B
AtmeL APPLICATION NOTE

AT05436: BitCloud ZigBee Home Automation (ZHA) —
Hands-on

Atmel MCU Wireless

Features

e Running existing ZigBee® Home Automation demo application
e Application development on BitCloud®

e Extending clusters

e Adding New clusters

e Adding New device types

Prerequisites

e Hardware
e Four pcs. RCB256RFR2
e One/two pcs: Breakout Board
o Two/four AAA batteries
e Four pcs. Sensor Terminal Board
e JTAGICE3 or JTAGICE mkll
e RF231USB-RD

e Software
e |AR™ EWAVR 6.21.2
o Atmel® Studio 6.1 SP2 [10]
e BitCloud_ MEGARF_3 0_0
o Reference Documents
e Atmel AVR®10004: RCB256RFR2 — Hardware User Guide [7
e Atmel AVR2052: BitCloud SDK Quick Start Guide [8]
o Atmel AVR2050: BitCloud Developer Guide [5]

Note: Supported development IDEs and versions can be found in AVR2052 BitCloud Quick Start Guide [8]
section Supported Platforms and IDEs.

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

1 Description

This training module will help users to extend the Home Automation wireless network reference application in
BitCloud SDK to add new logical Home Automation device support and cluster support easily. This training is
divided into various tasks in order to describe in a step-by-step procedure.

e Task 1: This will be to use the standard BitCloud SDK HA application, compile and program the devices, to
form a ZigBee home automation network. This application will help users in understanding the structure of
the BitCloud stack and the standard demonstration scenario, which will be used as a basis for the rest of
the tasks. In this task they will also learn to use the ZigBee packet sniffer tool.

e Task 2: The second task will provide the user experience in using the BitCloud SDK and extending
application functionality.

e Task 3: The third task is the extension of the first and second task where the user will add a new attribute to
the existing HA device and adapt the newly developed application to use this attribute.

e Task 4: The fourth will be a more complex one, which will include adding a new cluster from scratch. This
includes going through the ZigBee Cluster specification of the cluster, understanding the attributes and
commands for the cluster.

e Task 5: The fifth task is to add this newly developed cluster to an HA existing device and also add a new
HA device type that uses this cluster. All these tasks will help users gain familiarity with developing ZigBee
Applications, specifically for Home Automation.

This training material also provides an optional bonus task, which will include completing the cluster
implementation and creatively develop a new application scenario to use this newly created cluster.

2 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

21

2.2

Hardware Setup

Mount the RCB256RFR2 to the Sensor Terminal Board

The RCB256RFR2 board must be plugged into the headers on the top right side of the Sensor Terminal Board
when held with the USB connector on your left. Note that the RCB256RFR2 board can be plugged in one
direction only so this should provide direction in mounting.

Figure 2-1. RCB256RFR2 with Sensor Terminal Board

Connect the Debugger to the RCB256RFR2 + Sensor Terminal Board

The Sensor Terminal board has a JTAG interface so you would need to use the 10-pin header on the debugger.
Either JTAGICE3 or JTAGICE mkll can be used. See Figure 2-2 and Figure 2-3.

Figure 2-2. Connection with JTAGICE3

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 3

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

2.3

2.3.1

4

Figure 2-3. Connection with JTAGICE mkll

-

- el Vo
REmERERLE

STB Driver Installation

Installing Sensor Terminal Board Driver (STB)

Once the STB is connected the Found New Hardware wizard will pop up. If this does not happen, update the

driver manually by going to Device Manager -> on the right panel select New Device -> right click Update Driver.

Select the radio button for Install from a list or specific

After connecting the STB board to PC, the driver needs to be installed. Download the STB USB driver (deRFusb

location (Advanced).

Driver V1_05) for your operating system and specify the downloaded STB USB driver path for installation.

In the Hardware Installation dialog click Continue Anyway and the installation will proceed.

After the installation is completed, a second installation for the virtual serial port will happen.

Figure 2-4. Driver Path Selection

Qj\ Il Update Driver Software - USB Serial Port

——

@ 1l Update Driver Software - USB Serial Port

=

How do you want to search for driver software?

|1P
< Search automatically for updated driver software
Windows will search your computer and the Internet for the latest driver
saftware for your device, unless you've disabled this feature in your device
installation settings.

< Browse my computer for driver software
Locate and install driver software manually.

Cancel I

Browse for driver software on your computer

Search for driver software in this location:

C\Atme\MAC_v_2_8 0\PAL\Board_Utils\STB_USB_Driver|

M Browse...
!

[¥] Include subfolders

< Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all
driver software in the same category as the device.

Next

Cancel

AT05436: BitCloud ZigBee Home Automation (ZHA) —

Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

http://www.dresden-elektronik.de/funktechnik/service/download/driver/?L=1&eID=dam_frontend_push&docID=2327
http://www.dresden-elektronik.de/funktechnik/service/download/driver/?L=1&eID=dam_frontend_push&docID=2327

Figure 2-5. Installation

' =
g@ Windows Security . - ﬂ

@ Windows can't verify the publisher of this driver software

= Don't install this driver software
You should check your manufacturer's website for updated driver software for
your device,

= Install this driver software anyway
Only install driver software obtained from your manufacturer's website or disc.
Unsigned software from other sources may harm your computer or steal
information.

(v See details

A

2.3.1.2 Verification of Installed Driver

24

Once the driver installation is completed check whether it is enumerated as SensTermBoard in the Device
Manager -> Ports.

If the LED besides the USB port is lit, it means that the STB driver was successfully installed.

Figure 2-6. Check the Enumerated STB Board

T D
=4 Device Manager E@g

File Action View Help
= || H |
& {5 CHELT0129

b @ Batteries
- 1M Computer
-&F ControlVault Device

s Disk drives
Lw Display adapters i
=i DVD/CD-ROM drives
% Human Interface Devices
o IDE ATAYATAPI controllers Il
% Imaging devices
-&¥ Jungo

--!3 Mice and other pointing devices
EJ Maonitors

K Metwork adapters I
1}, Cisco Systemns VPN Adapter for 64-bit Windows

¥ Intel(R) 82579LM Gigabit Metwork Connection #2 I
l‘}‘ Intel(R]) Centrino(R) Advanced-MN 6205

2 Y5 Ports (COM & LPT)

f? Communications Port (COM1)

Y5 ECP Printer Port (LPT1) |

T T T T T T T T T -

‘? SensTermBoard (COMTI
=¥ Processors

|j Smart card readers

-% Sound, video and game controllers |
&5 Storage controllers
1B System devices

- a Universal Serial Bus controllers |

R S e —

Driver Installation

Before proceeding with the next steps, make sure that Atmel Studio 6.1 SP2 is installed and that you have
downloaded and extracted Public release of BitCloud SDK and extracted the package to your computer. From
this point on, we will assume that the BitCloud package is extracted to a root directory such as “D:\AT05436".

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 5

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

http://www.atmel.com/System/BaseForm.aspx?target=tcm:26-17587

2.41 Install Drivers for the Debugger
1. Plugin the JTAGICES.
2. The “Found New Hardware” wizard should pop up.
3. If prompted to search for an available driver on the web, select the “No, not this time” option.
4. Click “Next” twice to install the software automatically.

Figure 2-7. JTAGICE3 — New Hardware Found

j‘) Found New Hardware |
ITAGICES

R)5 S:Z9PM

2.5 Tools Firmware Upgrade and Verification of Communication

1. Start Atmel Studio 6.1 by using the icon created on your desktop after the installation, or find the program
under Start > All Programs > Atmel > Atmel Studio 6.1.

Upgrade the debugger.

From the View menu in Atmel Studio, select Available Tools Figure 2-8.
Right Click on JTAGICE3 Figure 2-9.

The window shown in Figure 2-10 pops up. Click the Upgrade button.
Successful firmware upgrade is indicated in Figure 2-11.

Close the window when the upgrade is complete.

N o~ D

Note: Upgrade JTAGICES firmware only when using Atmel Studio. IAR supports JTAGICE3 firmware v2.15. If
the JTAGICES firmware version is greater 2.15, downgrade the tool firmware to 2.15. For more details,
refer to http://supp.iar.com/Support/?note=68109.

Figure 2-8. Available Tools Option in Atmel Studio 6.1
APPS WSNDEMOL - Amelstudio

File Edit View | VAssist{ ASF Project Build Debug To

il 8] Bl code Ctrl+Alt+0
= 4 Open
Open With...
‘3'3 Solution Explorer Cirl+Al+L
) Bookmark Window Ctrl+K, Ctrl+W
_'a Available Atmel Tools
_B Error List Ctrl+\, E

Figure 2-9. JTAGICE3 Firmware Upgrade Option

APPS_WSNDEMOL - AtmelStudio s o9 T
File Edit View VAssist{ ASF Project Build Debug Tools Window Help

‘ ‘—'ﬂ EE Available Tools yAX_
2 ‘ = _ ||
: “= # § Tools and Simulators Status

02000 - " ected
Device Programming

b Simulator Add Target... nected
Upgrade..

