Altmel

Atmel SHART

SMART ARM-based Microcontrollers

AT07690: Using the Timer Counter for Control
Applications in SAM D11

APPLICATION NOTE

Introduction

This application note describes the following features of the Timer/Counter
for Control Applications available on the Atmel® | SMART SAM D11.

N O RN~

©

10.
11.
12.

Circular Buffer.
One-shot Operation.
Output Matrix with DTI.
Swap.

Pattern Generation.
Ramp2.

Ramp2A.

Dual Slope PWM.
Counter Operation.
Fault Operation.
Dithering.

Capture Operation.

It provides details for configuring the above features of the Timer/Counter for
Control Applications. It also contains code examples to simplify the use of

TCC in typical applications.

All the software examples specified in this document are provided in ASF

(Atmel Software Framework).

For more information about the features of TCC module, refer SAM D11

device datasheet.

Features

Up to four compare/capture channels (CC) with

— Double buffered period setting

— Double buffered compare or capture channel

— Circular buffer on period and compare channel registers
Waveform generation

— Frequency generation

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

http://www.atmel.com/tools/avrsoftwareframework.aspx

— Single-slope pulse-width modulation (PWM)
— Dual-slope pulse-width modulation with half-cycle reload capability
* Input capture
— Event capture
— Frequency capture
— Pulse-width capture
* Waveform extensions
— Configurable distribution of compare channels outputs across port pins
— Low- and high-side output with programmable dead-time insertion
— Waveform swap option with double buffer support
— Pattern generation with double buffer support
— Dithering support
« Fault protection for safe drivers disabling
— Two recoverable fault sources
— Two non-recoverable fault sources
— Debugger can be source of non-recoverable fault
* Input event
— Two input events for counter
— One input event for each compare channel
¢ Output event
— Three output events (Count, Retrigger, and Overflow) available for counter
— One Compare Match/Input Capture output event for each channel
* Interrupts
— Overflow and Retrigger interrupt
— Compare Match/Input Capture interrupt
— Interrupt on fault detection

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 2
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Table of Contents

INEFOAUCTION. ... 1
FALUIES. ..., 1
1. ADDBreViatioNS.......ooooviiiiiii 5
2. Pre-reqUISIteS......cooi i 6
K T OSSPSR 7
3.1, TCOC OVEIVIEBW. ...ttt ettt b ettt e s b e st e st e s e e sb et e te e s be e et e e saeeeneas 7

JC T2 W] Tox (o] b= I D 7= Yo o] o] o TSR 7

3.3, SpeCial CoNSIAEIAtIONS.citiiiii ittt bbb e nne e 8
ST (U o TSR 9
4.1 HArAWAre SEIUD......eiiiiee et e e et e e e e et e e e e e e stb e e e e e e s enbaeeeeeseaanraeeeeeannnres 9
4.2, SOFWAIE SEUUP....eeiii ittt ettt e e e e e e e e st e e e e e e e eabraeeeeeasatbeeeeeesanbreeeaeeeaanrreeaeaanns 9

5. TCC Features Demonstration.................ueeeieeiiiiiiiiiiiiiieieeeeeeeeeeeeee e 14
5.1. Timer Mode Configuration............ooiiiiiiiiii ittt e et e e e e e s beeeeans 14

LT O o B | =T o =T =Y SRS 14
5.2.1. Circular Buffer Mode Configuration............c.coeeiiiiiiiiiiiice e 14

5.2.2. COAE SNIPPEL..c ittt 15

5.2.3. Waveform OUIPUL.........oeiiiiiiiiie ettt e e et e e e e et e e e e s ennnneeae s 15

5.3, ONE-ShOt OPEIratiON.......ccciiiiiiiee et ee e e e et e e e e e et e e e e e eeabaaeeaeeessnraeeeeeannnees 16
5.3.1. One-shot Operation Configuration.............cc.ceeiiiiiiiiiiii i 16

5.3.2. COAE SNIPPEL..cc ittt e 17

5.3.3. LEDO OUIPUL. ..ottt ettt et e et e e st e e et e et e e e smneeeeanaeeeenee 17

5.4. Output Matrix With DTITOr PWM.......ccuiiiie ettt et ea s 17
54.1. Dead Time INSErtion (DT1)......ueiiieiiiiiieiii ettt 18

5.4.2. Output Matrix with DTI Configuration..............ccciiiiiiiiiiiii e 19

LI T 0o o LY 11 o] o 1= SRS PPPPRR RSP 20

5.4.4. OTMX with DTI Enable for Channel 2 Waveform Output.............ccccveeiiiiiiiiee i, 20

5.5, SWAP OPEIALION. ...ttt ittt e et e et n e 22
5.5.1. SWAP Mode Configuration............ceoiiueiiiiiiieiiie ittt 23

L T B O7o o (Y 11 o] o 1= SRRSO 23

5.5.3. SWAP Waveform OULPUL.........ccuriiiii et 24

5.6. Pattern Generation......... ..ot a e a e e e nnaaeeans 25
5.6.1. Pattern Generation Configuration...............cooiiiiiiiiiiiiiie e 25

5.6.2. COUE SNIPPEL.....uuiiieiiiiiiiiee et e e e et e e e e e e a e e e e e e e e e aarreeeas 25

5.6.3. Pattern Generation Waveform OUtpUL...............oooiiiiiiiiiiiiiie e 26

5.7 RAMP2 OPEIAtION....cciiiiiiiiiieetiie ettt eb e e e st e s e ree e naee 27
571, RAMP2 CONfIQUIatioN.ceiiiiiiiiiii ittt 28

o A ©7o o [3] 11 o] o 1= SO PURRRSPR 28

5.7.3. RAMP2 Waveform OUEPUL..........cocooiiiiiiiii et 28

5.8, RAMP2A OPEIAtiON.....cutiiiiiiie ittt 29

5.8.1. RAMP2A CONfIGUIAtION......cciiiiiiiiiiiie ittt 30

5.8.2. COAE SNIPPEL. ..ottt 30

5.8.3. RAMP2A Waveform OUIPUL..........coeiiiiiiiieiccciiiee e e e 30

5.9. Dual SIope PWM OPEIatioNS.........cccuviiieeiiiiiiiie ettt e ettt e e e et e e e e eaaae e e e e e eanreeeeeeas 31

5.9.1. Dual Slope Configuration............cccceiiiiiiiiiiie e 32

5.9.2. COAE SNIPPEL. ..ottt 32

5.9.3. Dual Slope Waveform OULPUL............eiiiiiiiiiiee e eebeee e 33

5.10. CoUNtEr OPErations..........eiiiiiiiiiiiie et e et e e et e e e e e et e e e e e st e e e e e s eeabraeeeeeannraeeens 33

5.10.1. Counter ConfIQUration..........ccouiiiiiiiiiiie et 34

5.10.2. COAE SNIPPEL. ..ottt 34

ST R R O 11 o U | TSR PPRPRRPN 34

511, FaUlt OPerations.........ooiii it e e e et e e e e e et e e e e et raeeaeeenaaraeeeeeananres 34

5.11.1. Fault Configuration..........oceiiiioiieiiie et 34

5.11.2. Code Snippet | — To Configure TCC module for Fault Configuration........................... 34
5.11.3. Code Snippet Il - To Configure EIC module and Event System for Fault Configuration

... 35

5.11.4. Code Snippet lll — Main Application Code to Detect Fault and Turn ON/OFF Fault....36

LT T TU 4o T | PR STRRRRN 36

5.12. DITHERINGttt ettt ettt bt e e e a et e et e e e sab e e e st e e e e sbe e e naneeesnaeeean 37

5.12.1. DITHERING CoONfiguration............ccieiuieeiiieeeiiieesieeesieeesee et eeseieeeseeeesneeeesnaeeennes 38

5.12.2. €O SNIPPEL....eiieeeitiiiiieiie ettt et 38

5.12.3. Dithering Waveform OULPUL............cooiiiiiiiii e 38

5.13. Capture OPEratioNS..........eiiiiiiiiiiiii e ettt e et e e e e ettt e e e e s e as e e e e e e sntbeeeeeseassraeeeesannnraeeens 39

5.13.1. Capture Configuration.............c.eeeiiiieiiie e e e e e e e s e e e 39

5.13.2. Code Snippet | — Configure USARTcociiiiiiiieiii et 39

5.13.3. Code Snippet Il — Configures Event and the Main Application for Capture Operation

... 39

5.13.4. Code Snippet Ill — Configure TCC for Capture Operation...........cccccevcvererieeerneenennenn. 40

D135, OULPUL. ..ttt e b e bbb s 40

6. REVISION HISTOMY......ciiiiiiiiiieiee e e 42

Atmel

Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE]
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

4

1. Abbreviations

ASF Atmel Software Framework

CcC Compare/capture

DTI Dead-time Insertion

EDGB Embedded Debugger

EVSYS Event System

GCLK Generic clock

IDE Integrated Development Environment
OTMX Output Matrix

PER Period

SMPS Switching Mode Power Supply

TCC Timer/Counter for Control Applications

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE]
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5

2. Pre-requisites
The solutions discussed in this document require basic familiarity with the following tools.

e Atmel Studio 7 or above
* SAM D11 Xplained Pro

Atmel Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 6
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

3.1.

3.2.

TCC

TCC Overview

The Timer/Counter for Control Applications (TCC) module provides a set of timing and counting related
functionalities, such as the generation of periodic waveforms, the capture of a periodic waveform's
frequency/duty cycle, software timekeeping for periodic operations, waveform extension control, fault
detection, etc. It enables low- and high-side output with optional dead-time insertion. It can also generate
a synchronized bit pattern across the waveform output pins. The fault options enable fault protection for
safe and deterministic handling, disabling, and/or shut down of external drivers. Waveform extensions are
intended for use in different types of motor control, ballast, LED, H-bridge, power converter, and other
types of power control applications. The counter size of the TCC module is maximum 24-bit.

