
 TB3191
 I²C Master Mode

Introduction

Author: Christopher Best, Microchip Technology Inc.

Inter-Integrated Circuit, more commonly referred to as I2C, is a synchronous, two-wire, bidirectional serial
communications bus. The I2C module can be used to communicate with other I2C compatible EEPROMs,
display drivers, sensors, or other microcontroller devices. This technical brief will discuss the features and
functions of the stand-alone I2C module in Master mode. The stand-alone I2C module will not be
confused with the traditional Master Synchronous Serial Port (MSSP), which contained both I2C and
Serial Peripheral Interface (SPI) functions.

I2C Module Modes and Features
The I2C module provides the following operational modes and features:

• Master Mode
• Slave Mode with Byte NACKing
• Multi-Master Mode
• Dedicated Receive and Transmit Buffers
• Up to Four Dedicated Slave Address Buffers(1)

• 7-Bit and 10-Bit Addressing with Masking
• General Call Addressing
• Interrupts
• Bus Collision Detection
• Bus Time-Out Detection with Programmable Sources
• SDA Hold Time Selection
• Programmable Bus-Free Time Selection
• I2C, SMBus 2.0, and SMBus 3.0 Input Level Selection
• Direct Memory Access (DMA) Support(2)

Note: 
1. Support for four dedicated slave buffers is only available when in 7-bit Addressing mode. When in

10-bit Addressing mode, only two dedicated address buffers are available.
2. Direct Memory Access (DMA) is not available on all devices. Please refer to the device data sheet

to determine if the DMA is available.

© 2019 Microchip Technology Inc. DS90003191B-page 1

Table of Contents

Introduction..1

1. I2C Specification.. 4

2. I2C Module Overview...6
2.1. Dedicated Transmit/Receive Buffers..6
2.2. Address Buffers..8
2.3. Receive Buffer..9
2.4. Transmit Buffer...9
2.5. Start Condition..9
2.6. Repeated Start/Restart Condition.. 10
2.7. Acknowledge (ACK)/Not Acknowledge (NACK) Sequence..11
2.8. Stop Condition..13
2.9. SDA and SCL Pins...14
2.10. Bus Time-Out... 14
2.11. Data Byte Count...15

3. Interrupts for Address Match, Transmit Buffer Empty, Receive Buffer Full, Bus
Time-Out, Data Byte Count, Acknowledge, and Not Acknowledge......................... 17

4. I2C Master Mode Operation...19
4.1. Master Clock Timing...19

5. Bus Free Time... 22

6. Master Mode Configuration and Operation... 23
6.1. Initialization...23

7. Master Mode Transmission... 27

8. Master Mode Reception.. 28

9. External Pull-up Resistor Selection... 30

10. Conclusion...31

The Microchip Web Site.. 32

Customer Change Notification Service..32

Customer Support... 32

Microchip Devices Code Protection Feature... 32

Legal Notice...33

 TB3191

© 2019 Microchip Technology Inc. DS90003191B-page 2

Trademarks... 33

Quality Management System Certified by DNV...34

Worldwide Sales and Service..35

 TB3191

© 2019 Microchip Technology Inc. DS90003191B-page 3

1. I2C Specification
The I2C specification was developed by Phillips Semiconductors to communicate between devices
connected to a two-wire bus. Phillips recognized that there were many similarities between consumer
electronics, industrial electronics, and telecommunications designs. Since the various designs often
contained similar components, such as Analog-to-Digital converters (ADCs), LCDs, or EEPROMs, Phillips
determined that they could simplify system design and maximize hardware efficiency by creating a
communication bus that could be used to transfer data between any device connected to the bus.

This allowed designers to use devices from multiple manufacturers, or use one device in several designs.
The specification also solved interfacing problems by creating a scheme that is now held as an industry
standard, meaning any I2C device could communicate with any other I2C device without having to change
the hardware or firmware of either device.

The I2C specification defines the bus as a two-wire, bidirectional communications scheme. One line
carries the serial data (SDA), and one line carries the serial clock (SCL). Each I2C device has its unique
address, either 7-bits or 10-bits in length. An I2C device can operate as either a bus master, bus slave, or
both, depending on the device and application. The specification defines the data transfer rates as
follows:

• Standard mode – transfer rates up to 100 Kbits/s
• Fast mode – transfer rates up to 400 Kbits/s
• Fast mode Plus – transfer rates up to 1 Mbit/s
• High-speed mode – transfer rates up to 3.4 Mbits/s

Microchip’s I2C module implements master and slave hardware that supports Standard mode, Fast mode
and Fast mode Plus. Throughout this technical brief, the I2C specification will be referred to so that the
reader understands both the I2C module and the I2C specification.

I2C Bus Terminology
To properly understand the language used in the specification, the following is a list of terms commonly
used by the specification and found throughout this technical brief:

Table 1-1. I²C Bus Terminology

Term Description

Transmitter The device that shifts data out onto the bus

Receiver The device that shifts data in from the bus

Master The device that initiates data transfer, generates the clock signal, and terminates
transmission

Slave The device addressed by the master

Multi-master A bus with more than one device that can initiate data transfers

Arbitration Procedure that ensures that only one master at a time controls the bus

Synchronization Procedure to synchronize the clocks of two or more devices on the bus

Idle Both the SDA and SCK lines are in a logic High state; no activity on the bus

Active Any time in which one or more master devices are controlling the bus

 TB3191
I2C Specification

© 2019 Microchip Technology Inc. DS90003191B-page 4

...........continued
Term Description

Address Slave Slave device that has received a matching address and is actively being clocked by
a master

Matching Address Address byte clocked into a slave that matches the value stored in one of the
I2CxADR registers

Write Request Master sends an address byte with the R/W bit clear; master intends to write data to
the slave

Read Request Master sends an address byte with the R/W bit set; master intends to receive data
from a slave

Clock Stretching When a device holds the clock line low to pause communications

Bus Collision Condition in which the expected data on SDA is a logic high, but is sampled as a
logic low

Bus Time-Out Condition in which a device on the bus is holding the bus for longer than a specified
period

 TB3191
I2C Specification

© 2019 Microchip Technology Inc. DS90003191B-page 5

2. I2C Module Overview
The I2C module provides a synchronous serial interface between the microcontroller and other I2C
compatible devices using the two-wire bus. The two signal connections, Serial Clock (SCL) and Serial
Data (SDA), are bidirectional open-drain lines, each requiring pull-up resistors to the supply voltage.
Pulling the line to ground is considered a logic ‘0’, while allowing the line to float is considered a logic ‘1’.

Important:  Note that the voltage levels of the logic ‘0’ (low) and logic ‘1’ (high) are not fixed
and are dependent on the bus supply voltage.

According to the I2C specification, a logic input low level is up to 30% of VDD (VIL ≤ 0.3 VDD), while a logic
input high level is 70% to 100% of VDD (VIH ≥ 0.7 VDD). Some legacy devices may use the previously
defined fixed levels of VIL = 1.5V and VIH = 3.0V, but all new I2C compatible devices require the use of the
30/70% specification.

All I2C communication is performed using an 8-bit data word and a 1-bit Acknowledge sequence. All
transactions on the bus are initiated and terminated by the master device. Depending on the direction of
the data being transferred, there are four main operations performed by the I2C module:

• Master Transmit – master is transmitting data to a slave
• Master Receive – master is receiving data from a slave
• Slave Transmit – slave is transmitting data to a master
• Slave Receive – slave is receiving data from a master

The I2C interface allows for a multi-master bus, meaning that there can be several master devices
present on one bus. A master can select a slave device by transmitting an unique address on the bus.
When the address matches a slave’s address, the slave responds with an Acknowledge sequence (ACK),
and communication between the master and that slave can commence. All other devices connected to
the bus must ignore any transactions not intended for them.

2.1 Dedicated Transmit/Receive Buffers
The I2C module has two dedicated data buffers, one for transmission (I2CxTXB) and one for reception
(I2CxRXB) - see figure below.

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 6

Figure 2-1. I2C Transmit (I2CxTXB) and Receive (I2CxRXB) Buffers

I2CxRXB

Shift Register(1)

I2CxTXB

I2CxRXB

Shift Register(1)

I2CxTXB

SDA

SCL

I2C Master I2C Slave

Note: 
1. Shift register is not accessible to the user.