6 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

http://supp.iar.com/Support/?note=68109

Figure 2-10. Firmware Upgrade Window

JTAGICE3 firmware must be updated before continuing

On Tool

On Disk
Firmware Version 2.15 312

Firmware Upgrade

!

Figure 2-11. Firmware Upgrade Status

Firmware Upgrade ﬁ

JTAGICE3 firmware is updated

On Tool On Disk
| Firmware Version 2,15 3.12

JTAGICE3 firmware successfully upgraded

| J

2.5.2 Verify the Communication with the Target Device

To verify that the debugger can communicate properly with the target device, you will now read the device
signature.

1. Select “Device Programming” from the Tools menu or click the Device Programming shortcut from the
toolbar.

Figure 2-12. Device Programming Window

wg | Tools Window Help

| %) s& AVR Tools Firmware Upgrade [| L-:i ﬂ E’Eg - ;.i
pll | B Command Prompt T = - g
M =|i v NoDevice § NoTg
] Device Programming g
2. Select:
a. Tool: JTAGICES.

b. Device: ATMEGA256RFR2.
c. |Interface: JTAG.
3. Click Apply to activate the settings.
4. Click Read to read the device signature from the device.
5. If the connection is successful, the signature of the device will show up along with the target voltage.

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 7

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

2521

8

Figure 2-13. Device Programming Dialog

— "
A GICES (302000237 70] s D P — e =

Tool Device Interface Device signature Target Voltage
| /TAGICE3 = ATmeca2S6RFR2 ~ [ITAG = Ox1EAS02 fRead] 32V [Read| (K]
Interface settings JTAG Clock
Tool information 1 MHz
Device information
Use external reset
Oscillator Calibration [] Use external reset
Memories
I Figes JTAG Daisy chain settings
@ Target device is not part of a JTAG daisy chain
Lock bits) s s
Daisy chain: Manual pgyices before [0 Instruction bits before | 0
Production file
i Devices after |0 Instruction bits after
| Set |

¥ Getting daisy chain configuration..OK

B Getting daisy chain configuration...OK

The device field is searchable. You can type in parts of the device name to quickly filter for the correct device. It
will filter even if you start typing with something in the middle of the device name.

E.g.: If you type “ATmega” it will find all devices containing the string “ATmega”. Select ATmega256RFR2 in the

Device field.

Set Fuse Settings

In the same window as you read the signature, go to the tab called “Fuses”. Select the fuse settings as OxFE

0x9B 0x62 and press ‘Program’.

Figure 2-14. Fuse Bit Settings

TTAGICES (130200023776) - Device Programming W T
Tool Device Interface Device signature Target Voltage
JTAGICE3 ~ ATmega2S6RFRZ + [JTAG ~ Ox1EABD2 [Read| 32V [Read| (£}
Interface settings Fuse Name Value 5
Tool information (1) BODLEVEL v v
) ocoEN] =

Device information @ JTAGEN)
Oscillator Calibration @ SPIEN 7]
Memories @ WDTON B

" . =

| Fuses @ EESAVE B
Lock bits @ RONTSZ. 2048W 1FR00. » | .

Fuse Register _Value
EXTENDED OxFE

Production file

HIGH 0x398

M Low 0x62
. Copy to clipboard J
#| Auto read o
¥ Verify after programming Program ‘ | Verify | Read ‘

F| Starting operation read registers
Reading register EXTENDED..OK
Reading register HIGH...OK
Reading register LOW..OK

I Read registers..OK

B Read registers...OK

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

3.1

Using Standard BitCloud SDK Home Automation Devices

Objectives

This is the first task to get started with the BitCloud HA application. This task provides exposure to the BitCloud
stack components and in configuring the application for different HA devices and network related parameters.
This task also provides exposure to using Atmel Studio/lAR Embedded Workbench®, compile and download the

code.

Application interactions sequence for the standard HA demonstration is as below. We will set up a home
automation network with Combined Interface, Occupancy Sensor, Dimmable Light, and Dimmer Switch.

Note: These four devices are mandatory for this demonstration application.

Figure 3-1. BitCloud ZigBee Home Automation Demonstration Flow Diagram
(0S) (DL) (DS)
A Cland DL

Clusters Binding

A
\ /

Configure reporting:
On/Off

Configure response—
Configure reporting:
Level Control

Configure response—

Once per 120 Seconds

Wait for 3 minutes to Report Attribute:

initiate Binding procedure < On/Off value

between Cl and OS »
MAC Ack

Once per 40 Seconds

Report Attribute:
Level Control Current level

-
»

MAC Ack o DL and DS
Clusters Binding

Configure reporting:
On/Off

Configure response—

Configure reporting:
Level Control

Cland OS Configure response—
Clusters Binding qu P
B B —
Configure reporting:
< Occupancy Sensing Once per 120 Seconds
Configure response—# Report Attribute:
On/Off value
Once per 40 Seconds -
Report Attribute: MAC Ack
Occupancy Sensing »
< Once per 40 Seconds
MAC Ack Report Attribute:
Level Control Current level
Demo Loop I »
MAC Ack

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 9

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

3.2

3.21

10

At this stage, you can also try programming the precompiled .hex files (..\BitCloud MEGARF_3_X_ X \Evaluation
Tools\HADevice) using Atmel Studio 6.1.

Report attribute period is being configured through configure reporting and is equal to
<report attribute> VAL MAX REPORT PERIOD * 2.

(E.g.: ONOFF_ VAL MAX REPORT PERIOD * 2)

Building Standard BitCloud ZigBee Home Automation Demonstration

Create Three Devices using Atmel Studio / IAR
1. Launch Atmel Studio 6.1 / IAR EWAVR 6.21.2.
2. Open ..\BitCloud MEGARF_3 X X\Applications\HADevice\atmelStudio projects\ Atmega256rfr2.alsin
using Open Project menu from Atmel Studio.
Or

3. Open ..\BitCloud MEGARF _3 0 O\Applications\HADevice\iar_projects\ HADevice.eww
using Open Workspace menu from IAR.

You should now have an opened project. The IDE displays all the files included in the project. Take a few minutes
and look through the project structure.

4. Open application configuration.h file and search for “ZigBee Home Automation profile device type”.

5. Uncomment #define APP DEVICE TYPE COMBINED INTERFACE.
6. Comment the other defines in the section for other device types.
7

Set APP_ENABLE CONSOLE = 1, APP INTERFACE=APP INTERFACE USBFIFO and
BSP_ENABLE RS232 CONTROL=0 (these settings are required for enabling HA device Console).

Check #define CS CHANNEL MASK and modify the value according to your channel number.
Compile the project, Download and Debug.
— Note: If using IAR, select proper JTAG tool under debugger options
10. The program will hit the main. Stop debugging.
11. Program other boards by changing the device types appropriately as mentioned in step 5.

©

You should now have four RCBs programmed as Combined Interface, Dimmable Light, Dimmer Switch, and
Occupancy Sensor respectively.

Notes: 1. Make sure to have the debugger is ON and connected to the STB.
2. Make sure you have the correct project configuration chosen.

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

Figure 3-2. Application Device Type Definition

File Edit View Project JTAGICEmkIl Tools Window Help
D@ & & 2R Y rulrerdB BUNS (LY

Workspace

* | configuration |

Atmega2sbrr? - All_StdlinkSec_MegaRi_Atmega25erfr2_BMhz | v #define APF_INTERFACE STDIC 0x06

Files

22 B

J #define AT25F2048 0Ox01
B [EHADevice #define AT450B041
|-@ 6 Atrnega2b64m2 - All_StellinkSec_MegaRf_Atmega2. v #define AT25DF041R 0x03
3 (3 Atmega256rir2 - All_StdlinkSec_MegaRf_At.. v
|-® 3 Combinedintertace . #define CONSOLE ONLY 1
@3 common . #define COMMON LOGIC_ONLY 2
|-® 1 Components . #define CONSOLE_AND_COMMON_LOGIC 3
|81 configuration
| L P T M | | // Scebies or disables 4P framentation suppert.
I—Eli:l DimmableLight z #define APP_FRAGMENTATION 0
i—ED DimmerSwitch = //#define APP FRAGMENTATION 1
Egﬁ::;ﬂﬂﬂr.ySEnsar ’ // Enables or disables support for OTA Upgrade.

#define APP_USE_OTAU 0
//#define APP USE OTAU 1

// Shall be enabled for HA application.
#define ZICL SUPPORT L

// Shall be enabled for HA application.
#define HA PROFILE_EXTENSIONS 1

/ ZigBee Home Automation profile device type|
tdefine APP_DEVICE_TYPE_COMBINED_INTERFACE
/#define APP DEVICE TYPE OCCUPANCY SENSOR
/#define APP DEVICE TYPE DIMMABLE LIGHT
/#define APP DEVICE TYPE DIMMER SWITCH

#define APP_COMBINED_ INTERFACE FXT_ADDRESS 0x1LL

'Dverview Atmeg62554rir2| Almega255rfrzl

3.2.1.1 Setting up the Home Automation Network

1.

