MICROCHIP

AN1950

Configuring and Using the M CP795WXX SPI RTCC
for Basic Timekeeping Based on a PIC18

Author: Alexandru Valeanu

Microchip Technology Inc.
INTRODUCTION
An increasing number of applications require a
Real-Time Clock/Calendar (RTCC) device.
MCP795WXX is a feature-rich SPI RTCC that

incorporates EEPROM, SRAM, unique ID time-stamp,
Watchdog Timer and event-detect module. This
application note describes how to configure and use a
Microchip SPI RTCC, based on an electronic watch with
display and time/date set-up through two push buttons.

FEATURES OF THE RTCC

» Real-Time Clock/Calendar:
- Hours, minutes, seconds, hundredths of
seconds, day of week, month, and year
- Support for leap year
e Leap Year Calculation up to 2399
» Time-Stamp Function
e 2 Kbit (256 x 8) EEPROM Memory

» Low-Power CMOS Technology
e 64-Byte x 8 Organization Battery Backed SRAM
« Input for External Battery Backup
¢ On-Board Crystal Oscillator for RTCC Functions:
- Battery operated when Vcc removed
« Programmable Clock-out Function
e Two Programmable Alarms
» 64-Bit Unique ID in Protected Area:
- Support EUI-48/64
» Programmable Watchdog Timer
* On-Board Event Detection:
- Dual configurable inputs
- High-speed digital event detection on the 1%,
4" 16t or 32" event (glitch filter)
- Low-speed detection with programmable
debounce time
» On-Chip Digital Trimming/Calibration

SCHEMATIC

The schematic includes a PIC18 Explorer demo board
and the AC164147 SPI RTCC PICtail™ daughter
board, as shown in Figure 1.

DB7-0
LCD rs Mcp23s17 ST |
LUMEX SPI Expander o RCS/S001
E
scK
C4=0.1uF T
4 voo
ca 32768KHz Voo Voo Raz 10K

] x Ve [= o

T00F == 10K 10K L
120F}L,—E X2 CLKOUT] RA4/TO CKI RBO 77

2 n
c4 | Vbat EVHS [._5
N SPIRTCC -] . PIC18F87J11 .
Py p—
BATE5 1K -] WD MCP795WXX EVLS |« VD?OK
— 100pF
T BAT 1 S Ra SCK E}— RC3/SCK1/SCL1 jz
L % CS soi [+] RCS/SDO1 RC5/SDO1 RS
[7] Vss SDO [} RCA4/SDI1
RC2 RB2INT2 RB1/INT1 INC KEY
WD RQ

WD RQ

AC164147 PICtail™ Plus Board

© 2015-2017 Microchip Technology Inc.

DS00001950B-page 1

AN1950

The hardware modules used on the demo board are:

» LCD character module
» Two push buttons
* AC164147 SPI RTCC PICtail™ daughter board

To access the LCD through a minimum of pins, the SPI
on the MSSP1 module is used, in conjunction with a
16-bit 1/0 expander with SPI interface (MCP23S17).
The two on-board push buttons are S1 and S2,
connected to RBO, RA5 GPIOs. The SPI RTCC is part
of the RTCC PICtail evaluation board and is directly
connected to the MSSP1 module of the MCU. Another
necessary connection is between the CLKOUT signal
of the RTCC and RA4 (TOCKI), the clock input of
TMRO. The RTCC is programmed to offer a square
wave of 1 Hz on CLKOUT. TMRO is programmed as
counter and is initialized at OxFFFF, in order to give a
software interrupt at every second. The SPI
connections between the SPI RTCC and the MCU
(SDI, SDO, SCK, CS) are not open-drain and,
accordingly, do not use pull-up resistors. Secondary
connections are: WD, IRQ, EVHS and EVLS. They are
open-drain outputs or inputs and need related pull-up
resistors. The CLKOUT signal goes to RA4/TOCKI
without a pull-up and can be programmed to offer
several frequencies: 1 Hz, 4 kHz, 16 kHz and 32 kHz.