The transmit buffer, I2CxTXB, is loaded from software or from the Direct Memory Access (DMA) module
(see Figure 2-2). When transmission begins, data loaded into the I2CxTXB is shifted into the transmit
shift register and out onto the bus. The I2CxTXB can be loaded when the Transmit Buffer Empty Status
(TXBE) bit of the I2CxSTAT1 register is set (TXBE = 1), indicating that the buffer is empty. When the
buffer is empty and the I2CxCNT register is not equal to zero (I2CxCNT != 0), the I2C Transmit Interrupt
Flag (I2CxTXIF) bit is set (I2CxTXIF = 0), and the generic I2C Interrupt Flag (I2CxIF) bit is also set if the
I2C Transmit Interrupt Enable (I2CxTXIE) bit is set (I2CxTXIE = 1). Loading a new byte of data into the
I2CxTXB clears the I2CxTXIF Flag bit. If the buffer is loaded when it is full (TXBE = 0), the Transmit Write
Error Status (TXWE) bit is set, and the new data is discarded. If TXWE is set, user software must clear
this Error condition to resume normal operation.

The receive buffer, I2CxRXB, receives data from the bus via the receive shift register. I2CxRXB can be
read through user software or through the DMA (see Figure 2-2). When a new byte is received into
I2CxRXB, the Receive Buffer Full Status (RXBF) bit of the I2CxSTAT1 register and the I2C Receive
Interrupt Flag (I2CxRXIF) bit are set, and the generic I2CxIF is also set if the I2C Receive Interrupt
Enable (I2CxRXIE) is set. Reading the buffer clears both RXBF and I2CxRXIF. If the buffer is read when it
is empty (RXBF = 0), the Receive Read Error Status (RXRE) bit is set, and a Not Acknowledge (NACK) is
generated. User software must clear the Error condition to resume normal operation.

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 7

Figure 2-2. I2C Transmit/Receive Buffers with DMA

Filename: Trans_Receive_with_DMA.vsdx
Title: I2C TRANSMIT/RECEIVE BUFFERS WITH DMA
Last Edit: 2/13/2019
First Used: I2C STAND-ALONE MODULE
Notes:

Rev. Trans_Rece
2/13/2019

I2CxRXB

Shift Register(1)

I2CxTXB

I2CxRXB

Shift Register(1)

I2CxTXB

SDA

SCL

I2 C
 M

as
te

r

I2 C
 S

la
ve

Memory Buffer Memory Buffer

Memory BufferMemory Buffer
DMA READ

FROM
I2CxRXB

DMA WRITE
TO I2CxTXB

Note: 
1. Shift register is not accessible to the user.

Both transmit and receive buffers can be cleared by setting the Clear Buffer (CLRBF) bit of the
I2CxSTAT1 register, which also clears both the I2CxTXIF and I2CxRXIF Interrupt flags.

2.2 Address Buffers
The I2C module has two address buffer registers, I2CxADB0 and I2CxADB1, which can be used as
receive buffers in Slave mode, transmit buffers in Master mode, or both transmit and receive buffers in
Multi-Master mode (see table below). This differs from the MSSP module in that the MSSP module only
used the SSPBUF to receive or transmit an address (or data). The address buffers are enabled via the
Address Buffer Disable (ABD) bit. When ABD is clear (ABD = 0), the address buffers are enabled; when
the ABD is set (ABD = 1), the address buffers are disabled.

Table 2-1. Address Buffer Direction for Master Modes

Modes MODE<2:0> I2CxADB0 I2CxADB1

Master (7-bit) 100 Unused TX

Master (10-bit) 101 TX TX

Multi-Master (7-bit) 111 RX TX

In 7-bit Master mode, I2CxADB1 is used to store a slave address, while I2CxADB0 is unused. When the
address buffers are enabled (the ABD bit of I2CxCON2 = 0), the address loaded into I2CxADB1 is copied

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 8

into the transmit shift register automatically by hardware. Conversely, when the address buffers are
disabled (ABD = 1), neither I2CxADB0 or I2CxADB1 are used, and the slave address is loaded into the
I2CxTXB register by user software.

In 10-bit Master mode, I2CxADB0 is used to store the lower eight bits of the slave address, while
I2CxADB1 is used to store the upper bits and R/W value of the slave address. When the address buffers
are enabled (ABD = 0), the upper byte of the 10-bit address loaded into I2CxADB1 is copied
automatically by the hardware into the transmit shift register. Once the master receives the ACK from the
slave, the lower byte of the 10-bit address loaded into I2CxADB0 is copied automatically by the hardware
into the transmit shift register.

In Multi-Master mode, only 7-bit addresses are used. If the device is addressed as a slave, the received
matching slave address is copied into the I2CxADB0 register. If the device is communicating as a master,
the contents of the I2CxADB1 register are copied into the transmit shift register to address the slave.

2.3 Receive Buffer
The stand-alone I2C module has a dedicated receive buffer, I2CxRXB, which operates independently
from the transmit buffer.

The receive buffer holds one byte of data that is shifted in from the receive shift register. User software or
the DMA can read the byte through the I2CxRXB register. When a new byte is received, the Receive
Buffer Full Status (RXBF) bit is set. The RXBF bit replaces the Buffer Full (BF) bit used in the MSSP
module upon reception of a full byte. Reading I2CxRXB will clear the RXBF bit. If the buffer is read while
empty (RXBF = 0), the Receive Read Error Status (RXRE) bit is set, and the module generates a NACK.
User software must clear the RXRE bit to resume normal operation. Additionally, setting the Clear Buffer
(CLRBF) bit clears both the receive and transmit buffers, as well as the I2C Receive Interrupt Flag
(I2CxRXIF) bit and I2C Transmit Interrupt Flag (I2CxTXIF) bit.

2.4 Transmit Buffer
The stand-alone I2C module has a dedicated transmit buffer, I2CxTXB, which operates independently
from the receive buffer.

The transmit buffer is loaded with an address or data byte that is to be shifted into the transmit shift
register and transmitted onto the bus. When the I2CxTXB is empty, the Transmit Buffer Empty Status
(TXBE) bit is set, allowing user software or the DMA to load another byte into the buffer. Once the data is
transmitted from the I2CxTXB register, the TXBE bit is cleared. If user software attempts to load the
I2CxTXB while it is full (TXBF = 1), the Transmit Write Error Status (TXWE) bit is set, a NACK is
generated, and the new data is ignored. If the TXWE Flag is set, software must clear this bit before
attempting to load the buffer again. Additionally, setting the Clear Buffer (CLRBF) bit clears both the
transmit and receive buffers, as well as the I2C Transmit Interrupt Flag (I2CxTXIF) bit and I2C Receive
Interrupt Flag (I2CxRXIF) bit.

2.5 Start Condition
The I2C specification defines a Start condition as the transition of the SDA line from an idle state (logic
high level) to an active state (logic low level) while the SCL line is idle (see figure below). The Start
condition is always initiated by the master and signifies the beginning of a transmission.

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 9

Figure 2-3. Start Condition

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

SDA

SCL

432143

BFRET<1:0> = ‘00’
(8 - I2C Clock Pulses)

BFRE = 1
SCIF = 1

Start Condition asserted

Completion of Start
If ABD = 0: Hardware loads I2C Shift register

from I2CxADB0/1
If ABD = 1: Hardware loads I2C Shift register

with I2CxTXB

3

Change of data allowed
I2CxCLK

(FME = 1)

Write to Start(S) bit
tHD;DAT (2)

tHD;STA(1)

Note: 
1. See device data sheet for Start condition hold time parameters.
2. SDA hold time are configured via the SDAHT<1:0> bits.

According to the I2C specification, a bus collision cannot occur on a Start condition. The Bus Free (BFRE)
bit is used by module hardware to indicate the status of the bus. The Bus Free Time (BFRET<1:0>) bits
define the amount of I2C clock cycles that master hardware must detect while the bus is idle before the
BFRE bit is asserted. When the BFRE bit is set (BFRE = 1), the bus is considered in an idle state, and a
master device may issue a Start condition. If there is more than one master on the bus (Multi-Master
mode), and both attempt to issue a Start condition simultaneously, a bus collision will occur during the
addressing phase of communication.