Note:

Power up Combined Interface (Cl) device. By default Cl acts as initiator (EZ-Mode type, section 6.4 [8]). This
will open network for joining of new devices. After 3 minutes EZ-mode expires and new devices will not be able
to join the network.

Power up HA devices sequentially (Dimmable Light, Dimmer switch) before the expiry of EZ-mode and wait
until it joins the network and completes the EZ-Mode Commissioning procedure mentioned in Figure 3-1.

— Connect Cl to Hyper Terminal; you should be able to see the On/OFF and Level Control
attributes being reported periodically from Dimmable Light

— Refer to Figure 3-4 and Figure 3-5 for serial terminal configuration
After the expiry of EZ-mode, execute the below serial console commands on ClI.
— Set Cl as target by using setEzModeType serial console command (Figure 3-3)

— Set setPermitJoin and start EZ-Mode using startEZMode console command. This will open
network for joining of new devices

Power up HA device (Occupancy Sensor) and wait until it joins the network and completes the EZ-Mode
Commissioning procedure mentioned in Figure 3-1.

— You should be able to see the Occupancy sensor attribute being reported periodically from
Occupancy sensor

The devices should be switched ON in the sequence mentioned above.

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 11

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

Figure 3-3. Console Commands

-

{11, COMA5:38400baud - Tera Term VT
o — e |

File Edit Setup Control Window Help
setEzModeType B

zetPermitJoin Buff
ztartEZMode

Figure 3-4. Serial Terminal Settings

F] e — -
¥ COM1:9600baud - Tera Temm VT = | B 28

File Edit Setup Tera Term: Senial port setup

n

Port:
Baud rate: 36400

Data: (8 bit

Parity: |I'Il]I'IE
Stop: 1 bit -
Flow control: none -

Transmit delay

[1] msecfchar 0 msecfline

Figure 3-5. Serial Terminal Settings

Tera Term: Terminal setup

File Edit

i Terminal size New-line

i1l x 24 Receive: |[CR+LF ~
Y| Term size = win size Transmit: [cA4+LF - Cancel

Auto window resize
Help

]

Terminal ID: | ¥T100 ~ V| Local echo

Answerback: Auto switch VT<>TEK]

Coding [receive] Coding [transmit]
UTF8 ~ UTF8 ~

locale: american CodePage: 65001

3.3 Using the Sniffer

3.3.1 Setting up Sniffer Tool for Analyzing the Home Automation Network Packets
1. Switch off all the devices.
2. Connect RF231USB-RD to USB port.
3. Launch sniffer tool and add a Perytons/BitCatcher sniffer.
4. Look into the device manager for the right COM port and connect the sniffer tool [1].
Note: Use 38400,N,8,1,0 as COM settings.

12 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

5. Select the appropriate channel.
6. Power on Combined Interface (as mentioned in Section 3.2.1.1). Make a note of the sniffer activity.
Note: Wait for at least one NWK Link status update.
7. Power on HA devices one by one (Dimmable Light, Dimmer Switch, and Occupancy Sensor) as mentioned
in Section 3.2.1.1 and look into the sequence of network activities.

Take some time to look into the sniffer data, header contents, etc., as explained in the sniffer tool application note
[1]. Understanding the expected behavior in this task will help in debugging any issues that might arise during
development.

This activity will give you an overall picture on the network formation sequence and also will help in
understanding the usage of the sniffer tool.

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 13

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

4 Adding User Application Code to Existing Demonstration

4.1 Objectives

This task exposes the user to adding application code to the existing demo application. The user is made familiar
to application code structure and starts with adding support for a board-peripheral (such as a button) and
configuring application to take specific action on button press events.

Note: Board support is added based on a particular hardware setup. The button on the RCB256RFR2 is used for
this task. RCB should be mounted on breakout board (it is difficult to reach the button on RCB when
connected to STB). Make sure the below changes are done in the ..\Applications\HADevice\configuration.h.

1. Comment #define APP_ INTERFACE APP INTERFACE USBFIFO and uncomment #define
APP INTERFACE APP_ INTERFACE USART.

2. Uncomment #define APP_USART CHANNEL USART CHANNEL 1.

3. Comment #define BSP_ENABLE RS232 CONTROL 0 and uncomment #define
BSP_ENABLE RS232 CONTROL 1.

4.2 Add Button Support in Combined Interface Device
In the HADevice.eww workspace, in ..\Applications\HADevice\configuration.h, set:
#define APP DEVICE TYPE COMBINED INTERFACE
...and open ..\Applications\HADevice\combinedInterface\src

Take a few minutes to look through the code flow in combinedinterface.c. Have a look at the ..\Components
\BSP\ buttons.c’ to check the GPIO configured for button events and Button handling APIs.

In combinedinterface.c, appbDeviceInit () initializes device specific features. To this function, add button
initialization along with registration of button event using below function call.

BSP_OpenButtons (button pressed event handler func name,button released event hand
ler func)

Ifbutton released event is used, then button pressed event should be made NULL.

Define the event handler function in combinedinterface.c, to take required action when button event occurs.

BitCloud uses callback mechanism to notify application on occurrence of button interrupt. So, the event handler
function will be the callback invoked on button event. E.g., static void buttonsPressed(uint8 t
buttonNumber) ;

Compile the project and Download. Set a breakpoint in the event handler function to check if it is hit on button
event.

The button configuration is now complete. Necessary sequence of actions to be taken on button event should be
added.

Notes: 1. Make sure that the Linker Options are set to debug mode and software breakpoints are enabled in
debugger options.
2. Go through the bspInitButtons () function definition for understanding the interrupt mapping.

14 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

http://www.dresden-elektronik.de/funktechnik/produkte/boards-und-kits/development-boards/rcb-breakout-board/

5.1

5.2

Adding New Attribute to an Existing Cluster

Objective

The objective of this task is to understand available cluster structure and learn to extend the same by adding new
attributes to an existing cluster. In this task, the user shall add a new attribute, LastConfiguredBy, to the
Scenes cluster, as per ZCL specification [3].

Table 5-1. Scenes Cluster Attribute List
m Name Type Range Access : Defaults | Mandatory/optional |
0x0000 SceneCount Unsigned 8-bit 0x00-0xff (see Read only 0x00 M
integer 3.7.2.3.1 [3])
0x0001 CurrentScene Unsigned 8-bit 0x00-0xff (see Read only 0x00 M
integer 3.7.2.3.1[3])
0x0002 CurrentGroup Unsigned 16-bit 0x0000-0xfff7 Read only 0x00 M
integer
0x0003 SceneValid Boolean 0x00-0x01 Read only 0x00 M
0x0004 NameSupport 8-bit bitmap X00000 Read only - M
0x0005 LastConfiguredBy | |IEEE® Address - Read only - (0]

Adding a New Attribute to ZCL

In..\Components\ZCL\include, identify appropriate cluster header file for Scenes cluster (zc/ScenesCluster.h). In
this file, increase the value of the below define by 1
ZCL_<ClusterName> CLUSTER_ SERVER ATTRIBUTES AMOUNT

Define a constant for the attribute identifier
ZCL_<ClusterName> CLUSTER SERVER <AttributeName> ATTRIBUTE ID

Example: ZCL SCENES CLUSTER LAST CONFIGURED BY SERVER ATTRIBUTE ID

Note:

Extend the attributes type definition in ZCL_SceneClusterServerAttributes_t to support

LastConfiguredBy attribute as given below

typedef struct PACK

{

struct PACK

{

ZCL AttributelId t id;
uint8 t type;

uint8 t properties;

uinte4 t value;
} lastConfiguredBy;

} ZCL_SceneClusterServerAttributes t;

You must convert the attribute id value to little endian. For example: CCPU_TO LE16 (0x0005).

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 15

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

Extend the macro used to define attributes instance”. Change as:
#define ZCL DEFINE <ClusterName> CLUSTER SERVER ATTRIBUTES () /
DEFINE ATTRIBUTE (<AttrName>, <properties>,<AttrID> <Attrdatatype>)
e <AttrName> name of the corresponding attribute type field2
e <properties> read/write/RW access2
e <AttrId> attribute identifier2
e <AttrType> attribute type2

Available attribute types are wrapped in the ZCL AttributeType t enumeration defined in the
..\Components\ZCL\include\zcl.h file.

By changing ZCL header file, it is not necessary to rebuild BitCloud core stack, application rebuild is sufficient to
incorporate the cluster header file changes.

Notes: 1. To understand the naming convention, refer to the attribute instance defined under macro
ZCL_DEFINE_SCENES_CLUSTER_SERVER_ATTRIBUTES in zclScenesCluster.h.

