
Automotive Compilation Vol. 9

ATmegaxx8PA-15
RC Oscillator Frequency Drift
Compensation

Robin Walsh

The new Atmel® AVR® ATmegaxx8PA-15 family with UART and 32-pin package is
perfectly suited for multiple automotive applications with local interconnect network (LIN)
or pulse width modulation (PWM) communications. Design engineers can include a small
software routine to compensate the RC oscillator temperature drift over temperature. This
article describes a method to achieve this by using the on-chip temperature sensor.

© 2012 / www.atmel.com

Temperature (°C)

F R
C
 (M

H
z)

-40 -30 -20 -10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 1500

8.4

8.3

8.2

8.1

8.0

7.9

7.8

7.7

6.0
5.5

5.0
4.5
4.0
3.6
3.3
3.0
2.7
2.5
2.2

2.0
1.87.6

Figure 1. Typical RCO Frequency Drift Characteristic

 (Calibrated 8MHz RC Oscillator Frequency vs. Temperature)

Signature Byte
Z-Pointer
Address

Device Signature Byte 1 0x0000

Device Signature Byte 2 0x0002

Device Signature Byte 3 0x0004

RC Oscillator Calibration Byte 3V 0x0001

TS_ADC_25_L-Temp Sensor Value at 25˚C - Low Byte 0x0005

TS_ADC_25_H-Temp Sensor Value at 25˚C - High Byte 0x0007

RC Oscillator Calibration Byte 5V 0x0009

 Note: All other addresses are reserved for future use

Table 1. Signature Row Addressing

The ATmegaxx8PA's internal RC oscillator (RCO) is useful
in applications where an external quartz crystal or resonant
element cannot be used for cost reasons. The RCO is capable of
providing a reasonably accurate 8MHz clock source for the AVR
microcontroller where the high precision of an external crystal
resonator is not required for the application. The RCO frequency
is, however, sensitive to temperature and voltage change as
are many semiconductor elements. The degree of sensitivity
to voltage and temperature change varies considerably from
device to device. Therefore, no general compensation rule
can be applied; instead, it must be determined for each part
empirically.

Compensation Measures and Parameters

With the introduction of the new automotive ATmegaxx8PA-15
devices, it is now possible to determine with reasonable
accuracy the current operating temperature of the
microcontroller using the integrated temperature sensor
peripheral. It is also possible during automotive part production
test procedures to determine the tendency of the RCO
on each individual device to change in frequency as the
temperature and voltage is changed. This specific device-
dependent characteristic is then stored in a read-only non-
volatile ATmegaxx8PA memory space accessible to the user’s
application program, the signature row.

With this characteristic value and specified base reference
conditions, it is now possible to compensate the RCO frequency
drift to good effect in an application program with the addition
of a small supplementary software routine which is called
regularly from the main application. To function, this software
routine needs, as parameters, to know the degree to which

the RCO will drift with the change of temperature for the
actual device, that is to say: Δ_RCO_Frequency per Δ_
Temperature_Sensor_Reading. This value can be determined
during production testing and is stored as a signed byte value
in the signature row at address 0x0003. It corresponds to the
calculation:

Where:
TS_ADC_Hot is the result obtained from the temperature
sensor ADC reading of the microcontroller when it is being
subjected to high temperature operational testing.

TS_ADC_25C is the result obtained from the temperature
sensor ADC reading of the microcontroller when it is being
subjected to ambient 25°C temperature operational testing.

Osccal_Hot is the best case RCO frequency adjustment register
value (OSCCAL) to obtain 8MHz when the device is being
subjected to high temperature operational testing.

Osccal_25C is the best case RCO frequency adjustment
register value (OSCCAL) to obtain 8MHz when the device
is being subjected to ambient 25°C temperature operational
testing.

S
(sensitivity)

=
(TS_ADC_Hot - TS_ADC_25C)

(Osccal_Hot - Osccal_25C)

Automotive Compilation Vol. 9

Typical values obtained during this testing would be:

TS_ADC_Hot	 =	 437
TS_ADC_25C	 =	 297
Osccal_Hot	 =	 143
Osccal_25C	 =	 154

Giving an example result of:	(437-297) / (143-154) = -13
(rounded).

What this -13 example “S” parameter effectively means to
the microcontroller is that for every change in its temperature
sensor ADC result of -13 (counts) from its base reference
value TS_ADC_25C, we should adjust the RCO Osccal register
upwards (increment) by one (count) from its base starting
point Osccal_25C to compensate for the temperature-induced
drift.

