGC C/Cre

m SAMA4S Xplained - ATSAMASLEC C/Cer

:

Create directory for solution

. e

e Finally, select the following location to save your new project:

Atmel Training Executable Delivery Case

e Save the Hands-on Assignment project to:
“AN-4590 SAMA4L-EK Intro_FreeRTOS\assignments”
(folder located in the ATMEL_TRAINING installation folder)

Atmel Studio Extension Delivery Case

e Add the Hands-on Assignment project to the Hands-on Documentation solution

e Click OK

RESULT The Solution should appear as in screenshot below in the integrated development
environment. You can now configure and customize your project.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 14 of 55

4.2 Project Clock Configuration

Now that our SAM4L-EK project has been created, we need to perform the basic clock configuration in order
to use the SAM4L at maximum speed (48MHz).

-1
B

TO DO Set the project clock configuration to 48MHz.

e Open the conf_clock.h available in “src/config” directory from the “Solution Explorer”

e Modify the configuration to use the 48MHz as a clock source:
e Comment the #define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RCSYS line
e Uncomment the #define CONFIG_SYSCLK_SOURCE SYSCLK SRC PLLOline

conf_clock.h® > EyET) R ~ Solution Explorer * 0 X

9 conf clockh E]> CAATMEL TRAINING\SAMAL FreeRTOS Hands-on\FreeRTO! ~|@Golf = | 2

(] L =¥ ::‘If ._i Solution 'SAM4L_FreeRTOS_Hands-en' (1 project)
7 E#ifndef CONF_CLOCK_H_INCLUDED -l 4 || SAMAL FreeRTOS_Hands-on
8 |#define CONF_CLOCK_H_INCLUDED & B8l Dependencies

18 | //#define CONFIG_SYSCLK_INIT_CPUMASK (1 << SYSCLK_OCD)

) ‘ |=d| Output Files

11 | //#define CONFIG_SYSCLK_INIT_PBAMASK (1 << SYSCLK_IISC) b BRI
12 | //#define CONFIG_SYSCLK_INIT PBBMASK (1 << SYSCLK_USBC_REGS) 4 I see
13 | //#define CONFIG_SYSCLK INIT PBCMASK (1 << SYSCLK CHIPID) > B3 ASF
14 | //#define CONFIG_SYSCLK_INIT_PBDMASK (1 << SYSCLK_AST) 4 [config
15 | //#define CONFIG SYSCLK INIT HSBMASK (1 << SYSCLK_PDCA_HSE)] conf board.h
16
17 | //#define CONFIG_SYSCLK SOURCE SYSCLK_SRC_RCSYS [asth
— -
19 I#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLL®] mainc
20 T I LU I STt T p) g oy @, ASF Explorer @ Solution Explorer
21 | //#define CONFIG_SYSCLK SOURCE SYSCLK_SRC_RCS8M :
22 | //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RCFAST e
23 | //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RCIM n
24 .
R - s e il Sp— PR e [cES B
0% - | i | = B=2) |j

e In order to modify the clock speed at project startup, add a call to the sysclk_init function at the
beginning of the project “main” routine

int main (void)

{

sysclk_init();

board_init();

// Insert application code here, after the board has been initialized.
}

e Add an infinite loop at the end of the main routine (main routine should not return)

int main (void)

{

sysclk_init();

board_init();

while(1);

// Insert application code here, after the board has been initialized.
}

RESULT The project is now configured for our application needs and we can continue with
FreeRTOS Kernel module Addition.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 15 of 55

4.3 Add and Configure the FreeRTOS Kernel
We can now start working on the FreeRTOS kernel implementation and configuration.

The FreeRTOS kernel is fully integrated in ASF and is a dedicated module that can be added to any standard
project using the ASF wizard.

e
TO DO Add the FreeRTOS kernel.

e C(Click on the ASF wizard icon

wild Debug Tools Window Help

- - S-S AR >

a0 b e vama] |

e Under Available Modules, in the “Search for modules box”, type freertos

Available Modules

Edensions | Atml ASF(U0 = Shewe !_M - *
| I FreeRTOS mini Real- Tirne Eemnel (servce] I

e Select “FreeRTOS mini Real-Time Kernel (service)” by clicking on it and click on Add>> button.
The module will then show up under Selected Modules. Click on Apply button.

ASF Witard 3
Drice: ATSAMMLCC Projece [SAMML FreeRTOS Handion =| [
Etensaang Version
Arslable Modules Srbected Module
Etemsions: [Atmel ASF 1 = Shows (Al = I f B Gereric board supgpeart (dmver)
- - - = 1B System Clack Control (servce)
T Wir bual Memary in RAM iz oemgenent] . B Oy cutioas pavicd

I Touch Sensce with G inteace (componnt] L Garr
AT - papase L)
1B 1 - Hon Wolstibe Memory sccess (Comenon AP {derver) i) 0 e b

[T B fa ¥ 1
B Crip Beset Cause Access (Covmon AT (senvoe] e
1B FIFO - Frst: b Foest Ot ciroosdar butter (serace] I FreeRT05 mini Real-Time Kemel (rervioef (130 = |
1B LISART - Sevial interface [servce]

I Soep manager {pervice)

I 571 - Sevial Peripheral InbesTace Master [Somenon AP {senvce)
I comman.serice basicapi_masterstandard_pi {sendce)

B cormeman.senic e bass apd_masterinan_sgs (sendoe)

B Memnery Comtrol Socess Intedlnoe (perice)

I TW1 - T Wire Interfisce [Commcn APT) (ianice)

Ials Aot Detads
wirtual Hemary in RAM

Tt cosovipanint mansgpes & dak on 8 volstde mamary (el LAY Thes con be comnecisd 1o 8 Fde Byatemn mansgement of 5 USE Desce Mast Seege Inberbre v the senace Memany Coabeed Accest

Agd > > Appiy Reseert << Bemove Summany

ﬂ INFO After you click on the Apply button, you will be presented with a “Summary of
operations” and will also be asked to accept a license agreement.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 16 of 55

After module addition, the kernel content is available under src/ASF/thirdparty/freertos/freertos-xxx/ in the

project explorer window:

[

4

Solution Explorer

Y

[=d| Output Files
5] Libraries
[src
4 @ ASF
> [od common
> [2d sam
4 @ thirdparty
> [@3 CMSIS
a4 |=) freertos|
a &) freertos-7.3.0
4 |5 source
> [od include
[[od portable
lEl FreeRTOS_ClLLe
] list.c
el queue.c
|e] tasks.c
| timers.c
=] ATMEL-disclaimer.bt
5] readme.bt
[[d config
asf.h

=
|e] main.c

m

3’3 Selution Explorer

In addition to the “kernel” source files, a configuration file (FreeRTOSConfig.h) is added under “src/config”
directory. This file allows configuring the kernel according to project requirement and also tuning the Kernel
integration by setting memory management and excluding unused features from compilation.

Taking time to adapt the kernel to application needs will allow us to reduce the size used by the kernel in

memory.