2. Refer to Table 5-1 for the parameter value.

5.3 Extending the Application to use the Newly Added Attribute (attribute management)

5.3.1 Attribute Value Read from Application

In the demo application, Dimmable Light device is the server for the Scenes Cluster and the Combined Interface
device is the client. As this cluster support is already present in application in Dimmable Light and Combined
Interface, the user needs to add code to send a Read Attribute Request from Combined Interface to Dimmable
Light.

1. Read Attribute request of type ZCL Request t, is to be formed. The request payload shall contain an
element of type ZCL ReadAttributeReq t with attribute ID setto lastConfiguredBy attribute ID
(defined in scenes cluster header file).

2. Initialize the newly added attribute inside the function scenesClusterInit () in
..\ Applications\HADevice\dimmableLight\dIScenesCluster.c.

3. Compile Dimmable Light and Combined Interface applications by changing device type appropriately in
configuration.h.

4, The Combined Interface sends out the Read Attribute Request and the Dimmable Light sends the Read
Attribute Response packet from the ZCL layer directly. The application on the Dimmable Light is notified
that the attribute has been read.

5. The application on the Combined Interface gets the read attributes response with the status of the request
transaction and the attribute value if the read is successful.

Note: The ZCL Read Attribute Request can be tested by sending it on button press as added in Chapter 4 or
using application timer callback Section 8.3.

Refer to the below code snippet for performing attribute read from Combined Interface device. Below code
shippet can be reused in ..\ Applications\HADevice\combinedInterface\src\combinedinterface.c):

1. ZCL Read Attribute Request: readLastConfiguredBy ().

2. Notification call back: ZCL readLastConfiguredByResponse (ZCL Notify t *).

3. Response variable awaitingResponse to track the response of the ZCL AttributeReq().

16 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

Add the below function prototypes and variable declaration to avoid compilation errors.
e static void ZCL readLastConfiguredByResponse (ZCL Notify t *ntfy);
° static void readLastConfiguredBy (void) ;

e static bool awaitingResponse = false;

Notification callback for ZCL._AttributeReq () in combinedinterface.c

static void ZCL readLastConfiguredByResponse (ZCL Notify t *ntfy)
{

awaitingResponse= false;
if (ntfy->status != ZCL SUCCESS STATUS)
{
appSnprintf ("<- read lastConfiguredBy attribute failed\n");
return;

ZCL ReadAttributeResp t *attribute = (ZCL_ ReadAttributeResp t
*)ntfy->responsePayload;
u64Packed t *ieee address;

if (ZCL_SUCCESS_STATUS ==attribute->status)
{

ieee address = (u64Packed t *)attribute->value;
appSnprintf ("<- Scenes lastConfiguredBy response IEEE address
$x\n", (int)LE64 TO CPU(ieee address->val));
}
attribute = (ZCL ReadAttributeResp t *) ((uint8 t *)attribute +

offsetof (ZCL ReadAttributeResp t, value) + sizeof (ut4Packed t))

}

Function for sending zCL_AttributeReq () toread lastConfiguredBy attribute from Combined Interface to
Dimmable Light device in combinedinterface.c.

static void readLastConfiguredBy (void)
{
static ZCL ReadAttributeReq t attrList[] =
{
{ZCL_SCENES CLUSTER LAST CONFIGURED BY SERVER ATTRIBUTE ID},
}s

static ZCL_Request t req =
{
.ZCL Notify = ZCL readLastConfiguredByResponse,
.dstAddressing = {
.addrMode = APS NO ADDRESS,
.profilelId = PROFILE ID HOME AUTOMATION,
.clusterId = SCENES CLUSTER ID,
.clusterSide = ZCL CLUSTER SIDE SERVER,

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 17

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

}y
.id = 2ZCL_READ ATTRIBUTES COMMAND ID,

.defaultResponse = ZCL_FRAME CONTROL ENABLE DEFAULT RESPONSE,
.endpointId = APP_SRC ENDPOINT ID,

.requestlLength = sizeof (attrList),

.requestPayload = (uint8 t*)é&attrList,

}i

/* Send next command, only if previous one have been responded */
if (awaitingResponse)
return;

ZCL AttributeReqg(é&req);
awaitingResponse = true;

18 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

6 Adding a New Cluster

6.1 Objective

This chapter will describe in detail how to add a cluster from scratch. This will include understanding the cluster
information from the specification documents, adding attributes and supported commands for this cluster. In this
chapter we will choose to add Door Lock Cluster to our existing HA application. The specification for this cluster
is summarized in Chapter 9.

6.2 Adding a New Cluster to ZCL
1. Create a new zcl<ClusterName>Cluster.h file in ..\Components\ZCL\include.
— E.g. zcIDoorLockCluster.h
— Existing cluster header file can be used for reference E.g. zc/lOnOffCluster.h

2. Add it to the ZCL component to the project.

3. Add cluster ID to the enumeration in ..\ ZCL\include\clusters.h. The cluster ID should be a 16-bit value in
the little endian format. The ID can be obtained from the ZCL specification, provided in Chapter 9. E.g.
<NAME> CLUSTER ID = CCPU TO LE16 (<ID>).

4. Include general ZCL headers:

#include <zcl.h>
#include <clusters.h>

5. Define constants for amounts of client and server attributes and commands. At first you may assign zero

values to the constants increasing them when adding attributes and commands:
#define ZCL <Name> CLUSTER SERVER ATTRIBUTES AMOUNT 0
#define ZCL <Name> CLUSTER CLIENT ATTRIBUTES AMOUNT O
#define ZCL <Name> CLUSTER COMMANDS AMOUNT 0

6. Define macros that will be used to initialize the cluster in the application. These macros fill an instance of
the ZCL Cluster t type, which will represent the cluster in the application. Two macros are required for
a client and a server and one another macro that will switch between first two.

E.g.: The macro defining the client cluster type:

#define <Name> CLUSTER ZCL_ CLIENT CLUSTER TYPE (clattributes, clcommands) \
{\

.id = <Name> CLUSTER ID, \

.options = {.type = ZCL CLIENT CLUSTER TYPE, \

.security = <Security>}, \

.attributesAmount = ZCL <Name> CLUSTER CLIENT ATTRIBUTES AMOUNT, \

.attributes = (uint8 t *)clattributes, \
.commandsAmount = ZCL <Name> CLUSTER COMMANDS AMOUNT, \
.commands = (uint8 t *)clcommands \

}
E.g.: The macro defining the Sever cluster type:
#define <Name> CLUSTER ZCL SERVER CLUSTER TYPE (clattributes, clcommands) \
{\
.id = <Name> CLUSTER ID, \
.options = {.type = ZCL SERVER CLUSTER TYPE, \
.security = <Security>, \
.ackRequest = 1}, \
.attributesAmount = ZCL_<Name> CLUSTER SERVER ATTRIBUTES AMOUNT, \

.attributes = (uint8 t *)clattributes, \
.commandsAmount = ZCL <Name> CLUSTER COMMANDS AMOUNT, \
.commands = (uint8 t *)clcommands \

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 19

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

7. The macro that will be used to initialize the cluster in the application:
#define DEFINE <Name> CLUSTER (cltype, clattributes, clcommands)
<Name> CLUSTER ##cltype (clattributes, clcommands)
Notes: 1. <Name> DOOR_LOCK.
2. <Security> ZCL _NETWORK_KEY_CLUSTER_SECURITY.
3. <cltype> ZCL_CLIENT_CLUSTER_TYPE or ZCL_SERVER_CLUSTER_TYPE

Only cluster-specific commands should be defined for the cluster. General commands are supported in BitCloud
for all clusters by default.

6.3 Add Attributes to the Cluster

1. Increase attributes server attribute amount by one which was defined in Section 6.2:
ZCL DOOR_LOCK CLUSTER SERVER ATTRIBUTES AMOUNT 1

2. Define a constant for attribute identifiers given in Table 9-1:
ZCL _DOOR_LOCK CLUSTER SERVER <AttributeName> ATTRIBUTE ID
Notes: 1. Attributes specified as mandatory (M) in Table 9-1 must be defined in the cluster header file.
2. You must convert the attribute ID value to Little Endian. For example: CCPU_TO LE16 (0x0000).
3. Attribute Identifier value can be found from Table 9-1.

3. Create an attribute type definition for server:
typedef struct PACK
{
struct PACK
{
ZCL AttributelId t id;
uint8 t type;
uint8 t properties;
uint8 t value;
ZCL ReportTime t reportCounter;
ZCL ReportTime t minReportlInterval;
ZCL ReportTime t maxReportlInterval;
bool reportableChange;
ZCL ReportTime t timeoutPeriod;
bool lastReportedValue;
} <reportable attribute>;

struct PACK

{
ZCL _AttributeId t id;
uint8 t type;
uint8 t properties;
uint8 t value;

} <attribute n>;

} ZCL <ClusterName>ClusterAttributes t;

Notes: 1. Reportable attribute structure should be defined as given for <reportable attribute>.
2. Non reportable attribute structure should be defined as given for <attribute n>.
3. Attribute .value data type should same as Type given in Table 9-1.

