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Configuring and Using the MCP795WXX SPI RTCC

for Basic Timekeeping Based on a PIC18
INTRODUCTION

An increasing number of applications require a
Real-Time Clock/Calendar (RTCC) device.
MCP795WXX is a feature-rich SPI RTCC that
incorporates EEPROM, SRAM, unique ID time-stamp,
Watchdog Timer and event-detect module. This
application note describes how to configure and use a
Microchip SPI RTCC, based on an electronic watch with
display and time/date set-up through two push buttons.

FEATURES OF THE RTCC

• Real-Time Clock/Calendar:
- Hours, minutes, seconds, hundredths of

seconds, day of week, month, and year
- Support for leap year

• Leap Year Calculation up to 2399
• Time-Stamp Function
• 2 Kbit (256 x 8) EEPROM Memory

• Low-Power CMOS Technology
• 64-Byte x 8 Organization Battery Backed SRAM
• Input for External Battery Backup
• On-Board Crystal Oscillator for RTCC Functions:

- Battery operated when VCC removed
• Programmable Clock-out Function
• Two Programmable Alarms
• 64-Bit Unique ID in Protected Area:

- Support EUI-48/64
• Programmable Watchdog Timer
• On-Board Event Detection:

- Dual configurable inputs
- High-speed digital event detection on the 1st,

4th, 16th or 32nd event (glitch filter)
- Low-speed detection with programmable

debounce time
• On-Chip Digital Trimming/Calibration

SCHEMATIC

The schematic includes a PIC18 Explorer demo board
and the AC164147 SPI RTCC PICtail™ daughter
board, as shown in Figure 1.

FIGURE 1: SCHEMATIC

Author: Alexandru Valeanu
Microchip Technology Inc.

1.

RC5/SD01

RA2

RA4/T0 CKI

RC3/SCK1/SCL1

RA5

RB0

PIC18F87J11

VDD

VDD

S1

S2

MENU KEY

SCK

SDI

MCP23S17
SPI Expander      

CS

RS

E

DB7 - 0

LCD
LUMEX

10K

10K

BAT

1K

R4

100pF

BAT 85

Y

C4

C3

10pF

32.768 kHz

 

X1

X2

Vbat

WD

IRQ

CS

Vss

Vcc

CLKOUT

EVHS

EVLS

SCK

SDI

SDO

SPI RTCC
MCP795WXX

3

7

13

14

12

11

10

9

8

1

2

RC5/SDO1

RC4/SDI1

C4 = 0.1 uF

VDD VDD

INC KEY

6

4

5

VDD VDD

RC2 RB2/INT2 RB1/INT1

WD IRQ

WD IRQ

12pF

J1

J2

10K10K

10K 10K

AC164147 PICtail™ Plus Board

RC5/SD01
 2015-2017 Microchip Technology Inc. DS00001950B-page 1



AN1950
The hardware modules used on the demo board are:

• LCD character module

• Two push buttons

• AC164147 SPI RTCC PICtail™ daughter board

To access the LCD through a minimum of pins, the SPI
on the MSSP1 module is used, in conjunction with a
16-bit I/O expander with SPI interface (MCP23S17).
The two on-board push buttons are S1 and S2,
connected to RB0, RA5 GPIOs. The SPI RTCC is part
of the RTCC PICtail evaluation board and is directly
connected to the MSSP1 module of the MCU. Another
necessary connection is between the CLKOUT signal
of the RTCC and RA4 (T0CKI), the clock input of
TMR0. The RTCC is programmed to offer a square
wave of 1 Hz on CLKOUT. TMR0 is programmed as
counter and is initialized at 0xFFFF, in order to give a
software interrupt at every second. The SPI
connections between the SPI RTCC and the MCU
(SDI, SDO, SCK, CS) are not open-drain and,
accordingly, do not use pull-up resistors. Secondary
connections are: WD, IRQ, EVHS and EVLS. They are
open-drain outputs or inputs and need related pull-up
resistors. The CLKOUT signal goes to RA4/T0CKI
without a pull-up and can be programmed to offer
several frequencies: 1 Hz, 4 kHz, 16 kHz and 32 kHz.