Figure 3-1. Timer/Counter Block Diagram

Base Counter
P S —— " '
:Counter < ";‘:i:" = OVF (INT/Evert/DMA Reqg)
1 L 4 < - > ERR (INT Req.)
| [INCOUNIII | | control Logic
:_ - ‘ "TCCx_EV(Q"
D "TCCx_EV1"
A
Y_ or
= E "TCCx_MCx" | Ewvent
) 4 System
—o] BoTTOM _|3|&
7y > = > B WorT
[
r e B e > PXworel
Compare/Capture -
(Unit x={0,1,...3}) —— > o 4 wors]
= o
Y vy 5 x r %_’;E_"%E _‘EWOH]
A . . &% - = B 82
capture’ Control Logic o= » 7 EE : —DEWOB]
[=
2 > Pl PT pXworm
Ee IEQ
Waveform EE — I ” ort
[=]
Generation > ™ B _.EWO[D]
" mnn —
= i H > MCx (INT/EvertDMA Regq)

Functional Description
The TCC module consists of following sections:
+ Base Counter
* Compare/Capture channels, with waveform generation
* Waveform extension control and fault detection
* Interface to the event system, DMAC, and the interrupt system
The base counter can be configured to either count a pre-scaled generic clock or events from the event

system (TCCx, with event action configured to counting). The counter value can be used by compare/
capture channels which can be set up either in compare mode or capture mode. In capture mode, the

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 7

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

3.3.

counter value is stored when a configurable event occurs. This mode can be used to generate
timestamps used in event capture, or it can be used for the measurement of a periodic input signal's
frequency/duty cycle.

In compare mode, the counter value is compared against one or more of the configured channels'
compare values. When the counter value coincides with a compare value, an action can be taken
automatically by the module, such as generating an output event or toggling a pin when used for
frequency or PWM signal generation.

The connection of events between modules requires the use of the SAM Event System Driver (EVSYS) to
route output event of one module to the input event of another. For more information on event routing,
refer to the event driver (EVSYS) documentation.

In compare mode, when output signal is generated, extended waveform controls are available, to arrange
the compare outputs into specific formats. The output matrix can change the channel output routing;
Pattern generation unit can overwrite the output signal lines to specific states. The fault protection feature
of the TCC supports recoverable and non-recoverable faults.

Special Considerations

As the TCC module have more waveform output pins than the number of compare/capture channels, the
free pins (with number higher than number of channels) will reuse the waveform generated by channels
subsequently. E.g., if the number of channels is four and number of wave output pins is eight, channel 0
outputs will be available on out pin 0 and 4, channel 1 output on wave out pin 1 and 5, and so on.

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 8

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

41.

4.2.

Setup

The example code provided in this application note uses the SAM D11 Xplained Pro kit as the hardware
and Atmel Studio 7 as IDE for application development.

The overview of this section contains information about hardware setup and software setup.

Hardware Setup

The SAM D11 Xplained Pro kit will be used to run the example application. This is an evaluation kit that
allows connecting multiple external components via a wing connector. A wing board is a self-contained
board that can be connected to the Xplained Pro using a wing connector. The SAM D11 Xplained Pro kit
has one such wing connector marked as EXT1..

There are two USB ports on the SAM D11 Xplained Pro board; DEBUG USB and TARGET USB. For
debugging using the Embedded debugger EDBG, DEBUG USB port has to be connected.

Figure 4-1. SAM D11 Xplained Pro Board

Software Setup

When SAM D11 Xplained Pro kit is connected to the PC, the Windows® Task bar will pop-up a message
as shown in the following figure:

Figure 4-2. SAM D11 Xplained Pro Driver Installation

| Driver Software Installation @
Your device is ready to use
EDBG Virtual COM Port (COMLS) —jReadyto use
EDBG Data Gateway +f Ready to use

Close

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 9

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

If the driver installation is successful, EDBG will be listed in the Device Manager as shown in the following
figure:

Figure

4-3. Successful EDBG Driver Installation

r Y
Device Manager E@g
E=) g

File Action View Help

€= @EHE

a = CHELT0219
‘Lu-‘ Atmel
¢ L./A] EDBG Data Gateway|
p@ Batteries
b -- Bluetooth Radios
b -8 Computer

o | @S

>y Disk drives

- Display adapters

> ey DVD/CD-ROM drives

> % Human Interface Devices
- .55 Imaging devices

> ¥ Junge Connectivity

b Keyboards

b --ﬂ Mice and other pointing devices

b A Monitors

b ¥ Metwork adapters

473" Ports (COM & LPT)

f? Communications Port (COM1)
YZ" ECP Printer Port (LPTL)

3" EDBG Virtual COM Port (COML5)
»J} Processors

b -% Sound, video and game controllers

b 4% Storage controllers
[> -8 System devices
[s i Universal Serial Bus controllers

L = 4

To ensure that the EDBG tool is getting detected in Atmel Studio,

1.

Atmel

Open Atmel Studio7, go to View — Available Atmel Tools. The EDBG should be listed in the tools
as "EDBG" and the tool status should display as Connected. This indicates that the tool is
communicating with Atmel Studio.

Figure 4-4. EDBG under Available Atmel Tools

Available Tools * B8 X

Tools and Simulators Status
DBG (ATML2178031800000025)

‘ Simulator Connected

& STKS500 (COML) Program only Connected

Available Tools

If the tool does not get displayed in Available Atmel Tools, disconnect the tool and reconnect
again.

Right click on the tool in the Available Tools list, click on Upgrade. This will check whether the
firmware in the tool is up to date. Click on upgrade to upgrade the firmware of the tool to latest
version. In case you get "upgrade failed" error, cycle power the tool and then try upgrading again.

Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 10
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

The SAM D11 TCC Features example code is available in the latest ASF with Atmel Studio. The following
steps should be followed to load the SAM D11 TCC features example code in the Atmel Studio:

To load the example project in Atmel Studio, go to File — New and click on Example Project. The
shortcut key to do this is (CTRL +Shift + E).

Figure 4-5. Creating Example Project in Atmel Studio

File bdit View VAssistX AbF Project Uebug lools Window Help
New ' | i3 Project. Ctrl+Shift+N B
Open ' File. Ctrl+N
Close Atmel Start Configurator
Loz dallion B EBample Project... | Ctrl+ Shift+E

Enter TCC Features Example in the search box from New Example Project from ASF so that it
will show the TCC Features Example project solution available in the ASF

Provide a name for the project, select the destination path, and click OK. The location of the project
is selected by choosing a specific folder in Location Tab.

After clicking OK, the TCC Features Example project has been loaded in the Atmel Studio as
shown in the following figure

Figure 4-6. Solution Explorer View of SAM D11 TCC Features Example Project

Atmel

Solution Explorer *Ax
@ o-a@| p -

Search Solution Explorer (Ctrl+;) P~

Pl TCC_FEATURES o

=d| Dependencies
P =4 Output Files
g Libraries
4 [T src
b [od ASF
P [J config
h asfh

B conf_example.h

El main.c

-

TCC Features Example project contains a conf example.h file, which has the macro definitions
for each feature. Only one feature should be enabled at a time for the proper operation of this
application.

Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 1
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Figure 4-7. TCC Features Definition in conf_example.h

conf_eampleh + > [LETRS

3 conf_exampleh - =2 DATEMP_ASPIASPiesh tec_features I d11_xplained_pro\asS_arm\sam_applications_tec features samdl1 xplained_pro\src\conf_eampleh
o7= =
-

= Support and FAQ: visit Atmel Support
=/

El#ifndef CONF_EXAMPLE_H_INCLUDED
#define CONF_EXAMPLE H_INCLUDED

B/
* The following are the list of features, supported by this example.
* The user can enable only one feature at a time, to aveid unnecessary
* coding complexity, it is left to the user to ensure that only one
* feature is enabled at a time.To enable a feature, the user just ensbles
* the feature at the start of feature definitions
o F 1

/7 List of Feature definitions, that can be used by this application note

#undef TCC_MODE_CIRCULAR_BUFFER
#undef TCC_MODE_ONESHOT

#undef TCC_MODE_OTMX_DTI

#undef TCC_MODE_SWAP

#undef TCC_MODE_PATTERN_GENERATION
#undef TCC_MODE_RAMP2

#undef TCC_MODE_RAMP2A

#undef TCC_MODE_DUAL_SLOPE
#undef TCC_MODE_COUNTER

#undef TCC_MODE_FAULT

#undef TCC_MODE_DITHERING
#undef TCC_MODE_CAPTURE

PHITITIEIETETII LT LT LT ERIR R I 1AL EEIRFER114000140110010000

B1*
= Feature definitions used by this project specify which feature
= needs to be tested .For example, if you want to test the feature
= TCC_MODE_CAPTURE, only TCC_MODE_CAPTURE needs to be defined below as
= #define TCC_MODE_CAPTURE. No other definitions should be done by user.
=/

#define TCC_MODE_CIRCULAR_BUFFER
// End of feature definitions

+ After enabling the desired feature in the conf _example.h file, compile the project by selecting
Build — Build solution

* To debug this example project code in Atmel Studio, configure the Tool and Interface in the project
properties. To open the project properties, go to Project menu — Properties. In the project
properties, go to Tool tab — Under the Selected Debugger/Programmer, select the tool as
EDBG and interface as SWD as shown in the following figure.

Figure 4-8. Tool and Interface Settings

main.c

TCC_FEATURES* + X [yil=ely

Build

C guration: | N/A Platform: | N/A
Build Events
Toolchain

Selected debugger/programmer

Device
EDBG » ATMIZ178031800000025 v| Interface:
ool” g H

Components

Advanced
SWD Clock

A 2 MHz

The clock frequency should not exceed target CPU speed * 10.