2.6 Repeated Start/Restart Condition
A Repeated Start or Restart condition is identical to a Start condition. A master device can issue a
Restart condition instead of a Stop condition if it intends to hold the bus after completing the current data
transfer. A Restart condition has the same effect on the slave as a Start condition would, resetting all
slave logic and preparing it to receive an address. The Restart condition is always initiated by the master.

A Restart condition occurs when the Restart Enable (RSEN) bit is set, I2CxCNT is ‘0’, and either master
hardware or user software sets the Start bit.

When the Start bit is set, master hardware releases SDA (SDA floats high) for TSCL/2. Then, hardware
releases SCL for TSCL/2, and samples SDA. If SDA is sampled low (while SCL is high), as bus collision
has occurred, setting the Bus Collision Detect Interrupt Flag (BCLIF) bit and placing master hardware in
the idle state. If SDA is sampled high (while SCL is also high), master hardware issues a Start condition.
If ABD = 0, hardware loads the I2C shift register with the address loaded into I2CxADB0/1. If ABD = 1,
hardware transfers the address from I2CxTXB into the shift register. Once a Restart condition is detected
on the bus, the Restart Condition Interrupt Flag (RSCIF) bit is set. See figure below for more details.

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 10

Figure 2-4. Restart Condition

1 2 3 4 1 2 3 4 4 41 12 23 3

Write to Start (S) bit

Master releases SCL

Hardware
samples SDA

RSCIF = 1
condition detected

Repeated Start

Completion of
Repeated Start

If ABD = 0: I2C Shift register
loaded from I2CxADB0/1

If ABD = 1: I2C Shift register
loaded from I2CxTXB

1 2

tSU:STA
(1)

SDA

SCL

I2CxCLK

Note: 
1. See device data sheet for Restart condition setup times.

2.7 Acknowledge (ACK)/Not Acknowledge (NACK) Sequence
The I2C specification defines the Acknowledge sequence as a logic low state of the SDA line during the
9th SCL pulse for any successfully transferred byte. During this time, the transmitter must relinquish
control of the SDA line to the receiver. The receiver must then pull the SDA line low and keep it low
during the high period of the 9th SCL pulse.

When the receiver has successfully received a matching address byte or a valid data byte, it will pull the
SDA line low during the 9th SCL pulse, which indicates to the transmitter that is has successfully received
the information and is ready for the next byte.

An Acknowledge sequence is enabled automatically by hardware following an address/data byte
reception. On the 8th falling edge of SCL, the contents of either the Acknowledge Data (ACKDT) bit or
the Acknowledge End of Count (ACKCNT) bit is copied to the SDA output. When I2CxCNT is not ‘0’, the
value of the ACKDT bit is copied to SDA. When I2CxCNT is ‘0’, the value of the ACKCNT bit is copied to
SDA. In most applications, the value of ACKDT may be ‘0’, which represents an ACK (see figure below).

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 11

Figure 2-5. Master ACK (I2CxCNT = 1)

1 2 3 4 1 2 3 4 1

D1 D0

4

7 8 9

ACK

Begin ACK sequence

ACK Complete

RXBF RXIF = 1

ACKDT copi ed to SDA

I2 CxCNT= 1

SDA

SCL

I2CxCLK

Software/DMA
reads I2CxRXB

RXIF = 0

If the SDA line remains at a high logic level during the 9th SCL pulse, this is defined as a Not
Acknowledge (NACK) sequence (see figure below).

Figure 2-6. Master NACK (I2CxCNT = 0)

Filename: NACK sequence.vsdx
Title:
Last Edit: 1/10/2019
First Used:
Notes:

Rev. NACK seque
1/10/2019

1 2 3 4 1 2 3 4 1

D1 D0

4

7 8 9

NA CK

Begin NACK
sequence

NACK Complete

RX B F I2CxRXIF = 1 Software/DMA
reads I2CxRXB,

clearing I2CxRXIF
and RXBF

ACKCNT copied to SDA

I2CxCNT = 0

SD A

SC L

I2Cx CL K

CNTIF = 1

A NACK is generated when any of the following conditions occurs:

• No slave device is present on the bus that owns the transmitted address
• The receiver is busy and is not ready for communication
• The receiver gets data or commands that it cannot understand
• The receiver cannot receive any more data

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 12

• A master-receiver has received the requested data and is ready to terminate transmission
• An I2C Error condition has occurred
• The I2CxCNT register has reached a ‘0’ value and ACKCNT is set (ACKCNT = 1).

The master device can then decide to either generate a Stop condition to terminate the transfer, or issue
a Restart condition to hold the bus and begin a new transfer.

2.8 Stop Condition
The I2C specification defines a Stop condition as the transition of the SDA line from an active state to an
idle state while the SCL line is idle. The master will issue a Stop condition when it has completed its
transactions and is ready to release control of the bus, or if a bus time-out occurs.

Important:  Note that at least one SCL low period must appear before a Stop condition is valid.
If the SDA line transitions low and then high again while the SCL line is high, the Stop condition
is ignored and a Start/Restart condition will be detected by the receiver (see figure below).

Figure 2-7. Stop Condition

Filename: Stop Condition (Rev B).vsdx

Title:

Last Edit: 1/18/2019

First Used:

Notes:

Rev. Stop Condi

1/18/2019

1 2 3 4 4 41 3 312 2

98

NACKD0

NACK SEQUENCE

Stop condition
begins

TSU:STO
(2)

TSCL/2(1)

Stop detected
PCIF = 1

1 2

THD:STO
(3)

SDA

SCL

I2CxCLK

Note: 
1. At least one SCL low time must appear before a stop is valid.
2. See device data sheet for Stop condition setup times.
3. See device data sheet for Stop condition hold times.

After the ACK/NACK sequence of the final byte of the transmitted/received I2C packet, hardware pulls the
SCL line low for TSCL/2, and then releases SCL. Hardware samples SCL to ensure a logic high level.
SDA is then released, and the transition of SDA from low to high while SCL is high causes the Stop
Condition Interrupt Flag (PCIF) bit to be set.

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 13

2.9 SDA and SCL Pins
The Serial Data (SDA) and Serial Clock (SCL) pins are used by the I2C module to control the I2C bus
lines. Unlike previous versions of the MSSP, the SCL and SDA pins must be configured manually in open-
drain operation by setting the appropriate bits in the associated port’s Open-Drain Control register
(ODCON). Also unlike previous versions of the MSSP, the port’s Direction Control register (TRIS) must
have the SDA and SCL pins configured as outputs by clearing the appropriate TRIS bits. Finally, slew rate
control, internal pull-up resistor selection, and input threshold levels for each pin can be configured using
the RxyI2C I2C Pad Control register.

Important:  Note that previous MSSP modules have recommended using external pull-up
resistors rather than the internal weak pull-ups. However, the internal pull-ups located on the
dedicated I2C pins may now be used, depending on the bus transmission frequency and
capacitance. The internal pull-ups can be configured in the RxyI2C register.

The SDA and SCL pins are typically assigned to two I/O port pins, and must be enabled using the
Peripheral Pin Select (PPS) module. The PPS module has two dedicated I2C input registers:
I2CxSCLPPS, which defines the SCL input pin, and I2CxDATPPS, which defines the SDA input pin. SDA
and SCL outputs are also defined via the PPS module. The outputs use the RxyPPS registers to define
the signal the pin will output.

Important:  Note that both the SDA and SCL inputs and outputs must be defined, and must be
assigned to the same pins. For example, if the SDA pin is assigned to pin RC4, both the
I2CxDATPPS and the RC4PPS registers must be mapped to pin RC4. If both input and output
signals are not mapped to the same pin, or if one of the signals are not mapped at all, no
communication will take place.

The PPS module also allows for alternate pins to be used instead of the default pin locations. If an
alternate pin location is desired, simply load the appropriate PPS registers with the new location.

Important:  Note that some devices allow digital peripherals to be relocated to any pin, while
other devices only allow the digital peripherals to be moved to pins within two I/O ports. Please
refer to the device data sheet’s PPS chapter for more details. Also, if the I2C pin locations are
moved from the default pins, the new locations may not be configured for I2C levels, and would
require the open-drain, slew rate, and input threshold control registers to be configured for I2C
levels, and the bus may require external pull-up resistors since the weak pull-ups of non-I2C
pins are not suitable for communication.