Here is the list of all the basic configuration and customization definition, which can be found in the

FreeRTOSConfig.h file:

FreeRTOSConfig.h ¢ Reelyiilalllady)

main.c

o FreeRTOSConfig.h

'| = Iﬁ) CAATMEL_TRAIMNINGYSAMAL_FreeRTO5_Hands-onFreeRTO! 'IeGO

63

76

86
a7
100 %

- 4

| #include <stdint.h>
#endif

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

configUSE_PREEMPTION
configUSE_IDLE_HOOK
configUSE_TICK_HOOK
configCPU_CLOCK_HZ
configTICK_RATE_HZ
configMaX_PRIORITIES
configMINIMAL_STACK_SIZE
configTOTAL HEAP SIZE
configMAX_TASK_NAME LEN
configlSE_TRACE_FACILITY
configlSE_16 BIT TICKS
configIDLE SHOULD YIELD
configlUSE_MUTEXES
configQUELUE_REGISTRY_SIZE
configCHECK FOR_STACK OVERFLOW
configUSE_RECURSIVE_MUTEXES
configUSE_MALLOC_FAILED HOOK
configlUSE_APPLICATION TASK TAG
configUSE_COUNTING SEMAPHORES

/* Co-routine definitions. */
#define configUSE_CO_ROUTINES

sysclk_get_cpu_hz())

{ portTickType) 1@ea)

(unsigned portBASE_TYPE)} 5)
{ unsigned short) 13@)

(size_t) (48968))

18)

i

Atmel

Solution Explorer

&
,_i Solution 'SAM4L_FreeRTOS5_Hands-on' (1 project)
4 | SAM4L_FreeRTOS_Hands-on
|=d| Dependencies
|=d| Qutput Files
[[x=] Libraries
4 | src
- [ad ASF
4 [y config
|l conf boardh

I |h] FreeRTOSCenfig.h I

| ast.h
2] main.c
C’E Solution Explorer
0
oz 2|l

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 17 of 55

For our application, we will enable the following functionality:

e USE_PREEMPTION:

Kernel will be used in Preemption mode which means that task with lower priority can be
interrupted by task with higher priority.

e USE_IDLE HOOK:
An idle task will be created at scheduler start-up. This task has the lowest priority level possible. It
will help us analyze when the CPU has no task to execute.

e USE_TRACE_FACILITY:
Enable Kernel Trace function for FreeRTOS+Trace Analyzer.

lI]' INFO

%4 Topo

Additional description can be found on FreeRTOS.com.

Configure the FreeRTOS kernel.

e Configure the FreeRTOS kernel by modifying the following definition in the FreeRTOSConfig.h file:

#tdefine
t#tdefine
t#tdefine
#tdefine
t#tdefine
#define
#define
#define
#tdefine
#tdefine
t#tdefine
#define
#tdefine
t#tdefine
#define
#tdefine
#define
#define
#tdefine

configUSE_PREEMPTION
configUSE_IDLE_HOOK
configUSE_TICK_HOOK
configCPU_CLOCK_HZ
configTICK_RATE_HZ
configMAX_PRIORITIES
configMINIMAL_STACK_SIZE
configTOTAL_HEAP_SIZE
configMAX_TASK_NAME_LEN
configUSE_TRACE_FACILITY
configUSE_16_BIT_TICKS
configIDLE_SHOULD_YIELD
configUSE_MUTEXES
configQUEUE_REGISTRY_SIZE
configCHECK_FOR_STACK_OVERFLOW
configUSE_RECURSIVE_MUTEXES
configUSE_MALLOC_FAILED_ HOOK
configUSE_APPLICATION_TASK_TAG
configUSE_COUNTING_SEMAPHORES

/* Co-routine definitions. */

ttdefine

#define configMAX_CO_ROUTINE_PRIORITIES (2)

configUSE_CO_ROUTINES

/* Software timer definitions. */

#define

n INFO

Atmel

configUSE_TIMERS

OO0 OO0 RRPROR~—~A~—~AA—AAAOO R PR

sysclk_get _cpu_hz())

(portTickType) 1000)

(unsigned portBASE_TYPE) 5)
(unsigned short) 130)

(size_t) (ox3000))

10)

Doing so will reduce the kernel memory footprint by removing the unused Kernel features
from compilation. Using this configuration, a tick will be generated every 1ms (see

configTICK_RATE_HZ value).

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 18 of 55

e Add the following idle hook function in your main.c file before main routine declaration

#tinclude <asf.h>

void vApplicationIdleHook()

while(1);
}
int main (void)
{
TIPS Feel free to directly copy/paste functions in red in Atmel Studio editor.

e Start the FreeRTOS Scheduler using vTaskStartScheduler function

int main (void)

{

sysclk_init();

board_init();

vTaskStartScheduler();

while(1);

// Insert application code here, after the board has been initialized.
}

e Click on the “Build” button: to compile your project

RESULT No errors should appear during the compiling process. You have now successfully
configured FreeRTOS kernel in your project.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 19 of 55

44 Add Library for FreeRTOS+Trace
The last step of this assignment is to configure the project for using FreeRTOS+Trace.

As explained in the introduction, this tool requires a specific library to be added in the project. For the hands-
on maintainability purpose, we provide a tested library.

This library will allow the SAM4L to configure the Trace functionality and allocate a dedicated memory section
in SRAM to store trace data for graphical debug of the application.

n INFO Up to date library version maintained by Percepio can be found after FreeRTOS+Trace
installation by just clicking on “Help>Recorder Library’. Any additional information on the
process to add the library to an existing project can be found in Percepio documentation.

[Eh FreeRTOS+Trace

|| File Find View Bookmarks J-Link [Help|

User Manual
Trace Recorder Library
Enter License Key...

Percepic Website

Show Diagnostic Log...
I About FreeRTOS5+Trace...

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 20 of 55

TO DO Add FreeRTOS+Trace library.

Create new folder named “FreeRtos_Plus_Trace_Lib” in the src/ directory of your project by right

clicking on src and selecting “Add>New Folder’ under the solution explorer

Solution Explorer v 1 x

% main '| = I¢> int main (void) '[eGOI | &
7 . ,_i Solution 'SAM4L_FreeRTOS_Hands-on' (1 project)
8 E/** 4 | SAMAL_FreeRTOS_Hands-on
9 * \mainpage User Application template doxygen documentation [Dependencies
10 * . . [=d| Output Files
1; : \par Empty user application template b B3 Libraries
13 * Bare minimum empty user application template 4 |b—|;;|AS [r=} Open Folder
14 | * " X
15 * \par Content 4 [cof & CapgylAnllE
16 | * (1]
17 * -# Include the ASF header files (through asf.h) = h
18 * -# Minimal main function that starts with a call to board_ini 2l Newltem.. EieRie
19 * -# "Insert application code here” comment o =1 Shift+Alt+ A Ctrl+X
i :,-" 4 New Folder 53 Copy Ctrl+C
22 X Remove Del
23 EI/* Rename F2
24 * Include header files for all drivers that have been imported from -)
25 * Atmel Software Framework (ASF). Properties
26 | iaf Compare...
27 #include <asf.h> X - X
58 “) Revert all files to original ASF file...
29 Hint main (void) .
30 src Folder Properties
{
31 bOar‘d_lr:ll‘F()j : 2l |j
32 sysclk_init();
100% - ¢ T m b 4

Solution Explorer

% main _:I‘i) int main (void) 'IeGOI | éj
7 B ._i Solution 'SAM4L_FreeRTOS_Hands-on' (1 project)
8 E/** N W | SAMAL_FreeRTOS_Hands-on
9 * \mainpage User Application template doxygen documentation [zd] Dependencies
18 * [=d| Output Files
£ = ; ;
T; : \par Empty user application template » [l Libraries
13 * Bare minimum empty user application template 4 i_.-jr"src
14 = > [E@ ASF
15 * \par Content m___.‘??ﬂ..'g_..._—..._
6 | = 3 3 FreeRtos Plus Trace Lib|
17 * -# Include the ASF header files (through asf.h) A il —
18 * -# Minimal main function that starts with a call to board_init() LEI main.c
19 * -# "Insert application code here" comment

100 %

24 * Include header files for all drivers that have been imported from
25 * Atmel Software Framework {ASF).
26 e
27 #include <asf.h>
28
29 [Eint main (void)
38
31 board_init();
32 sysclk_init();
v o4 T m

I8 =] Solution Explorer

Properties
FreeRtos_Plus_Trace_Lib Folder Properties -
=
T, .

