
Using a Hardware or Software CRC with Enhanced Core
PIC16F1XXX in Class B Applications

AN1817
1.0 INTRODUCTION

Class B safety routines are increasingly used in
microcontrollers to detect faults in safety-critical
applications. The primary method for detecting faults in
microcontroller program memory is by using a Cyclic
Redundancy Check (CRC) as defined by the IEC
60730 standard.

A CRC can be used to prevent application faults due to
corrupted program memory by performing a periodic
check to determine if the check value has changed.

This application note will describe how to implement
the Software CRC available as part of the Class B
Safety Software Library and the hardware CRC used in
selected microcontrollers (this document will focus on
the PIC16F161X family).

Both methods discussed in this application note satisfy
IEC 60730 spec H.2.19.3.2 to test Invariable Memory
for all single-bit faults with 99.6% coverage.

For additional information on Class B and full example
code for this application note please visit:

www.microchip.com/classb

For additional information on CRC algorithms, please
refer to “A Painless Guide on CRC Algorithms” by Ross
N. Williams (August 19, 1993).

1.1 Cyclic Redundancy Check

CRC uses a method very similar to polynomial long
division to identify a unique check value similar to the
remainder in polynomial long division. This is done by
choosing a very specific divisor known as the CRC
polynomial. CRC polynomials are unique polynomials
selected to identify the maximum amount of errors in
any given data stream. The CRC polynomial used in
this application note is CRC-16-ANSI, as shown in
Figure 2. Another popular CRC algorithm is
CRC-16-CCITT. This algorithm is primarily used in
communication CRCs.

The check value can be used in Class B applications by
running an initial CRC then periodically running a CRC
to confirm that the check value has not changed.

1.2 CRC Implementation

There are a few common ways to implement a CRC.
The most common hardware implementation of a CRC
is the Linear Feedback Shift Register (LFSR). The
LFSR for CRC-16-ANSI is shown in Figure 2. This
implementation will feed the data stream into the CRC
by placing the XOR gates at the appropriate locations,
according to the CRC algorithm chosen.

A common software implementation of CRC is by using
a table. However, this method uses a large amount of
memory and is not efficient to use on low-memory
PIC16s. A parallel computation method was chosen to
do a Software CRC in the Class B Safety Software
Library. This works by selectively using XOR’s on bits
determined by different forms of parity.

1.3 CRC Error Detection

The polynomial in a CRC calculation is selectively
chosen to find as many bit errors as possible. The
common CRC polynomials, including the
CRC-16-CCITT and CRC-16-ANSI, are designed to
provide the maximum coverage for error detection.
These polynomials are designed to identify all single-bit
errors, two-bit errors, odd number-bit errors, and burst
errors.

The effectiveness of each polynomial for errors other
than these is under much debate and is not within the
scope of this application note.

1.4 CRC Terms

• Polynomial – This is the divisor for the CRC
algorithm. This is the primary distinction between
various CRC methods.

• Initial Value – This is the starting value of the CRC
calculation. Most CRC algorithms have
predefined initial values in order to ensure
maximum error detection.

• Augmented Zeros – Zeros are appended to the
end of the data sequence for CRC calculation.

• Endianness – Determines the bit order for the
data into the CRC calculation; can be either MSb
first or LSb first.

• Check Value – This is the final product of the CRC
calculation; can also be referred to as checksum
or remainder.

Author: Corey Simoncic
Microchip Technology Inc.
 2014 Microchip Technology Inc. DS00001817A-page 1

AN1817
1.5 Class B CRC Scope

In this application note, the terms used for CRC are
defined as:

• Polynomial = CRC-16-ANSI
• Initial Value = 0xFFFF
• Augmented zeros will be used
• Endianness = MSb first

1.6 Using CRC for Class B in
Embedded Applications

A CRC can be an accurate and reliable way of testing
the program memory of embedded applications such
as those using PIC16F1613.