2.10 Bus Time-Out
SMBus and PMBus protocols require a bus watchdog to prevent a stalled device from hanging the bus
indefinitely. The I2C module provides a bus time-out feature that can be used to reset the module if one of
the bus devices is taking too long to respond. The I2C Bus Time-Out (I2CxBTO) register is used to select
the time-out source for the module. When the time-out source expires, the I2CxBTO register notifies the
module hardware and resets the module.

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 14

If the module is configured as a slave and a bus time-out event occurs while the slave is active (Slave
Mode Active bit (SMA) = 1), the SMA and Slave Clock Stretching (CSTR) bits are cleared, the module is
reset, and the Bus Time-Out Interrupt Flag (BTOIF) bit is set.

If the module is configured as a master and a bus time-out event occurs while the master is active
(Master Mode Active bit (MMA) = 1), the module immediately attempts to transmit a Stop condition and
sets BTOIF. Generation of the Stop condition may be delayed if a slave is stretching the clock. The MMA
bit is only cleared after a Stop condition has been generated (see figure below).

Figure 2-8. Master Transmit Bus Time-Out Event Example

Filename: BTO event example (Rev B).vsdx
Title:
Last Edit: 2/13/2019
First Used:
Notes:

Rev. BTO event
2/13/2019

D0

8

I2CxTXIF = 1
TXBE = 1

Enable BTO
Clock

BTO Clock Source

Master waits
for ACK/NACK

BTOIF = 1

MMA

Master attempts to issue Stop,
but must wait until SCL = 1

Slave releases SCL,
Master begins Stop

Stop detected
PCIF = 1

Software
clears BTOIF

Hardware clears MMA

SDA

SCL

2.11 Data Byte Count
The data byte count is the number of bytes in a complete I2C packet. The I2C Byte Count (I2CxCNT)
register is used to specify the length, in bytes, of the complete transaction. The value loaded into
I2CxCNT will decrement each time a data byte is transmitted or received by the module.

When a byte transfer causes the I2CxCNT register to decrement to ‘0’, the Byte Count Interrupt Flag
(CNTIF) bit of the I2CxPIR register is set, and if the Byte Count Interrupt Enable (CNTIE) bit of the
I2CxPIE register is set,the general purpose I2C Interrupt Flag (I2CxIF) bit is also set. The I2CxIF is a
read-only bit and can only be cleared by clearing all enabled Interrupt Flag bits in the I2CxPIR register.

The I2CxCNT register can be read at any time, but it is recommended that a double read is performed to
ensure a valid read.

The I2CxCNT register can be written to, but care is required to prevent register corruption. If the I2CxCNT
register is written to during the 8th falling SCL edge during reception, or during the 9th falling SCL edge
during transmission, the register value may be corrupted. In Slave mode, I2CxCNT can be safely written
to any time the slave is stretching the clock (CSTR = 1), or after a Stop condition has been received. In
Master mode, I2CxCNT can be safely written to any time the master state machine is paused (MDR = 1),
or when the bus is idle (BFRE = 1). If the I2C packet is longer than 255 bytes, the I2CxCNT value can be
updated mid-message to prevent the count from reaching ‘0’; however, the preventative measures listed
above must be followed.

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 15

The I2CxCNT value can be automatically loaded when the Auto-Load I2C Count Register Enable (ACNT)
bit of the I2CxCON2 register is set. When ACNT is set, the data byte following the address byte is loaded
into I2CxCNT, and the value of the Acknowledge Data (ACKDT) bit is used for the ACK response.

When in either Slave-Read or Master-Write mode and the I2CxCNT value is not ‘0’, the value of the
ACKDT bit is used for the ACK response. When I2CxCNT = 0, the value of the Acknowledge End of
Count (ACKCNT) bit is used for the ACK response.

When the module is in Master mode and I2CxCNT = 0 and the Restart Enable (RSEN) bit is clear, the
master state machine will automatically generate a Stop condition instead of reading/writing another byte.
When I2CxCNT = 0 and RSEN = 1, the master will set the Master Data Ready (MDR) bit, stretch the
clock, and wait for the Start bit to be set before sending a Restart condition and the address of the slave it
wishes to communicate with.

 TB3191
I2C Module Overview

© 2019 Microchip Technology Inc. DS90003191B-page 16

3. Interrupts for Address Match, Transmit Buffer Empty, Receive Buffer
Full, Bus Time-Out, Data Byte Count, Acknowledge, and Not
Acknowledge
The stand-alone I2C module contains additional interrupt features designed to assist with communication
functions. In addition to the MSSP module’s Start/Restart Condition (SCIF), Stop Condition (PCIF), Bus
Collision (BCLIF), and transmit, receive, and acknowledge (SSPIF) interrupts, the stand-alone I2C module
adds an Address Match (ADRIF), Transmit Buffer Empty (TXBE), Receive Buffer Full (RXBF), Bus Time-
Out (BTOIF), Data Byte Count (CNTIF), Acknowledge Status Time (ACKTIF), and Not Acknowledge
Detect (NACKIF).

The stand-alone I2C module incorporates a new register, the I2C Interrupt Flag register (I2CxPIR), which
handles several I2C related interrupts. Additionally, when any of the flag bits in I2CxPIR become set and
the associated I2CxPIE Interrupt Enable bit is set, the generic I2C Interrupt Flag (I2CxIF) is also set. If the
matching Interrupt Enable bit is set, an interrupt is generated whenever the Interrupt Flag bit is set. If the
associated Interrupt Enable bit is clear, the Interrupt flag will still be set when the Interrupt condition
occurs, however, no interrupt will be triggered.

Important:  Note that the generic I2CxIF bit is read-only and is only cleared by hardware when
all bits in the I2CxPIR register are clear.

The I2CxPIR contains the following Interrupt Flag bits:

• CNTIF: Byte Count Interrupt Flag
• ACKTIF: Acknowledge Status Time Interrupt Flag
• WRIF: Data Write Interrupt Flag
• ADRIF: Address Interrupt Flag
• PCIF: Stop Condition Interrupt Flag
• RSCIF: Restart Condition Interrupt Flag
• SCIF: Start Condition Interrupt Flag

The CNTIF becomes set (CNTIF = 1) when the I2CxCNT register value reaches ‘0’, indicating that all
bytes in the data frame have been transmitted or received. CNTIF is set after the 9th falling edge of SCL
when the I2CxCNT = 0.

The ACKTIF becomes set (ACKTIF = 1) after the 9th falling edge of SCL for any byte when the device is
addressed as a slave in any I2C Slave mode or I2C Multi-Master mode whenever an ACK is detected.

The WRIF becomes set (WRIF = 1) after the 8th falling edge of SCL when the module receives a data
byte. This bit is only active in any I2C Slave mode or I2C Multi-Master mode. Once the data byte is
received, WRIF is set, as is the Receive Buffer Full Status (RXBF) bit, the I2C Receive Interrupt Flag
(I2CxRXIF) bit, and if the Data Write Interrupt and Hold Enable (WRIE) bit is set, the generic I2CxIF bit is
also set. The WRIF bit is read/write and must be cleared by user software, while the RXBF, I2CxRXIF,
and I2CxIF are read-only, and are cleared by reading the I2CxRXB.

The ADRIF becomes set on the 8th falling edge of SCL after the module has received either a matching
7-bit address byte or the matching upper or lower bytes of a 10-bit address. This bit is only active in Slave
mode or Multi-Master mode. Upon receiving a matching address byte, the ADRIF bit is set.

The PCIF is set whenever a Stop condition is detected on the bus.

 TB3191
Interrupts for Address Match, Transmit Buffer ...

© 2019 Microchip Technology Inc. DS90003191B-page 17

The RSCIF is set upon the detection of a Restart condition.

The SCIF is set upon the detection of a Start condition.

In addition to the I2CxPIR register, the stand-alone module incorporates the I2C Error (I2CxERR) register.
The I2CxERR register contains three Interrupt Flag bits that are used to detect bus errors. These bits are
read/write and must be cleared by user software. The I2CxERR register also includes the Enable bits for
these three functions.