Atmel

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 21 of 55

e Add the whole content of the library by right clicking on the directory FreeRtos_Plus_Trace_Lib
you just created and selecting “Add>Existing Item”

The library files are located in a different location based on the delivery type:

Atmel Training Executable Delivery case

e Find the files in the “AN-4590 SAMA4L-
EK Intro_FreeRTOS\assignments\FreeRtos_Plus_Trace_Lib” folder
(which is located in the ATMEL_TRAINING installation folder)

Atmel Studio Extension Delivery case

e Find the files in the Hands-on Documentation project folder

A Existing hes

-1-: - o ¥ psmgeenents v FreeRios_ Phe_Trce Lib - n Sravh Freeliog Pl Troce [0 0
Geganize = Foew fodder - i@
& Dovnilcads & % b e
i D
h o i “h:“.: trcasec e iTEE
1
== “I:I i trefaseh ® 12 NE ‘
i
B 1y Cocmmnans wreConfigh] =
L. Dataihenty
ireHopds b £ L
trcemel.c e
a Liteares i
trcemaelh 2 an
trofestc X L G ED] e |
M Compuber -
- trofoeth Saaramna 2 t
& Ok (2 : |
Boaeds (\RFODTOR) (¥ e e X
o y 4% trellsenc 512 HAM CFile siz |
trolfsenhs LRSI D A M e
i Mletwert H
- u O]
Filg pasme: = |AllFs) -
e
main.c X Solution Explorer > 1 X
% main & int main (void) '[€GOI | e
7 E a [B src -
5 Efr*
] * \mainpage User Application template doxygen documentation
1@ ¥
1 * ; ; = = =
i; N \par Empty user application template " trcBasec i
13 * Bare minimum empty user application template = tchase..h
14 * | trcConfigh
15 * \par Content | treHooks.h
16 ¥ L | trcKernel.c
17 * -# Include the ASF header files (through asf.h) | trcKernelh
18 * -# Minimal main function that starts with a call to board_init() trcPort.c E
o, =
19 * -# "Insert application code here” comment | trcParth
28 ¥
55 "f | trcTypes.h
1 by
22 | treUserc
23 E/* g trcUserh /
24 * Include header files for all drivers that have been imported from Al
25 * Atmel Software Framework (ASF).
26 | ¥ s)
27 #include <asf.h> B, ASF Explorer @ Solution Explorer
28 Properties
29 Hint main (void) . .
30 FreeRtos_Plus_Trace_Lib Folder Properties -
31 bOEr‘d_ll’?lF()J 8% ’El |_-—-|
32 sysclk_init(); -
FA R : -
W% - 4| m v £ =

Atmel

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 22 of 55

e Include the FreeRtos_Plus_Trace_Lib folder under compiler search path

e Access project properties by right clicking on the project Properties under the Solution
explorer and then select “Toolchain>ARM®/GNU C compiler>Directories”

[Miscellaneous
4 [Z] ARM/GNU Linker
General
[Libraries
& Optimization
[Miscellaneous
4 [ARM/GNU Assembler
[General
o Debiging
“ 1]

Build
Configuration: ’Active (Debug) v] Platform: ’Active (ARM) v]

Build Events
E— I éo {guration Manager...
Device 4 [Z] ARM/GNU Common “ || ARM/GNU C Compiler = Directories

[General
Tool Z{OUtputFiles Include Default Include Path (-1)

4 [Z] ARM/GNU C Compiler = -

Advanced General Include Paths (I} & | s \\‘E

Preprocessor Wsre/BSF/sam/utils/cmsis/samdl/source/templates

3 " WfsrefASF/zam/utils/header_files
= WfsrofASF/sam/utils/preprocessor
E s o ./sro/ASF/thirdparty/CMSIS/ Include
= Debugging Jsrc/ASF/thirdparty/CMSIS/Lib/GCC
(& Warnings Jfsrcfconfig

$(ToolchainDinh.\A\CMSIS_Atmel
$(ToolchainDinh. \ACMSIS_Atmel\CMSIS\Include
$(ToolchainDir)y \ACMSIS_Atmel\Device\ ATMEL

e LS]

v 1 X

| &
i Solution "SAM4L_FreeRTOS5_Hands-on' (1 project)
4 || SAMAL_FreeRTOS_Hands-on |

¥ Build
Rebuild
Clean
23 CopyFull Path
[#] Collapse
Add 3
“o Add Library
Set as StartUp Project
ASF Wizard
View Example Project Help 3
CMSIS Update From Atmel...

Export as example extension (vsix)

Cut Ctrl+X
Rermove Del

Rename F2

Properties

Atmel

n'_-"-.
e Add the following path to the compiler include paths by clicking on Add Item button E

,

Include Paths (-1}

WsrcfFreeRtos_Plus_Trace_Lib
Relative Path

K_:EHCEII

0 WARNING On computer with small size display, you will have to scroll to the right of the frame to
see the “Add Item” button.

AN-4590 — TRAINING MANUAL: 42247A - 02/2014

Page 23 of 55

e Add the trcHooks library include AT THE END of src/config/FreeRTOSConfig.h file

#include "trcHooks.h"

#endif /* FREERTOS_CONFIG_H */

e Add the trace library include at the beginning of your main.c file
#include <asf.h>
#include "trcUser.h"

e Start the Trace record by calling the “uiTraceStart” function from FreeRTOS+Trace library
int main (void)

{

board_init();
sysclk_init();

uiTraceStart();
vTaskStartScheduler();

while(1);
// Insert application code here, after the board has been initialized.

RESULT FreeRTOS+Trace is now configured to run with your project.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 24 of 55

4.5

Atmel

Compile and Test Your FreeRTOS Project

Now that the project is configured for FreeRTOS usage and debug, we will compile and run it before starting
application development.

When the project will be executed once, the FreeRTOS debug Trace should be available in the SRAM of the
SAMA4L.

We will open FreeRTOS+Trace and check that trace data are accessible from the tool.