The AC164147 RTCC PICtail daughter board has two
other components:

• a 32.768 Hz crystal driving the internal clock of 
the RTCC

• a 3-volt battery sustaining the RTCC when VDD is 
not present on the demo board

DETAILS ABOUT IMPLEMENTATION

The application is performed on a PIC18 Explorer
demo board on which a PIC18F87J11 MCU is
mounted. The code is written in C using MPLAB® X
V3.55 and the XC8 compiler v1.34.

It implements an electronic watch (based on the
MCP795WXX SPI RTCC), displaying the six basic
time/date variables on the on-board LCD. It includes a
setup sequence, which sets the same six time/date
variables, using the two push buttons of the evaluation
board (S1 = MENU key, S2 = INCREMENT key). At the
same time, the code shows the customers how to
configure and use the timekeeping registers.

FUNCTIONAL DESCRIPTION

MCP795WXX is an SPI slave device, connected to the
SPI bus of the PIC18 MCU (MSSP1 module). The Chip
Select of the RTCC (CS = pin 6) is controlled by the
RC2 GPO pin.

As stated in the MCP795XXX data sheet
(DS20002280), for reads, the part is selected by pulling
CS low, then the 8-bit READ instruction (13h) is transmit-
ted to the MCP795WXX followed by the 8-bit address
(A7 through A0). After the correct READ instruction and
address are sent, the data stored in the memory at the
selected address is shifted out on the SO pin. The data
stored in the memory at the next address can be read
sequentially by continuing to provide clock pulses. The
internal Address Pointer is automatically incremented to
the next higher address after each byte of data is shifted
out.

As the RTCC registers are separate from the SRAM
array, when reading the RTCC registers set, the
address will wrap back to the start of the RTCC
registers. Also when an address within the SRAM array
is loaded, the internal Address Pointer will wrap back to
the start of the SRAM array. The READ instruction can
be used to read the arrays indefinitely by continuing to
clock the device. The read operation is terminated by
raising the CS pin (Figure 2).

FIGURE 2: SPI READ SEQUENCE

SO

SI

SCK

CS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 221

0 101000 1 A7 6 5 4 1 A0

7 6 5 4 3 2 1 0

Instruction Address Byte

Data Out
High-Impedance

23

3 2 Don’t care
DS00001950B-page 2  2015-2017 Microchip Technology Inc.



AN1950
For writes, as the RTCC and SRAM registers do not
require the WREN sequence like the EEPROM, the
user may proceed by setting the CS low, issuing the
WRITE instruction (12h), followed by the address, and
then the data to be written. As no write cycle is required
for the RTCC and SRAM registers, the entire array can
be written in a single command. 

For the data to be actually written to the array, the CS
must be brought high after a whole byte has been
clocked in. If CS is brought high at any other time, the
last byte will not be written. Refer to Figure 3 for more
detailed illustrations on the write sequence.

FIGURE 3: SPI WRITE SEQUENCE

APPLICATION DESCRIPTION

This application performs an electronic watch. Its two
main functions are:

• display of the six time/date variables (year, month,
date, hour, minutes, seconds) using the interrupts
of the microcontroller (this operation is performed
on the on-board LCD; the format is 24 hours).

• setup of the above variables using the two
on-board push buttons: S1 = MENU key,
S2 = INCREMENT key. The real-time display of
the time/date variables is performed as long as
the MENU key (S1) is not pressed (the action of
the INCREMENT key (S2) has no effect on the
watch continuously displaying the time and the
date).

Pressing the MENU key will start the setup menu,
disabling the interrupts. The menu is covered once in
the following order: year, month, date, hour, minutes
and seconds. Going from one variable to another is
performed through the MENU key, and incrementing a
variable is performed through the INCREMENT key.
The last action of the MENU key exits the setup menu.
Accordingly, to correct a possible setup error, the setup
menu must be re-entered. The upper limits of every
variable are:

• year = (23) 99

• month = 12

• date = (always) 31

• hour = 23 (24 hours format)

• minutes = 59

• seconds = 59

Entering the setup menu will not stop the oscillator of
the RTCC. At the end of the setup, the time/date
variables are updated. If the user enters the Time
Setup mode, all variables are written to the RTCC in the
end of the sequence, even if no variables are changed.
In this case, when exiting the menu, the watch will
resume counting from the point where the setup was
entered.

FIRMWARE DESCRIPTION 

The project follows the standard multi-file philosophy.
All necessary drivers can be found in the related
libraries.