The I2CxERR register contains the following Interrupt Flag bits:

• BTOIF: Bus Time-Out Interrupt Flag
• BCLIF: Bus Collision Detect Interrupt Flag
• NACKIF: NACK Detect Interrupt Flag

BTOIF is set when a bus time-out occurs. The bus time-out time frame is controlled by the I2C Bus Time-
Out (I2CxBTO) register. If a bus time-out event occurs and the module is configured as a master and is
active (MMA = 1), the BTOIF is set and the module immediately tries to issue a Stop condition. When
BTOIF becomes set, and the associated Bus Time-Out Interrupt Enable (BTOIE) bit is set, the generic
I2C Error Interrupt Flag (I2CxEIF) bit is also set. The I2CxEIF bit is read-only, and is cleared by hardware
when all error Interrupt Flag bits in the I2CxERR register are clear.

BCLIF is set whenever a bus collision is detected. A bus collision occurs any time the SDA input is
sampled low while the both the SDA and SCL outputs are high. When BCLIF is set, and the associated
Bus Collision Detect Interrupt Enable (BCLIE) bit is set, the generic I2CxEIF bit is also set.

NACKIF is set when either the master or slave is active (SMA = 1 || MMA = 1) and a NACK is detected on
the bus. A NACK response occurs during the 9th SCL pulse when the SDA line is released high. When
the module is in Master mode, a NACK can be issued when the master has finished receiving data from
the slave, or in the event it did not receive a byte. In Slave mode, the slave issues a NACK when it does
not receive a matching address, or did not receive the last data byte. A NACK can also be automatically
sent if any of the following bits are set, which will set NACKIF, and if the NACK Detect Interrupt Enable
(NACKIE) bit is set, hardware also sets I2CxEIF:

• TXWE: Transmit Write Error Status bit
• RXRE: Receive Read Error Status bit
• TXU: Transmit Underflow Status bit
• RXO: Receive Overflow Status bit

 TB3191
Interrupts for Address Match, Transmit Buffer ...

© 2019 Microchip Technology Inc. DS90003191B-page 18

4. I2C Master Mode Operation
To begin any I2C communication, the master hardware checks to ensure that the bus is in an idle state,
which means both the SCL and SDA lines are floating high. Master hardware monitors the Bus Free
(BFRE) bit to be set, indicating the bus is idle. The master then transmits a Start condition, followed by
the address of the slave it intends to communicate with. The slave address can be either 7-bit or 10-bit,
depending on the application design.

In 7-bit Addressing mode, the Least Significant bit (LSb) acts as the Read/not Write (R/W) bit, while in 10-
bit Addressing mode, the LSb of the address high byte is considered the R/W bit. When the R/W bit is
set, the master intends to read from the slave. If the R/W bit is cleared, the master intends to write to the
slave. If the addressed slave device exists on the bus, it must respond with an Acknowledge (ACK)
sequence.

The master then continues to either receive data from the slave, write data to the slave, or a combination
of both. Data is always transmitted Most Significant bit (MSb) first. When the master intends to halt further
transmission, it transmits a Stop condition, signaling to the slave that communication is to be terminated,
or a Restart condition, signaling the bus that the current master wishes to hold the bus to communicate
with the same or other slaves.

Master mode is selected by configuring the MODE<2:0> bits of the I2CxCON0 register. There are four
Master mode configurations:

• I2C Master mode with 7-bit address
• I2C Master mode with 10-bit address
• I2C Multi-Master – Master mode with 7-bit address and Slave mode with two 7-bit addresses with

masking
• I2C Multi-Master – Master mode with 7-bit address and Slave mode with four 7-bit addresses.

The master device generates the SCL pulses, as well as the Start, Restart, and Stop conditions.
Transmission always begins with a Start condition, and can end with either a Stop condition or Restart
condition. When the master has completed all transactions, and is ready to release the bus, it will
generate a Stop condition. If the master wishes to stop communicating with one slave, but wants to hold
the bus to address another slave, it issues a Restart condition. Control of the bus can only be asserted
when the Bus Free (BFRE) bit of the I2CxSTAT0 register is set.

The steps to initiate a transaction depend on the settings of the Address Buffer Disable (ABD) bit of the
I2CxCON2 register.

When the ABD bit is clear (ABD = 0), the address buffer registers, I2CxADB0 and I2CxADB1, are active
and used for slave address transmission. The module will automatically load the transmit shift register
with an address stored in one of the address buffers. Software must set the Start (S) bit to initiate
communication with the slave.

When the ABD bit is set (ABD = 1), the address buffers are inactive and ignored for transmission. In this
case, user software must load the I2CxTXB with the slave address to begin communication, and any
writing to the Start bit will be ignored.

4.1 Master Clock Timing
The I2C module clock is generated by module hardware in Master mode. The I2CxCLK register provides
the clock source for the module, which can be selected from several peripherals. Master clock timing is

 TB3191
I2C Master Mode Operation

© 2019 Microchip Technology Inc. DS90003191B-page 19

controlled by the Fast Mode Enable (FME) bit of the I2CxCON2 register. The FME bit controls the number
of times the SCL pin is sampled before the master hardware drives it.

Important:  Note that the I2C clock is not the same as the SCL, rather it is used to time the
SCL output.

The clock source selected by I2CxCLK, in combination with the FME bit, is used by master hardware to
time the SCL signal. For example, if the Medium Frequency Internal Oscillator (MFINTOSC), which
generates a 500 kHz output, is selected as the I2C clock source, the SCL frequency would not be 500
kHz. The MFINTOSC signal would be divided by either 4 or 5, depending on the value of the FME bit (see
equations below).

When the FME bit is cleared, one SCL period (TSCL) consists of five clock periods of the I2C clock input
source selected by the I2CxCLK register (see figure below). The first clock period is used to drive SCL
low, and the second clock period samples SCL to ensure it is in fact low. The third clock period releases
SCL high, and the fourth and fifth clock periods sample the SCL to detect if the SCL pin is indeed high or
if the slave is stretching the clock.

If the slave is stretching the clock, module hardware waits, checking each successive I2C clock period
until the hardware detects a high level on SCL. Once the high level is detected, hardware uses the next
two successive I2C clock periods to verify the SCL is high.

Equation 4-1. SCL Frequency Example (FME = 0)
When FME = 0���� = ��2����5
Example:

• I2CxCLK = MFINTOSC (500 kHz)
• FME = 0���� = 500���5 = 100 ���

Figure 4-1. I2C SCL Timing (FME = 0)

1 2 3 4 5 1 2

 to ensure SCL is low
Master samples SCL

Master releases
SCL

Master drives
SCL low

Master samples
SCL to ensure SCL

is high

Master drives
SCL low

ensure SCL is low
Master samples SCL to

Master releases
SCL, but slave
stretches clock

3 4 5 1 2

 high
Master samples SCL for

Slave releases
SCL

Master MUST
detect SCL high

twice

Master drives
SCL low

Source

SCL

TSCL TSCL

I2C Clock

 TB3191
I2C Master Mode Operation

© 2019 Microchip Technology Inc. DS90003191B-page 20

When the FME bit is set, one SCL period (TSCL) consists of four clock periods of the I2C clock input
source selected by the I2CxCLK register (see figure below). The first clock period drives SCL low, and the
second clock period samples SCL to ensure it is low. The third clock period causes the master to release
the SCL, driving SCL high. The fourth clock period samples SCL to determine whether it is high or being
stretched by a slave. If the slave is stretching the clock, module hardware waits, checking each
successive I2C clock period until the hardware detects a high level on SCL. Once the high level is
detected, hardware uses the next successive I2C clock period to verify if the SCL is high.

Equation 4-2. SCL Frequency Example (FME = 1)
When FME = 1���� = ��2����4
Example:

• I2CxCLK = MFINTOSC (500 kHz)
• FME = 1���� = 500���4 = 125 ���

Figure 4-2. I2C SCL Timing (FME = 1)

1 2 3 4 1 2

 ensure SCL is low
Master samples SCL to

Master releases
SCL

Master drives
SCL low

Master samples
SCL to ensure SCL

is high

Master drives
SCL low

ensure SCL is low
Master samples SCL to

Master releases
SCL, but slave
stretches clock

3 4 1 2

high
Master samples SCL for

Slave releases
SCL

Master MUST
detect SCL high

Master drives
SCL low

Source

SCL

3 4

TSCL TSCLTSCL

I2C Clock

 TB3191
I2C Master Mode Operation

© 2019 Microchip Technology Inc. DS90003191B-page 21

5. Bus Free Time
The Bus Free (BFRE) bit of the I2CxSTAT0 register is used to indicate the status of the bus. Master
hardware sets this bit when it detects an idle bus. When BFRE = 1, any master device on the bus can
compete for control of the bus. When BFRE = 0, the bus is considered busy, and any attempts by a
master to control the bus will cause a collision. The Bus Free Time (BFRET) bits of the I2CxCON1
register are used to select the number of I2C clock pulses that delay the master hardware from setting the
BFRE bit after the bus is detected in the idle state. The BFRET bits are used to ensure that module
meets the minimum stop hold time defined by the I2C specification.