R
LY TO DO Setup and use FreeRTOS+Trace with your project.

e Connect the board to your computer

e Click on “Build” button:
built successfully

and check the build log in the log output frame to ensure the project

e Click on “Start Debugging” button b to download and run the program from internal Flash of the
SAM4L

e Atmel Studio will ask you to select the Debug Tool. Select J-Link / SWD and click again on b

e (Click on stop debugging button 4 in order to stop the debug session

e Open the “.map” file of the project. Available in “Output Files” directory

Solution Explorer * 0 x

=&
,_i Solution 'SAM4L_FreeRTOS_Hands-on' (1 project)
4 SAMAL_FreeRTOS5_Hands-on
> [=d] Dependencies
4 | Output Files
SAMAL_FreeRTOS Hands-on.bin
SAMAL FreeRTOS Hands-on.eep
SAMAL_FreeRTOS_Hands-on.elf
SAM4L_FreeRTOS5_Hands-on.hex
SAMAL_FreeRTOS Hands-on.lss
SAM4L_FreeRTOS_Hands-on.map
SAMAL_FreeRTOS Hands-on.srec
s+ [«3] Libraries
4 |7 src
> [od ASF
> [config
» [FreeRtos_Plus_Trace_Lib
|| asf.h

|2l main.c

8, ASF Explorer C’z Solution Explorer _

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 25 of 55

e Search for “RecorderData” keyword in the .map file
(use “Ctrl+F” short key to open find and replace window)

SAM4L_FreeRTOS Hands-on.map <
4las .relocate i HxiTIe Lload address BxbbbiEdads :'_-f_
4139 0x20000000 . = ALIGN (@x4) =
4198 ax2peaceee _srelocate = .
4191 *(.ramfunc .ramfunc.*)
4192 .ramfunc Bx26800200 @x38 src/ASF/sam/drivers/bpm/bpm.o
4193 Bx206000000 bpm_ps_no_halt exec
4194 *(.data .data.*) :
4195 .data.g_interrupt_enabled findand Replace Tabl2%
4196 Bx20000038 @ [5h Quick Find ~ | A% Quick Replace ~
4197 ax2aa00038 :
4198 *Fill* 0%20000839 o SRR
4199 .data.flashcalw_wait_until ready (| P
4268 Bx2@28083C o :
4281 8x2880803C Lonk n
4292 .data.uxCriticalNesting [Current Document Pt]
4283 Bx2aaapodn o 3/por
4284 .data.xFreeBytesRemaining Find options
42@5 Ox20006044 oy ap_4.1
4266 .data.xNextTaskUnblockTime [Find Mext] ’ Bookmark All]
4287 ex2aaepadd o
4208 .data.RecorderDataPtr
4289 Bx2880084c 8x4 src/FreeRtos_Plus_Trace_Lib/trcBase.o
4218 Bx2eaaeadc RecorderDataPtr
4211 .data.RecorderData =
4212 ax2pe008508 @x29e8 src/FreeRtos_Plus_Trace_Lib/trcBase.o
4213 ax2ea888508 RecorderData
4214 .data.objectHandleStacks
4215 ex26862338 @xb8 src/FreeRtos_Plus_Trace_Lib/trcBase.o
4216 ax28882a38 objectHandleStacks
4217 .data.TraceObjectClassTable
4218 ax2eea2ate @x8 src/FreeRtos_Plus_Trace_Lib/trcKernel.o
4219 ax2ea02afe TraceObjectClassTable
4220 .data.Delay2.9335
4221 @x28802aT3 @x4 src/main.o =
00% = 4| n | C
e Retrieve RecorderData section mapping address and size. These data are required by
FreeRTOS+Trace to read trace from product memory.
Example:

Atmel

.data.RecorderData
|ex2eeee050]| | @x29e8| src/FreeRtos_Plus_Trace_Lib/trcBase.o
Bx20668050 RecorderData

0 WARNING The address and size of the allocated section can changed according to the selected
compiler optimization.

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 26 of 55

e Under Microsoft Windows, click on “Start>All Programs>Percepio>FreeRtos+Trace >
FreeRtos+Trace”

e In the Welcome window, select the Free edition / 30days evaluation option

, ‘
e

percepio

Welcome to FreeRTOS+Trace

No license was found. You may evalate this software duning 30 days. with full functionallity. Use the Evaluate button
below to dismiss this dialog and continue your evalation. When the evaluation period ends, the "Evaluate” button changes
mto a "Free Edition" launcher.

Getting started? Have a look at the User Manual, or use the Demo button below and explore the features.

Want the Professional Edition? Purchase now, from just $79/month!

Academic? We offer free academic licenses, limited to academic, non-commercial use.

Visit www.percepio.com for further information.
Percepio AB, 2013

Purchase | Enter License Key Demo Free Edition |

ﬂ INFO Percepio offers a software evaluation version for 30 days. When the evaluation
period ends, the "Evaluate" button changes into a "Free Edition" launcher. This
hands-on has been developed for the free version.

e In FreeRTOS+Trace main windows, Select J-Link > Settings

(B R =
1

File Find View Bookmarks IJ—Link Help
Current Device: ATMEL SAM-ICE j _
Select Device..
|| Read Trace
Save Trace...
Settings... I
Halt
|| Resume
e Configure the start Address and the Bytes to read according to information retrieved from .map file
i
(= Select Memory Region u
Device Type: | ATMEL SAM-ICE
Serial Number: | 28001012
Start Address: II [Ec20000050]
Bytes To Read: | | (298

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 27 of 55

e Read the project Trace by clicking on “J-Link>Read Trace’

[N FreeRTOS+Trace
File Find View Bookmarks IJ—Link Help

Corrent Device: /A | fpoomtomaten

Select Device...

Read Trace

Save Trace...

Settings...

Halt

Resume

Previous Instance | Mext Instance |

View sizel (unit)
¥ Grid I (unit) [V Auto

Zoom In | Zoom Out |

y

0 |

n WARNING If you face some problem when Read/Updating trace from FreeRTOS+Trace, follow
these steps:

e Close FreeRTOS+Trace
e Use Studio 6.1 to download, run and then stop debugging
e Restart the FreeRTOS+Trace and then read the trace

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 28 of 55

RESULT You should see the following result on “FreeRTOS+Trace”.

[Eh FreeRTOS+Trace - J-Link.dump i L S|
File Find View Bookmarks J-Link Help
Il = S| | Actor Information
m
----- (Mo Actor Selected)
200
g
m
Mavigation

400 | |

\J"lewsizeIIDH (ms.ps)
¥ Grid |133 (us) ¥ Auto

600 Zoom In | Zoom Out |

l (startup)

314l

View Filter

Actor Instances: 2 of 2

[Kemel Objects Lises (N/A}
[] Kemel Service Calls (N/A)

314l

800

0 (5) | 4
ﬂ INFO “Startup” corresponds to the time required by the kernel/Scheduler to start.

RESULT Congratulations your FreeRTOS project is now configured correctly.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 29 of 55

5. Assignment 2: Create and Manage Tasks

In this second assignment we will work on the basic task creation, scheduling and handling processes using
the FreeRTOS kernel. We will go through the process of:

e Task structure

e Task creation

e Task scheduling

e Priority setting

FreeRTOS+Trace will help us to analyze the execution of our code and see the impact of the different kernel
function calls and settings.

5.1 Structure of a Task

A task is implemented by a function that should never return. They are typically implemented as a continuous
loop such as below:

void vATaskFunction(void *pvParameters)

{
for(;5)
{
/* Task application code here.*/
}
}

As no return is performed, the task should be of void type. A specific structure “parameters” can be used to
pass information of any type into the task example:

Typedef struct {
const char Parameterl;
const uint32_t Parameter2;
/X 00/

} parameter_struct;

At creation, a handler ID is assigned to each task. This ID will be used as parameter for management
function.

xTaskHandle task_handle_ID;

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 30 of 55

5.2 Task Creation and Deletion

xTaskCreate:

Tasks are created by calling the xTaskCreate() function provided by the kernel (see task.h, task.c files).