Naturally there are sanity checks on the values of these
parameters generated during production testing to ensure
that only reasonable values are accepted to be written to the
signature row memory. For instance, the minimum S parameter
values considered acceptable are S > 7 or S < -7, and the
difference between the temperature sensor 25°C reading and
the temperature sensor hot reading corresponds closely to the
expected temperature excursion. Frequency adjustment guard
bands are also verified to ensure that the device possesses
sufficient oscillator adjustment range capability to compensate
for worst case adjustment situations.

The ATmegaxx8PA microcontroller by default starts operation
with the RCO adjusted to the RC Oscillator Calibration Byte 3V
value, which is also stored in the AVR read-only signature row
at address 0x0001. During production testing of the automotive
ATmegaxx8PA family, Atmel also stores the TS_ADC_25C ADC
reading as an unsigned 16-bit word value, as two individual
byte values in the signature row (0x0007 and 0x0005) as well
as the signed 8-bit S parameter (0x0003).

The Application Algorithm

To adjust the ATmegaxx8PA-15 RCO calibration register
OSCCAL to a temperature-compensated value, the factory-
supplied calibration parameters (OSCCAL_25CVcc*, TS_
ADC_25C, S) as well as the on-chip actual temperature sensor
reading (TS_Actual) are used as follows:

OSCCAL_Compensated =
OSCCAL_25CVcc* + ((TS_Actual – TS_25C) / S)

Vcc* is respectively OSCCAL_25C 5V (0x0009) or
OSCCAL_25C 3V (0x0001), whichever is closer to the
application operational voltage.

Note if application space is constrained, the S division in
the above equation can be usefully replaced by successive
subtractions in a loop to avoid voluminous library division
functions as is shown in the chapter "Sample Code Routines".

The algorithm is designed to make good use of the dynamic
range of the signed byte S parameter (very little of the
numerical range is unused) while being simple and code-
efficient to implement on even resource-limited devices. The
slowest part of the algorithm is the reading of the current
temperature sensor value get_temperature() due to the
time it takes to configure the ADC and possibly allow the
internal references to stabilize. This operation could be usefully
removed from the recalibrate() function and integrated into an
application ADC task such that the current temperature sensor
value is passed to the recalibrate() function only when a
significant temperature change (±10°C) has been recognized,
for optimal performance.

Hardware Constraints

The only specific hardware constraints for correct operation of
the procedure is that the ADC-internal reference supply 1.1V
be available for selection, as this is essential for the calibrated
reading of the on-chip temperature sensor. Therefore, the
ATmegaxx8PA-15 ARef pin should not be tied to an external
reference supply but connected to a 10nF smoothing capacitor
to ground as recommended in the datasheet. This still allows
selection of the AVCC supply as an alternate reference to the
on-chip 1.1V reference via the ADMUX register but precludes
the use of any other external ADC reference.

Performance

Analysis of a large number of ATmega48PA-15 parts has
shown that the use of software temperature compensation is
capable of holding the RC oscillator frequency stability to better
than ±2% over the temperature range +125°C to -20°C and
better than ±3%, normal performance over the full operational
temperature range of +125°C to -40°C. This is in comparison to
the ±10% performance for the unadjusted device. This stability
is normally sufficient to allow usage of PWM signaling as well as
UART communication.

© 2012 / www.atmel.com

Sample Code Routines: ATmegaxx8PA-15 Compact Using Loop Subtract

IAR C

recalibrate.c

#include <iom48pa.h>

#include <intrinsics.h>

#define OSCCAL_3V_ROOM 0x01 // Location of Factory 25C 3V osccal value

#define OSCCAL_5V_ROOM 0x09 // Location of Factory 25C 5V osccal value

#define SENSITIVITY 0x03 // Location of S parameter

#define TS_ADC_ROOM_HI 0x07 // Temp Sensor Factory 25C ADC value high byte

#define TS_ADC_ROOM_LOW 0x05 // Temp Sensor Factory 25C ADC value low byte

#define SIGRD 5 // Signature row read activation bit in MCUCR

#define FCPU 8000000	 // 8MHz CPU

#define TEMP_SENSOR ((3<<REFS0)|(8<<MUX0))

#define millisecond_delay FCPU/1000

unsigned int get_temperature(void);

unsigned char read_sig_mem(unsigned int addr)

{

 return (__AddrToZByteToSPMCR_LPM((void __flash*)(addr),((1<<SIGRD)|(1<<SELFPRGEN))));

}

void recalibrate(void)

{

 unsigned int temperature_factory_25C,current_temperature; // TS worker variables

 unsigned char new_osccal; // Temporary holding variable for result OSCCAL

 signed char step_size; // Temporary holding for osccal temperature sensitivity

 signed char pos_neg_sensitivity; // Increment or decrement variable

 signed int temp_diff; // Temp sensor

 current_temperature=get_temperature(); // First we get the actual device temperature

