

AVR1623: XMEGA Smart Card Reader

ATxmega128A1

Introduction

This application note describes how to use an Atmel® AVR® XMEGA® device to connect to a smart card. The supplied code can easily be ported to support any Atmel device (ATmega, tinyAVR®, XMEGA, UC3, SAM) containing a timer capable of outputting a high frequency clock signal at an I/O pin, an U(S)ART, and optionally a TWI/I²C module.

Features

- ISO7816 comparable smart card reader
- · Optional standalone smart card reader functionality
- TWI/I²C control interface
- Hardware suggestions for both class C and class B smart cards (1.8V and 3.0V)
- Out of the box support for externally clocked asynchronous smart cards

Note: Some of the UC3 and SAM devices also offer a hardware solution for an ISO7816 interface, which does not rely on any external components for achieving half duplex serial communication.

1 Smart Card Physical Interface

The smart card interface consists of up to eight connections, as seen in Figure 1-1. An example of a pinout is listed in Table 1-1.

Figure 1-1. Smart Card Example

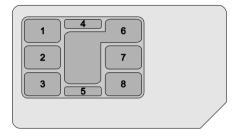


Table 1-1. Pinout Example

Pin number	Pin name	Description			
1	VCC	Driving voltage (1.8 – 5.0V)			
2	RST	Reset pin (can be active low or high)			
3	CLK	Clock signal (1 - 5MHz)			
4	AUX	Not used for this application			
5	AUX	Not used for this application			
6	GND	Common ground			
7	VPP	Programming voltage (not used)			
8	I/O	Half duplex serial communication pin			

For this application only the five connections named **VCC**, **GND**, **RST**, **CLK**, and **I/O** will be used. A detailed description of the different signals is given in the following sections.

1.1 VCC - Supply Voltage

The smart card standard is divided between three different classes, separated by their supply voltage requirements: class A: 5.0V, class B 3.0V, and class C 1.8V.

This application note will describe a single supply class B interface and a dual class B + class C interface. Support for the different classes can be obtained with minor changes to the circuitry and code.

1.2 CLK – Clock Signal

Some smart cards comes with internal clock, but many rely on the reader to provide a clock signal. According to the ISO7816-3 standard this clock has to be between 1 to 5MHz. This application note will utilize a timer to generate this signal.

1.3 RST - Reset Signal

The smart card is reset and forced into a known state by activating the reset signal. The smart card standard does not dictate if this should be an active high or active low signal; a careful procedure should therefore be followed when resetting a smart card. This procedure is described in Section 3.2.

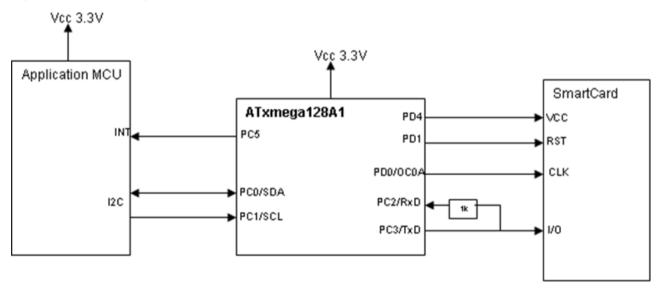
1.4 I/O – Half Duplex Serial Communication Pin

This pin is used for serial communication and can be read by simply connecting it to the RX pin of one of the XMEGA's USARTs. To allow two-way communications, this signal should be connected to the USART RX pin trough $1k\Omega$ of series resistance and directly to the USART TX pin, as illustrated in Figure 1-2.

1.5 VPP - Programming Voltage Pin

This pin is used for programming the smart card and will not be used in this application.

1.6 AUX – Auxiliary Application Dependent Pins


These pins can be used for application specific purposes like USB or similar. These pins will not be used in this application note.

1.7 GND - Ground

Common ground connection; this pin should be connected to the digital ground used for the XMEGA device.

1.8 Resulting Connections

Figure 1-2. Resulting Connections

The five connections between the smart card and the XMEGA are illustrated in Figure 1-2. The smart card I/O pin is connected to the XMEGA RX pin trough a $1k\Omega$ series resistor and directly to the TX pin, as described in Section 1.4. The figure also illustrates the communication interface used between the smart card reader and an application MCU.