 TB3191
Bus Free Time

© 2019 Microchip Technology Inc. DS90003191B-page 22

6. Master Mode Configuration and Operation
The steps listed below can be used to configure the I2C module for Master mode operation.

6.1 Initialization
To begin I2C Master mode communication, the following register bits must be properly configured during
initialization (see code example below):

I2C Initialization Example
static i2c_error lastError = I2C1_GOOD;

void I2C1_Initialize(void) // Initialize I2C Module
{
 if(!I2C1CON0bits.EN || lastError != I2C1_GOOD)
 {
 lastError = I2C1_GOOD;
 I2C1CON0 = 0x04; // Master 7-bit address mode
 I2C1CON1 = 0x80; // ACKDT = ACK, ACKCNT = NACK
 I2C1CON2 = 0x24; // Enable Address Buffers
 // BFRET = 8 I2C pulses
 // FME = 1
 I2C1CLK = 0x03; // MFINTOSC (500 kHz)
 I2C1PIR = 0; // Clear all interrupt flags
 I2C1ERR = 0; // Clear all error flags
 I2C1CON0bits.EN = 1; // Enable I2C module
 }
}

void PIN_MANAGER_Initialize(void) // Initialize SCL and SDA pins
{
 LATC = 0x00; // Clear PORTC write latches
 TRISC = 0xE7; // RC3, RC4 initialized as outputs
 ANSELC = 0xE7; // Clear RC3, RC4 analog input
 ODCONC = 0x18; // Must configure RC3, RC4 as OD
 RC3I2C = 0x01; // Standard GPIO slew rate
 // Internal pull-ups not used
 // I2C specific thresholds
 SLRCONCbits.SLRC3 = 0; // No slew rate limiting
 RC4I2C = 0x01;
 SLRCONCbits.SLRC4 = 0;

 // PPS configuration
 bool state = (unsigned char)GIE;
 GIE = 0;
 PPSLOCK = 0x55; // Unlock sequence
 PPSLOCK = 0xAA;
 PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS
 RC3PPS = 0x21; // RC3->I2C1:SCL1;
 RC4PPS = 0x22; // RC4->I2C1:SDA1;
 I2C1SDAPPSbits.I2C1SDAPPS = 0x14; // RC4->I2C1:SDA1;
 I2C1SCLPPSbits.I2C1SCLPPS = 0x13; // RC3->I2C1:SCL1;
 PPSLOCK = 0x55; // Lock sequence
 PPSLOCK = 0xAA;
 PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS
 GIE = state;
}

I2CxCON0: The I2CxCON0 contains the module Enable (EN) bit and the Mode Select (MODE<2:0>) bits.
The MODE<2:0> bits are used to select the Communications mode, and the EN bit enables the Master
state machine hardware. MODE<2:0> bit settings must not be changed while the EN bit is set (module is
enabled).

I2CxCON1: The I2CxCON1 register contains the Acknowledge End of Count (ACKCNT) and
Acknowledge Data (ACKDT) bits.

 TB3191
Master Mode Configuration and Operation

© 2019 Microchip Technology Inc. DS90003191B-page 23

The ACKCNT bit reflects the value transmitted after the I2CxCNT register has reached ‘0’, signaling the
end of the packet. When ACKCNT is clear, the module will issue an ACK; when set, the module issues a
NACK. This bit can be modified during run time, but must only be changed before the I2CxCNT reaches
‘0’ and before an Acknowledge sequence is issued. If there are errors in either the I2CxERR or I2CxSTAT
registers, master hardware automatically overrides this bit setting and generates a NACK.

The ACKDT bit reflects the value transmitted after a matching address is received, or after a byte is
received while I2CxCNT is not ‘0’. When ACKDT is clear, an ACK is issued; when ACKDT is set, a NACK
is issued. The ACKDT bit value can be modified during run time, but must only be changed before an
Acknowledge sequence is issued. If there are errors in either the I2CxERR or I2CxSTAT registers, master
hardware automatically overrides this bit setting and generates a NACK.

I2CxCON2: The I2CxCON2 register holds the Auto-Load I2C Count Register Enable (ACNT), Fast Mode
Enable (FME), Address Buffer Disable (ABD), SDA Hold Time Selection (SDAHT<1:0>), and Bus Free
Time Selection (BFRET<1:0>) bits.

The ACNT bit enables/disables the auto-loading of the I2CxCNT register. Auto-loading of I2CxCNT can
be useful when a slave device does not know the size of the data packet, or when the master needs to
change the size of the packet to transmit. When ACNT is set, the first byte following the matching
address is used as the value that is loaded into the I2CxCNT register. For example, if the master device
intends to transmit three data bytes to a slave, the byte following the address would have a value of ‘3’,
and would be loaded into the master device’s I2CxCNT register during transmission. When the byte is
received by the slave device, it is loaded into the slave’s I2CxCNT register. Of course, this assumes that
both the master and the slave have the I2CxCNT register feature available, and both devices have ACNT
set.

The FME bit is used in combination with the I2CxCLK register to determine the SCL frequency. When
FME is set, one SCL period consists of four clock periods of the I2CxCLK clock source. When FME is
clear, one SCL period consists of five clock periods of the I2CxCLK source.

The ABD bit enables/disables the use of the dedicated Address Buffer registers. In Master mode, the
address intended to be transmitted to the slave can be loaded into the I2CxADB0/1 registers.

When ABD = 1, the I2CxADB0/1 registers are ignored, and the slave address must be loaded into the
I2CxTXB transmit buffer by user software to initiate communication. Writing to the Start bit is ignored.

When ABD = 0, the address data stored in I2CxADB0/1 is loaded into the transmit shift register
automatically after a Start condition is issued by user software.

The SDAHT<1:0> bits are used to configure the amount of time the SDA line is held valid after the falling
edge of SCL. The SDAHT<1:0> bits may be configured based on the bus capacitance; buses with larger
capacitance may need longer hold times to ensure valid data.

The BFRET<1:0> bits are used to select the amount of I2C clock cycles used to delay hardware from
setting the BFRE bit. The BFRET<1:0> bits can be used to meet the minimum stop hold time as defined
by the I2C specification. Note that in systems with more than one master, it is possible that the BFRE bit
may never become set if another master device takes control of the bus before the BFRE bit becomes
set. In this case, care must be used when selecting the BFRET<1:0> timing.

I2CxCLK: The I2CxCLK register selects the I2C clocking source, and is used in combination with the
FME bit to determine the SCL frequency. Some source selections, such as a timer, must also be
configured and enabled during initialization.

 TB3191
Master Mode Configuration and Operation

© 2019 Microchip Technology Inc. DS90003191B-page 24

Important:  Note that not all I2CxCLK selections can be used to achieve valid SCL
frequencies. For example, if a 400 kHz SCL frequency is desired, the HFINTOSC source may
not be a feasible selection. The HFINTOSC may be configured to operate at 16 MHz. If the
FME bit is set, the SCL frequency would be the HFINTOSC frequency divided by 4, or 4 MHz. If
the FME bit is clear, the SCL frequency would be the HFINTOSC frequency divided by 5, or 3.2
MHz.

I2CxBTO: The I2CxBTO register selects the timing source used for the Bus Time-Out feature. The
current time-out sources are either a CLC or a Timer, and those modules must also be configured during
initialization. The time-out source must be configured such that a device does not stall the bus for too
long, but doesn’t interfere with timely data processing or clock stretching.

I2CxERR: The I2CxERR register contains the Bus Time-Out Interrupt Enable (BTOIE), the Bus Collision
Detect Interrupt Enable (BCLIE), and NACK Detect Interrupt Enable (NACKIE) bits. If these interrupts are
not needed by the application, this register does not need to be explicitly initialized.