Programming settings

Debug settings
[C] Override Vector Table Offset Register exception_table
Cache all flash memary except

To program and execute the application, there are two options in Atmel Studio:

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 12

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

« Start a debug session on the board, where the user will be able to program and debug
* Program the generated hex file into the controller and execute the application

Both these options can be done in SAM D11Xplained Pro as shown in the following figures.

Figure 4-9. Start without Debugging

Window Help
| P Ml Debug ~| Debug Browser -

PR A | 2 "
Start Without Debugging (Ctrl= AltF5) iTSAMDllDl‘mM =

Figure 4-10. Start Debugging and Break

dow Help
+ Ml Debug ~| Debug Browser -

Start Debugging and Break (Alt-F5) iATSAMDllDMAM

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 13
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.1.

5.2.

5.2.1.

TCC Features Demonstration

Timer Mode Configuration
The example application code (SAM SAM D11 TCC Features Example Project) contains the source code
for each configuration for the following features. The conf example.h contains the macro definitions

related to each configuration and it helps to configure each mode by enabling each feature in
conf example.h.

TCC clock frequency, TCC clock divider, and PERIOD values are defined based on the GLCK_SOURCE,
TCC CLOCK DIVIDER, and TCC_PERIOD VALUE valuesinthe conf example.h for each TCC
features.

Also configurations specific to the feature can also be modified by the user for example RAMP2
configuration will have TCC RAMP2 MATCH CHANNEL 0 and TCC_RAMP2 MATCH CHANNEL 1 as well.

Circular Buffer

The Period register (PER) and the compare channels register (CCO to CC3) support Circular Buffer
operation. When Circular Buffer operation is enabled, at each update condition, the PER or CCx values
are copied into the corresponding buffer registers and the values in the buffer registers are copied into the
PER or CCx registers. This mode uses compare channels of TCC to generate output signals with
different pulse width in alternate cycles. It is mainly used in RAMP operations.

Figure 5-1. Circular Buffer on Channel 0

"write enable” "data write"

— UPDATE

UPDATE

Circular Buffer Mode Configuration

The Circular Buffer feature has been enabled through #define TCC MODE CIRCULAR BUFFER and
#undef the rest of the TCC features in the conf example.h.

For example, here, two different compare values are loaded in the CCO and CCBO register respectively,
to view the circular buffer effect on the channel 0. Hence the WO [0] and circular buffer for the channel 0
are enabled, the output signals are obtained with different pulse width on alternate cycles.

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 14

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.2.2. Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output

*/
config tcc.pins.enable wave out pin[TCC_MATCH CAPTURE_CHANNEL 0] = true;
config tcc.pins.wave out pin[TCC_MATCH CAPTURE CHANNEL 0] = PIN PAO4F TCCO _WOO;/*

Configure the Alternate function of GPIO_pins for TCC
functionality */

config tcc.pins.wave out pin mux[TCC_MATCH CAPTURE CHANNEL 0] = MUX PAO4F TCCO WOO;/*
Load the CCO and CCBO values respectively for the circular buffer

operation */

stat = tcc_set double buffer compare values(&tcc_instance,

TCC_MATCH CAPTURE CHANNEL 0, CCO Value, CCBO Value);/* Enable the Circular Buffer feature for
the Compare Channel 0

=Y

stat

tcc_enable circular buffer compare(&tcc instance, TCC MATCH CAPTURE CHANNEL 0) ;

5.2.3. Waveform Output

The output scope snapshots shown in the two figures below are captured from the SAM D11 Xplained
Pro.

PA04 - Waveform Output 0 - Channel 1.

Figure 5-2. Circular Buffer Enable CC0 = 0xC0
ek Run M 100us

Zoom Factor: 50X~ Zoom Position: 0.00 s

~7.9600us 3.080 V

—32.9800us 120.0mv

A3.9800p5 A2.960V |
dv/dt —743.7kv/s | |

+

:2.:00:\;;::::::”: : :.;::::l‘s.bobs}s;'”djﬂ_.

value Mean Min Max Std Dev | WI*¥0.00000s J|3M points J|_<2.70us

|,_7+Width 3.083us 3.0814 3.974y 3.9874 2.188n |

(24 Aug 2016
|15:31:02 |

The TCC clock frequency = 48MHz
The TCC Clock divider =1
Time Period for 1 Count = 1/48000000 = 20.83333ns

/ItmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 15

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.3.

5.3.1.

Atmel

For the CCO value 0xCO = 192 * 20.8333ns

= 4.0000ps

For the CCO value 0x80 = 128* 20.8333ns

= 2.666us

The values captured may show tolerance based on DFLL source clock accuracy.

Figure 5-3. Circular Buffer Enable CC0 = 0x80

Zoom Factor: 50X Zoom Position: 0.00s

—2.6400us 3.000V]

20.000ns —40.00my |

A2.6600u5 A3.040 V
dv/dt —1.143MV/s | |

1 (5.00G5/5

[+¥0.000005 | [5M points

[:..' — L R L
value Mean Min Max Std Dev
3.977us 3.9804 3.974n 3.987u 2.118n

2.70us

| @ +width
(24 Aug 2016 Aug 2016
1.15:32:01

One-shot Operation

When one-shot feature is enabled, the counter automatically stops on the next counter overflow or
underflow condition. When the counter is stopped, STOP bit in the STATUS register will be set.

This one-shot operation can be enabled by writing a one to the One-Shot bit in the Control B Set register
(CTRLBSET.ONESHOT) and disabled by writing a one to the One-Shot bit in the Control B Clear register
(CTRLBCLR.ONESHOQOT). The one-shot operation can be restarted by using retrigger software command,
a retrigger event or a start event. When the counter restarts its operation, Stop bit in the Status register
(STATUS.STOP) is get cleared.

One-shot Operation Configuration
The one-shot operation feature has been enabled through #define TCC MODE ONESHOT and #undef
the rest of the TCC features in the conf example.h.

Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 16
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.3.2.

5.3.3.

5.4.

In this mode, configure the compare match value in CC2 channel WO [6] for the waveform output. Since
the Port pin PA16 is connected with LEDO of the SAM D11 Xplained Pro, it will control the ON time of
LEDO. Pressing BUTTON_0 of the SAM D11 Xplained Pro restarts the timer. The pulse will be obtained
on the PA16 pin and drive the LEDO. It is important to enable the inversion of waveform input WO [6],
since the PA16 pin is connected to the cathode pin of LEDO.

Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output */
config tcc.pins.enable wave out pin[TCC_CHANNEL NUM 6] = true;
config tcc.pins.wave out pin[TCC_ CHANNEL NUM 6] = PIN PAl6F TCCO WO6;

/* Configure the alternate function of GPIO pins for TCC functionality */
config tcc.pins.wave out pin mux[TCC_CHANNEL NUM 6] = MUX PAl16F TCCO_WO6;

/* Configure the Match value for the compare channel 2 for LEDO ON time*/
config tcc.compare.match[TCC MATCH CAPTURE CHANNEL 2] = 31250;

config tcc.counter.period = TCC_PERIOD VALUE;

config tcc.counter.clock source = GLCK SOURCE;

config tcc.counter.clock prescaler = TCC CLOCK DIVIDER;

/* Invert the Waveform output[6] channel to drive LEDO */
config tcc.wave ext.invert[TCC_CHANNEL NUM 6] = true;

// Enable the One shot Feature
config tcc.counter.oneshot = true;

LEDO Output

After enabling this mode, LEDO will blink once for the time period loaded in CC2 channel. As the one-shot
feature is enabled the counter will be stopped . If the Button [Button_0] is pressed, then it will restart the
counter operation by retrigger command and blinks LEDO once again.

Output Matrix with DTI for PWM

The output matrix (OTMX) can distribute and route the TCC waveform outputs across the port pins in
different configurations, each optimized for different application types. The OTMX [1:0] bits in the
WEXCTRL register define the output matrix configuration. The block diagram of waveform extension
detail is shown in the following figure.

Figure 5-4. Waveform Extension Stage Details

WEX PORTS

CTMX om SWAP PATTERN

OTMX[x*WO_NUMZ]

LS

OTMX DTix DTIXEN
HS

OTMX[x]

The output matrix (OTMX) unit distributes compare channels, according to the selectable configurations,
as shown in the following table.

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 17

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.4.1.

Table 5-1. Output Matrix Channel Pin Routing Configuration

0x0 CC3 CC2 CC1 CCO CC3 CC2 CC1 CCo
0x1 CC1 CCo CC1 CCo CC1 CCo CC1 CCo
0x2 CCo CCo CCo CCo CCo CCo CCo CCo
0x3 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CCo

« Configuration 0x0 is default configuration. The channel location is the default one and channels are
distributed on outputs modulo the number of channels. Channel 0 is routed to the Output matrix
output OTMX [0], Channel 1 to OTMX [1]. If there are more outputs than channels, then channel 0
is duplicated to the Output matrix output OTMX[CC_NUM], channel 1 to OTMX[CC_NUM+1] and
so on.

« Configuration 0x1 distributes the channels on output modulo half the number of channels; this gives
the lower channels twice the number of output locations than the default configuration. This
provides for example, control of the four transistors of a full bridge using only two compare
channels. Using pattern generation, some of these four outputs can be overwritten by a constant
level, enabling flexible drive of a full bridge in all quadrant configurations.

* Configuration 0x2 distributes the compare channel 0 (CCO) to all port pins. With pattern generation,
this configuration can control a stepper motor.

« Configuration 0x3 distributes the compare channel CCO to first output and the channel CC1 to all
other outputs. Together with pattern generation and the fault extension this configuration can
control up to seven LED strings, with a boost stage.

Dead Time Insertion (DTI)

In a system driven by a pair of transistors operating in the Complementary Output mode it is completely
forbidden to enable simultaneously the two FETs on the same side. This would lead to Shoot Through (a
short circuit from power supply to ground).