The AC164147 RTCC PICtail daughter board has two
other components:

* a32.768 Hz crystal driving the internal clock of
the RTCC

* a 3-volt battery sustaining the RTCC when VDD is
not present on the demo board

FIGURE 2: SPI READ SEQUENCE

DETAILS ABOUT IMPLEMENTATION

The application is performed on a PIC18 Explorer
demo board on which a PIC18F87J11 MCU is
mounted. The code is written in C using MPLAB® X
V3.55 and the XC8 compiler v1.34.

It implements an electronic watch (based on the
MCP795WXX SPI RTCC), displaying the six basic
time/date variables on the on-board LCD. It includes a
setup sequence, which sets the same six time/date
variables, using the two push buttons of the evaluation
board (S1 = MENU key, S2 = INCREMENT key). At the
same time, the code shows the customers how to
configure and use the timekeeping registers.

FUNCTIONAL DESCRIPTION

MCP795WXX is an SPI slave device, connected to the
SPI bus of the PIC18 MCU (MSSP1 module). The Chip
Select of the RTCC (CS = pin 6) is controlled by the
RC2 GPO pin.

As stated in the MCP795XXX data sheet
(DS20002280), for reads, the part is selected by pulling
CS low, then the 8-bit READ instruction (13h) is transmit-
ted to the MCP795WXX followed by the 8-bit address
(A7 through AO). After the correct READ instruction and
address are sent, the data stored in the memory at the
selected address is shifted out on the SO pin. The data
stored in the memory at the next address can be read
sequentially by continuing to provide clock pulses. The
internal Address Pointer is automatically incremented to
the next higher address after each byte of data is shifted
out.

As the RTCC registers are separate from the SRAM
array, when reading the RTCC registers set, the
address will wrap back to the start of the RTCC
registers. Also when an address within the SRAM array
is loaded, the internal Address Pointer will wrap back to
the start of the SRAM array. The READ instruction can
be used to read the arrays indefinitely by continuing to
clock the device. The read operation is terminated by
raising the CS pin (Figure 2).

cs\

=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Don’t care

<——— Data Out ——

SCK
Instruction ———— > <+—— Address Byte =~ —
Sl
High-Impedance
SO

DS00001950B-page 2

© 2015-2017 Microchip Technology Inc.

AN1950

For writes, as the RTCC and SRAM registers do not
require the WREN sequence like the EEPROM, the
user may proceed by setting the CS low, issuing the
WRI TE instruction (12h), followed by the address, and
then the data to be written. As no write cycle is required
for the RTCC and SRAM registers, the entire array can
be written in a single command.

FIGURE 3: SPI WRITE SEQUENCE

For the data to be actually written to the array, the cs
must be brought high after a whole byte has been
clocked in. If CS is brought high at any other time, the
last byte will not be written. Refer to Figure 3 for more
detailed illustrations on the write sequence.

cs\

—

SCK

Instruction

IS 0 OO/T\O 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Address Byte ~—<+—— DataByte ———

High-Impedance

SO

APPLICATION DESCRIPTION

This application performs an electronic watch. Its two
main functions are:

« display of the six time/date variables (year, month,
date, hour, minutes, seconds) using the interrupts
of the microcontroller (this operation is performed
on the on-board LCD; the format is 24 hours).

* setup of the above variables using the two
on-board push buttons: S1=MENU key,
S2 = INCREMENT key. The real-time display of
the time/date variables is performed as long as
the MENU key (S1) is not pressed (the action of
the INCREMENT key (S2) has no effect on the
watch continuously displaying the time and the
date).

Pressing the MENU key will start the setup menu,
disabling the interrupts. The menu is covered once in
the following order: year, month, date, hour, minutes
and seconds. Going from one variable to another is
performed through the MENU key, and incrementing a
variable is performed through the INCREMENT key.
The last action of the MENU key exits the setup menu.
Accordingly, to correct a possible setup error, the setup
menu must be re-entered. The upper limits of every
variable are:

e year = (23) 99

e month =12

 date = (always) 31

* hour = 23 (24 hours format)
* minutes = 59

» seconds =59

Entering the setup menu will not stop the oscillator of
the RTCC. At the end of the setup, the time/date
variables are updated. If the user enters the Time
Setup mode, all variables are written to the RTCC in the
end of the sequence, even if no variables are changed.
In this case, when exiting the menu, the watch will
resume counting from the point where the setup was
entered.