The basic flow of using CRC (along with the rest of the
Class B tests) in a typical application is shown in
Figure 1. The CRC calculation code provided along
with this application note will be used to calculate the
checksum prior to programming the part. The check
value will then be programmed into the final two
addresses in the program memory. This is how the
check value will be verified each time the CRC is
calculated.

FIGURE 1: CLASS B FLOWCHART

FIGURE 2: CRC LFSR

CRC entire Memory
Range except last 2

words(1)

Is Check
Value

Correct?

No

Yes

CLASS B Start-up
Tests

Application Initialization

Is Check
Value

Correct?

No

Yes

CLASS B Periodic
Tests

Error:
Set Application

in controlled
state and set
appropriate
error flags

Application Main Loop

CRC entire Memory
Range except last 2

words(1)

Note 1: The last two addresses will be used to
store the check value.

Data in

b0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15

Linear Feedback Shift Register for CRC-16-ANSI

x16 + x15 + x2 + 1

b0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15

Data inAugmentation Mode OFF

Augmentation Mode ON
DS00001817A-page 2  2014 Microchip Technology Inc.

AN1817
2.0 USING THE CRC PERIPHERAL
FOR CLASS B

The PIC16F161X family of products has a hardware
implementation of a CRC. This section will provide
step-by-step instructions on how to use the CRC
peripheral in a Class B application, including code
samples.

A memory scanner is included in the CRC peripheral in
the PIC16F161X. This memory scanner can be used to
load the CRC peripheral with data directly from the
Flash program memory of the device.

The first step in using the hardware CRC in the
PIC16F1613 will be to configure the registers for the
CRC and the memory scanner. Further information is
located in Section 11.0 of the PIC16F1613 data sheet
(DS40001737).

2.1 Configuring the CRC Module

Polynomial of CRC-16:

CRCXORH = 0b10000000;

CRCXORL = 0b00000101;

The most significant ‘1’ is assumed and automatically
implemented by the module.

Initial Value:

CRCACCH = 0b11111111;

CRCACCL = 0b11111111;

Augmented Zeros enabled:

CRCCON0bits.ACCM = 1;

Endianness (shifting MSb first):

CRCCON0bits.SHIFTM = 0;

In order to be kept adaptable, the CRC module was
designed to take in a range of different polynomials and
data string lengths. Because of this, the module must
also be configured for the polynomial length and the
data length.

Polynomial Length of 16 bits:

CRCCON1bits.PLEN = 0b1111;

Data Length of 16 bits:

CRCCON1bits.DLEN = 0b1111;

.

.

Note: The data length of the program memory in
the PIC16F1613 device is actually 14 bits.
A length of 16 bits was selected here to
allow for verifying the check value against
the CRC calculator and the Software
CRC. This change appends each pro-
gram memory word with two zeros to cre-
ate a 16-bit word. See Example 1 for more
information.
 2014 Microchip Technology Inc. DS00001817A-page 3

AN1817
2.2 Configuring the Memory Scanner

Because the CRC is a safety-critical task, the memory
scanner will be used in Burst mode. This means that all
CPU functions will be halted while the CRC is running.
At 8 MHz FOSC, this means that the CPU is halted for
4.086 ms to run the CRC on the entire memory panel
(2000 program words).

Burst mode:

SCANCON0bits.MODE = 0b01;

If the 4.086 ms is too long, an additional bit can be set
for the scanner, which will halt the scanner during an
interrupt. This means that Safety Critical interrupts can
still be served.

Optional interrupt service:

SCANCON0bits.INTM = 1;

The final step to configuring the memory scanner is
setting the start and final addresses. The
SCANLADRH:L register pair holds the starting address
for the memory scanner. The SCANHADRH:L register
pair holds the final address to be scanned. During the
scan operation, the SCANLADR register pair is
incremented to show the current address being
retrieved. In Example 1, the last two memory
addresses will be used to store the resulting check
value.