2 Power Considerations

As mentioned earlier, smart cards run on one of three possible supply voltages, depending on their class. For this example the smart card VCC pin will be connected directly to an XMEGA GPIO pin. The ISO7816 standard specifies that smart cards can draw up to as much as 100mA. This exceeds the limit for how much current can be sourced by an XMEGA GPIO pin, but for demonstration purposes in this application the smart card is powered directly from the GPIO pin on the XMEGA device. For an end application it is therefore recommended using an external power supply to power the smart card.

Applying power to a smart card before it is properly seated in its socket could result in voltage being applied to pins other than the smart card VCC pin, thereby damaging the smart card. A controlled power supply should therefore be used to ensure power is only supplied to the smart card when it is properly inserted into the socket.

3 Interfacing a Smart Card

For this application note the smart card I/O pin and RST pin will be used to communicate with the smart card. The I/O pin is a bidirectional interface, and is driven from both the smart card itself and the XMEGA. The reset pin (RST) is controlled solely by the XMEGA and is used to ensure the smart card is in a known state before communication is initiated.

3.1 Powering and Activating a Smart Card

Both active low and active high reset configurations are used for different smart cards. Because of this, special care needs to be taken when powering a smart card. The ISO7816 standard dictates how this should be done.

The procedure should be as follows:

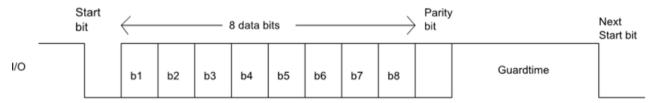
- 1. RST is pulled low.
- 2. The smart card is powered.
- 3. The interfacing device gets ready for incoming data.
- 4. A stable clock signal is provided to the smart card CLK pin.
- 5. Continue with the reset procedure, see Section 3.2.

3.2 Resetting the Smart Card

When resetting a smart card, the card should answer with an Answer-to-Reset (ATR) (see Section 3.3 for more information about ATR).

A smart card is reset as follows:

- 1. Pull the RST line low.
- 2. If no ATR arrives within the next 40 000 cycles, it is assumed the smart card has an active high reset, and the RST signal should be pulled high.
- 3. If an ATR still does not arrive within the preceding 40 000 cycles, it is assumed there is an issue with the interface, and the reader, i.e. the XMEGA device, should deactivate the connection to the smart card and the connections should be investigated.


3.3 Answer to Reset (ATR)

An ATR consists of a number of bytes describing the connected smart card. The exact content is specific to different smart cards, and depends on their applications. For details on this, refer to your specific smart card data sheet.

3.4 Character Frame

A smart card character frame is defined very similar to a standard U(S)ART frame. The frame consist of one start bit, then eight data bits b1-b8 (one byte), an even parity bit and two guard bits, as illustrated in Figure 3-1.

Figure 3-1. The Smart Card Character Frame

The transmitting device (either the smart card or the reader) should leave the I/O line floating during the guard interval. If the receiver detects parity errors, it should pull the I/O line low to notify the transmitter to retransmit the data byte. If a transmission problem is signaled, the sender should re-transmit the character a number of times, before transmission is considered impossible, and communication is aborted. For the solution presented in this application note, the number of attempts that should be made is user configurable, with an upper limit of seven.

A smart card can transmit data either asynchronously or synchronously. This application note will only cover asynchronous transfer, as separate peripherals are used for clock generation and I/O line read/write operations, clocks may or may not be in perfect sync.

The transmission bit rate is linearly dependent on the frequency of the supplied clock signal. The relationship is described by:

$$bitRate = \frac{f_i}{372}$$

Where f_i denotes the clock frequency of the signal used for the **CLK** line.

As previously mentioned some smart cards have internal clock generators. In this case, the smart card bit rate is set to 9600bps. Only minor modifications to the code supplied with this application note are necessary to support cards with built in clock generators.

4 Hardware

This application note provides firmware written for the XMEGA A1U Xplained Pro evaluation kit with an external smart card socket connected. The code will work with most of the XMEGA family and can be modified to run on any Atmel MCU with U(S)ART support, timer output capabilities, and optionally TWI/I²C support.

The firmware is written with the hardware configurations suggested in Section 1.8 in mind. Alternatively the hardware configurations suggested in Figure 4-1 can be used to add support for class C (1.8V) devices.