FIRMWARE DESCRIPTION

The project follows the standard multi-file philosophy.
All necessary drivers can be found in the related
libraries.

Delay Drivers (del ay_dri vers. h)

* LCD functions — Since the controller of the LCD
needs some delays to process commands, a few
auxiliary delays were created based on TMR1:

- dly39us()
- dly43us()
- dlyl_5ms()
» Long delays — Used for the keyboard debounce or

as general purpose. They are based on TMR3
and include:

- dly5ms()
- dly100ms()
- dlyls()

© 2015-2017 Microchip Technology Inc.

DS00001950B-page 3

AN1950

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company'’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

LCD Drivers (lcd_drivers. h)

Basic LCD function — They handle data, commands
and strings written into the LCD. The three drivers used
are defined below:

Basic LCD Functions

void wecmd_l cd (unsigned char cmd_I cd) /!l wites a command in the LCD
void wdata_l cd (unsigned char data_l cd) ; /'l wites a data byte in the LCD
void wstr_lcd (const unsigned char *str_| cd) ; /'l wites a string

/1 the string is stored in the Flash

High-level LCD functions — They initialize or print
date/time to the LCD.

The library also includes time and date global
variables: sec, nmin, hr, day, dat, non, yr.

High-Level LCD Functions
clr_lcd(void)

voi d voi d ini_lcd(void) [/ initialization of the LCD

voi d sec_to_l cd(void) void min_to_|lcd(void)

void hr_to_l cd(void) ; /1 time printed to the LCD

void dat_to_l cd(void) ; void non_to_| cd(void) ;

void yr_to_lcd(void) ; /] date printed to the LCD

voi d back_l cd(unsi gned char pos); // turns back cursor with 'pos' positions

voi d del _| cd(unsi gned char pos) /1 del etes back 'pos' characters

voi d incr_yr(void) /1 increments YEARS value (2 digits), used in the setup nmenu
voi d incr_non(void) /1 increnments MONTHS value (2 digits), used in the setup nenu
voi d incr_dat(void) ; /1 increnents DATE value (2 digits), used in the setup nenu
voi d incr_hr(void) ; /1 increnments HOURS value (2 digits), used in the setup nmenu
voi d incr_mn(void) ; /1 increnents M NUTES (' minutes' have no aux flags)

voi d incr_sec(void) /1 increments SECONDS ; bit7 = ST = 1, used in the setup nmenu

RTCC Drivers (spi _rtcc_drivers. h)

Represent the medium-level communication between
the MSSP1 module of the PIC18 and the SPI RTCC.

The related functions call the SPI drivers, as described
below. Moreover, the library defines all necessary
constants, as: registers, addresses and masks.

DS00001950B-page 4

© 2015-2017 Microchip Technology Inc.

AN1950

Writing a Byte to the SPI RTCC

void spi_rtcc_w (unsigned char rtcc_reg, unsigned char time_var) {
/1l SPI wite to the SPI RTCC

spi _rtcc_start() ; /1 start SPI coomw th the SPI RTCC, sets CS pin |ow
spi _wr byt e(SPI _RTCC_WRI TE) ; /'l send the SPI WRITE comrand

spi _wrbyte(rtcc_reg) ; /1 send the register's address

spi _wrbyte(time_var) ; /'l send the SPI data byte

spi _rtcc_stop() ;} /1 stop SPI conm set CS pin high

The firmware for writes to the RTCC follows in the chart
below.

Flowchart for Writes

Assert low
Cs

<

Write the SPI WRITE
command

(=

Write the register's address

=

Write data byte

(=

Assert high
Cs

Reading a Byte from the SPI RTCC

unsi gned char spi_rtcc_rd(unsigned char rtcc_reg){
/1 SPI read fromthe SPI RTCC

spi_rtcc_start() ; I/l start the SPI commw th the SPI RTCC, sets CS
pin | ow

spi _wr byt e(SPI _RTCC_READ) ; /1 send the SPI READ command

spi _wrbyte(rtcc_reg) ; /1 send the register's address

rtcc_buf = spi_rdbyte() ; /1 read the result and store it

spi _rtcc_stop() ; /] stop the SPI commwith the SPI RTCC, sets CS
pi n high

return rtcc_buf 7} /1 return the read result

© 2015-2017 Microchip Technology Inc. DS00001950B-page 5

AN1950

The firmware for reads from the RTCC is shown in the
flowchart below.