First Address:

SCANLADRH = 0x00;

SCANLADRL = 0xFD;

Last Address:

SCANHADRH = 0x07;

SCANHADRL = 0xFB;

EXAMPLE 1: CRC PERIPHERAL CODE

uint16_t HWCRC (uint16_t lastAddress)
{
 uint16_t HWCRCresult;

 CRCACCL = 0xFF; //Seed with 0xFFFF
 CRCACCH = 0xFF;
 CRCXORH = 0x80; //using CRC-16-ANSI 0x8005
 CRCXORL = 0x05;
 CRCCON1bits.DLEN = 15; //using 16 bit data length to match the Software CRC
 //the most-significant 2 bits will be treated as 0.
 CRCCON1bits.PLEN = 15; //using the maximum 17-bit polynomial (-2)
 CRCCON0bits.ACCM = 1; //turn on augmented zeros
 CRCCON0bits.SHIFTM = 0; //MSb-first (normal)
 SCANCON0bits.MODE = 0b01; //turn on "Burst mode" to stop all
 //other execution until CRC complete
 SCANLADRH = 0x00; //set the first address for memory scan
 SCANLADRL = 0x00;
 SCANHADRH = lastAddress >> 8; //set the last address for memory scan
 SCANHADRL = lastAddress;

 SCANCON0bits.EN = 1;
 CRCCON0bits.EN = 1;
 CRCCON0bits.CRCGO = 1; //Turn on the CRC
 SCANCON0bits.SCANGO = 1; //Turn on the scan to begin the CRC
 //This should halt CPU Execution until the Scanner is complete and the final
 //memory location is in the CRC

 while(CRCCON0bits.BUSY);

 HWCRCresult = ((CRCACCH<<8) | CRCACCL);
 return HWCRCresult;

}

DS00001817A-page 4  2014 Microchip Technology Inc.

AN1817
2.3 Running the CRC

Both the CRC and scanner have now been configured
to run the CRC-16-ANSI algorithm in the desired
memory region. The CRC and scanner modules can
now be enabled.

First set the CRCGO bit to begin the CRC, then set the
SCANGO bit. The CPU will halt normal code execution
here because the scanner has been set to Burst mode
(with the possible exception to interrupts as stated
earlier).

The CPU will be shut down for an approximate 4.086
ms. The BUSY bit of CRCCON0 will be cleared by
hardware when the CRC operation has finished. When
this bit is cleared, the final check value will be located
in the CRCACCH:L register pair.

2.4 CRC Peripheral Timing

The timing for the CRC peripheral changes depending
on the data width, FOSC, and the number of addresses
being scanned.

The CRC takes four instruction cycles per word of
program memory tested if using 16-bit data width. For
2046 addresses of Flash memory being tested, the
CRC will take 2046 * 4 instruction cycles to finish, plus
a few additional instructions for calls and returns.

For this application note, the CRC takes 8211
instruction cycles at 8 MHz making it take just over 4
ms. This timing was determined using the Signal
Measurement Timer (SMT) on the device.

For more information about how to obtain the timing for
the CRC or any other peripheral using the SMT, please
refer to Appendix B: “SMT Timing”.
 2014 Microchip Technology Inc. DS00001817A-page 5

AN1817
3.0 CRC CALCULATOR

This application note includes an easy-to-use CRC
calculator that supports multiple polynomials and all
features of the CRC peripheral. This tool will be used to
verify all CRC calculations done by the CRC peripheral
and the Class B Library.

3.1 Features

The CRC calculator has all the features of the CRC
peripheral. This includes multiple polynomial selections
to choose from, option to turn off Augmentation mode,
toggle between MSb first and LSb first, and optional
data and accumulator widths. The CRC calculator has
two data entry methods. The first is to manually enter

data into the Data column on the right side. The second
is to import a file of line-delimited hex values, like those
that can be taken from MPLAB X IDE (explained in
Section 3.3 “Using MPLAB® X IDE to fill the table
data”).