This function has the following Prototype:

Void xTaskCreate(pvTaskCode, pcName, usStackDepth, pvParameters, uxPriority,
pxCreatedTask;

xTaskCreate function takes the following list of Parameters:

pvTaskCode: Pointer to the function where the task is implemented
pcName: Given name of the task. Intended for debugging purpose only
usStackDepth: Length of the stack for this task in words

pvParameters: Pointer to Parameter structure given to the task

uxPriority: Priority given to the task, a number between 0 and MAX_PRIORITIES — 1 (see
Kernel configuration)

pxCreatedTask: Pointer to an identifier that allows to handle the task. If the task does not have to
be handled in the future, this can be NULL

vTaskDelete:

A task is deleted by using vTaskDelete function. This function has the following Prototype:

void vTaskDelete(xTaskHandle pxTask);

When a task is deleted, it is the responsibility of idle task to free all allocated memory to this task by kernel.
Note that all memory dynamically allocated must be manually freed.

TIPS As any code in infinite loop can fail and exit this loop, it is safer for a repetitive task, to

Atmel

invoke vTaskDelete() before its final brace.

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 31 of 55

Task Management

FreeRTOS offers different functions for Task Management. These functions allow setting tasks in different

states and also obtain information on their status.
'd ™
Mot running
- Suspended —
e .\\\
1 3 .
;/// Mﬂask:uspend@g
/ VtaskSuspend() called \
/ called \
/! VitaskResume() \
/ L called
I'I N
| Sched(iler)
{ Ready activity Running
| -
| =
II|
| 3
\ I|
\ VtaskSuspend() Event |
 called Blocking APl /
\ function called /
S e
~— | Blocked = —
.)

Here is a list of available functions:

/* Delay a task for a set number of tick */
void vTaskDelay (portTickType xTicksToDelay) ;

/* Delay a task for a set number of tick */

void vTaskDelayUntil (portTickType * const pxPreviousWakeTime,
portTickType xTimeIncrement),

/* Set task priority */

void vTaskPrioritySet (xTaskHandle pxTask, unsigned portBASE TYPE
uxNewPriority), N

/* Retreive Task priority setting */

unsigned portBASE TYPE uxTaskPriorityGet (xTaskHandle pxTask) ;

/* Suspend a Task */
void vTaskSuspend (xTaskHandle pxTaskToSuspend)/

/* Resume a Task */
void vTaskResume (xTaskHandle pxTaskToResume)/

/* Retreive the current status of a Task */
eTaskState eTaskStateGet (xTaskHandle pxTask) ;

/* Delete a Task */
void vTaskDelete (xTaskHandle pxTaskToDelete);

Most of these functions take as parameter a pxCreatedTask ID, which is given when the Task was created.

Atmel

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 32 of 55

The first step of this assignment is to create two tasks that simulate a CPU workload using a Delay loop
(Delay = 100000) then suspend themselves.

Atmel

EEB TODO

Create two Tasks.

e In main.c file, define two global task Handlers “worker1_id” and “worker2_id”

xTaskHandle workerl_id;
xTaskHandle worker2_id;

e |mplement the following tasks function above the main routine

static void workerl_task(void *pvParameters)

{

}

static uint32_t idelay,Delay ;
Delay = 100000;
/* Worker task Loop. */
for(s;)
{
/* Simulate work */
for (idelay = 0; idelay < Delay; ++idelay);
/* Suspend Task */
vTaskSuspend(workerl id);
}
/* Should never go there */
vTaskDelete(workerl_id);

static void worker2_task(void *pvParameters)

{

static uint32_t idelay , Delay;

Delay = 100000;

/* Worker task Loop. */

for(s;)

{
/* Simulate CPU work */
for (idelay = @; idelay < Delay; ++idelay);
/* Suspend Task */
vTaskSuspend(worker2_id);

}

/* Should never go there */

vTaskDelete(worker2_id);

e In the main routine add the following code lines in order to create two worker tasks before starting
the scheduler

/* Create Worker 1 task */

xTaskCreate(workerl_task, "Worker 1",configMINIMAL_STACK_SIZE+100,NULL, 2,&
workerl id);

/* Create Worker 2 task */

xTaskCreate(worker2_task, "Worker 2",configMINIMAL_STACK_SIZE+100,NULL, 1,&
worker2_id);

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 33 of 55

Click on “Build” button: and check the build log in the log output frame

Click on “Start Debugging” button b to Download and run the program from internal Flash of the
SAM4L

Click on stop debugging button 4 in order to stop the debug session
Refresh the FreeRTOS + Trace output by clicking on “J-Link>Read Trace’

RESULT You should see the following result on “FreeRTOS+Trace’.

r [
File Find View Bookmarks J-Link Help
= z |3 ~|*! | Actor Information
m = |2
2 |3 - (Mo Actor Selected)
l (startup) .]
A
2.000
g (& |=
m =t ;‘1-
B Worker 1 3|7 Worker 1Task
Mavigation
4.000 s | : :
= |= [< Suspend Worker 1 IEW SIZE [S. e
m (3 1 ¥ Grid [1000 bs) [Auto
Zoom In | Foom Out |
View Filter
- [w] Actor Instances: 4 of 4
f.o0o - [] Kemel Objects Uses (N/A)
i [] Kemel Service Calls (N/A)
g |=@ ¥t Worker 2Task
nEE 1
8.000
‘y“/ Suspend Worker 2 -
—

Atmel

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 34 of 55

5.4

Atmel

We can see on the trace report that each task is scheduled and launched. Each task will load the CPU using
a loop for a certain time, then suspend (see following extract from task1 function).

Delay = 100000;

/* Load the CPU for a iDelay Time. */

for (idelay = @; idelay < Delay; ++idelay);
/* Suspend the task */
vTaskSuspend(workerl_id);

ﬂ INFO In these Task functions, we decide to use an empty loop to simulate a CPU usage.
This has been done for hands-on comprehension purpose. But you can use any
MCU IPs or features in a task.

Priority Settings and Round Robin
Now that we know how to create tasks, we can work on their scheduling.
FreeRTOS allows developer to affect different level of priority for each task to execute.

This kernel functionality is called Preemption. The task priority is performed during task creation (xTaskcreate
parameter).

See the following example:

/* Create Worker 1 task */
xTaskCreate(workerl_task, "Worker 1",configMINIMAL_STACK_SIZE+100,NULL, & workerl_id);
/* Create Worker 2 task */
xTaskCreate(worker2_ task, "Worker 2",configMINIMAL STACK SIZE+100,NULL, & worker2_id);

Using different priority combination will have a different impact on the tasks execution.

I—I-| &
TO DO Schedule “Worker 2” task with higher priority than “Worker 1” task.

e In main.c file modify the tasks priority as following:
“Worker 1” task priority = 1
“Worker 2” task priority = 2
-

e Click on “Build” button: == and check the build log in the log output frame

e Click on “Start Debugging” button b to Download and run the program from internal Flash of the
SAM4L

e Click on stop debugging button 4 in order to stop the debug session
e Refresh the FreeRTOS + Trace output by clicking on “J-Link>Read Trace’

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 35 of 55

RESULT

You should see the following result on “FreeRTOS + Trace’.