Flowchart for Reads

Assert low
Cs

<

Write the SPI READ
command

g

Write the register’'s address

g

Read data byte

=

Assert high
Cs

SPI Drivers (spi _drivers.h)

SPI drivers provide the low-level SPI communication
with the RTCC. Its functions are called by the
spi _rtcc_drivers, as depicted in the previous
paragraph.

Keyboard Drivers (2 keys polling)

The set of keyboard drivers has only one function:
keyb_press(). The keyb_press() function awaits
the selection of one of the two on-board switches:

S1 (MENU key) or S2 (INCREMENT key). After the
selection is made, the firmware updates the code of the
pressed key. Upon exiting the function, a value is
returned in either KEYB_MENU or KEYB_| NCR. The
function performs a key debounce of 2 x 100 msec.
The function will exit only after the pressed key is
released (deactivated). For more details about the
operating system based on the two on-board switches,
refer to Section “Application Description”.

The Interrupt Function

Interrupts are generated by the TMRO overflow, which
is initialized at OXFFFF as a counter. TIMERO is
incremented once per second by the CLKOUT signal
coming from the RTCC. The interrupt function calls the
di splay_time() function, which reads the six
related registers of the RTCC and puts them in the six
global variables (year, month, date, hour, minute and
seconds, found in “l cd_dri vers. h”). The Random
Byte Access mode is used, as some versions of the
application can use only a subset of these six variables.
In the end, the interrupt function (through the
di spl ay_time() driver) displays these six variables
on the on-board LCD, according to the format below:

ROW1: “date” string: year month date
ROW2: “time” string: hour minutes seconds

DS00001950B-page 6

© 2015-2017 Microchip Technology Inc.

AN1950

CONFIGURING THE SPI RTCC

The configuration of the RTCC includes two stages:

« initialization of the RTCC
« setup of timekeeping registers

Initialization of the SPI RTCC

The “spi _rtcc_dri vers. h”header includes two ini-
tialization functions:

e “void ini_spi_rtcc(void)”

e “void ini_spi_tine(void)”

The first function has the role to enable the battery
through the VBATEN bit in the RTCWKDAY register
and to set the CONTROL register, in order to disable

the alarms and to configure the CLKOUT pin as square
wave at 1 Hz frequency.

The corresponding code is indicated below:

voi d ini_spi_rtcc(void) /1l initialization of the SPI RTCC
day = spi _rtcc_rd(RTCVWKDAY) /'l read day register
spi _rtcc_w (RTCWKDAY, day| VBATEN) /1 enable the battery back-up
spi _rtcc_w (CONTROL, ALM_NO+SQUEN+CLKO _01H) /1l wite in the general control register:
/1 no alarms, CLKOUT = square wave = 1HZ
The second function tests the OSCRUN bit
(RTCWKDAY). If the oscillator is already started, no
action is taken. If the oscillator is not running, time/date
are set arbitrary and the oscillator will be started. The
code is presented below:
voi d ini_spi_time(void) /1 initialization of time/date vars on the SPI RTCC
{ [/ it initializes also START OSC.
i f ((day&OSCRUN) ==0OSCRUN) {;} /1 if oscillator = already running, do nothing.
el se { /1 if oscillator = not running, set time/date(arbitrary)
/1 and SART oscillator/ crystal
spi _rtcc_w (RTCYEAR, 0x10) ; /1 initialize YEAR register
spi _rtcc_w (RTCMIH, 0x03) ; /1 initialize MONTH register
spi _rtcc_w (RTCDATE, 0x01) ; /1 initialize DATE register
spi _rtcc_w (RTCHOUR, 0x00) ; /1 initialize HOUR register
spi _rtcc_w (RTCM N, 0x00) ; /1 initialize MN register
spi _rtcc_w (RTCSEC, ST) 7} /1 initialize SEC register, start OSC
}

© 2015-2017 Microchip Technology Inc.