 /* new_osccal is the (unsigned char) best-case value for OSCCAL to give nearest 8MHz RC oscillator reading at the 25˚C test point
 at 3V and 5V. These values are determined during production test and stored directly in the signature row at addresses 0x0001
 3V or 0x0009 for the 5V setting.
 */

 new_osccal=read_sig_mem(OSCCAL_5V_ROOM); // Get ambient 5V osccal reading from sigrow

 /* step_size is the (signed char) value which gives the change required in the temp sensor ADC value to warrant an incremental
 change in the OSCCAL register to compensate. This value can be derived by the formula :

 ((ADC_Temp_Hot - ADC_Temp_Ambient)/(Best_OSCCAL_Hot - Best_OSCCAL_Ambient)) = step_size

 This value can be either positive or negative depending on the device.
 */

 step_size=read_sig_mem(SENSITIVITY); // Get osccal sensitivity reading from signature ram

Automotive Compilation Vol. 9

 /* Optional safety check, valid sensitivity values are (abs)S > 7 */

 if((step_size >= -7) && (step_size <= 7)) return; // If invalid S exit without recalibration

 if(step_size<0)

 {

 pos_neg_sensitivity=-1;

 // Negative sensitivity means reduce OSCCAL on increasing temperature

 step_size=((~step_size)+1);

 // Now that sensitivity has been determined make step_size absolute

 }

 else pos_neg_sensitivity=1;

 // Positive sensitivity means increase OSCCAL on increasing temperature

 /* room_temp is the (unsigned integer) raw value which the temp sensor returned via the ADC when the device was calibrated
 at room temperature.
 */

 temperature_factory_25C=((unsigned int)((read_sig_mem(TS_ADC_ROOM_HI))<<8)+read_sig_mem(TS_ADC_ROOM_LOW));

 /* For optimal code size here it needs to be ensured that all calculations are adjusted to positive operations
 */
 if((temp_diff=(current_temperature-temperature_factory_25C))<0)

 {

 pos_neg_sensitivity=(~pos_neg_sensitivity)+1;

 // Invert the sensitivity if we are dealing with below reference temperatures

 temp_diff=(~temp_diff)+1; // And make temperature difference absolute

 }

 /* Now the parameters for the temp sensor value at room, the sensitivity Osccal/Temp and the OSCCAL at room are available. With
 these parameters and the current temperature sensor reading, the OSCCAL register can be adjusted.
 */

 // Here we perform the calibration operation itself based on the given parameters

 // We do a repetitive subtraction instead of a division for code size efficiency

 while(temp_diff > step_size) // While an adjustment to OSCCAL is necessary

 {

 new_osccal+=pos_neg_sensitivity; // Adjust OSCCAL in appropriate direction

 temp_diff-=step_size; // Reduce temperature difference by step amount

 }

 OSCCAL=new_osccal; // Calibrate Osccal

}

unsigned int get_temperature(void)

{

 // Wait for conversion to complete just in case ADC is already in use

© 2012 / www.atmel.com

 while(ADCSRA&(1<<ADSC));

 ADCSRB=0;

 // Be careful of the order here, if ADC is not enabled ADMUX doesn't update

 ADCSRA = ((1<<ADEN)|(1<<ADIF)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0));

 // Enable ADC, clear ADC flag, 8MHz / 64 = 125kHz

 /* If the internal reference is not already on, turn it on and wait about 1ms for it to settle */

 if((ADMUX&(3<<REFS0))!=(3<<REFS0)) // Is 1.1V reference already on ?

 {

 ADMUX|=(3<<REFS0); // Activate internal 1.1V reference

 __delay_cycles(millisecond_delay);

 // Wait 1ms for reference to stabilize on AREF capacitor

 }

 ADMUX=TEMP_SENSOR; // Configure for temperature measurement

 ADCSRA|=(1<<ADSC); // Start dummy conversion

 while(ADCSRA&(1<<ADSC)); // Wait for conversion to complete

 ADCSRA|=(1<<ADSC); // Start proper conversion

 while(ADCSRA&(1<<ADSC)); // Wait for conversion to complete

 return (ADC);

}

© 2012 Atmel Corporation. All rights reserved. / Rev.: Article-AC9-ATmegaxx8pa-15-RC-Oscillator_V2_042015

Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.

Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel
products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY
RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR
INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and
reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not
suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441-0311 F: (+1)(408) 487-2600 | www.atmel.com

	8-Article-AC9-ATmegaxx8pa-15-RC-Oscillator_V2_041015
	8