4. Create an attribute instance:
#define ZCL DEFINE <ClusterName> CLUSTER SERVER ATTRIBUTES (<min>, <max>) \

20 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

DEFINE_REPORTABLE_ATTRIBUTE(<AttrName>, <AttrProps>,<AttrId>, <AttrType>,
<min>, <max>), \
DEFINE ATTRIBUTE (<AttrName>, <AttrProps>,<AttrId>, <AttrType>), \

Notes: 1. DEFINE REPORTABLE ATTRIBUTE () Can be referred for defining reportable attributes.

2. DEFINE ATTRIBUTE () Can be referred for defining non-reportable attributes.

3. <ClusterName> DOOR_LOCK.

4., <AttrName> lockState.

5. <AttrProps> Look under /* Bits for declaring properties bitmask of attribute */ in
clusters.h.

6. <AttrId> 0x0000.

7. <AttrType> Available attribute types are wrapped in the ZCL AttributeType t
enumeration defined in the zcl.h file.

8. <min> Minimum reportable duration.

9. <max> Maximum reportable duration.

6.4 Add Commands to the Cluster

1. Increase the amount of cluster commands by one.
#define <ClusterName> CLUSTER COMMANDS AMOUNT

2. Define a constant for the command ID.
#define ZCL <Clustername> Cluster <CommandName> COMMAND ID <value>

Note: You must convert the command ID value to little endian. E.g.: CCPU_TO LE16 (0x0000).

3. Define the command payload format.
typedef struct PACK
{

} ZCL_<CommandName> t;

Command payload is fully command-specific. The PACK macro ensures that the fields will be located in memory
one-by-one without gaps.

4. Extend the commands type definition or create one. The commands type usually is named as follows:
typedef struct PACK

{
struct PACK

{
ZCL CommandId t id;
ZclCommandOptions t options;
ZCL_Status_ t (*commandname) (ZCL Addressing t *addressing,
uint8 t payloadLength, <payload type> *payload);
} <Clcommand>;
} ZCL_<ClusterName>ClusterCommands t;

Notes: 1. <ClusterName> DoorlLock.
2. <Clcommand> Structure name is same as the command name (Section 9.1.1).
3. <payload type> Referto command description for payload parameters in Section 9.1.1.
5. Create Command instance:
#define

ZCL _DEFINE <ClusterName> <ClusterType> CLUSTER COMMANDS (<indications>) \
DEFINE COMMAND (<Name>, <ID>, <Options>, <Indication>)

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 21

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

Notes: 1. <indications> Macro argument, which consists of indication handlers for each command.

2. <ID> Command ID.

3. <Options> Configure command options with the help of the COMMAND OPTIONS macro,
e.g.: COMMAND OPTIONS (CLIENT TO SERVER,
ZCL THERE IS RELEVANT RESPONSE, ZCL COMMAND ACK).

4. <Name> Must equal the name of the corresponding field in the commands structure
defined in step 4.

5. <Indication> Mustequal the name of the indication handler given in the macro argument.

The ZCL_COMMAND_ ACK flag indicates that the receiver of the command will send an acknowledgement frame
on the APS level upon receiving the command. If the flag is not set, APS acknowledgement will not be sent.

This completely defines a new cluster command.

22 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

7 Adding New HA Device Support to Application

7.1 Objective

This chapter will describe in detail how to add a new logical HA device type to use the cluster implemented in the
previous task. This will get the user familiarized with the application organization, register endpoints [5],
configuring clusters on endpoint, binding to target services, attributes management, and cluster specific
commands exchange.

Figure 7-1. Configuring Clusters in an Application

Define callback functions for
command indications

A

Define attributes instances Define commands instances

v ‘

Fill lists of server and client clusters

v

Additionally configure clusters:
Set attribute reporting callbacks etc.

Fill lists for server and client clusters IDs

vy

Register an endpoint

7.2 Directory Structure for creating New Device

1. Create a new folder doorLock and save to : ..\Applications\HADevice and create sub folders include & src
as shown in Figure 7-2:

— Copy paste any existing device folder
— For example copy paste occupancySensor device folder and rename it to doorLock

2. Create new header and source file for each mandatory cluster as mentioned in sections 7.1 and 7.4.11.1
[9] (E.g. Basic Cluster, Identify Cluster and Door Lock cluster)

— Source and header files for Basic and Identify clusters can be renamed as per the naming
convention given in Figure 7-2

3. Create new header and source file for doorLock cluster and save it as per the naming convention.

— Rename osOccupancySensingCluster.h to doorLockCluster.h and
osOccupancySensingCluster.c to doorLockCluster.c

— Edit doorLockCluster.c as mentioned in the sections 7.3, 7.4, and 7.5

— File doorLockCluster.h contains function prototypes, macro definitions, and extern global
variables used in doorLockCluster.c

4. Create new header file and source file maintaining supported clusters lists by doorLock device.
— Rename osClusters.h to doorlockClusters.h and osClusters.c to doorLockClusters.c
— Edit doorLockClusters.c file as mentioned in the Section 7.6

— File doorLockClusters.h contains macro definitions and extern global variables used in
doorlLockClusters.c

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 23

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

5. Create new source file with device name (E.g.: doorLock.c). This file contains end point registration,
initialization etc.

— Rename occupancySensor.c to doorLock.c and edit as specified in Section 7.7

6. File osConsole.c can be renamed to doorLockConsole.c. This file can be edited for adding console
commands for doorLock device. This is not in the scope of this application note.

— Unwanted files can be deleted or can be commented out
— Delete Level Control and Occupancy Senor cluster related header and source files

Figure 7-2. Folder Structure for creating Door Lock Device

Folder Structure for Creating new device

DoorLock

doorLockBasicCluster.h
» include doorLockldentifyCluster.h
doorLockCluster.h
doorLockClusters.h

Legend doorLockBasicCluster.c
— Folder > src doorLockldentifyCluster.c
—»—] Sub Folder doorLockDoorLockCluster.c
—> File doorLockClusters.c

doorLock.c

doorLockConsole.c

7.3 Set Indication Functions for Clusters
1. Open doorlLockCluster.c and add server command indication functions for e.qg.
— static ZCL Status_ t lockInd(ZCL Addressing t *addressing, uint8 t
payloadLength, uint8 t *payload);
— static ZCL Status t unlockInd(ZCL Addressing t *addressing, uint8 t
payloadLength, ui;t87t *payload);_ - -
— Provide function definitions for the above indication functions
2. Add function for initializing the cluster for e.g.:
— wvoid doorlockClusterInit (void) ;

— Initialize the server attributes (Section 7.4) to default values (refer to Table 9-1)

Note: If the cluster does not receive cluster-specific commands the step described in this section is skipped. In
this case the commands parameter of the macro that initializes the cluster shall be set to NULL.

7.4 Define an Attributes Instance

1. Define an instance of cluster attributes for the selected cluster side in doorLockCluster.c. For e.g.:

static ZCL_<ClusterName>ClusterServerAttributes t
doorLockClusterServerAttributes =
{

ZCL DEFINE <ClusterName> CLUSTER <SERVER or CLIENT> ATTRIBUTES (MIN, MAX)
bi

24 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

...where the ZCL_<ClusterName>ClusterServerAttributes t type and the
ZCL DEFINE <ClusterName> CLUSTER <SERVER or CLIENT> ATTRIBUTES () macro are defined in the
zclDoorLockCluster.h file, that we created. MIN and MAX macros can be defined in the doorLockCluster.h file.

7.5 Define a Commands Instance

1. Define an instance of cluster-specific commands for the selected cluster side. E.g.
static ZCL_<ClusterName>ClusterCommands t doorLockClusterServerCommands =

{
DEFINE <ClusterName> CLUSTER COMMANDS (<indications>)

bi
...where the ZCL_<ClusterName>ClusterCommands_t type and the
DEFINE <ClusterName> CLUSTER COMMANDS (<indications>) macro is defined in the
zclDoorLockCluster.h file, which we created.

Note: Indication passed as arguments should be same as that we defined in Section 7.3. For e.g.:
ZCL DEFINE DOOR LOCK CLUSTER COMMANDS (lockInd, unLockInd, NULL, NULL)

7.6 Fill a List of Supported Cluster IDs

1. Open file doorLockClusters.c.

2. Define the cluster instance (as mentioned in point 4) for each cluster mention in the below list (as
mentioned in point 5), linking it with defined instances of commands and attributes and add the cluster
instance to the list of client or server clusters for the target endpoint.

— Attribute instances for Basic and Identify clusters should be renamed in doorLockBasicCluster.c
and doorLockldentifyCluster.c files respectively. Update the header files for the same.