Because the power output devices cannot switch instantaneously, some amount of time must be provided
between the turn-off event of one PWM output in a complementary pair and the turn-on event of the other
transistor.

The dead time insertion (DTI) unit splits the four lower OTMX outputs into two non-overlapping signals,
the non-inverted low side (LS) and inverted high side (HS) of the waveform output with optional dead-time
insertion between LS and HS switching.

The dead-time insertion (DTI) unit generates OFF time with the non-inverted low side (LS) and inverted
high side (HS) of the WG output forced at low level. This OFF time is called dead time, and dead-time
insertion ensures that the LS and HS will never switch simultaneously. The DTI stage consists of four
equal dead-time insertion generators; one for each of the first four channels. The four channels have a
common register which controls the dead time and is independent of high side and low side setting.

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 18

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.4.2.

Figure 5-5. Block Diagram of Dead Time Generator

Dead Time Generator

LOAD
Counter

EN
|=0|

>

"DTLS"
| OTMX output D Q }_"(ToPORT)
e

Edge Detect L (To PORT)

DTIENx [x=3-0] Dead-time Insertion Generator x Enable (8 -11) bits in the WEXCTRL register enable the
Dead Time Insertion function for each channel.

The dead time function in the PWM control avoids the drivers of the same set of PWMs (PWMxH and
PWMxL) from being ON simultaneously due to the operating speed of the driver during output generation.

Dead time must be inserted when any of the PWM 1/O pin pairs are operating in the Complementary
Output mode. Four DTl insertion functions (DTIENO to DTIEN3) control the four lowest OTMX outputs.

The 8-bit dead-time counter is decremented by one for each peripheral clock cycle, until it reaches zero.
A nonzero counter value will force both the low side and high side outputs into their OFF state. When the
output matrix (OTMX) output changes, the dead-time counter is reloaded according to the edge of the
input. When the output changes from low to high (positive edge) it initiates counter reload of the DTLS
register, and when the output changes from high to low (negative edge) reload the DTHS register.

Figure 5-6. Dead Time Generator Timing Diagram

F—tomLs—| —tomHs—
"OTMX output” |
oTLS* [] |
"DTHS" | I

Output Matrix with DTl Configuration
The Output Matrix with DTI for PWM mode feature has been enabled through #define
TCC_MODE_OTMX DTI and #undef the rest of the TCC features in the conf example.h.

In this mode, the waveform outputs 0, 1, 2, and 6 for the PWM output signals are enabled. The waveform
output 0 and 1 are configured to view the Dead Time Insertion effect on the waveform output pins 2 and
6. Also, waveform output 1 is inverted, since the Dead time for channel CCO is not enabled. By enabling
the DTIEN bit for the channel, the complementary output for the particular channel can be obtained.

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 19

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Load the Compare match values on the CC0O, CC1, and CC2 channels appropriately to generate the
waveform outputs. Enable the DTI on the channel and define the DTHS (dead time high side) and DTLS
(dead time low side) using WEXCTRL register as per application need.

5.4.3. Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output

*/

config tcc.pins.enable wave out pin[0]
config tcc.pins.enable wave out_pin[1]
config tcc.pins.enable wave out pin[2]
config tcc.pins.enable wave out pin[6]
config tcc.pins.wave_out pin[0] = PIN

config tcc.pins.wave out pin[1]
config tcc.pins.wave out pin[2]
config tcc.pins.wave out pin[6]

function of GPIO pins for TCC

functionality */

config tcc.pins.wave out pin mux([0]
config tcc.pins.wave out pin mux[1]
config tcc.pins.wave_out_pin mux[2]

config tcc.pins.wave out pin mux[6] =

compare channel values for the duty cycle control
and load the 0x80 value for 50% duty cycle */

config tcc.counter.period = TCC PERIOD VALUE;

config tcc

/* Invert the Waveform

config tcc.

.compare.match[OT
config tcc. 1]
config tcc.

compare.match[
compare.match([2]

PIN
PIN
PIN_

true;

CIELES

true;

true;

PAO4F TCCO_WOO;

PAQOSF TCCO WO1;

PAOGF TCCO_WO2;

PAL6F TCCO WO6;/* Configure the Alternate

MUX_PAO4F _TCCO_WOO;

MUX_PAOSF_TCCO_WO1;
MUXPIN PAO6F TCCO WO2;

MUX PMUX PAl6F TCCO_WO6;/* Configure the

TCC_PERIOD_VALUE/2;
TCC_PERIOD VALUE/2;
TCC_PERIOD VALUE/2;

output[1l] channel to view the DTI effect */

wave ext.invert[1]

= true;

5.4.4. OTMX with DTI Enable for Channel 2 Waveform Output
The output scope snapshots shown in the following two figures are captured from the SAM D11 Xplained

Pro.

* PAO4 — Waveform Output 0 - Channel 1
* PAO05 — Waveform Output 1 - Channel 2
* PAO6 — Waveform Output 2 - Channel 3
* PA16 — Waveform Output 6 - Channel 4

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 20
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Figure 5-7. OTMX with DTI for DTHS Measurement
. ETr:ig":d o

—2.341u8 —-82.81Tmv
A333.6ns A2. 888V

i —2.675M5 2.805 V ’»
dv/dt ~8.658MV/s | |

TR BT — BT T SN

16:50017
In the diagram above, the DTHS is measured for the PWM complementary output.

The TCC clock frequency = 48MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/48000000

=20.833ns

DTHS time = 16 * 20.83333
= 333.333ns

DTLS time = 64 * 20.8333
=1.3333us

/ItmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 21

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Figure 5-8. OTMX with DTI for DTLS Measurement
[Trigd

-5.315us 99.37mv | .

—3.981Ms 3.230V

A1.334us A3 150V i
dv/dt 2.362MV/s |-

(@ 200V @ 200V) 200V @ J(1.00ms |[100MS/s || '1.'-10'\.""|
._I_l+v72.420000u< 1000 points,

(24 Aug 2016]
|16:47:47 |

Since this application uses the internal 8MHz OSC as a source for the CPU clock, the DTLS, and DTHS
have some tolerance.

5.5. SWAP Operation

The SWAP feature is useful to switch simultaneously two output signals. The swap (SWAP) unit can be
used to swap waveform pin outputs. The SWAP units in the TCC module can be seen as a four port pair
of slices.

* SWAPQO acting on port pins (WO[0], WO[WO_NUM/2 +0])

* SWAP1 acting on port pins (WO[1], WO[WO_NUM/2 +1])

And more generally:
* SWAPx acting on port pins (WOI[x], WO[WO_NUM/2 +x])

The Bits 27:24 — SWAPx [x=3-0] of WAVE register: Setting these bits enables output swap of DTI outputs
[x] and [x+WO_NUM/2].

The swap function is very useful in BLDC motor control and can be used for fast decay motor control. It
allows the immediate change of top and bottom transistors in the phase. Using this function the rotor
commutation and speed control can be divided into two independent program parts. The state of the
control signals can be changed immediately when required by the motor position (phase commutation)
without changing the content of the PWM value registers. These changes can be accomplished
asynchronously to the PWM duty cycle update.

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 22

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.5.1.

5.5.2.

When chopping current threshold is reached, the H-bridge can operate in two different current
recirculation modes:

* An asynchronous mode if current re-circulates through the diodes (in FETs or external). The user
cannot control the occurrence of the alternate path creation.

* A synchronous mode if enabling and disabling FETs in order to promote an alternate path

Two synchronous modes can be used: fast decay or slow decay. Fast and slow refer to the current decay
mode and not the motor speed. It is the opposite for speed. In fast decay mode, the motor will slow down
in speed while in slow decay mode, the motor stops very quickly.

Figure 5-9. SWAP Operation lllustration

1
1
OTMX eutput |
|
|

~ 1 T1] -

SWAP

BWAP ocours here

SWAP Mode Configuration
The SWAP feature has been enabled through #define TCC MODE SWAP and #undef the rest of the
TCC features in the conf example.h.

In this mode configure and enable the Waveform outputs 0 and 4 for single slope PWM waveform
generation by enabling the DTIENO bit for the channel 0. The complementary output for the channel is
obtained on the WO [4] pin. Using the WEXCTRL register, the DTLS and DTHS for the complementary
output is defined. After the configuration part is done, it continuously waits for the Button press [Button_0]
available in the SAM D11 Xplained Pro. If the button is pressed, then it will toggle the SWAPO bit in the
WAVE register for the SWAP operation so that the WO [0] pin waveform can be output on the WO [4], and
vice versa.

Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output

*/

config tcc.pins.enable wave out pin[0] = true;

config tcc.pins.enable wave out pin[4] = true;

config tcc.pins.wave out pin[0] = PIN_ PAO4F TCCO_WOO;

config tcc.pins.wave out pin[4] = PIN PA22F TCCO WO4;/* Configure the alternate
function of GPIO pins for TCC

functionality */

config tcc.pins.wave out pin mux([0]

config tcc.pins.wave out pin mux[4]
channel values for the duty cycle control

and load the 0x80 value for 50% duty cycle */

MUX_PAO4F _TCCO_WOO;
MUX PA22F TCCO _WO4;/* Configure the compare

config tcc.compare.match[0] = 0x80;/* Enable the Dead Time Insertion Generator for
the channel 0 (CCO)

=/

TCCO->WEXCTRL.reg |= TCC_WEXCTRL DTIENO; /* Define the High side time and Low side

time for Dead Time

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 23

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

generation */
TCCO->WEXCTRL.reg |= TCC_WEXCTRL_DTLS (0x20) | TCC_WEXCTRL_DTHS (0x60) ;

/* Swap operation to be trigerred, when button is pressed */
void swap_operation(void) {
while (port pin get input level (BUTTON 0 PIN));
while (!port pin get input level (BUTTON 0 _PIN));
TCCO->WAVE.reg "= TCC _WAVE_ SWAPO;
}

5.5.3. SWAP Waveform Output
The output scope snapshot shown in the figure below is captured from:

* PAO4 — Waveform Output 0 - Channel 1
* PA22 — Waveform Output 4 - Channel 2
* PA14 — Button Capture - Channel 3

Figure 5-10. SWAP Operation

IQIZ.UOIV. . R R Ty ; OOI\IS/S H — .96.0ni\f'"|
1000 points,]

(24 Aug 2016
l17:10:31

The TCC clock frequency = 48MHz
The TCC Clock divider =1
Time Period for 1 Count = 1/48000000 = 20.833ns

The output showing waveforms 1 and 2 are swapped after a button press (shown in waveform 3).

/ItmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 24

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.6.

5.6.1.

5.6.2.

Pattern Generation

The pattern generation unit is used to generate a synchronized bit pattern across the waveform output
pins. As with other double buffered timer/counter registers, the register update is synchronized to the
UPDATE condition set by the timer/counter waveform generation mode. If the application does not need
synchronization, the application code can simply access the PGEx and PGVx registers directly. A value 1
in the PGEX bit group of PATT register overrides the corresponding SWAP output with the corresponding
PGVx value. The PATTBV bit is set when a new value is written to the PATTB register. This bit is
automatically cleared by hardware on UPDATE condition or by writing a 1 to this bit. When double
buffering is enabled, the PGVB and PGEB bits value of PATTB register is copied into the corresponding
PGV and PGE bits value of the PATT register on an update condition. The Pattern Generator can be used
with PWM signals, which have built-in DTI. A block diagram of the pattern generator is shown in the figure
below.

Figure 5-11. Block Diagram of Pattern Generator

COUNT
UPDATE

o 2= o SWaP oupur

(] g
/ o
e *‘_

WOX[7:0]

Pattern Generation Configuration

The Pattern Generation feature has been enabled through #define
TCC_MODE_PATTERN GENERATION and #undef the rest of the TCC features in the
conf example.h.

In this mode, the waveform outputs 0, 1, 2, and 3 for the pattern generation are enabled. Here four
patterns are defined for bipolar stepper motor with the waveform output . Configure the OTMX [1:0] bits
into Ox2 in the WEXCTRL register in such way that to get the CC0O waveform output on all the four
waveform output pins.

The application waits for the compare match flag to set and then clears the Compare Match Interrupt flag
of the same. Then it will load the next pattern on the PGVB (Pattern Generation Value Buffer)
appropriately for the next pattern.

« In this application note the delay required between the patterns is not implemented. Add the
appropriate delay between loading the pattern as mentioned in the stepper motor datasheet.

Code Snippet

uint8 t sm pattern[PATTERN SIZE] = {8, 2, 4, 1};

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 25

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

/* Configure the TCC
Waveform Output pins for waveform generation output */

config_ tcc.counter.period
// Configure the TCC Waveform Output pins for waveform generation output

config tcc.
config tcc.
config tcc.
.pins
config tcc.
config tcc.
config tcc.
config tcc.

config tcc

pins.
.enable - wave “out _pin[TCC CHANNEL NUM 1]
.enable _wave_out pin[TCC_ CHANNEL NUM [2]
.enable _wave " out _pin[TCC | CHANNEL NUM | 3]
.wave_ | out pln[TCC CHANNEL NUM 0]

.wave_out pin[TCC_ CHANNEL NUM 1]

.wave_| " out _pin[TCC | CHANNEL NUM | 2] = PIN_
.wave out pln[TCC CHANNEL . NUM 3] = PIN

pins
pins

pins
pins
pins
pins

enable wave out pin[TCC_CHANNEL NUM 0]

= TCC_PERIOD VALUE;

= Erue;
= true;
= true;
= Erue;

= PIN PAQO4F TCCO WOO;
= PIN PAOSF TCCO WOl'

PA06F TCCO WO2;
PAO7F _TCCO WO3;

// Configure the Alternate function of GPIO pins for TCC functionality

config tcc.

config tcc.

config tcc.

config tcc.

config tcc.
/* B

pins.
pins.
pins.
pins.

wave out pin mux[TCC_CHANNEL NUM 0]
wave " out _pin mux[TCC CHANNEL NUM 1]
wave_out pin mux[TCC_ CHANNEL NUM [2]
wave out _pin mux[TCC_ CHANNEL NUM | 3]

double buffering enabled

= MUX PAO4F TCCO_WOO;
= MUX_PAOS5F TCCO WOl'

MUX PAOGF TCCO WO2;
MUX_PAO7F_TCCO_WOB,
= true;

* Configure the compare channel values for the duty cycle control
* Load the O0x7FFF value for 50% duty cycle

*/

config tcc.compare.match[TCC_MATCH CAPTURE CHANNEL 0]

TCCO->WEXCTRL.reg |= TCC WEXCTRL OTMX(2); /* Enable the Pattern Generator Output for

4 Waveform Outputs

and Load the PATT and PATTB register values respectively for Stepper Motor Pattern

Generation */

TCCO->PATT.reg = TCC_PATT PGE(0xOF) | TCC PATT PGV (SM Pattern[i++]);
TCCO->PATTB.reg = TCC_PATTB PGEB (0x0F) | TCC_PATTB PGVB (SM_Pattern[i++]);
void pattern generation (void) {

if (i == 4)

i=0;

while (! TCCO->INTFLAG.bit.MCO) ;
TCCO->INTFLAG.bit.MCO = 1;

TCCO->PATTB.reg = TCC_PATTBUF PGEB(0xOF) | TCC PATTBUF PGVB(SM Pattern([i

while

}

(CONF_PWM MODULE->SYNCBUSY.reg &

5.6.3. Pattern Generation Waveform Output
The following scope snapshot is captured from SAM D11 Xplained Pro:

* PAO4 — Waveform Output 0 - Channel 1

* PAO05 — Waveform Output 1 - Channel 2

+ PAO6 — Waveform Output 2 - Channel 3

* PAQO7 — Waveform Output 3 - Channel 4

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE]
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

= TCC MATCH VALUE PATTERN GEN;

(lu << 16));

26

5.7.

Figure 5-12. Pattern Generation

IZ:0=:2.:0(J:\«': : :C:):Z.:OO:V —8 157 8 5 =oms) ||25 OkS/s HW|

¥0.000000 5§ 1000 points)

Termination
Invert i P
set by Bandwidth Niore 24 Aug 2016

bc] aAc | TPriooo | On [Off] Full 17:18:57

Coupling

The output is showing all the four waveform outputs to be turned ON at different patterns.

Ramp2 Operation

These operations are dedicated for Half-Bridge and Push-Pull SMPS topologies, where two consecutive
Timer/counter cycles are interleaved, as shown in . In cycle A, odd channels output is
disabled, and in cycle B, even channels output are disabled.

Ramp A and B periods are controlled through PER register value. Period register value can have different
values on each ramp by enabling the circular buffer option CIPEREN bit in the WAVE register. The 4th
and 5th bits RAMP [1:0] in the WAVE register configure the RAMP mode. The RAMP2 mode uses two
compare channels TCC to generate two output signals, or one output signal with another CC channel
enabled in capture mode.

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 27

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Figure 5-13. RAMP2 Standard Operation

Ramp | A B A B "clear" update
"match"
TOP(B) Retrigger TOP(B)
TOP(A) on CIPEREN = 1
FaultA
cc1 ccl
COUNT cco ! cco !
1
| i i
i | |
ZERO ; ! :
¥ 4 ¥ |
WO[0] i POLO =1
wor1] h Keep on Faults POL1=1
H
FaultA input
i
FaultB input [

5.71. RAMP2 Configuration

The RAMP2 feature has been enabled through #define TCC MODE RAMP2 and #undef the rest of the
TCC features in the conf example.h.

In this mode, the Waveform outputs 0 and 1 for the single slope PWM output signals are enabled.
Configure the Compare match channel values for the Channel 0 and 1. RAMP2 mode can be configured
through WAVE register.

5.7.2. Code Snippet

// Configure the TCC Waveform Output pins for waveform generation output
config tcc.pins.enable wave out pin[TCC_CHANNEL NUM 0] true;
config tcc.pins.enable wave out pin[TCC_ CHANNEL NUM 1] true;
config tcc.pins.wave out pin[TCC_CHANNEL NUM 0] PIN_PAQO4F_TCCO_WOO;
config tcc.pins.wave out pin[TCC_CHANNEL NUM 1] PIN_PAOS5SF_TCCO_WO1;
// Configure the Alternate function of GPIO pins for TCC functionality
config tcc.pins.wave out pin mux[TCC_CHANNEL NUM 0] = MUX_ PAQ4F_TCCO_WOO;
config tcc.pins.wave out pin mux[TCC_CHANNEL NUM 1] = MUX PAQSF TCCO_WO1;
// Configure the RAMP mode operation as RAMP2 mode
config tcc.compare.wave ramp

TCC RAMP RAMP2;
/* - -

* Configure the compare channel values for the duty cycle control

* Load the 0xB333 value for 70% duty cycle

*/

config tcc.compare.match[TCC_MATCH CAPTURE CHANNEL 0]
// Load the 0x4CCC value for 30% duty cycle

config tcc.compare.match[TCC_MATCH CAPTURE CHANNEL 1]

config tcc.counter.period

TCC RAMP2 MATCH CHANNEL 0;

TCC RAMP2 MATCH CHANNEL 1;
TCC_PERIOD_VALUE;

5.7.3. RAMP2 Waveform Output
The following output scope snapshot is captured from the SAM D11 Xplained Pro.
* PAO4 — Waveform Output 0 - Channel 1
* PAO5 — Waveform Output 1 - Channel 2

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 28
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Figure 5-14. RAMP2 Operation

—~18.38ms —52.81mv | |
-12.69ms -48.75mv |
AS5.694ms A4.062mV ||

713.4mv/s | |

Iﬂ 200V :C:):Z.:OO:V - oms ||25 .0ksis Hﬁ|

value Mean Min Max Std Dey | \W*¥0.000000s]11000 points

@& +width 5.722ms 5.722m 5.722m 5.722m 0.000) .
| @ +width 2.453ms 2.453m 2.453m 2.453m 0.000] (24 Aug 2016
l17:23:144 |

The TCC clock frequency = 8MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/8000000 = 125ns

For the CCO value 0xB333 = OxFFFF-0xB333 * 125ns
=5.7343ms

For the CC1 value 0x4CCC = 0X4CCC * 125ns

= 2.4575ms

The values captured may show tolerance based on internal 8Mhz source clock accuracy.