@ reos e T (0 L o e

File Find View Bookmarks J-Link Help
g = |= 0w
- g |8 I
g |& - (Mo Actor Selected)
l (startup) 2
A
. 2.000
5 |z |= Worker 2 Task execution
- g2
B worker2 '.-:l i
Previous Instance | Mext Instance |
4.000 .
I Suspend Worker 2 View size |8.526 (ms.ps)
g | =
m |3 = M Gid 1000 () ¥ Auto
= N
Zoom In | Zoom Out |
&[] Actor Instances: 4 of 4
5.000 - [] Kemel Objects Lses (N/A)
_ _ Worker 1 Task execution [Kemel Service Calls (N/A)
= =
JERN -
= nl
= e
8.000
eY/Suspend Worker 1 =
| Y

0 =)

Altmel

AN-4590 — TRAINING MANUAL: 42247A - 02/2014

Page 36 of 55

i
E—"’ TO DO Schedule “Worker 2” task with the same priority as “Worker 1” task.

e In main.c file modify the tasks priority as following:

“Worker 1” task priority = 1
“Worker 2" task priority = 1

+

e Click on “Build” button: == and check the build log in the log output frame

e Click on “Start Debugging” button b to Download and run the program from internal Flash of the
SAM4L

e Click on stop debugging button 4 in order to stop the debug session
e Refresh the FreeRTOS+Trace output by clicking on “J-Link>Read Trace”’

RESULT You should see the following result on “FreeRTOS+Trace’.

-
@ oot somame I iS
File Find View Bookmarks J-Link Help
2 HE =] [ctor normaton
m = =
B (starup) 8 12 - (o Actor Selected)
A
Worker1|
2.000
=R
B Worker2 mo|2
D _
= 4,000
s Worker 1 and Worker 2 Viewsize 613 (ms.ps)
= .
M2 Tasks execution eid [0 Gs) P Auo
= Zoom In | Zoom Out |
=2 o - [w] Actor Instances: 4 of 4
] Kemel Objects Uses (N/A)
B worker2 L i... [Kemel Service Calls {N/A)
o |2
m |3
D / Suspend Worker 1
5.000
Suspend Worker 2 | |

When two or more tasks share the same priority, the scheduler will cut their execution in time slice of one tick
period. This is usually known as Round Robin.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 37 of 55

0 WARNING Set back the task priority as following in order to ease comprehension for next
assignment.

- “Worker 1” task priority = 2

“Worker 2” task priority = 1

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 38 of 55

6.1

Atmel

Assignment 3: Kernel Object Usage

In addition to standard task scheduling and management functionality, FreeRTOS provides Kernel Object,
which allows tasks to interact with each other.

In this assignment we will cover the following topics:
e Software Timer

e Semaphores
e Queues

Software Timer Usage
A software timer allows a specific function to be executed at a set time in the future.

The function executed by the timer is called the timer’s callback function. The time between a timer being
started, and its callback function being executed, is called the timer’s period.

In short, the timer's callback function is executed when the timer period expires.

A timer can be linked to tasks using a specific handle ID. It also has a dedicated priority setting (see
FreeRTOS config file).

xTimerHandle Timer handle;

Different functions are used for creating and managing Timers. Most of these functions need an xBlockTime,
which is the maximum tick latency for the function to be taken into account. As the Timer is like a task, it
needs to have a higher priority, to be allowed to run when command is called. The xBlockTime is a time-out in
case the timer function is not handled on time. This is why it should have one of the highest priorities in the
system.

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 39 of 55

Atmel

Timer + Timer callback

Here is a list of all these functions:

e xTimerCreate:

Description: Function used to create a Timer Object

Prototype: xTimerHandle xTimerCreate(const signed char *pcTimerName,
portTickType xTimerPeriodInTicks, unsigned portBASE TYPE uxAutoReload,
void * pvTimerID, tmrTIMER CALLBACK pxCallbackFunction);

Parameters:

pcTimerName: given name to the timer, for debugging purpose only
xTimerPeriodInTicks: Number of Tick in Timer period
uxAutoReload: if set to 1, Activate timer auto reload feature
pvTimerID: Pointer to pre defined Timer ID (xTimerHandle)
pxCallbackFunction: Pointer to callback function to be executed
when the timer's period expires

xTimerStart:

Description: Function used to start a Timer

Prototype: void xTimerStart(xTimer, xBlockTime)

Parameters:

xTimer: targeted timer ID

xBlockTime: Timeout for function to be handled by timer object
xTimerStop:

Description: Function used to stop a Timer
Prototype: void xTimerStop(xTimer, xBlockTime)
Parameters:

xTimer: targeted timer ID
xBlockTime: Timeout for function to be handled by timer object

Example five ticks timer with highest priority:

Timer Start
Rtos Ticks

N

~-

» Time

Task 1 (N) —“ —

B |

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 40 of 55

e
k—‘" TO DO Add a 50 ticks Software timer.

In this assignment, we will add a 50 ticks timer to our project.

e Configure the FreeRTOS kernel to use a software timer by modifying the following definition in the
FreeRTOSConfig.h file:

/* Software timer definitions. */
#define configUSE_TIMERS 1

e Define a timer handler at the beginning of your main.c file

xTimerHandle Timer_handle;

e Add the following “TimerCallback” function in your main.c file

void TimerCallback(xTimerHandle pxTimer)

{
/* keep this empty for the moment.*/
}

e Create and start a 50 ticks timer by using the “xTimerCreate” and “xTimerStart” functions in the
main routine. These functions should be called before the existing vTaskStartScheduler function

call.
Timer_handle = xTimerCreate("Timer",50,pdTRUE,Q,TimerCallback);
xTimerStart(Timer_handle, 9);
e Click on “Build” button: == and check the build log in the log output frame

e Click on “Start Debugging” button b to Download and run the program from internal Flash of the
SAM4L

e Click on stop debugging button 4 in order to stop the debug session
e Refresh the FreeRTOS + Trace output by clicking on “J-Link>Read Trace’

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 41 of 55

RESULT You should see the following result on “FreeRTOS + Trace”:

Rk
[Fl] FreeRTOS+Trace - J-Link.dump E‘ﬂu
File Find View Bookmarks J-Link Help
—_— | (—-E ;i Ofa
2 1213 (5 B
o - . (No Actor Selected)
S e e
| R |
Waorker 1] i
l Worker2 | —
L= = = =
-BERERE 200.000 |—
B TmrSve — -
Previous Instance | Next Instance |
View size IT-"EID.DH (ms.ps)
w | [|F
g a2 .
218 |3 |o 400.000 W Grd [100000 (us) ¥ Auto
= M . o
— — Zoom In | Zoom Out |
— =
Actor Instances: 62 of 62
L [[] Kemel Notices: 0 of 57
i [[] Kemel Cbjects Uses (N/A)
g !;‘ !%‘ 5‘ [[] Kemel Service Calls (M/4)
BERERERER 600.000
— . o
1284 fms ys5) | P

We can see on this trace the two worker tasks execution at the very beginning and the timer callback function
executed every 50 ticks.

« TIPS Under FreeRTOS+Trace, you can zoom on a specific part of the graphical trace
representation, by just highlight the part of the graph to zoom in and right click on
“Zoom to Selection”.
EEESEE s e
| File Find View Bookmarks J-Link Help
0 [1] |~
- (No
Zoom To Selection |
Zoom Qut - Show Full Trace
Focus All Views On Selection
Show Cemmunication Flow
Statistics Report
Show In View 3
Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014

Page 42 of 55

6.2 Semaphore Usage
In order to synchronize different tasks together, FreeRTOS kernel provides Semaphore Objects.
A semaphore can be compared to a synchronization token that tasks can exchange with each other.

In order to synchronize a task with an interrupt or another task, the task to synchronize will request a
semaphore by using the function “xSemaphoreTake’. If the semaphore is not available the task will be
blocked waiting for its availability. At this time the CPU process will be released and another concurrent ready
task will be able to start/continue its work. The task/interrupt to be synchronized with, will have to execute
“xSemaphoreGive” function in order to unblock the task. The task will then take the semaphore.