3. Listelements must have the ZCL_Cluster t type and should be defined with the help of special macros.
A macro name may look like DEFINE <ClusterName> CLUSTER (). The macro takes three parameters:

— Indication of whether the cluster is server or client (Basic cluster takes only attributes instance
as given below)

— A pointer to attributes instance (NULL if the cluster does not have attributes)

— A pointer to commands instance (NULL if the cluster does not have commands)

4. Fore.g.:
static ZCL_Cluster t doorLockServerClusters[] =

{
ZCL DEFINE BASIC CLUSTER SERVER (&doorLockBasicClusterServerAttribut

es),
DEFINE T DENTIFY_CLUSTER (ZCL_SERVER_CLUSTER_TYPE ,
&doorLockIdentifyClusterServerAttributes, &doorLockIdentifyCommands),

DEFINE DOOR LOCK CLUSTER (ZCL SERVER CLUSTER TYPE,
&dlDoorLockCIuste;ServgrAttributesj &doofiockCluéEerServerCommands)
}i
5. Add the cluster ID to the list of client or server cluster IDs for the target endpoint. For e.g.:
static ClusterId t doorLockServerClusterIds[] =
{
BASIC CLUSTER ID,
IDENTIFY CLUSTER ID,
DOOR_LOCK_CLUSTER_ID
}i
Notes: 1. Cluster identifiers can be observed in the ..\Components\ZCL\include\clusters.h file. Elements in the
list should have the ClusterId t type.

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 25

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

2. As there are no mandatory client clusters for Door Lock device (refer to Table 10-1), Client clusters
list is not defined. If there are any mandatory client clusters, clusters list for the same must be
implemented.

3. Extern global variables used in doorLockClusters.c inside doorLockClusters.h.

7.7 Configure Clusters on Endpoint
1. Open file doorLock.c and modify the header file names accordingly. For e.g.:
— #include <osOccupancySensingCluster.h> to #include <doorLockCluster.h>
— #include <osClusters.h> to #include <doorLockClusters.h>
2. Toregister an application endpoint, configure a global instance of the ZCL_DeviceEndpoint t type.

3. Fill the simple descriptor fields of the instance and provide lists of server and client clusters. Inside the
simple descriptor (the simpleDescriptor field), specify the endpoint number, the profile ID, the profile device
ID, amount and lists of server and client clusters IDs.

- Fore.g.:
static ZCL DeviceEndpoint t dlckEndpoint =
{
.simpleDescriptor =
{
.endpoint = APP SRC_ENDPOINT ID,
.AppProfileId = PROFILE ID HOME AUTOMATION,
.AppDeviceId = HA DOOR LOCK DEVICE ID,
.AppInClustersCount = ARRAY SIZE (doorLockServerClusterIds),
.AppInClusterslList = doorLockServerClusterIds,
.AppOutClustersCount = NULL,
.AppOutClustersList = NULL,
bo
.serverCluster = doorLockServerClusters,
.clientCluster = NULL,
}i
Note: Define HA DOOR_LOCK DEVICE ID in../Components/ZCL/include/zcl.h file.

7.8 Endpoint Registration and Device initialization
1. Edit appDeviceInitAfterPowerFailure () in doorLock.c file, pass the dl1ckEndpoint instance
address to ZCL_RegisterEndpoint () function.
— When an endpoint is registered via the ZCL function frame reception will be indicated only by
callback functions registered for the cluster commands
2. CalldoorlockClusterInit ()inside appDeviceInitAfterPowerFailure () forinitializing the
Door Lock cluster attributes.
— And also Call Basic and Identify Cluster init functions
3. Edit appEzModeDone (), for configuring lockState attribute reporting.
— Specify the cluster ID, attribute ID and Max value (reporting timeout) accordingly

26 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

7.9 Binding to Target Services

Figure 7-3. Binding Flow Chart

Application Stack
" Match descriptor request Broadcasting
-
ZD0_ZdpReg(®) with MATCH DESCRIPTOR_CLID
I _ =
] Device's response -5 2
=2 m g_
o d————————————d—————lm
E 9 Next device’s response B &
© +-—————————— —|%* ———- |23
bl =1
< . g
Returned when the timer stops -
- — — — — — — — — — — —
L ZDO CMD COMPLETED STATUS
To a specific
- |EEE address request short address

ZD0_ZdpReq{&iseeReq) With IEEE ADDR_CLID
Device responds with the extended address

ieeeReq. ZD0_ZdpResp ()

Local binding > Add an entry to the

own binding table

APS BidnRegl)

To a specific
short address

For each
discovered device
A

Remote binding

Z2D0_ZdpReqlsbindingReq) with BIND CLID

bindingRegq.ZD0_ZdpResp ()

Binding, typically, consists of the following steps:
1. Discovering devices that support the specified clusters.
2. Finding out extended addresses of the discovered devices if they are not known in advance.
3. Saving information about the discovered devices in the local binding table.
4. Writing information about the device to binding tables of discovered devices.
Do the following changes given below to trigger device discovery and attribute reporting.
1. Return False inside the function appIsInitiator () in doorLock.c for making Door Lock device target.
2. Modify idetifyStartIdentifying () function in doorLockldentifyCluster.c as given below.
void idetifyStartIdentifying(uintl6 _t time)
{
doorLockIdentifyClusterServerAttributes.identifyTime.value = time;
HAL StopAppTimer (&identifyTimer);
HAL StartAppTimer (&identifyTimer) ;

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 27

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

3. Subscribe updateCommissioningState using below code snippet in doorLock.c for configuring
attribute reporting at the end of binding procedure.

static void updateCommissioningStateCb (ZCL Addressing t *addressing,
ZCL UpdateCommissioningState t *payload)

{

sendConfigureReportingToNotify (APP_ENDPOINT COMBINED INTERFACE,
DOOR_LOCK_CLUSTER ID,

ZCL_DOOR_LOCK CLUSTER LOCK_STATE SERVER ATTRIBUTE ID,
DOOR LOCK_ VAL MAX REPORT PERIOD * 2);

ZCL StartReporting();
(void) addressing, (void)payload;
}
static IdentifySubscriber t subcriber =
{
.updateCommissioningState = updateCommissioningStateCb
}i
4. Call the below function to subscribe the above declared subcriber inside appDeviceInit () function
in doorLock.c file.

— identifySubscribe (&subcriber) ;

Notes: 1. Add the below Macro definition in configuration.h and appConsts.h:
e d#define APP DOOR LOCK EXT ADDRESS 0x5LL
e i#define APP ENDPOINT DOOR LOCK 0x15
e #define APP DEVICE TYPE DOOR LOCK
2. Extend the #if check under the below comment in appConsts.h for Door Lock device:

e // Organize device-related definitions and check device type setting.

7.10 Attributes Management

All clusters support general commands for discovering, reading, writing, and reporting attributes. General cluster
commands are supported by all clusters. General cluster commands (for example, read/write/report/discover
attributes) are sent via the zCL AttributeReq () function, Cluster-specific commands are sent via the
ZCL_CommandReq ().

To send a cluster specific command the ZCL CommandReq () function is used with the pointer to an instance of
the ZCL Request t type as an argument.

Argument’s fields include command ID, source endpoint, destination addressing information, command payload
and command payload’s length, pointers to a confirmation callback function and a field configuring default
response.

Within the destination addressing dstAddressing structure for cluster-specific commands, the application
should set the sequenceNumber field. For a direct command the application shall use the
ZCL_GetNextSegNumber () function to obtain the value for this field.

28 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

7.1

An example in our case will be:

lockCommandResp.ZCL Notify = NULL;
lockCommandResp.dstAddressing.addrMode = APS NO ADDRESS;
lockCommandResp.dstAddressing.profileId = PROFILE ID HOME AUTOMATION;
lockCommandResp.dstAddressing.clusterId = DOOR_LOCK CLUSTER ID;
lockCommandResp.dstAddressing.clusterSide = ZCL CLUSTER SIDE CLIENT;
lockCommandResp.dstAddressing.sequenceNumber = ZCL_ GetNextSegNumber () ;
lockCommandResp.endpointId = APP SRC ENDPOINT ID;
lockCommandResp.requestPayload = NULL;

lockCommandResp.id = ZCL DOOR_LOCK CLUSTER LOCK RESP COMMAND ID;
lockCommandResp.requestLength = 0;

Then send the command by ZCL CommandReq (&lockCommandResp) ;

Make a note that door lock device sends lock response command to the lock command from the client and unlock
command response for unlock command.

We have so far implemented a new device, which will be the server for the door lock cluster implemented.

Implementing a Client
In our example, Combined Interface will be the client for door lock cluster.