I2CxCNT: The I2CxCNT register is loaded with the number of data bytes present in a I2C packet. The
I2CxCNT can be loaded during initialization or run time directly, but it is recommended to write to this
register only if the module is idle or during clock stretching. Writing at any other time may corrupt the
register. I2CxCNT can also be automatically loaded during run time when the ACNT bit of I2CxCON2 is
set. In this case, the first byte following the address byte(s) is loaded into I2CxCNT by module hardware.
The I2CxCNT value must only include the number of data bytes in the packet, and not any address bytes.

I2CxPIE: The I2CxPIE register contains several I2C specific Interrupt Enable bits. Initialization is only
required if one or more of the following interrupts are necessary:

• Byte Count Interrupts
• Acknowledge Interrupt and Hold
• Data Write Interrupt and Hold
• Address Interrupt and Hold
• Stop Condition Interrupts
• Restart Condition Interrupts
• Start Condition Interrupts

I2CxADB0: The I2CxADB0 register initialization is only required when using 10-bit address Master mode
and the ABD bit is clear. In this case, the lower byte of the 10-bit address is loaded into I2CxADB0 and
copied into the transmit shift register upon the issue of a Start condition.

I2CxADB1: The I2CxADB1 initialization is required when using 7-bit or 10-bit address Master modes and
the ABD bit is clear. In 7-bit address Master mode, the I2CxADB1 register holds the 7-bit slave address
and R/W bit, and I2CxADB0 is ignored. In 10-bit address Master mode, I2CxADB1 holds the higher byte
of the 10-bit address. The five most significant bits of I2CxADB1 are defined as a constant ‘11110’ value
by the I2C specification, and have to be included in the upper address byte. This constant value is
followed by bits ‘10’ and ‘9’ of the 10-bit address, and finally the R/W bit.

RxyI2C: The RxyI2C register controls the I2C specific I/O pads. Most PIC devices dedicate one or two
pairs of I/O pins to the I2C module. The RxyI2C register is used to configure the pin slew rate, input
threshold level, and internal pull-up configurations.

The SLEW bit controls the slew rate. When SLEW is set, I2C specific slew rate is enabled, which
overrides the standard pin slew rate limiting, and the SLRxCON bit associated with the pin is ignored.
When SLEW is clear, the module uses the standard pad slew rate, which is enabled/disabled via the

 TB3191
Master Mode Configuration and Operation

© 2019 Microchip Technology Inc. DS90003191B-page 25

SLRxCON bit associated with the pin. Lower bus speeds may not need any slew rate limiting, while
buses with higher speeds may need slew rate limiting.

The TH<1:0> bits control the I2C input threshold level. These bits can be configured to SMBus 3.0,
SMBus 2.0, I2C specific, or standard I/O input threshold levels to meet the specific protocol requirements.
When either the SMBus 3.0, SMBus 2.0, or I2C specific levels are selected, the INLVL bit associated with
the pin is ignored. If standard I/O threshold levels are selected, the INLVL bit associated with the pin can
be configured for either ST or TTL logic levels.

The PU<1:0> bits are used to select the internal pull-up drive strength. The PU<1:0> bits can be
configured to increase the current drive of the pull-up, making the internal pull-ups strong enough to be
used instead of external pull-up resistors. If external pull-ups are to be used in the application, the
PU<1:0> bits can be configured for standard weak pull-ups, which can be enabled/disabled via the WPU
bit associated with the pin.

TRISx registers: The TRIS registers provide I/O direction support to PORT pins. When using the I2C
module, the TRIS bits associated with the SDA and SCL pins must be initialized clear (TRISxy = 0). All
previous I2C module designs required the TRIS bits to be set. During run time, direction control is handled
by module hardware.

ODCONx: The I2C module uses an open-drain circuit configuration. The ODCONx bits associated with
the SCL and SDA pins must be configured for open-drain (ODCONxy = 1).

I2C PPS registers: The Peripheral Pin Select (PPS) feature allows digital signals to be moved from their
default pin location to another location. To enable a digital peripheral’s input and/or output signals, the
appropriate PPS registers must be configured. When using the I2C module, both the input PPS and
output PPS registers must be configured due to the bidirectional nature of the I2C bus. Both the input and
output PPS registers for each I2C signal must be routed to the same pin. In other words, if the
I2CxSCLPPS input register is mapped to pin RC3, the RC3PPS register must also be mapped to pin
RC3.

Input configuration is handled by the I2CxSCLPPS and I2CxSDAPPS registers. These registers must be
mapped to the desired pins to enable the pin input drivers. Output configuration is handled by the
RxyPPS registers. The ‘xy’ in the register name is a placeholder for the actual port and pin number. For
example, If the SDA line is mapped to port pin RC4, the correct register name is RC4PPS. The PPS
output registers must also be mapped to the desired pins to enable the pin output driver.

The PPS feature allows the I2C pins to be moved from their default locations, but additional steps must be
considered. The default I2C pins use the RxyI2C register to define the slew rate, pull-up configuration,
and input threshold levels. If the default pin locations are not used, additional registers, such as INLVLx,
WPUx, and SLRCONx must also be configured.

 TB3191
Master Mode Configuration and Operation

© 2019 Microchip Technology Inc. DS90003191B-page 26

7. Master Mode Transmission
The following section describes the sequence of events when using the I2C in Master mode transmission.

1. Depending on the configuration of the Address Buffer Disable (ABD) bit, one of two methods is
used to begin communication.
When ABD is clear, the address buffers are enabled. In 7-bit Addressing mode, the 7-bit slave
address is loaded into the I2CxADB1 register with the R/W bit clear. In 10-bit Addressing mode, the
high address byte is loaded into the I2CxADB1 register with the R/W bit clear, and the low address
byte is loaded into the I2CxADB0 register. The number of data bytes to be transmitted in one
packet is loaded into the I2CxCNT register, and the first byte of data is loaded into the I2CxTXB
transmit register. After these registers are loaded, master software must set the Start bit to begin
communication. Master hardware must wait for BFRE to be set before transmitting the Start
condition to avoid bus collisions.

When ABD is set, the address buffers are disabled. In this case, the number of data bytes to be
transmitted in one packet must be loaded into the I2CxCNT register before loading the transmit
buffer. In 7-bit Addressing mode, the slave address is loaded into I2CxTXB with the R/W bit clear.
Writing to the I2CxTXB register will automatically issue a Start condition via module hardware once
the BFRE is set. In 10-bit Addressing mode, the slave’s high address byte with the R/W bit clear is
loaded into the I2CxTXB register. Once the BFRE bit is set, module hardware shifts out the high
address byte. In both 7-bit and 10-bit Addressing modes, when ABD is set, writes to the Start bit
are ignored.

2. Master hardware waits for the BFRE bit to be set, then shifts out the Start condition. Module
hardware sets the Master Mode Active (MMA) and Start Condition Interrupt Flag (SCIF) bits.

3. Master transmits either the 7-bit slave address with R/W clear or the 10-bit high address byte with
R/W clear.
In 7-bit mode, if the transmit buffer is empty (TXBE = 1), the I2CxCNT register is not ‘0’, and the
CSD bit is clear, the I2CxTXIF and MDR bits are set, and the clock will be stretched by master
hardware, allowing master software to write new data into I2CxTXB. Once I2CxTXB has been
written, master hardware releases SCL and waits for an ACK/NACK sequence to be shifted in from
the slave.

In 10-bit mode, module hardware waits for the ACK/NACK from the slave. If a NACK is received,
module hardware immediately issues a Stop condition. If an ACK is received, module hardware
shifts out the 10-bit address low byte. If TXBE is set, and I2CxCNT is not ‘0’, the I2CxTXIF and
MDR bits are set, and SCL is stretched on the 8th falling SCL edge to allow the master to load new
data into I2CxTXB. Once I2CxTXB has been written, master hardware releases SCL and waits for
an ACK/NACK sequence to be shifted in from the slave.

4. Master hardware clock out the 9th SCL pulse and waits for the ACK response from the slave. If the
master receives a NACK, master hardware will issue a Stop condition.

5. If the master receives an ACK, module hardware transfers the data byte currently in the transmit
buffer into the transmit shift register, and the value of I2CxCNT is decremented by one.

6. Master hardware checks to see if I2CxCNT is ‘0’.
If I2CxCNT is not ‘0’, go back to step 5. If I2CxCNT is ‘0’, and ABD is clear,master hardware issues
a Stop condition, or sets the MDR bit if the RSEN bit is set and waits for master software to set the
Start bit again to issue a Restart condition.