3.2 Setup for CRC-16-ANSI

To setup the CRC calculator for CRC-16-ANSI, a few
options must be changed from the defaults in the
calculator. First, select the 0x8005 polynomial using
the drop-down polynomial selection box. Then press
the F under the accumulator; this will set the initial
value to 0xFFFF. Finally, the Data Width must be
increased to 16. The rest of the default options can
remain unchanged (see Figure 3).

FIGURE 3: CRC CALCULATOR SETUP FOR CRC-16-ANSI

3.3 Using MPLAB® X IDE to fill the
table data

The program memory view in MPLAB X IDE can be
used to quickly fill the Data table for the CRC calcula-
tor. To do this, first open the program memory view in
MPLAB X IDE, as shown in Figure 4. Copy the
opcodes needed using the copy hot key (windows is
CTRL+C), as shown in Figure 5. The opcodes will be
copied into the clipboard in a standard-line delimited
format that can then be pasted into a standard text file
(see Figure 6). Next, save the file and open the CRC
calculator and go to file -> import file (see Figure 7).
Choose the saved file, and the Data table will be auto-
matically filled with the opcodes from the MPLAB X IDE
project.
DS00001817A-page 6  2014 Microchip Technology Inc.

AN1817
FIGURE 4: PROGRAM MEMORY VIEW

FIGURE 5: COPY OPCODES FROM PROGRAM MEMORY
 2014 Microchip Technology Inc. DS00001817A-page 7

AN1817
FIGURE 6: OPCODE LIST

FIGURE 7: IMPORT FILE
DS00001817A-page 8  2014 Microchip Technology Inc.

AN1817
3.4 Calculating the Check value

After the data table is filled out with the desired
information, the Accumulate button will generate the
final check value in the accumulator text box. The
values dialogue indicates how many total words were
calculated using the CRC. The Accum column in the
data entry section shows the accumulator value after
each word of data is entered into the CRC. This can be
quite useful for debugging (see Figure 8).

FIGURE 8: ACCUMULATE USING CRC CALCULATOR
 2014 Microchip Technology Inc. DS00001817A-page 9

AN1817
4.0 USING THE CLASS B LIBRARY
CRC FUNCTION

This section will describe how to implement the Flash
program memory CRC function from the library.

The Class B Safety Software Library comes with a
software implemented CRC function to test Flash
program memory and EEPROM.

The Software CRC is limited to the CRC-16-ANSI
algorithm, unlike the CRC peripheral.

For more information on using the Class B library, see
DS00001799.

4.1 API

To run the CRC test across Flash memory, the following
function must be called:

CLASSB_CRCFlashTest(…);

The function has three arguments: the first address to
be tested, the length of the test, and the seed for the
CRC algorithm.

To match the CRC peripheral, these arguments would
have the following values:

• uint16_t FlashAddress = 0x00

• uint16_t Flashlength = 0x07FC

• uint16_t crcSeed = 0xFFFF

EXAMPLE 2: CRC LIBRARY CODE

4.2 Software CRC Timing

The Software CRC takes 216,956 instruction cycles
compared to the 8172 instruction cycles of the CRC
peripherals for the same amount of memory. This
equates to 108.478 ms.

Note: The length here will include the first
address. The test will return the 16-bit
check value. See Example 2 for more
information.

uint16_t flashAddress = 0x00;
uint16_t flashLength = 0x07FC;
uint16_t crcSeed = 0xFFFF;
uint16_t CRC-libraryResult;

CRC_libraryResult = CLASSB_CRCFlashTest(myAddress,length,crcSeed);
DS00001817A-page 10  2014 Microchip Technology Inc.