1. Add ciDoorlLockCluster.c file inside ..\Applications\HADevice\combinedInterface\src.
2. Open ciDoorLockCluster.c file and add cluster command instance, e.g.:
static ZCL_DoorLockClusterCommands t doorLockClientCommands =

{
ZCL_DEFINE DOOR_LOCK CLIENT CLUSTER COMMANDS (LockCmdRespInd, UnLockCmdResp
Ind)
}i
3. Add door lock cluster in Client clusters inside ..\combinedInterface\src\ciClusters.c.
- E.qg.,in“static ZCL Cluster t ciClientClusters [] ="
4. Add
DEFINE DOOR LOCK CLUSTER(ZCL CLIENT CLUSTER TYPE,NULL, &édoorLockClientCommands).
5. Add Door lock cluster ID to static ClusterId t ciClientClusterIds[].
6. Create an application event to form and send cluster command. E.g., on a button press event send Lock
command.
7. Command formation using zCL CommandReq to send commands are similar to the server side as
mentioned in Attributes management. Have a close look at the source and destination information.

With this we have completed implementing a new cluster, adding a new device that will be the server side, adding
the cluster to a client, and implementing an application to use the cluster and devices. Look into the sniffer and
make a note of the communication between the Client and Server.

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 29

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

8.1

8.2

30

Handling ZDP Requests

This is an optional task. This task will demonstrate usage of ZDP requests, by implementing network leave and
rejoin functionality for a device based on an application event. We will reuse the button event that we
implemented in task 2 (Chapter 4) for this.

Adding Required Application Sequence on Button Event

This task demonstrates adding application code in button event to make the device leave the current network
using ZDP Request.
1. In..\doorLock.c, form the ZDP request packet that will cause the node to leave the network in the
button event handler func
2. To add the ZDP request, the steps below must be followed:
— Add static ZDO_ZdpReq t leaveReq; in..\doorLock.c
— Every ZDP request will contain a ZDP frame, of type from ZDO ZdpRegFrame t

Search for files in the solution or workspace, or look directly into ..\ Components\ZDO\include\zdo.h.
3. Fill the other required parameters of the ZDO_zdpReqg_t, as seen in zdo.h.

E.g.: In the button event handler, add:

ZDO MgmtLeaveReqg t *zdpLeaveReq = &leaveReg.req.regPayload.mgmtLeaveReq;
//Fill ZDO MgmtLeaveReq t struct elements

zdpLeaveReg->deviceAddr = 0;

zdpLeaveReg->rejoin = 0;

zdpLeaveReg->removeChildren = 0;

zdpLeaveReg->reserved = 0;

//Fill ZDO ZdpReq t struct elements
leaveReq.ZDO ZdpResp = appZdpLeaveResp;
leaveReq.reqCluster = MGMT LEAVE CLID;
leaveReqg.dstAddrMode = APS EXT ADDRESS;
leaveReq.dstExtAddr.extAddress = 0;

//Send ZDP request over air.
ZDO_ZdpReq (&leaveReq) ;
This request will cause the Door Lock device node to leave the current network, as observed in the sniffer.

e leaveReq variable should be declared as global variable
e leaveReqg.dstExtAddr.extAddress assigned to Zero, initiates self network leave. For initiating
remote leave specify the remote device extended address
Note: Make sure to add the necessary function definitions for appZdplLeaveResp.
The NWK leave procedure is now complete. It is possible for application to get notified of leave status when the

stack has completed this process. By this task, we have now learnt to add an application scenario as well
understand using the ZDP request.

Subscribing to Event Notification Application

Application can subscribe to various events occurring in stack as well as application, to get notifications on
subscribed events.

1. In..\doorLock.c, include header files, sysEvents.h.
2. Define a function pointer to a callback that is to be called on occurrence of the event, as shown below:

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

— static SYS EventReceiver t deviceExampleEventReceiver = { .func =
deviceExampleEventObserver}; as static to that file

3. Subscribe to the Network leave event using SYS SubscribeToEvent (BC_EVENT example,
&deviceExampleEventReceiver) ;

Look into the events specified in BcEvents_t in sysEvents.h, for understanding the usage of appropriate
BC_EVENT example.

This subscription API can be called once during device initialization. On occurrence of the event (in this case,
BC EVENT NETWORK LEFT), the function deviceExampleEventObserver (SYS EventId t eventId,
SYS EventData t data); will be called

Note: Check that the device has left the network by observing NWK leave packet from the device in sniffer.

Device leave of Door Lock device, on button event is now complete. The status of the event can be verified and
further action taken, as necessary.

8.3 Adding Application Timer Functionality

Application can use timers to specify a timeout after which a user callback is invoked. Application timers can be
periodically repetitive or one-shot.

The stack provides a high-level application timer interface, which uses a low-level hardware timer. This task uses
a one minute timeout on which device shall rejoin the network that it left. This shall not be a periodic timer.

In ..\doorLock.c, define a timer as shown below:
//timer to control network rejoin
static HAL AppTimer t timerExample =
{

.mode = x, //set mode as defined in TimerMode t in
bcTimer.h

.interval = x, //takes value in milliseconds, set to one
second
.callback = rejoinNetwork, //define callback to rejoin network on timer expiry

}i
Use HAL StartAppTimer (&timerExample); to start the timer. This shall be done as required by the
application.

For current task, the timer shall be started when the application receives event notification of successful device
leave.

Compile the project and Download. Set a breakpoint in the timer callback function to check if it is hit on expiry of
timer period.

Note: Timers, when not used, shall be stopped using HAL StopAppTimer (&timerExample). This can
typically be done in the Timer callback, in case of one-shot timers.

Timer callback shall be utilized to perform application specific actions. In this case, let’s try network rejoin.

8.4 Rejoining Network
Door Lock device network rejoin sequence is described below:

1. When the Door Lock device is powered on, it joins the network.
2. Door Lock device binds and communicates with Combined Interface device.
3. On button press, Door Lock device leaves network (implemented in Section 8.1).

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 31

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

4. On event notification of proper leave (implemented in Section 8.2), application starts timer, at the expiry of
which, Door Lock device re-joins the network.

5. This sequence can be observed using sniffer.
Follow the below given steps to implement the device network rejoin using Application timer callback.
1. In the Timer callback, the CS Parameter for Join Control, CS JOIN CONTROL ID shall be set as per
application requirement.
2. ltis possible to configure the node to join the network via MAC Association or network rejoin with/without
security as per NWK_JoinControl t in nwkCommon.h.
Look into ..\BitCloud\Components\NWKlinclude.
3. Define alocal variable in the timer callback of type NWK JoinControl t and fill it as per requirement (as
mentioned in the previous point). - B
4. UseCS WriteParameter () tosetCS JOIN CONTROL ID.

E.g. NWK JoinControl t nwkJoinCtrl;
nwkJoinCtrl.method = NWK_JOIN VIA REJOIN;
nwkJoinCtrl.secured = false;
nwkJoinCtrl.discoverNetworks = true;
nwkJoinCtrl.annce = true;
CS WriteParameter (CS JOIN CONTROL ID, &nwkJoinCtrl);

5. Inthe Timer callback set appState to APP NETWORK JOINING STATE as device has left network and
needs to rejoin.

6. BitCloud uses a Task manager to process tasks based on priority with the PHY having the highest priority
and the application, the lowest priority.

— Whenever application process is complete, it should use SYS PostTask (APL TASK ID) to
post the task to the task manager so that it is invoked again based on list of pending tasks and
priority

E.g.. appState = APP_START NETWORK STATE;
SYS PostTask (APL TASK ID);

The result is that the device rejoins network on Application Timer callback.

Notes: 1. The firstargumentin CS WriteParameter () shall be of format CS _example ID ID. See
csVarTable.h.

2. In zclDevice.c, zDO_MgmtNwkUpdateNotf () is called every time there is a change in the network
on remote node as well as self. When a node leaves the network, ZDO MgmtNwkUpdateNotf ()
gets called with status ZDO NETWORK LEFT STATUS.

By default, in this case, appState = APP START NETWORK STATE; but this task requires
appState to change to APP START NETWORK STATE only on expiry of application timer callback
and not immediately after network leave. Hence ensure that this appState change is removed or
commented out in ZDO MgmtNwkUpdateNotf () for case ZDO NETWORK LEFT STATUS.

32 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

9 Door Lock Cluster Specification

The door lock cluster (section 7.3 [3]) provides an interface into a generic way to secure a door. The physical
object that provides the locking functionality is abstracted from the cluster. The cluster has a small list of
mandatory attributes and functions and a list of optional features.

Note: This Cluster is provisionary and not certifiable. This feature set may change before reaching certifiable
status in a future revision of this specification.