5.8. Ramp2A Operation

RAMP2 Alternate operation is similar to RAMP2 except that the CCO register controls both WO [0] and
WO [1] compare outputs. For RAMP2A operation mode, the circular buffer mode allows having two
dedicated period and compare values for each of the cycle A/B. This is similar to RAMP2 mode, with the
difference that only one channel is used for waveform generation and the second channel can be used for
capture operation.

/ItmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 29

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Figure 5-15. RAMP2A Operation

Ramp | A B A L B “clear” update
“match”
TOP(B) Retrigger TOP(B)
TOP(A) on CIPEREN = 1
FaultA
CCo(B Ccco(B _
COUNT CCO(A CcCo(A CICCENO =1
ZERO
¥ ¥ ¥
wo[o]
_ k Y POLO=1
WO[1] Keep on FaultB
)
FaultA input B
FaultB input

5.8.1. RAMP2A Configuration
The RAMP2A feature has been enabled through #define TCC MODE RAMP2A and #undef the rest of
the TCC features in the conf example.h.

In this mode, the Waveform outputs WO[0] and WOI1] for the single slope PWM output signals are
enabled. Configure the Compare match channel value for the Channel 0 only. RAMP2A mode can be
configured in the WAVE register.

5.8.2. Code Snippet

// Configure the TCC Waveform Output pins for waveform generation output
config tcc.pins.enable wave out pin[TCC_ CHANNEL NUM 0] EETES
config tcc.pins.enable wave out pin[TCC CHANNEL NUM 1] true;
config tcc.pins.wave out pin[TCC_ CHANNEL NUM 0] PIN_PAO4F TCCO_WOO;
config tcc.pins.wave out pin[TCC_ CHANNEL NUM 1] PIN PAOSF TCCO_WO1;
// Configure the Alternate function of GPIO pins for TCC functionality
config tcc.pins.wave out pin mux[TCC_CHANNEL NUM 0] MUX PAQ4F TCCO_WOO;
config tcc.pins.wave out pin mux[TCC_CHANNEL NUM 1] MUX PAOSF TCCO_ WO1;
// Configure the RAMP mode operation as RAMP2A mode
config tcc.compare.wave ramp

TCC_RAMP RAMP2A;
/* B B
* Configure the compare channel values for the duty cycle control
* Load the 0xB333 wvalue for 70% duty cycle
*/
config tcc.compare.match[TCC MATCH CAPTURE CHANNEL 0]
config tcc.counter.period

TCC_RAMP2 MATCH CHANNEL 0;
TCC_PERIOD VALUE;

5.8.3. RAMP2A Waveform Output
The following output scope snapshot is captured from the SAM D11 Xplained Pro.

* PAO04 — Waveform Output 0 - Channel 0
* PAO5 — Waveform Output 1 - Channel 1

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 30
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Figure 5-16. RAMP2A Operation Output

(@ 2.00v [z FET 25. OkS/s ‘ | 1.40 V|
value Mean Min Max Std Dey | \W#¥0.000000s 11000 points) J
@& +width 5.722ms 5.724m 5.722m 5.725m 1.016u) .
| @ +width 5.723ms_ 5.722m_ 5.722m_ 5.723m_ 514.1n_ | (24 Aug 2016

l17:24:43 |

The output shows that both waveform outputs have alternate ON/OFF cycles between them and that the
pulse width always corresponds to the CCO value in both cycles.

The TCC clock frequency = 8MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/8000000 = 125ns
For the CCO value 0xB333 = 0xB333 * 125ns
= 5.7343ms

The values captured may show tolerance based on internal 8MHz source clock accuracy.

5.9. Dual Slope PWM Operations

For dual-slope PWM generation, the period (TOP) is controlled by PER, while CCx control the duty cycle
of the generated waveform output. Following figure shows how the counter repeatedly counts from ZERO
(BOTTOM) to PER and then from PER to ZERO. The waveform generator output is set on compare
match when up-counting, and cleared on compare match when down-counting.

/ItmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 31

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.9.1.

5.9.2.

Figure 5-17. Dual-Slope Pulse Width Modulation

«—Period (T)—— | CCx=ZERO | | CCx=TOP | “reload" update
MAX \ "match"
CCx / \
COUNT | = TP J
and -
ZERO £
1 i |
WOIx]

Using dual-slope PWM results in a lower maximum operation frequency compared to single-slope PWM
operation. The Period register (PER) defines the PWM resolution. The PWM can be configured for one of
the following Dual Slope configurations.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_CRITICAL:

Double-slope (count up and down), non-center-aligned: Top is the PER register, CC[x] controls duty cycle
while counting up and CC[x+N/2] controls it while counting down.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_BOTTOM:

Double-slope (count up and down), interrupt/event at Bottom .Top is the PER register, output becomes
active when count is greater than CCx.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_BOTH:

Double-slope (count up and down), interrupt/event at Bottom and Top. Top is the PER register, output
becomes active when count is lower than CCx.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_TOP:

Double-slope (count up and down), interrupt/event at Top . Top is the PER register, output becomes
active when count is greater than CCx.

Dual Slope Configuration
The Dual Slope feature has been enabled through #define TCC MODE DUAL SLOPE and #undef the
rest of the TCC features in the conf example.h.

In this mode, the Waveform outputs for the dual slope PWM output signals are enabled. Configure the
Compare match channel values for the Compare Channel 0. In this mode, it is observed that the
waveform output shows twice the pulse width compared to single slope PWM. This uses

TCC_WAVE GENERATION DOUBLE SLOPE BOTH configuration explained above.

Code Snippet

config tcc.compare.wave generation = TCC_WAVE GENERATION DOUBLE SLOPE TOP;
/* Configure the TCC clock source and its divider value */
config tcc.counter.clock source = GLCK SOURCE;
config tcc.counter.clock prescaler = TCC_CLOCK DIVIDER;

/* Configure the value for TOP value */
config tcc.counter.period = TCC_PERIOD VALUE;

// Configure the TCC Waveform Output pins for waveform generation output
config tcc.pins.enable wave out pin[TCC_MATCH_CAPTURE_CHANNEL 0]
config tcc.pins.wave out pin[TCC_MATCH CAPTURE CHANNEL 0]

// Configure the Alternate function of GPIO pins for TCC functionality.
config tcc.pins.wave_out pin mux[TCC_MATCH CAPTURE_CHANNEL 0]

true;
PIN PAO4F TCCO_WOO;

MUX PAO4F TCCO WOO;

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 32

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.9.3. Dual Slope Waveform Output
The following output scope snapshot is captured from the SAM D11 Xplained Pro.

PA04 — Waveform Output
Figure 5-18. Dual-Slope Pulse Width Modulation Output

||500k5/s H '1.'-10'\/":|
1000 points

| value Mean Min Max Std Dev |m
@D +width 127.84s 127.74 127.54 127.94 95.74n |

(24 Aug 2016 Aug 2016
117:26:54

The shown waveform outputs have twice the pulse width size when compared to single slope PWM
because of dual slope advantage.

The TCC clock frequency = 8MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/8000000 = 125ns
ON TIME (0x3FF-0x1FF)*2 = 2*512 * 125ns
= 128us.

The values captured may show tolerance based on internal 8MHz source clock accuracy.

5.10. Counter Operations

The counter can be set to count up or down. When the counter is counting up and the top value is
reached, the counter will wrap around to zero on the next clock cycle. When counting down, the counter
will wrap around to the top value when zero is reached.

/ItmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 33

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.10.1.

5.10.2.

5.10.3.

5.11.

5.11.1.

5.11.2.

Counter Configuration

The Counter feature has been enabled through #define TCC MODE COUNTER and #undef the rest of
the TCC features in the conf _example. h. In this mode, the led is toggled at four different intervals,
based on different initial startup value of the compare channel.

Code Snippet

/* Configure different channels with different compare match values */

config tcc.compare.match[0] = 900;
config tcc.compare.match[l] = 930;
config tcc.compare.match[2] = 1100;
config tcc.compare.match[3] = 1250; //!

[setup register callback]
tcc_register callback(&tcc _instance,
tcc_callback to toggle led, TCC_CALLBACK OVERFLOW) ;
tcc register callback(&tcc instance,
tcc_callback to toggle led, TCC_CALLBACK CHANNEL O0);
tcc _register callback(&tcc instance,
tcc _callback to toggle led, TCC CALLBACK CHANNEL 1);
tcc_register callback(&tcc _instance,
tcc_callback to toggle led, TCC _CALLBACK CHANNEL 2);
tcc register callback(&tcc instance,
tcc_callback to toggle led, TCC_CALLBACK CHANNEL 3);
//! [setup register callback]
//! [setup enable callback]
tcc_enable callback(&tcc_instance, TCC_CALLBACK OVERFLOW) ;
tcc_enable callback(&tcc _instance, TCC_CALLBACK CHANNEL O0);
tcc _enable callback(&tcc instance, TCC CALLBACK CHANNEL 1);
tcc_enable callback(&tcc_instance, TCC_CALLBACK CHANNEL 2);
tcc_enable callback(&tcc _instance, TCC_CALLBACK CHANNEL 3);
//! [setup change events faults]

Output
The LED toggles at various speeds based on four different counter channels.