If I2CxCNT is ‘0’ and the ABD bit is set, hardware issues a Stop condition, or sets the MDR bit if the
RSEN bit is also set and waits for software to load the I2CxTXB register with new address data.

 TB3191
Master Mode Transmission

© 2019 Microchip Technology Inc. DS90003191B-page 27

8. Master Mode Reception
The following section describes the sequence of events when using the I2C in Master mode reception.

1. Depending on the configuration of the Address Buffer Disable (ABD) bit, one of two methods is
used to begin communication.
When ABD is clear, the address buffers are enabled. In 7-bit Addressing mode, the 7-bit slave
address is loaded into the I2CxADB1 register with the R/W bit clear. In 10-bit Addressing mode, the
high address byte is loaded into the I2CxADB1 register with the R/W bit set, and the low address
byte is loaded into the I2CxADB0 register. The number of data bytes to be transmitted in one
packet is loaded into the I2CxCNT register, and the first byte of data is loaded into the I2CxTXB
transmit register. After these registers are loaded, master software must set the Start bit to begin
communication. Master hardware must wait for BFRE to be set before transmitting the Start
condition to avoid bus collisions.

When ABD is set, the address buffers are disabled. In this case, the number of data bytes to be
transmitted in one packet must be loaded into the I2CxCNT register before loading the transmit
register. In 7-bit Addressing mode, the slave address is loaded into I2CxTXB with the R/W bit set.
Writing to the I2CxTXB register will automatically issue a Start condition via module hardware once
the BFRE is set. In 10-bit Addressing mode, the slave’s high address byte with the R/W bit clear is
loaded into the I2CxTXB register. Once the BFRE bit is set, module hardware shifts out the high
address byte. In both 7-bit and 10-bit Addressing modes, when ABD is set, writes to the Start bit
are ignored.

2. Master hardware waits for the BFRE bit to be set, then shifts out the Start condition. Module
hardware sets the Master Mode Active (MMA) and Start Condition Interrupt Flag (SCIF) bits.

3. Master transmits either the 7-bit slave address with R/W set or the 10-bit high address byte with
R/W set.
In 10-bit mode, module hardware waits for the ACK/NACK from the slave. If a NACK is received,
module hardware immediately issues a Stop condition. If an ACK is received, module hardware
shifts out the 10-bit address low byte.

4. Master hardware monitors the SDA line to determine if a slave is stretching the clock, and waits
until the SDA line is sampled high.

5. Master hardware transmits the 9th clock pulse, clocking in the slave’s ACK/NACK response.
6. If the master receives an ACK, hardware clocks the data byte from the slave into the shift register.

If the master receives a NACK, and the ABD bit is clear, master hardware generates a Stop
condition, or sets the MDR bit if RSEN is also set and waits for software to set the Start bit to
generate a Restart condition.

If the master receives a NACK and the ABD bit is set, master hardware generates a Stop condition,
or sets the MDR bit if RSEN is also set and waits for software to load new address data into
I2CxTXB. Software writes to the Start bit are ignored.

7. If the previous data is still in the I2CxRXB register (RXBF = 1) when the first 7 bits of the new byte
is received into the shift register, the MDR bit is set, and the clock is stretched after the 7th falling
edge of SCL. This allows master software to read I2CxRXB, which clears the RXBF bit, and
prevents a receive buffer overflow. Once the RXBF bit is clear, hardware releases SCL.

8. Master hardware clocks in the 8th bit of the new data byte into the shift register, then transfers the
complete byte into I2CxRXB, sets the I2CxRXIF and the RXBF bits. I2CxCNT is decremented by
one.

9. Master hardware checks I2CxCNT for a ‘0’ value.

 TB3191
Master Mode Reception

© 2019 Microchip Technology Inc. DS90003191B-page 28

If I2CxCNT is not ‘0’, hardware transmits the value of the Acknowledge Data (ACKDT) bit as the
ACK value to the slave. Master hardware will then continue receive data into the shift register,
repeating steps 7-9 until I2CxCNT is ‘0’. It is up to the user to configure the ACKDT bit
appropriately. In most cases, the ACKDT bit would have to be clear, so that the slave receives an
ACK (logic low level on SDA during the 9th SCL pulse).

If I2CxCNT is ‘0’, hardware transmits the value of the Acknowledge End of Count (ACKCNT) bit as
the ACK value to the slave. It is up to the user to properly define the ACKCNT bit. In most cases,
this bit is set, indicating a NACK condition. When master hardware detects the NACK on the bus,
hardware will also generate a Stop condition. If the ACKCNT bit is clear, an ACK will be issued, and
hardware will not automatically generate the Stop condition.

 TB3191
Master Mode Reception

© 2019 Microchip Technology Inc. DS90003191B-page 29

9. External Pull-up Resistor Selection
The I2C specification proposes two methods to determine the correct pull-up resistor size.

The first method calculates the maximum pull-up resistor size as a function of bus capacitance and rise
time (see Equation 9-1). Bus capacitance is the total capacitance of the bus wires/traces, bus connection
points, and bus pins, all of which must be considered when calculating the total bus capacitance. Rise
time is the period in which the signal transitions from VIL(MAX) (0.3*VDD) to VIH(MIN)(0.7*VDD). Rise time
values are typically located in the device’s data sheet.

Bus capacitance would have to be measured to achieve the most accurate pull-up values, but an
estimated value, or the maximum allowable capacitance as defined by the I2C specification, may also be
used. The maximum allowable bus capacitance is specified to limit rise time decreases and allow
operation at the rated frequency. The bus may operate at higher than allowable bus capacitance levels
but at a lower frequency.

Equation 9-1. Maximum Pull-up Resistor Size�� max = �����0.8473 * ����
Rp(max) = Maximum pull-up value

trise = Maximum rise time

Cbus = Total bus capacitance

The second method calculates the minimum pull-up resistor size as a function of VDD (see Equation 9-2).
The supply voltage limits the minimum resistor value due to the specified minimum sink current of 3 mA
for Standard mode (100 kHz) or Fast mode (400 kHz), or 20 mA for Fast mode Plus (1 MHz).

Equation 9-2. Minimum Pull-up Resistor Size�� min = ���− ��� max���
Rp(min) = Minimum pull-up value

VDD = Supply voltage

VOL(max) = Maximum output low voltage

IOL = Minimum sink current

 TB3191
External Pull-up Resistor Selection

© 2019 Microchip Technology Inc. DS90003191B-page 30

10. Conclusion
This technical brief has covered the stand-alone I2C module in Master mode configuration. For more
information, please visit www.microchip.com. For code examples, please visit www.microchip.com/mplab/
mplab-xpress.

 TB3191
Conclusion

© 2019 Microchip Technology Inc. DS90003191B-page 31

http://www.microchip.com
http://www.microchip.com/mplab/mplab-xpress
http://www.microchip.com/mplab/mplab-xpress

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online
discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 TB3191

© 2019 Microchip Technology Inc. DS90003191B-page 32

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 TB3191

© 2019 Microchip Technology Inc. DS90003191B-page 33

© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-4228-8

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 TB3191

© 2019 Microchip Technology Inc. DS90003191B-page 34

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2019 Microchip Technology Inc. DS90003191B-page 35

	Introduction
	Table of Contents
	1. I2C Specification
	2. I2C Module Overview
	2.1. Dedicated Transmit/Receive Buffers
	2.2. Address Buffers
	2.3. Receive Buffer
	2.4. Transmit Buffer
	2.5. Start Condition
	2.6. Repeated Start/Restart Condition
	2.7. Acknowledge (ACK)/Not Acknowledge (NACK) Sequence
	2.8. Stop Condition
	2.9. SDA and SCL Pins
	2.10. Bus Time-Out
	2.11. Data Byte Count

	3. Interrupts for Address Match, Transmit Buffer Empty, Receive Buffer Full, Bus Time-Out, Data Byte Count, Acknowledge, and Not Acknowledge
	4. I2C Master Mode Operation
	4.1. Master Clock Timing

	5. Bus Free Time
	6. Master Mode Configuration and Operation
	6.1. Initialization

	7. Master Mode Transmission
	8. Master Mode Reception
	9. External Pull-up Resistor Selection
	10. Conclusion
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