DS00001950B-page 7

AN1950

Setup of timekeeping registers

The sequence can be found in the end of the MAIN
function and updates the six time/date registers,

through the six time date variables: yr, non, dat,
hr, mn, sec.
spi _rtcc_w (RTCYEAR, yr) /1 update YEAR value in RTCC
spi _rtcc_w (RTCMTH, non) /1 update MONTH val ue in RTCC
/1 LPYR bit is read only; you may clear it.
spi _rtcc_w (RTCDATE, dat) /1 update DATE value in RTCC
spi _rtcc_w (RTCHOUR, hr) /] update HOUR val ue in RTCC
spi _rtcc_w (RTCM N, i n) /1 update M NUTES val ue in RTCC
sec = sec | ST /] restore oscillator START bit
spi _rtcc_w (RTCSEC, sec) /1 update SECONDS val ue in RTCC

USING THE SPI RTCC FOR BASIC
TIMEKEEPING

The usage of timekeeping registers, consists of reading
and displaying them on the LCD.

These two operations are performed by the
di splay_time() function, once per second, in
interrupts.

voi d display_time(void) { /I displays all time/date variabl es:
/1 YEAR, MONTH, DATE, HOUR, M NUTES, SECONDS
yr = spi _rtcc_rd(RTCYEAR) ;1] read YEAR
non = spi _rtcc_rd(RTCMIH) ; /1 read MONTH
mon = non & (~LPYR) ; /] mask the leap year bit
dat = spi_rtcc_rd(RTCDATE) ; Il read DATE
hr = spi _rtcc_rd(RTCHOUR) ; /] read HOUR
mn = spi_rtcc_rd(RTCM N) ; I/l read MN
sec = spi _rtcc_rd(RTCSEC) ; I/ read SEC, once finished the RTCC s READ
wr crmd_| cd(SET_DDRAMEN2_ROM+07) ; // set 'YEAR position on the first row
yr_to_lcd(); wdata_lcd(" ") ; [/ display YEAR + separator
nmon_to_lcd(); wdata_lcd(' ') ; /] display MONTH + separ at or
dat _to_lcd() ;11 display DATE
wr crmd_| cd(SET_DDRAMEN2_ROM2+07) ; // set HOUR position on the second row
hr_to_lcd(); wdata_lcd(' ") ; [/ display HOUR + separat or
mn_to_Il cd() ;11 display M NUTES
if((sec&x7f)®){ wdata_lcd(':");} // display separator for odd seconds
el se { wdata_lcd('" ');} // display separator ' ' for even seconds
sec_to_lcd() ;} /1 display SECONDS, end of DI SPLAY function

DS00001950B-page 8

© 2015-2017 Microchip Technology Inc.

AN1950

ACCESSING THE RTCC REGISTERS

There are two basic functions for accessing the RTCC
registers: one for writes and one for reads. Each of
them was fully described in the above paragraphs.
Both use register addresses, inside the SRAM zone of
the SPI RTCC.

As described in the MCP795XXX data sheet
(DS20002280), the addresses of the RTCC register are

shown in Table 1.

TABLE 1: RTCC REGISTER ADDRESSES
Address | Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Name
00h RTCHSEC | HSECTEN3 | HSECTEN2 | HSECTEN1 | HSECTENO | HSECONE3 | HSECONE2 | HSECONE1 | HSECONEO
01h RTCSEC ST SECTEN2 SECTEN1 SECTENO SECONE3 SECONE2 SECONE1 SECONEO
02h RTCMIN — MINTEN2 | MINTENL | MINTENO | MINONE3 | MINONE2 | MINONEL | MINONEO
03h RTCHOUR | TRIMSIGN | 1224 AM/PM | HRTENO | HRONE3 | HRONE2 | HRONEL | HRONEO
HRTEN1