Fault Operations

Recoverable faults can restart or halt the timer/counter. Two faults, called Fault A and Fault B, can trigger
recoverable fault actions on compare channels CC0 and CC1 from the timer/counter. The compare
channels outputs can be clamped to inactive state as long as the fault condition is present, or from the
first valid fault condition detection and until the end of the timer/counter cycle. In case of Non Recoverable
fault, the fault can drive the output to a pre-defined output level.

Fault Configuration

The Fault configuration feature has been enabled through #define TCC MODE FAULT and #undef the
rest of the TCC features in the conf example.h. In this mode, a fault trigger (recoverable fault) by
external condition (button press) is identified and the LED is turned ON (trigger fault). The fault /LED is
turned OFF in the next button press event. The PAQ7 pin is connected to the fault line pin PA02. A button
press can toggle the output port of PAQ7 to toggle fault lines, based on which LED is ON if fault is ON,
otherwise the LED is OFF.

Code Snippet | - To Configure TCC module for Fault Configuration

void configure tcc(void)
{
/* Structure used to store the TCC configuration parameters */
struct tcc_config config tcc;

/* Fill the Structure with the default values */

tcc_get config defaults(&config tcc, CONF_PWM MODULE) ;

config tcc.compare.match[TCC MATCH CAPTURE CHANNEL 0] = DEFAULT MATCH COMPARE;
config tcc.counter.period = DEFAULT PERIOD;

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 34

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Atmel

/* Configure the single slope PWM waveform generation for waveform output */
config tcc.compare.wave generation = TCC_WAVE GENERATION SINGLE SLOPE PWM;

/* Configure the TCC clock source and its divider value */
config tcc.counter.clock source = GLCK_ SOURCE;
config tcc.counter.clock prescaler = TCC CLOCK DIVIDER;

/* Configure the TCC Waveform Output pins for waveform generation output */
config tcc.pins.enable wave out pin[0] = true;
config tcc.pins.wave out pin[0] = PIN PAQ4F TCCO WOO;

/* Configure the Alternate function of GPIO pins for TCC functionality */
config tcc.pins.wave out pin mux[0] = MUX PAO4F TCCO WOO;
config tcc.wave ext.recoverable fault[TCC MATCH CAPTURE_ CHANNEL 0] .source =

TCC FAULT SOURCE ENABLE;

config tcc.wave_ext.recoverable fault[TCC_MATCH CAPTURE CHANNEL O].halt_ action =

TCC FAULT HALT ACTION SW HALT;

defined

/* Initialize the TCCO channel and define the its registers with configuration
in the config tcc */
stat = tcc _init(&tcc_instance, TCCO, &config tcc);
//! [setup events]
struct tcc_events events;
memset (&events, 0, sizeof(struct tcc events));
//! [setup change events faults]
events.on_event perform channel action[0] = true;
//! [setup events enable]
tcc _enable events (&tcc instance, &events);
/* Enable the TCC module */
tcc_enable (&tcc_instance);

}

Code Snippet Il - To Configure EIC module and Event System for Fault Configuration

//' [ca

llback eic]
static void eic callback to clear halt fault(void)
{ port pin set output level (CONF_TEST PIN OUT, true);

}
//! [callback eic]

//! lconfig eic]
static void configure eic(void)

//! leic_chan setup]
//! [eic_setup 1]
struct extint chan conf config;
extint chan get config defaults(&config);
config.filter input signal = true;
config.detection criteria = EXTINT DETECT BOTH;
config.gpio_pin = CONF_FAULT EIC PIN;
config.gpio pin mux = CONF FAULT EIC PIN MUX;
extint chan set config (CONF_FAULT EIC_ LINE, &config);
//! leic_setup 4]
struct extint events events;
memset (&events, 0, sizeof(struct extint events));
events.generate event on detect[CONF_ FAULT EIC LINE] = true;
//! [eic_event setup 2]
extint enable events (&events);
extint register callback(eic callback to clear halt fault,CONF_FAULT EIC LINE,

EXTINT7CALLBACE TYPE DETECT) ;

extint chan enable callback(CONF FAULT EIC LINE,EXTINT CALLBACK TYPE DETECT);}
//! lconfig eic]
//' [config event]

static void configure event (void)

//! [event setup 1]

struct events config config;

events get config defaults (&config);

config.generator = CONF_EVENT GENERATOR ID;

config.path = EVENTS_PATH ASYNCHRONOUS;
events_allocate (&event resource, &config);
events_attach user (&event resource, CONF_FAULT EVENT_ USER) ;

Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE]

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.11.4. Code Snippet lll - Main Application Code to Detect Fault and Turn ON/OFF Faulit.

5.11.5. Output

//Inside Main

uint32 t tcStatus=0;

unsigned long temp = TCC_STATUS RECOVERABLE FAULT OCCUR(O0) ;
port get config defaults(&config pin);

config pin.direction = PORT PIN DIR OUTPUT;
port_pin_set config (CONF_TEST_PIN_OUT, &config pin);

port pin set output level (CONF TEST PIN OUT, true);

configure eic();

configure event();

tcc clear status(&tcc _instance, TCC_STATUS RECOVERABLE FAULT OCCUR(O0));

if (!port pin get input level (SWO_ PIN))

{

/* Set fault */

while (!port pin get input level (SWO_PIN));

port pin set output level (CONF TEST PIN OUT, false);
tcStatus = tcc _get status(&tcc_instance);

if (!port pin get output level (LED 0 PIN))

{
// Turn off LED and clearm alarm status..

tcc_clear status(&tcc_instance, TCC_STATUS_RECOVERABLE_FAULT_OCCUR (0)) ;
LED Off (LED 0 PIN);

}

else 1f((tcStatus & temp) == temp)

{

// 1f alarm set, drive LED.

LED_On(LED 0 PIN);

port pin set output level (CONF TEST PIN OUT, true);
}

}

// end of common fault and capture condition

The output scope snapshot is captured from the SAM D11 Xplained Pro.
PA04 - Waveform Output 0 - Channel 1
PAO2 - Fault Input - Channel 4

PAOQ2 is the Fault input pin and should be connect to PA07. PAQO7 is the pin which is setto 0 or 1 to
simulate the fault input. When SWO button is pressed for first time, fault input is generated and output
waveform is stopped. When the switch is pressed for the second time, the fault input clears and the
output waveform resumes on PAO4.

Atmel

Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 36
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Figure 5-19. Fault Output

‘W| |50 OMS/s HW|
|+~ 0.000000 5 100k points) |

(24 Aug 2016
|18:37:06 |

5.12. DITHERING
The TCC supports dithering on Pulse-width or Period on a 16, 32, or 64 PWM cycles frame.

Dithering consists in adding some extra clocks cycles in a frame of several PWM cycles (16, 32, or 64
depending the configuration). The extra clock cycles are added on some of the compare match signal,
one at a time, through a "blue noise" process that minimizes the flickering on the resulting dither patterns.

Dithering makes possible to improve the accuracy of the average output pulses width or period.

Dithering is enabled by writing the corresponding configuration in the CTRLA.RESOLUTION field:
* DITH4 enable dithering every 16 PWM frames
« DITH5 enable dithering every 32 PWM frames
* DITH6 enable dithering every 64 PWM frames

The least significant bits of COUNT, PER, CCx registers define the number of extra cycles to add into the
frame (DITHERCY). The remaining bits of COUNT, PER, CCx registers define the compare value itself.

Display hardware, including early computer video adapters and many modern LCDs used in mobile
phones and inexpensive digital cameras, show a much smaller color range than more advanced displays.
One common application of dithering is to more accurately display graphics containing a greater range of
colors than the hardware is capable of showing. For example, dithering might be used in order to display
a photographic image containing millions of colors on video hardware that is only capable of showing 256
colors at a time. The 256 available colors would be used to generate a dithered approximation of the
original image. Without dithering, the colors in the original image might simply be "rounded off" to the

/ItmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 37

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

closest available color, resulting in a new image that is a poor representation of the original. Dithering
takes advantage of the human eye's tendency to "mix" two colors in close proximity to one another. It is
also used in Lighting control system.

5.12.1. DITHERING Configuration
The Dithering feature has been enabled through #define TCC MODE DITHERING and #undef the
rest of the TCC features in the conf example.h.

In this mode, the single slope PWM configuration with dithering for every 32 PWM frames configuration is
used. The dithering feature is set by updating the RESOLUTION bit field of CTRLA register.

5.12.2. Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output */
config tcc.pins.enable wave out pin[TCC MATCH CAPTURE CHANNEL 0] = true;
config tcc.pins.wave out pin[TCC MATCH CAPTURE CHANNEL 0] = PIN PAQ4F TCCO WOO;

/* Configure the Alternate function of GPIO pins for TCC functionality */
config tcc.pins.wave out pln mux [TCC_MATCH CAPTURE CHANNEL 0] = MUX PAQO4F TCCO WOO;
TCCO->CTRLA.bit .RESOLUTION = 28

while (TCCO->SYNCBUSY.reg & TCC SYNCBUSY CTRLB)

{ /* Wait for sync */
}

5.12.3. Dithering Waveform Output

::‘:.:1.:00: - — 00 S : HSUUMSKS H 000\-'"

value Mean Min Max Std Dev M 1000 points|

@D +Width 1.980Ms 1.980M 1.9804 1.980 0.000 |

24 Aug 2016
17:39:14

/ItmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 38

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

5.13.

5.13.1.

5.13.2.

5.13.3.