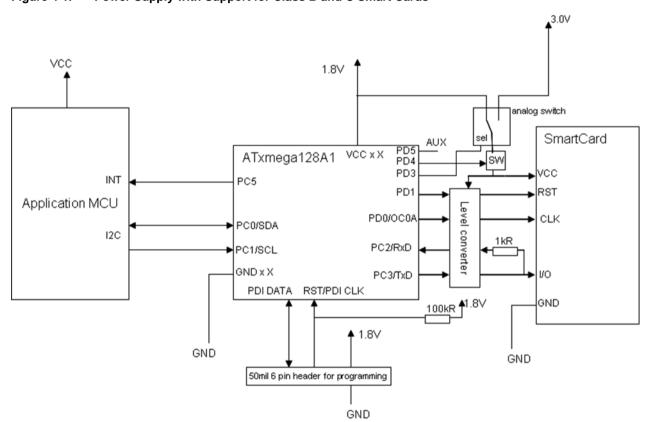


Figure 4-1. Power Supply with Support for Class B and C Smart Cards

4.1 Power Connections

The hardware solution presented in Figure 4-1 will support both class B and C (3.0V and 1.8V) smart cards. Table 4-1 lists the different switch/selector configurations and the resulting smart card VCC values.

Table 4-1. Different Switch/selector Configurations – Resulting Smart Card VCC Values

PD4	PD3	Smart card VCC
Low	Low	0V
Low	High	0V
High	Low	1.8V
High	High	3.0V

5 Interfacing the Reader

The reader is configured with a TWI/I²C interface for communication with an interfacing application controller. The communication protocol relies on various control words for configuring the reader itself and communication with a connected smart card.

5.1 Addressing

As listed in Table 5-1, the TWI/I²C device address is set to be 0x21. Taking the R/W bit in the TWI address into account gives the address 0x42 to write and 0x43 to read.

Table 5-1. TWI/I²C Device Address Set to 0x21

TWI/I ² C base address	TWI/I ² C write address	TWI/I ² C read address		
0x21	0x42	0x43		

5.2 Configuration Registers

The reader has two configuration registers used for configuring the reader and the smart card interface. These registers can be configured using the TWI/I²C interface with the command listed in Table 5-2.

Table 5-2. Command List

Description	Address	Command	Data byte 1	Data byte 2	
Write configuration	0x42	(0b10<<6)+SC_CFG0	SC_CFG1	CFG_CHECK	

5.2.1 SC_CFG0 - Configuration Register 0

Bit	7	6	5	4	3	2	1	0	
SC_CFG0	1		0	SHUT	DOWN	RETRY[2:0]	V	VCARD[1:0]	
Access	W	W	W	W	W	W	W	W	
Reset	1	0	0	0	1	1	0	0	

Bit [7:6]

These bits are part of the command and must always be '0b10'.

Bit 5 – SHUTDOWN

This bit activates or deactivates the connected smart card according to the process described in the ISO7816 standard.

SHUTDOWN	Action
0	Activate the smart card according to ISO7816 after updating the configuration registers
1	Shutdown the smart card

• Bit [4:2] - RETRY

These bits define how many attempts should be made to retransmit a byte of data if NAK is received from the smart card.

RETRY [4:2]	Number of retries
000	0
001	1
010	2
111	7

• Bit [1:0] - VCARD

These bits configure the smart card reader pins according to the table listed in Section 4.1. With the circuitry proposed in Figure 4-1 or similar, these bits will define the voltage supplied to the connected smart card **PWR** pin.

VCARD [1:0]	Smart card voltage supply
00	0.0V ⁽¹⁾
01	1.8V ⁽¹⁾
10	3.0V ⁽¹⁾
11	Reserved for 5.0V operation Class A smart cards ⁽²⁾

Notes: 1. Voltage change will not take effect unless an activation is run.

2. This application note does not suggest hardware for class A smart cards, but this can be achieved with minor changes to the circuitry suggested in Figure 4-1.