04h RTCWKDAY — — OSCRUN | PWRFAIL | VBATEN | WKDAY2 | WKDAY1 | WKDAYO
05h RTCDATE — — DATETEN1 | DATETENO | DATEONE3 | DATEONE2 | DATEONE1 | DATEONEO
06h RTCMTH — — LPYR MTHTENO MTHONE3 MTHONE2 MTHONE1 MTHONEO
07h RTCYEAR YRTEN3 YRTEN2 YRTEN1 YRTENO YRONE3 YRONE2 YRONE1 YRONEO
08h CONTROL ouT SQWEN | ALMIEN | ALMOEN | EXTOSC | CRSTRIM | SQWFS1 | SQWFSO
ooh OSCTRIM | TRIMVAL7 | TRIMVAL6 | TRIMVALS | TRIMVAL4 | TRIMVAL3 | TRIMVAL2 | TRIMVALL | TRIMVALO

According to these addresses, in the basic read/write
functions, only the register’'s address will differ. Reads
are used in the interrupt function (once/second). Writes
are used in the initialization function and in the setup
sequence (the main function).

An SPI access to the RTCC needs two SPI commands

as:

READ | 0001 0011 |Read RTCC/SRAM array
beginning at selected
address

WRITE | 0001 0010 | Write RTCC/SRAM data to
memory array beginning at
selected address

All register addresses and flag masks, are defined in
“spi _rtcc_drivers. h"

© 2015-2017 Microchip Technology Inc. DS00001950B-page 9

AN1950

CONCLUSION

This application note presents how to control (display
and setup) an electronic watch, based on Microchip’s
SPI RTCC, MCP795WXX. The project is performed on
a PIC18 Explorer demo board, using the on-board
resources: LCD (accessed through the SPI bus) and
push buttons. The code (drivers and main function) is
written in C, using MPLAB® X v3.55 and XC8 compiler
v1.34. The target microcontroller is the PIC18F87J11.

DS00001950B-page 10 © 2015-2017 Microchip Technology Inc.

AN1950

APPENDIX A: REVISION HISTORY

Revision A (June 2015)

« Initial release of this document.

Revision B (July 2017)

» Updated bit and register names to match new
data sheet format.

© 2015-2017 Microchip Technology Inc. DS00001950B-page 11

AN1950

NOTES:

DS00001950B-page 12 © 2015-2017 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Microchip received 1ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= ISO/TS 16949 =

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT
logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR,
Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK
MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST
logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32
logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC,
SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are
registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, BodyCom, CodeGuard,
CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,
ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-
Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi,
MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,
PICDEM, PICDEM.net, PICkit, PICtalil, PureSilicon, QMatrix,
RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial
Quad I/0, SMART-L.S., SQI, SuperSwitcher, SuperSwitcher I,
Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany Il GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2015-2017, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-1936-5

© 2015-2017 Microchip Technology Inc.

DS00001950B-page 13

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongging
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-3326-8000
Fax: 86-21-3326-8021
China - Shenyang

Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen

Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200

Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
France - Saint Cloud
Tel: 33-1-30-60-70-00
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2015-2017 Microchip Technology Inc.

DS00001950B-page 14

11/07/16

http://support.microchip.com
http://www.microchip.com

	Introduction
	Features of the RTCC
	Schematic
	FIGURE 1: Schematic

	Details about Implementation
	Functional Description
	FIGURE 2: SPI Read Sequence
	FIGURE 3: SPI Write Sequence

	Application Description
	Firmware Description
	Delay Drivers (delay_drivers.h)
	LCD Drivers (lcd_drivers.h)
	Basic LCD Functions
	High-Level LCD Functions
	RTCC Drivers (spi_rtcc_drivers.h)
	Writing a Byte to the SPI RTCC
	Flowchart for Writes
	Reading a Byte from the SPI RTCC
	Flowchart for Reads
	SPI Drivers (spi_drivers.h)
	Keyboard Drivers (2 keys polling)
	The Interrupt Function
	Configuring the SPI RTCC
	Initialization of the SPI RTCC
	Setup of timekeeping registers
	Using the SPI RTCC for basic timekeeping
	Accessing the RTCC Registers
	Conclusion
	Appendix A: Revision History
	Trademarks
	Worldwide Sales