Here is an example describing Semaphore usage between hardware interrupt and task:

[:]————%...-rrll are | I
The semaphore is not
availabla...
...50 the task is blocked
waifing for the semaphore
ntemupt!
xSemaphoreGiveFromISRI() — — — S xSemaphoreTake()
An interrupt occurs. . that
‘gives’ the semaphore, ...
ask
nterrupt!
x¥SemaphoreGiveFromISR() —_—— — xSemaphoreTake()
.which unblocks the task
(the semaphore s now
availabla).
ask
[D] xSemaphoreTake()
...that now successfully
‘lakes’ the semaphore, so it
is unavailable once more.
AtmeL AN-4590 — TRAINING MANUAL: 42247A - 02/2014

Page 43 of 55

Here is a list of the Kernel functions that allows handling of semaphore:

e vSemaphoreCreateBinary:

Description: Function used to create a new binary semaphore

Prototype: vSemaphoreCreateBinary(xSemaphoreHandle xSemaphore)

Parameters:

xSemaphore: Handle to the created semaphore. Should be of type
- xSemaphoreHandle

e vQueueAddToRegistry:

Description: Function used to Add queue/semaphore in the system registry and name it

Prototype: vQueueAddToRegistry(xQueueHandle xQueue,

char *pcQueueName);

Parameters:

XQueue: The handle of the queue/semaphore being added to the
registry.

pcQueueName: The name to be assigned to the queue. This is just a
text string used to facilitate debugging.

e xSemaphoreTake:

Description: Function use to take a semaphore

Prototype: xSemaphoreTake(xSemaphoreHandle xSemaphore,

portTickType xBlockTime)

Parameters:

xSemaphore: A handle to the semaphore being taken - obtained when
the semaphore was created.

xBlockTime: The time in ticks to wait for the semaphore to become

available. The macro portTICK _RATE_MS can be used to

convert this to a real time. A block time of zero can
be used to poll the semaphore.

e xSemaphoreGive:

Description: Macro to release a semaphore

Prototype: xSemaphoreGive (xSemaphoreHandle xSemaphore)

Parameters:

xSemaphore: A handle to the semaphore being released obtained when
the semaphore was created.

In our application we will use a semaphore in order to synchronize a “Manager task” with the previously
created timer. The Manager task to be created will have the highest priority of the system but will need a
semaphore from the Timer task in order to be unblocked. This manager task function will be to resume the
worker tasks.

Atmel

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 44 of 55

.
k—‘f TO DO Create a manager task to synchronize with the software timer.

e Define as global a semaphore handler at the beginning of your main.c file

xSemaphoreHandle notification_semaphore;

e Implement the following function in your main.c file

static void manager task(void *pvParameters)

{

/* Create the notification semaphore and set the initial state. */
vSemaphoreCreateBinary (notification semaphore);
vQueueAddToRegistry (notification semaphore, "Notification

Semaphore") ;
xSemaphoreTake (notification semaphore, 0);

/* Producer task Loop. */
while (1)

{
/* Try to take the semaphore. */
/* The lock is only released in the Timer callback function */

if (xSemaphoreTake (notification semaphore, 10000)) {
vTaskResume (workerl id);
vTaskResume (worker2 id);

}

e Add the following task creation in the main routine. (Statement to be placed before
vTaskStartScheduler(); function)

xTaskCreate (manager task, "manager",configMINIMAL STACK SIZE+100,NULL,
tSkIDLE_PRIORI TY+3,NULL) ;

e Implement the following code in the Timer callback function

void TimerCallback(xTimerHandle pxTimer)

{

/* Notify Manager task to start data processing. */
xSemaphoreGive (notification semaphore);

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 45 of 55

e Click on “Build” button: and check the build log in the log output frame

e Click on “Start Debugging” button b to Download and run the program from internal Flash of the
SAM4L

e Click on stop debugging button 4 in order to stop the debug session
e Refresh the FreeRTOS + Trace output by clicking on “J-Link>Read Trace’

RESULT You should see the following result on “FreeRTOS + Trace’.

' R

File Find View Bookmarks J-Link Help
g B |« | | Actor Information
Tmr Sve 8 882 |- (No Actor Selected)
8] a | = %
| manager I
l ‘Warker 1
B Worker2 =1 ﬁ . — 6.000.000
= |= (3 |4
g |9 |8 (3
|3 (& |2
W Tmrsve no|= |2 [0
manager Mavigation
L | = —
l Warker 1 —ﬁ Previous Instance | Next Instance |
B Worker2 View size |25D_‘|29 [ms.pus)
= | = 3 =i
g |2 (2 = -+ [1nnnnn
e ; @ v Grid |1 uuuuu (us) ¥ futo
. |2 (2[5
= ﬁ- Zoom In | Zoom Out |
View Filter
B[] Actor Instances: 349 of 345
B T Sve B[] Kemel Notices: O of 347
[[] Kemel Objects Uses (M./A)
manager z £ (2 |7 . [Kemel Service Calls (N/A)
&= -
B Worker 1 — . .
W worker?
5.950.031 (s.ms.1=) Y

We can now see that manager task execution is synchronized with the Timer callback function and that
Worker tasks are resumed just after manager task execution.

TIPS In the 30 days evaluation version of FreeRTOS+Trace you can enable the display of
Kernel objects uses by clicking on the Kernel Objects Uses checkbox. This option is
located in the “View Filter frame” in the bottom right of FreeRTOS+Trace.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 46 of 55

6.3 Queue Management
Queues are used for inter-task communication and synchronization in a FreeRTOS environment.

They are an important subject to understand as it is unavoidable to be able to build a complex application with
tasks interacting with each other. They are meant to store a finite number of fixed size data.

Queues should be accessible for reads and writes by several different tasks, and don't belong to any tasks in
particular.

A queue is normally a FIFO, which means elements are read in the order they have been written. This
behavior depends on the writing method: two writing functions can be used to write either at the beginning or
at the end of this queue.

lllustration of gueue usage:

A queue is created to allow Task 1 and Task 2 to communicate. The queue can hold a maximum of five
values. When a queue is created, it doesn't contain any values so is empty.

'l _\.'\
Task 1 OOoOo0) Task2
% - -,

Task 1 writes a value on the queue; the value is sent to the end. Since the queue was previously empty, the
value is now both the first and the last value in the queue.

\

wa |([OOOCE])| e

Task 1 sends another value. The queue now contains the previously written value and this newly added
value. The previous value remains at the front of the queue while the new one is now at its back. Three
spaces are still available.

p
5
wa |(ODOEE)| e
\) A
Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014

Page 47 of 55

Task 2 reads a value in the queue. It will receive the value in the front of the queue.

A

wa | ([OJOOEIE))| e

" >,

Task 2 has removed an item. The second item is moved to be the one in the front of the queue.