5.2.2 SC_CFG1 - Configuration Register 1

Bit	7	6	5	4	3	2	1	0
SC_CFG1		GUARD_	TIME[6:0]			CLOCK_S	PEED[1:0]	
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	1	1

• Bit [7:2] - GUARD_TIME

According to Section 3.4 additional guard time is needed after transmission for the receiver to ACK or NAK the transmission. The guard time can be adjusted using these bits. Setting these bits to zero gives a default guard time of 186µs, which is the recommended guard time for a 4MHz clock. The actual resulting guard time is given by:

$$G_t = 4 \times GUARD_TIME \times 2.75 \mu s$$

Where G_t is the guard time in μ s. To calculate the needed guard time, the etu or bit length of the signal must be known. The bit length for an asynchronous card with external clock is given by:

$$etu = \frac{372}{SC_{CLK}}$$

Here SC_{CLK} denotes the smart card clock frequency. The guard time Gt should be 2 etu. For a 4MHz clock this result in 186 μ s.

• Bit [1:0] - CLOCK_SPEED

These bits can be used to change the frequency of the clock provided to the smart card.

CLOCK_SPEED [1:0]	Clock signal on CLK pin
00	0MHz
01	1MHz
10	2MHz
11	4MHz

5.2.3 CFG_CHECK

Bit	7	6	5	4	3	2	1	0	
SC_CFG1		CFG_CHECK[7:0]							
Access	W	W	W	W	W	W	W	W	
Reset	0	0	0	0	0	0	0	0	

• Bit [7:0] CFG_CHECK

This byte is used by the smart card reader to detect possible transmission errors in the received SC_CFG0 and SC_CFG1 packets sent to the reader over TWI/I²C. CFG_CHECK should equal a bitwise XOR between SC_CFG0 and SC_CFG1. If a transmission error is detected, the smart card connection will be deactivated.

5.3 Interface Register

The interface register can be used to control the smart card reader GPIO pins, issue a reset signal to the smart card, or placing the reader in sleep mode. The register is write-only, and all bits will be cleared after the written command has been executed.

5.3.1 SC_INTERFACE

Bit	7	6	5	4	3	2	1	0
SC_INTERFACE	0	IODIS	CKSTOP	CARDRST	AUX	SLEEP	CARDCK	CARDIO
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	1	0	0

Bit 7

This bit is a part of the command, and must always be written to '0b0'.

• Bit 6 - IODIS

This bit selects one out of two possible operation modes for the smart card interface pins:

IC	DDIS	Action
0		The interface pins CLK , RST , and I/O will be driven as defined by the ISO7816 standard, and the CARDCK, CARDIO, and CARDRST bits are ignored
1		The smart card interface pins CLK , RST , and I/O are driven as defined by the CARDCK, CARDIO, and CARDRST bits

• Bit 5 - CKSTOP

This bit can be used to stop the smart card clock. Some smart cards will enter sleep mode when the clock is stopped.

СКЅТОР	Action
0	No action
1	The smart card clock is stopped ⁽¹⁾

Note:

1. If the smart card clock is stopped, the card must be reactivated according to the procedure described in Section 3.1.

• Bit 4 - CARDRST

The smart card reader response to setting this bit is dependent on the IODIS and the smart card reset mode detected during the activation process. The reset pulse length is defined in firmware with a default duration of 2ms.

CARDRST	IODIS	Action
0	0	No action
	1	RST line driven low
1	0	The smart card interface pins CLK , RST , and I/O are driven as defined by the CARDCK, CARDIO, and CARDRST bits
	1	RST line driven high

• Bit 3 – AUX

This bit controls the output level present at the AUX pin (PD5) after the output driver has been activated by setting IODIS at least once after powering the reader.

AUX	Action
0	PD5 is driven low
1	PD5 is driven high

Note: The AUX pin driver is activated the first time IODIS is written to 1, therefore IODIS must be written at least once before the AUX pin can be driven as defined by the AUX bit.

• Bit 2 - SLEEP

If written to 1, the XMEGA enters sleep mode. The device will wake on TWI/I²C address match. A smart card deactivation is recommended before entering sleep mode.

SLEEP	Action
0	No action
1	The smart card reader enters sleep mode ⁽¹⁾

Note: 1. It is recommended to deactivate the smart card before entering sleep mode.

• Bit 1 - CARDCK

If IODIS is set to 1 this bits controls the drive level of the smart card CLK line.

CARDCK	Action
0	CLK line is driven low ⁽¹⁾
1	CLK line is driven high ⁽¹⁾

Note: 1. Only effective when IODIS is set to 1.

• Bit 0 - CARDIO

If IODIS is set to 1 this bit controls the drive level of the smart card I/O line.