9.1 Server

Table 9-1. Server Attributes

Attribute
identifier Description Type Read/write | Mandatory/Optional

0x0000 Lock State Enum8 | Read Only
0x00: Not fully locked
0x01: Locked

0x02: Unlocked

Reportable | Default

0x0001 Lock Type Enum8 | Read Only M No 0
0 = dead bolt

1 = magnetic

2 = other

3 — Oxff reserved

0x0002 Actuator Enabled Boole- | Read Only M No 0
an

0x0003 Door State Enum8 | Read Only (0] Yes 0
0 = Open

1 = Closed

2 = Error (Jammed)

3 = Error (Forced Open)
4 = Error (Unspecified)
5 — Oxff reserved

0x0004 Number of Door Open Events Int32u Read/Write (0] No 0
0x0005 Number of Door Closed Events Int32u Read/Write (0] No 0
0x0006 Number of minutes door has Int16u Read/Write (0] No 0

been open since this last time it
transitioned from close to open

9.1.1 Commands

Table 9-2. Commands Received by the Server Cluster
Command ID : Description : Mandatory/optional |
0x00 Lock door M
0x01 Unlock door M

9.1.1.1 Lock Door Command

This command (sent by the client to the server) causes the lock device to lock the door. It has no payload.

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 33

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

9.1.1.2 Unlock Door Command
This command causes the lock device to unlock the door. It has no payload.
9.1.1.3 Scene Table Extension
If the Scene server cluster is implemented, the following extension field is added to the Scene table:

Lock State:

When the Lock State attribute is part of a Scene table, the attribute is treated as a writeable command, that is,
setting the Lock State to lock will command the lock to lock, and setting the Lock State to "unlocked" will
command the lock to unlock. Setting the Lock State attribute to “not fully locked” is not supported. The transition
time field in the Scene table will be treated as a delay before setting the Lock State attribute, that it is possible to
activate a scene with the lock actuation some seconds later.

Locks that do not have an actuation mechanism should not support the Scene table extension.

9.2 Client

9.2.1 Attributes
The client has no attributes.

9.2.2 Commands

Table 9-3. Commands Received by the Client Cluster

Command ID Description Mandatory/optional
0x00 Lock Response M
0x01 Unlock Door Response M

9.2.2.1 Lock Response
This command is sent in response to a Lock command. It returns command ID byte and one status byte.
0 =ZCL_SUCCESS
1=2ZCL_FAILURE
9.2.2.2 Unlock Door Response
This command is sent in response to an Unlock door command. It returns command ID byte and one status byte.
0 =ZCL_SUCCESS
1=ZCL_FAILURE

34 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

10 Door Lock Device

The Door Lock (section 7.4.11 [9]) is capable of receiving Door Lock cluster commands.

10.1 Supported Clusters

In addition to those specified in [3], the Door Lock device shall support the clusters listed in Table 10-1.

Table 10-1. Clusters Supported by the Door Lock Device

Mandatory
Door Lock None
Scenes
Groups
Optional
Alarms Time

10.2 Supported Features and Functions

The Door Lock device shall support the features and functions listed in Table 10-2.

Table 10-2. Example Features and Functions Supported by the Door Lock Device

Device type/feature or function ' Mandatory/optional |

Join (end devices and routers only) M

Form Network (Coordinator only)

Allow Others to Join Network (routers and Coordinators only)

Restore to Factory Fresh Settings
Enable Identify Mode
Group Nodes (send out an Add Group If Identify)

Create Scene (Store Scene)

Service discovery (Match Descriptor Request)
ZDP Bind Response
ZDP Unbind Response

End Device Annce/Device Annce

Service Discovery Response (Match Descriptor Response)

=/ 2 2/ 2/0/0|jo =2l £/

EZ-Mode Commissioning

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 35

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

11 References
[1] Atmel AT02597: ZigBee PRO Packet Analysis with Sniffer.
[2] AT86RF233 Datasheet.
[3] 075366r02ZB_AFG-ZigBee Cluster_Library Public_download_version.
[4] Atmel Software Framework.
[5] Atmel AVR2050: BitCloud Developers Guide.
[6] AT86RF230 Datasheet.
[71 Atmel AVR10004: RCB256RFR2 — Hardware User Guide.
[8] Atmel AVR2052: BitCloud SDK Quick Start Guide.
[9] 075367r03ZB_AFG-Home Automation_Profile_for Public_Download.

[10] http://www.atmel.com/tools/studioarchive.aspx.

12 Atmel Technical Support Center
Atmel has several support channels available:

1. All Atmel microcontrollers. Web portal: http://support.atmel.no/.
2. All AVR products. Email: avr@atmel.com.
3. All training related inquiries. Email: training@atmel.com.

Register on the web portal to gain access to the following services:
1. Access to a rich FAQ database.

2. Easy submission of technical support requests.

3. History of all your past support requests.

4. Register to receive Atmel microcontrollers’ newsletters.

5. Getinformation about available trainings and training material.

36 AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE]

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

http://www.atmel.com/images/atmel-32210-zigbee-pro-packet-analysis-with-sniffer_ap-note_at02597.pdf
http://www.atmel.com/Images/Atmel-8351-MCU_Wireless-AT86RF233_Datasheet.pdf
http://www.zigbee.org/Products/ZigBeeClusterLibraryDownload.aspx
http://www.atmel.com/tools/avrsoftwareframework.aspx
http://www.atmel.com/Images/Atmel-8199-BitCloud-Developer-Guide_User-Guide_AVR2050.pdf
http://www.atmel.com/Images/doc5131.pdf
http://www.atmel.com/images/atmel-42081-rcb256rfr2-hardware-user-manual_application-note_avr10004.pdf
http://www.atmel.com/images/atmel-4200-bitcloud-sdk-quick-start-guide_ap-note_avr2052.pdf
http://www.zigbee.org/Standards/ZigBeeHomeAutomation/download.aspx
http://www.atmel.com/tools/studioarchive.aspx
http://support.atmel.no/
mailto:avr@atmel.com
mailto:training@atmel.com

13 Revision History

[Oocre | Dwe | Commes
|42288A | 06/2014 |Initia| document release. |

AT05436: BitCloud ZigBee Home Automation (ZHA) — Hands-on [APPLICATION NOTE] 37

Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014

Atmel_ Enabling Unlimited Possibilities® n u m %

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2014 Atmel Corporation./ Rev.:Atmel-42288A-BitCloud-ZigBee-Home-Automation-ZHA-Hands-on_AT05436_ApplicationNote_062014.

Atmel®, Atmel logo and combinations thereof, AVR®, BitCloud®, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL
WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless
specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products
are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor
intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Features
	Prerequisites
	1 Description
	2 Hardware Setup
	2.1 Mount the RCB256RFR2 to the Sensor Terminal Board
	2.2 Connect the Debugger to the RCB256RFR2 + Sensor Terminal Board
	2.3 STB Driver Installation
	2.3.1 Installing Sensor Terminal Board Driver (STB)
	2.3.1.2 Verification of Installed Driver

	2.4 Driver Installation
	2.4.1 Install Drivers for the Debugger

	2.5 Tools Firmware Upgrade and Verification of Communication
	2.5.2 Verify the Communication with the Target Device
	2.5.2.1 Set Fuse Settings

	3 Using Standard BitCloud SDK Home Automation Devices
	3.1 Objectives
	3.2 Building Standard BitCloud ZigBee Home Automation Demonstration
	3.2.1 Create Three Devices using Atmel Studio / IAR
	3.2.1.1 Setting up the Home Automation Network

	3.3 Using the Sniffer
	3.3.1 Setting up Sniffer Tool for Analyzing the Home Automation Network Packets

	4 Adding User Application Code to Existing Demonstration
	4.1 Objectives
	4.2 Add Button Support in Combined Interface Device

	5 Adding New Attribute to an Existing Cluster
	5.1 Objective
	5.2 Adding a New Attribute to ZCL
	5.3 Extending the Application to use the Newly Added Attribute (attribute management)
	5.3.1 Attribute Value Read from Application

	6 Adding a New Cluster
	6.1 Objective
	6.2 Adding a New Cluster to ZCL
	6.3 Add Attributes to the Cluster
	6.4 Add Commands to the Cluster

	7 Adding New HA Device Support to Application
	7.1 Objective
	7.2 Directory Structure for creating New Device
	7.3 Set Indication Functions for Clusters
	7.4 Define an Attributes Instance
	7.5 Define a Commands Instance
	7.6 Fill a List of Supported Cluster IDs
	7.7 Configure Clusters on Endpoint
	7.8 Endpoint Registration and Device initialization
	7.9 Binding to Target Services
	7.10 Attributes Management
	7.11 Implementing a Client

	8 Handling ZDP Requests
	8.1 Adding Required Application Sequence on Button Event
	8.2 Subscribing to Event Notification Application
	8.3 Adding Application Timer Functionality
	8.4 Rejoining Network

	9 Door Lock Cluster Specification
	9.1 Server
	9.1.1 Commands
	9.1.1.1 Lock Door Command
	9.1.1.2 Unlock Door Command
	9.1.1.3 Scene Table Extension
	Lock State:

	9.2 Client
	9.2.1 Attributes
	9.2.2 Commands
	9.2.2.1 Lock Response
	9.2.2.2 Unlock Door Response

	10 Door Lock Device
	10.1 Supported Clusters
	10.2 Supported Features and Functions

	11 References
	12 Atmel Technical Support Center
	13 Revision History