Delay Drivers (delay_drivers.h)
• LCD functions – Since the controller of the LCD 

needs some delays to process commands, a few 
auxiliary delays were created based on TMR1:

- dly39us()

- dly43us()

- dly1_5ms()

• Long delays – Used for the keyboard debounce or 
as general purpose. They are based on TMR3 
and include:

-  dly5ms()

- dly100ms()

- dly1s()

SO

SI

SCK

CS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 221

0 001000 A7 6 5 4 1 A0 7 6 5 4 3 2 1 0

Instruction Address Byte Data Byte

High-Impedance

23

3 21
 2015-2017 Microchip Technology Inc. DS00001950B-page 3



AN1950
LCD Drivers (lcd_drivers.h)
Basic LCD function – They handle data, commands
and strings written into the LCD. The three drivers used
are defined below:

Basic LCD Functions

High-level LCD functions – They initialize or print
date/time to the LCD.

The library also includes time and date global
variables: sec, min, hr, day, dat, mon, yr.

High-Level LCD Functions

RTCC Drivers (spi_rtcc_drivers.h)
Represent the medium-level communication between
the MSSP1 module of the PIC18 and the SPI RTCC.

The related functions call the SPI drivers, as described
below. Moreover, the library defines all necessary
constants, as: registers, addresses and masks.

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

void wrcmnd_lcd (unsigned char cmnd_lcd) ; // writes a command in the LCD

void wrdata_lcd (unsigned char data_lcd) ; // writes a data byte in the LCD

void wrstr_lcd (const unsigned char *str_lcd) ; // writes a string

                                           // the string is stored in the Flash

void clr_lcd(void) ; void ini_lcd(void) ; // initialization of the LCD

void sec_to_lcd(void) ; void min_to_lcd(void) ;

void hr_to_lcd(void) ; // time printed to the LCD

void dat_to_lcd(void) ; void mon_to_lcd(void) ;

void  yr_to_lcd(void) ; // date printed to the LCD

void back_lcd(unsigned char pos); // turns back cursor with 'pos' positions

void del_lcd(unsigned char pos) ; // deletes back 'pos' characters

void incr_yr(void) ; // increments YEARS value (2 digits), used in the setup menu

void incr_mon(void) ; // increments MONTHS value (2 digits), used in the setup menu

void incr_dat(void) ; // increments DATE value (2 digits), used in the setup menu

void incr_hr(void) ; // increments HOURS value (2 digits), used in the setup menu

void incr_min(void) ; // increments MINUTES ('minutes' have no aux flags)

void incr_sec(void) ; // increments SECONDS ; bit7 = ST = 1, used in the setup menu
DS00001950B-page 4  2015-2017 Microchip Technology Inc.
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Writing a Byte to the SPI RTCC

The firmware for writes to the RTCC follows in the chart
below.

Flowchart for Writes

Reading a Byte from the SPI RTCC

void spi_rtcc_wr (unsigned char rtcc_reg, unsigned char time_var) {

// SPI write to the SPI RTCC

spi_rtcc_start() ; // start SPI comm with the SPI RTCC, sets CS pin low

spi_wrbyte(SPI_RTCC_WRITE) ; // send the SPI WRITE command

spi_wrbyte(rtcc_reg) ; // send the register's address

spi_wrbyte(time_var) ; // send the SPI data byte

spi_rtcc_stop() ;} // stop SPI comm, set CS pin high

Assert low 
CS

Write the SPI WRITE 
command

Write the register’s address

Write data byte

Assert high 
CS

unsigned char spi_rtcc_rd(unsigned char rtcc_reg){

// SPI read from the SPI RTCC

spi_rtcc_start() ; // start the SPI comm with the SPI RTCC, sets CS
 pin low

spi_wrbyte(SPI_RTCC_READ) ; // send the SPI READ command

spi_wrbyte(rtcc_reg) ; // send the register's address

rtcc_buf = spi_rdbyte() ; // read the result and store it

spi_rtcc_stop() ; // stop the SPI comm with the SPI RTCC, sets CS
 pin high

return rtcc_buf ;} // return the read result
 2015-2017 Microchip Technology Inc. DS00001950B-page 5
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The firmware for reads from the RTCC is shown in the
flowchart below.

Flowchart for Reads

SPI Drivers (spi_drivers.h)
SPI drivers provide the low-level SPI communication
with the RTCC. Its functions are called by the
spi_rtcc_drivers, as depicted in the previous
paragraph.