AN1817
5.0 USING THE CHECK VALUE
FOR ERROR CHECKING

Using the CRC calculation application, a reference
check value can be programmed into the device. This
reference can then be checked periodically against the
resulting check value from the CRC peripheral or the
Class B Library CRC function. If the two values match,
then there has not been a program memory failure with
a large degree of certainty. If the two values do not
match, it means that there has been a memory
corruption and steps should be taken to ensure the
safety of the device.

If a reference check value cannot be used because of
calibration or other run-time values stored in program
memory, the CRC can be run twice (after the memory
values have changed) and the two check values can be
compared. For this, the previous check value can be
stored in Flash program memory using the self-write
functionality of the PIC® MCU or in a static RAM
location.

Due to the nature of the CRC algorithm, it is not
possible to find out where the actual error came into the
program memory. Depending on the application, a
number of steps can be taken.

• An error flag can be set, halting operation
• The device can be held in Reset
• The device can enter an infinite loop halting all

other operation
• An Error signal can be sent to inform the

consumer of an error

5.1 Reference Check Value

The reference check value determined using the CRC
calculation application (See Section 3.0 “CRC
Calculator”) can be stored in program memory
directly, at the time of programming using const
variables.

For example, if the reference check value was
determined to be 0x1234, the following could be used
to store this value:

const uint16_t CRC_checkValue @ 0x7FE =
0x1234

This will put 0x3434 at location 0x7FE and 0x3412 at
location 0x7FF. The MSB contains 0x34 because this is
the opcode for a RETLW instruction. This is shown in
Table 1.

TABLE 1: CHECK VALUE IN PROGRAM
MEMORY

Line Address Opcode DisAssy

2047 7FE 3434 RETLW
0x34

2048 7FF 3412 RETLW
0x12
 2014 Microchip Technology Inc. DS00001817A-page 11

AN1817
The reference check value can then be used to
compare to a measured check value from the Library or
the Peripheral CRC (refer to Example 3 and
Example 4).

EXAMPLE 3: COMPARING LIBRARY MEASURED CHECK VALUE

EXAMPLE 4: COMPARING PERIPHERAL MEASURED CHECK VALUE

if (CRC_checkValue == CRC_libraryResult)

{

 // do nothing, check value matches

}

else

{

 ErrorMode();

}

if ((CRC_checkValue >> 8) == CRCACCH)

{

 if ((CRC_checkValue & 0x00FF) == CRCACCL)

 {

 // do nothing, check value matches

 }

 else

 {

 ErrorMode();

 }

}

else

{

 ErrorMode();

}

DS00001817A-page 12  2014 Microchip Technology Inc.

AN1817
APPENDIX A: WINDOWED
WATCHDOG TIMER

The windowed Watchdog Timer is a module added in
the PIC16F161X family of products that is better suited
for time slot monitoring than a typical watchdog. A
windowed Watchdog Timer can detect both too slow
and too fast clock speeds. A Reset will occur if the
program attempts to clear the timer before the window
or without arming the CLRWDT instruction. In order to
use this feature, precise timing is needed for the
processes running. The CRC peripheral is one of the
modules that does provide precise timing (see section
Section 2.4 “CRC Peripheral Timing”).

The window timing must be adjusted to the tolerance of
the reference clock, in this case, the LFINTOSC. The
LFINTOSC is specified to have +-15% accuracy over
temperature and voltage. This means that the windows
must be guardbanded to cover this range of oscillator
frequencies.

For example, to test the full memory range of the
PIC16F1613 (2 Kwords), the CRC peripheral will take
4 ms in Burst mode at 8 MHz. This means that a
window period should be added to the Watchdog Timer
that would provide an error if the CRC module ended
early, was called incorrectly, or a problem with the
program counter occurred. This is done by setting the
WDT period to 8 ms with a window of 87.5%. The
extended window will provide enough guardband for
the tolerance of the LFINTOSC, while still providing
additional error coverage.