This is the value Task 2 will read next time it tries to read a value. Four spaces are now available.

r b
h

wa |([OOOCIE)| e

1

L) |)

Here is a list of the Kernel functions that allows handling of Queue:

e xQueueCreate:
Description: Function used to create a new Queue
Prototype: xQueueCreate(uxQueueLength, uxItemSize);
Parameters:

- uxQueuelength: Number of item that queue can store
- uxItemSize: Size of the item to be stored in queue

e xQueueSend:
Description: Function used to Send data into a Queue
Prototype: xQueueSend(xQueue, pvItemToQueue, xTicksToWait)
Parameters:
- XQueue: ID of the Queue to send data in

- pvItemToQueue: Pointer to Data to send into Queue
- xTicksToWait: System wait for command to be executed

¢ xQueueReceive:
Description: Function used to Receive data from a Queue
Prototype: xQueueReceive(xQueue, pvBuffer, xTicksToWait)
Parameters:
- XQueue: ID of the Queue to send data in

- pvItemToQueue: Pointer to Data to send into Queue
- XTicksToWait: System wait for command to be executed

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 48 of 55

M
k—" TO DO Use message Queue to pass information from manager to worker tasks.

In this part, we will pass a Delay information from manager to Worker task using a message queue.

The manager will write two Delay values in the queue and each worker will pick-up one value and modify their
Delay loop.

e Define a new Semaphore object as global in your main.c file

XQueueHandle Queue_id;

e (Create the message queue by adding the following call to xQueueCreate function in your main
routine. (The following line should be added before vTaskStartScheduler function call.)

Queue_id = xQueueCreate(2,sizeof (uint32_t));

e Modify the manager task to add Delay information to send to worker in the queue

static void manager_task(void *pvParameters)

{
static uint32_t Delayl = 400000 , Delay2 = 200000;

/* Create the notification semaphore and set the initial state. */
vSemaphoreCreateBinary(notification_semaphore);
vQueueAddToRegistry(notification_semaphore, "Notification Semaphore™);
xSemaphoreTake(notification_semaphore, 0);

/* Producer task Loop. */
while (1)
{
/* Try to get the lock. */
/* The lock is only released in the TC@ interrupt handler. */
if (xSemaphoreTake(notification_semaphore, 10000)) {
xQueueSend(Queue_id,&Delayl,0);
xQueueSend(Queue_id,&Delay2,0);
vTaskResume(workerl_id);
vTaskResume(worker2_id);

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 49 of 55

e Comment the Delay setting in the Workers tasks

static void workerl_task(void *pvParameters)

{

}

static uint32_t idelay,Delay ;
//Delay = 100000;
/* Worker task Loop. */
for(;;)
{
/* Simulate work */
for (idelay = @; idelay < Delay; ++idelay);
/* Suspend Task */
vTaskSuspend(workerl id);
}
/* Should never go there */
vTaskDelete(workerl id);

static void worker2_task(void *pvParameters)

{

Atmel

static uint32_t idelay , Delay;
//Delay = 100000;

/* Worker task Loop. */

for(s;)

{

/* Simulate CPU work */
for (idelay = 0@; idelay < Delay; ++idelay);
/* Suspend Task */
vTaskSuspend(worker2_id);
}
/* Should never go there */
vTaskDelete(worker2_id);

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 50 of 55

e Modify the two worker tasks to get Delay information from the queue

static void workerl_task(void *pvParameters)

{

}

static uint32_t idelay,Delay ;
//Delay = 100000;
xQueueReceive(Queue_id,&Delay,100000);
/* Worker task Loop. */
for(;;)
{
/* Simulate work */
for (idelay = 0; idelay < Delay; ++idelay);
/* Suspend Task */
vTaskSuspend(workerl_id);
}
/* Should never go there */
vTaskDelete(workerl id);

static void worker2_task(void *pvParameters)

{

}

e (Click on “Build” button:

static uint32_t idelay , Delay;
//Delay = 100000;
xQueueReceive(Queue_id,&Delay, 100000);
/* Worker task Loop. */

for(;;)

{

/* Simulate CPU work */
for (idelay = 0@; idelay < Delay; ++idelay);
/* Suspend Task */
vTaskSuspend(worker2_id);
}
/* Should never go there */
vTaskDelete(worker2 id);

and check the build log in the log output frame

e Click on “Start Debugging” button b to Download and run the program from internal Flash of the
SAM4L

e Click on stop debugging button 4 in order to stop the debug session
e Refresh the FreeRTOS + Trace output by clicking on “J-Link>Read Trace”

Atmel

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 51 of 55

Atmel

RESULT You should see the following result on “FreeRTOS+Trace”.

[h
File Find View Bookmarks J-Link Help
i § 5 |* | | Actor Information
Tmr Sve ‘%: {5'? - {No Actor Selected)
manager' B
l Warker 1
B worker2
ERE]
7 |o
% |5
Mavigation
B Tmr sve
Pre Instance | Next Instance |
- 5.600.000
View size 217242 (ms.ps)
B worker 1 =lE)
; , v Grid I'IEEEEE (ps) v Auto
B Worker2 T |9
Zoom In | Zoom Out |
View Filter
— B [Actor Instances: 321 of 321
[] Kemel Natices: 0 of 319
i [] Kemel Objects Uses (N/A)
3 ;' i [[] Kemel Service Calls (N/A4)
a |9
3 |5
_
l Warker 1

On this graphical trace, we can see that Worker tasks length has changed according to information sent by
manager task. This shows that our message queue is correctly working.

AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 52 of 55

7. Conclusion

In this hands-on we have seen the basic functionality of the FreeRTOS Real Time Operating system and
experimented on the following points:

e How to create and configure a FreeRTOS project under Atmel Studio 6

e How to make use of Graphical debugging tool

e How to make use of FreeRTOS basic functionality in an embedded project

This hands-on has given you the basic knowledge to develop your own Real-time application and understand
the different FreeRTOS examples available in ASF.

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 53 of 55

8. Revision History

Doc. Rev. m Comments
T VU RGGSGSGSSSSSS L |

| 42247A | 02/2014 ' Initial document release |

Atmel AN-4590 — TRAINING MANUAL: 42247A - 02/2014
Page 54 of 55

AtmeL Enabling Unlimited Possibilities®

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K.

1600 Technology Drive Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Bldg.
San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku
USA 418 Kwun Tong Road D-85748 Garching b. Munich Tokyo 141-0032

Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81)(3) 6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81)(3) 6417-0370

Fax: (+852) 2722-1369

© 2014 Atmel Corporation. All rights reserved. / Rev.: 42247A - 02/2014

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. ARM® and Cortex® are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Training Module Architecture
	1.1 Atmel Studio Extension Delivery Case (.vsix)
	1.2 Atmel Training Executable Delivery Case (.exe)

	2. Prerequisites
	2.1 FreeRTOS+Trace

	3. Introduction
	3.1 What is a Real-time Application?
	3.2 Real Time Operating System and Multitasking
	3.3 FreeRTOS Introduction
	3.3.1 The FreeRTOS Kernel
	3.3.2 FreeRTOS Tasks Management Mechanism
	3.3.3 Debugging a FreeRTOS Application

	4. Assignment 1: Create and Configure Your FreeRTOS Project
	4.1 Project Creation under Atmel Studio 6.1
	4.2 Project Clock Configuration
	4.3 Add and Configure the FreeRTOS Kernel
	4.4 Add Library for FreeRTOS+Trace
	4.5 Compile and Test Your FreeRTOS Project

	5. Assignment 2: Create and Manage Tasks
	5.1 Structure of a Task
	5.2 Task Creation and Deletion
	5.3 Task Management
	5.4 Priority Settings and Round Robin

	6. Assignment 3: Kernel Object Usage
	6.1 Software Timer Usage
	6.2 Semaphore Usage
	6.3 Queue Management

	7. Conclusion
	8. Revision History