CARDIO	Action
0	I/O line is driven low ⁽¹⁾
1	I/O line is driven high ⁽¹⁾

Note: 1. Only effective when IODIS is set to 1.

5.4 Writing Data to the Smart Card

When writing a data packet to the smart card, the TWI address 0x42 must be used. The first two data bytes should be the command byte 0xF8 and a byte declaring how many bytes there are in the data packet. Next number of actual data bytes follows directly.

Description	Address	Command byte	Data byte 1	Data byte 2	 Data byte N
Write data to smart card	0x42	11111000 (0xF8)	Length (N)	DATA0	 DATAN

Note: The smart card reader will store the received data in a 250-byte buffer until it gets time to process and send the data to the smart card. It is therefore important to keep the buffer size in mind when writing data to the smart card.

5.5 Reading Data from the Smart Card

All data transmitted from a connected smart card to the smart card reader is stored in an internal receiver buffer. This data can be read by issuing a read command over the smart card reader TWI/I²C interface. The first byte returned after a read command will always be a status byte. Continuing reading the smart card reader will transmit data bytes until its internal buffer is emptied or the interfacing device NAKs a data byte. The data packet sent from the reader in response to the read command will be as listed below.

Description	Address	Data byte 1	Data byte 2	Data byte 3	Data byte 4	Data byte 5	Data byte N
Read data	0x43	SC_STATUS	DATA1	DATA2	DATA3	DATA4	DATAN

5.5.1 SC STATUS

This byte contains information about the smart card and the smart card reader.

Bit	7	6	5	4	3	2	1	0
SC_STATUS	ı	DATA	BUFFER_OVF	NO_CMD	NAK_CONF	NAK	PROTVIOL	DATA_TO_SC
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit 7

Reserved bit.

Bit 6 – DATA

This bit is set if there is data in the smart card reader receiver buffer.

• Bit 5 - BUFFER OVF

This bit is set if the smart card reader receiver buffer has overflown and lost data.

Bit 4 – NO CMD

This bit is set if the smart card reader has received an unknown command. If this happens the receiver buffer will be flushed.

Bit 3 – NAK_CONF

The reader has received invalid configuration values.

Bit 2 – NAK

The smart card has NAK'd a byte more than the number of retries specified in SC CFG0 RETRY.

• Bit 1 - PROTVIOL

This bit is set if the smart card reader communication protocol has been violated, e.g. the configuration check byte is incorrect.

• Bit 0 - DATA_TO_SC

This bit is set if there is data in the smart card reader transmit buffer waiting to be sent to a connected smart card.

5.6 Interface Summary

Description	Address	Command byte	Data byte 1	Data byte 2	 Data byte N
Write configuration	0x42	10+SC_CFG0	SC_CFG1	CFG_CHECK	
Write interface	0x42	0+SC_INTERFACE			
Write data to smart card	0x42	11111000 (0xF8)	Length (N)	DATA0	 DATAN
Read data from smart card	0x43	SC_STATUS	DATA1	DATA2	 DATAN

6 Interrupt Pin

The smart card reader has an interrupt pin (PC5) used for signaling that the reader receiver buffer contains data waiting to be sent to the application processor. Connecting this pin is optional, but if left unconnected the smart card reader will be unable to signal when there is data in the receiver buffer, and the application processor will have to poll for data to avoid buffer overflows.

The interrupt pin is low when the smart card reader receiver buffer is empty. If there is data in the receiver buffer the interrupt pin is driven high until the buffer is emptied.

7 Sleep Mode

After power-on the smart card reader is put in the Power Down sleep mode to conserve energy. When the reader is in sleep mode all unused peripherals are turned off and all unused ports are pulled up to give them a defined state. Any address match on the TWI bus will bring the reader out of sleep and put it in idle mode, where it is ready to access a connected smart card. The reader can be put back to sleep using the SLEEP bit in the SC_INTERFACE register. It is recommended to deactivate any connected smart card before the reader is put in sleep mode as the smart card clock is stopped when the reader goes to sleep.

8 Revision History

Doc Rev.	Date	Comments
42624A	11/2015	Initial document release.

Atmel Corporation

1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42624A-XMEGA-Smart-Card-Reader_ApplicationNote_AVR1623_112015.

Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, tinyAVR, XMEGA®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES) FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.