FIGURE A-1: WATCHDOG TIMER WINDOW

Window Period

CLRWDT Instruction
(or other WDT reset)

Window Delay
(window violation can occur)

Window Closed Window Open

Time-out Event
 2014 Microchip Technology Inc. DS00001817A-page 13

AN1817
APPENDIX B: SMT TIMING

The Signal Measurement Timer (SMT) can be used to
obtain exact timings for peripherals or other software
events on the PIC16F161X family of devices. The SMT
peripheral is particularly useful for slower applications
because it is a 24-bit timer instead of the 16-bit timer of
Timer 1.

For information on how to set up the SMT for timing
operation using the FOSC/4 clock, see Example B-1.

EXAMPLE B-1: SMT INITIALIZATION

Setting the PR register at maximum ensures that the
entire 24-bit range of the SMT can be used for timing
purposes. If the STP bit (bit 5) is set, the counter will
halt at the SMTxPR value. This limits the timing of
events to the 24-bit range of the SMT without using
overflows.

Once the SMT has been initialized as shown above
(see Example B-1), the SMT can be enabled and
disabled using the SMTXGO bit of the SMTXCON1

register. To obtain timing information for any event,
simply set the SMTXGO bit before the event, then clear
the SMTXGO bit immediately after the event. The time
will be stored in the SMTXTMRU:H:L registers. The
value will be in units of instruction cycles (FOSC/4). This
is shown in the CRC sample code in Example B-2.

EXAMPLE B-2: SMT TIMING

SMT2CON0 = 0b10100000; //SMT enabled, rising edges, prescaler 1:1,

 //counter will halt at PR

SMT2CLKbits.CSEL = 0b001; // Fosc/4

SMTxPR = 0xFFFFFF;

SMT2CON1bits.SMT2GO = 1; // start SMT timing

//start the Hardware CRC check here.

HW_CRC(LASTCRCADDRESS);

SMT2CON1bits.SMT2GO = 0; // finish SMT timing
DS00001817A-page 14  2014 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
 2014 Microchip Technology Inc.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,
LANCheck, MediaLB, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,
SST, SST Logo, SuperFlash and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2014, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

ISBN: 978-1-63276-582-6

Microchip received ISO/TS-16949:2009 certification for its worldwide
DS00001817A-page 15

headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00001817A-page 16  2014 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

03/25/14

http://support.microchip.com
http://www.microchip.com

	1.0 Introduction
	1.1 Cyclic Redundancy Check
	1.2 CRC Implementation
	1.3 CRC Error Detection
	1.4 CRC Terms
	1.5 Class B CRC Scope
	1.6 Using CRC for Class B in Embedded Applications
	FIGURE 1: Class B Flowchart
	FIGURE 2: CRC LFSR

	2.0 Using the CRC Peripheral for Class B
	2.1 Configuring the CRC Module
	2.2 Configuring the Memory Scanner
	EXAMPLE 1: CRC Peripheral Code

	2.3 Running the CRC
	2.4 CRC Peripheral Timing

	3.0 CRC Calculator
	3.1 Features
	3.2 Setup for CRC-16-ANSI
	FIGURE 3: CRC Calculator Setup for CRC-16-ANSI

	3.3 Using MPLAB® X IDE to fill the table data
	FIGURE 4: Program Memory View
	FIGURE 5: Copy Opcodes from Program Memory
	FIGURE 6: Opcode List
	FIGURE 7: Import File

	3.4 Calculating the Check value
	FIGURE 8: Accumulate Using CRC Calculator

	4.0 Using the Class B Library CRC Function
	4.1 API
	EXAMPLE 2: CRC Library Code

	4.2 Software CRC Timing

	5.0 Using the Check Value for Error Checking
	5.1 Reference Check Value
	TABLE 1: Check Value in Program Memory
	EXAMPLE 3: Comparing Library Measured Check Value
	EXAMPLE 4: Comparing Peripheral Measured Check Value

	Appendix A: Windowed Watchdog Timer
	Appendix B: SMT Timing
	Trademarks
	Worldwide Sales