Information can be verified by capturing the waveform output using laptop/computer. Verify that the
number of pulses available for 32 PWM cycles is more, because of DITHERING feature.

Capture Operations

To enable and use capture operations, the Match or Capture Channel x Event Input Enable (MCEIXx) bit

must be enabled in the Event Control register (EVCTRL.MCElIx). The capture channels to be used must
also be enabled in the Capture Channel x Enable bit in the Control A register (CTRLA.CPTENX) before

capture can be performed.

TCC supports Event Capture, Period and Pulse-Width Capture Action (PPW), Capture Operation is
triggered based on when event is triggered, in Event capture, the COUNT value is identified on event
trigger, whereas in PPW mode, the Period and Pulse width are captured in CCO and CC1 respectively.

Capture Configuration
The capture feature has been enabled through #define TCC MODE CAPTURE and #undef the rest of
the TCC features in the conf example.h.

In this example, the pulse width and period of the input signal is captured. TCCO is configured with Event
Action 1 enabled and the Event Action is set to PWP (Pulse Width Period), which captures the pulse
width of the input signal in the CCO register and the period in the CC1 register.

The square wave input signal is applied to an EIC channel, which is configured to detect and generate
event on high level. This event is routed to TCCO through an event system channel, which is configured in
asynchronous mode.

Code Snippet | - Configure USART

struct usart config config usart;

usart_get config defaults(&config usart);

config usart.baudrate 115200;

config usart.mux setting EDBG_CDC_SERCOM MUX SETTING;

config usart.pinmux pad0 EDBG_CDC_SERCOM PINMUX PADO;

config usart.pinmux padl EDBG_CDC_SERCOM PINMUX PADI;

config usart.pinmux_pad2 EDBG_CDC_SERCOM_PINMUX_ PAD2;

config usart.pinmux pad3 EDBG_CDC_SERCOM PINMUX PAD3;

stdio serial init (&usart instances,EDBG_CDC MODULE, &config usart);
usart enable (&usart instances);

Code Snippet Il - Configures Event and the Main Application for Capture Operation

void configu eic(void)

struct extint chan conf config extint chan;
extint chan get config defaults(&config extint chan);
config extint chan.gpio pin = PIN PAO7A EIC EXTINT7;
config extint chan.gpio pin mux = MUX PAO7A EIC EXTINT7;
config extint chan.gpio_pin pull = EXTINT PULL_NONE;
config extint chan.detection criteria = EXTINT DETECT HIGH;
extint chan set config(7, &config extint chan);
struct extint events config events =
{
.generate event on detect[7] = true
i
extint enable events (&config events);
}
void configure evsys(void)
{
struct events config config;
events get config defaults (&config);
config.clock source = GCLK GENERATOR 3;

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 39

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

config.generator = EVSYS ID GEN EIC EXTINT 7;

config.path = EVENTS_PATH ASYNCHRONOUS;

config.edge detect = EVENTS EDGE DETECT BOTH;

events allocate (&event resources, &config);
events_attach user (&event resources, EVSYS ID USER TCCO EV_1);
}

5.13.4. Code Snippet lll - Configure TCC for Capture Operation

5.13.5.

void configu tcc(void)
{
struct tcc_config config tcc;
tcc_get config defaults(&config tcc, TCCO);
config tcc.counter.clock source = GCLK GENERATOR 3;
config tcc.counter.clock prescaler = TCC_CLOCK PRESCALER DIV1;
config tcc.compare.channel function[0] = TCC_CHANNEL FUNCTION CAPTURE;
config tcc.compare.channel function[l] = TCC_CHANNEL_ FUNCTION_CAPTURE;
config tcc.compare.channel function[2] = TCC_CHANNEL FUNCTION_CAPTURE;
config tcc.compare.channel function[3] = TCC_CHANNEL FUNCTION CAPTURE;
config tcc.double buffering enabled false;
tcc_init (&tcc_instances, TCCO, &config tcc);
struct tcc_events events tcc =

{

0
1
2
3

.input _config[0].modify action = false,
.input config[l].modify action = true,
.on_input event perform action[l] = true,

.input config[l].action = TCC_EVENT1 ACTION PULSE WIDTH PERIOD CAPTURE,
i

tcc _enable events (&tcc instances, &events tcc);

tcc_enable (&tcc_instances) ;

}

#ifdef TCC_MODE CAPTURE

configure usart();

configu eic();

configure evsys();

while (1)

{

while (! (CONF_PWM MODULE->INTFLAG.bit.MC1)) ;

CONF_PWM MODULE->INTFLAG.reg |= TCC_INTFLAG MC1;

period = tcc get capture value(&tcc instances, 1);
pulse width = tcc _get capture value(&tcc_instances, 0);
printf ("period=%1d , pulse width =%1d \r\n", period , pulse width);

}
#endif

Output

The output is displayed by using the EDBG console. Open the EDBG serial console by using any serial
port application (example: Realterm Serial capture) with the following settings: 115200 Baud Rate, 8-bits,
No Parity, 1 Stop Bit, and Flow Control is set as None.

AtmeL Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 40

Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Altmel

Figure 5-20. Input Capture Output

S RealTerm: Serial Capture Program 2.0.0.70

pulse width =195714 (lf
pulze width =1795651 ¢
pulze width =12567%
pulse width =195716
pulze width =195587
pulse width =195652
pulze width =195616
pulze width =192579%
pulse width =195677
pulze width =195682
pulse width =125768
pulze width =19583%
pulsze width =125758
pulse width =195733
pulze width =195763 CilF

period=783042
period=78310%

m

Display Pott | Capture| Pins | Send | EchoPart| 120 | 1202 | 12CMise | Mise | An| Clear Freeze| ?|
Statuz
Baud |'|'|52DEI onrt |2'| j |Qpen Spyl i _ | Dizconnect
. . . Software Flow Contral _IRxD (2]
Parity Data Bits| [Stop Bits [Beceive Son Char |17 | THD 3
? Mone || & Sbits | | & 1hit " 2hits _ ' et ()
ol E\?Sn " T bits | —Hardware Flow Control [Transmit Hoff Char |13 _|DED 1)
. " Bhits | | % Mone " RATS/CTS . . _|DSR (8]
b ark. . winzock iz
 Gpace || £ Sbits || " DTR/DSR(R5485+4s " Raw _ | Ring (9]
= Telnet _|BREAK
| Emar
You can use ActiveX automation to control me! Char Count:40354 CP5:4920 Port: 21 115200 M1 Mo

The output is showing the Period (CC1) and Pulse width (CCO) of the input signal in UART Terminal.

Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE]
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

41

6. Revision History

Doc. Rev. Date Comments

42625B 09/2016 Updated for additional TCC features

42625A 02/2016 Initial document release ‘

Atmel Atmel AT07690: Using the Timer Counter for Control Applications in SAM D11 [APPLICATION NOTE] 42
Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

[connecTen |
Altmel | enabling Uniimited Possibilities’ [fl¥]in] 3 o]
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

©2016 Atmel Corporation. / Rev.: Atmel-42357B-Using-the-Timer-Counter-for-Control-Applications_AT07690_Application Note-09/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Windows® is a registered trademark of Microsoft
Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Abbreviations
	2. Pre-requisites
	3. TCC
	3.1. TCC Overview
	3.2. Functional Description
	3.3. Special Considerations

	4. Setup
	4.1. Hardware Setup
	4.2. Software Setup

	5. TCC Features Demonstration
	5.1. Timer Mode Configuration
	5.2. Circular Buffer
	5.2.1. Circular Buffer Mode Configuration
	5.2.2. Code Snippet
	5.2.3. Waveform Output

	5.3. One-shot Operation
	5.3.1. One-shot Operation Configuration
	5.3.2. Code Snippet
	5.3.3. LED0 Output

	5.4. Output Matrix with DTI for PWM
	5.4.1. Dead Time Insertion (DTI)
	5.4.2. Output Matrix with DTI Configuration
	5.4.3. Code Snippet
	5.4.4. OTMX with DTI Enable for Channel 2 Waveform Output

	5.5. SWAP Operation
	5.5.1. SWAP Mode Configuration
	5.5.2. Code Snippet
	5.5.3. SWAP Waveform Output

	5.6. Pattern Generation
	5.6.1. Pattern Generation Configuration
	5.6.2. Code Snippet
	5.6.3. Pattern Generation Waveform Output

	5.7. Ramp2 Operation
	5.7.1. RAMP2 Configuration
	5.7.2. Code Snippet
	5.7.3. RAMP2 Waveform Output

	5.8. Ramp2A Operation
	5.8.1. RAMP2A Configuration
	5.8.2. Code Snippet
	5.8.3. RAMP2A Waveform Output

	5.9. Dual Slope PWM Operations
	5.9.1. Dual Slope Configuration
	5.9.2. Code Snippet
	5.9.3. Dual Slope Waveform Output

	5.10. Counter Operations
	5.10.1. Counter Configuration
	5.10.2. Code Snippet
	5.10.3. Output

	5.11. Fault Operations
	5.11.1. Fault Configuration
	5.11.2. Code Snippet I – To Configure TCC module for Fault Configuration
	5.11.3. Code Snippet II - To Configure EIC module and Event System for Fault Configuration
	5.11.4. Code Snippet III – Main Application Code to Detect Fault and Turn ON/OFF Fault.
	5.11.5. Output

	5.12. DITHERING
	5.12.1. DITHERING Configuration
	5.12.2. Code Snippet
	5.12.3. Dithering Waveform Output

	5.13. Capture Operations
	5.13.1. Capture Configuration
	5.13.2. Code Snippet I – Configure USART
	5.13.3. Code Snippet II – Configures Event and the Main Application for Capture Operation
	5.13.4. Code Snippet III – Configure TCC for Capture Operation
	5.13.5. Output

	6. Revision History