Keyboard Drivers (2 keys polling)

The set of keyboard drivers has only one function:
keyb_press(). The keyb_press() function awaits
the selection of one of the two on-board switches: 
S1 (MENU key) or S2 (INCREMENT key). After the
selection is made, the firmware updates the code of the
pressed key. Upon exiting the function, a value is
returned in either KEYB_MENU or KEYB_INCR. The
function performs a key debounce of 2 x 100 msec.
The function will exit only after the pressed key is
released (deactivated). For more details about the
operating system based on the two on-board switches,
refer to Section  “Application Description”.

The Interrupt Function

Interrupts are generated by the TMR0 overflow, which
is initialized at 0xFFFF as a counter. TIMER0 is
incremented once per second by the CLKOUT signal
coming from the RTCC. The interrupt function calls the
display_time() function, which reads the six
related registers of the RTCC and puts them in the six
global variables (year, month, date, hour, minute and
seconds, found in “lcd_drivers.h”). The Random
Byte Access mode is used, as some versions of the
application can use only a subset of these six variables.
In the end, the interrupt function (through the
display_time() driver) displays these six variables
on the on-board LCD, according to the format below: 

ROW1: “date” string: year month date

ROW2: “time” string: hour minutes seconds

Assert low 
CS

Write the SPI RE
command

Write the register’s address

e data byte

Assert high 
CS
DS00001950B-page 6  2015-2017 Microchip Technology Inc.
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CONFIGURING THE SPI RTCC

The configuration of the RTCC includes two stages:

• initialization of the RTCC 

• setup of timekeeping registers

Initialization of the SPI RTCC

The “spi_rtcc_drivers.h” header includes two ini-
tialization functions:

• “void ini_spi_rtcc(void)” 

• “void ini_spi_time(void)”

The first function has the role to enable the battery
through the VBATEN bit in the RTCWKDAY register
and to set the CONTROL register, in order to disable
the alarms and to configure the CLKOUT pin as square
wave at 1 Hz frequency. 

The corresponding code is indicated below:

The second function tests the OSCRUN bit
(RTCWKDAY). If the oscillator is already started, no
action is taken. If the oscillator is not running, time/date
are set arbitrary and the oscillator will be started. The
code is presented below:

void ini_spi_rtcc(void) { // initialization of the SPI RTCC

day = spi_rtcc_rd(RTCWKDAY) ; // read day register

spi_rtcc_wr(RTCWKDAY,day|VBATEN) ; // enable the battery back-up

spi_rtcc_wr(CONTROL,ALM_NO+SQWEN+CLKO_01H) ; // write in the general control register:

} // no alarms, CLKOUT = square wave = 1HZ

void ini_spi_time(void)  // initialization of time/date vars on the SPI RTCC

{  // it initializes also START OSC.

    if((day&OSCRUN)==OSCRUN) {;}  // if oscillator = already running, do nothing.

    else {  // if oscillator = not running, set time/date(arbitrary)

 // and SART oscillator/ crystal

 spi_rtcc_wr(RTCYEAR,0x10) ;  // initialize YEAR register

 spi_rtcc_wr(RTCMTH,0x03) ;  // initialize MONTH register

 spi_rtcc_wr(RTCDATE,0x01) ;  // initialize DATE register

 spi_rtcc_wr(RTCHOUR,0x00) ;  // initialize HOUR register

 spi_rtcc_wr(RTCMIN,0x00) ;  // initialize MIN register

 spi_rtcc_wr(RTCSEC,ST) ;}  // initialize SEC register, start OSC 

}

 2015-2017 Microchip Technology Inc. DS00001950B-page 7
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Setup of timekeeping registers

The sequence can be found in the end of the MAIN
function and updates the six time/date registers,
through the six time date variables: yr, mon, dat,
hr, min, sec.

USING THE SPI RTCC FOR BASIC 
TIMEKEEPING

The usage of timekeeping registers, consists of reading
and displaying them on the LCD.

These two operations are performed by the
display_time() function, once per second, in
interrupts.

spi_rtcc_wr(RTCYEAR,yr) ; // update YEAR value in RTCC

spi_rtcc_wr(RTCMTH,mon) ; // update MONTH value in RTCC

// LPYR bit is read only; you may clear it.

spi_rtcc_wr(RTCDATE,dat) ; // update DATE value in RTCC

spi_rtcc_wr(RTCHOUR,hr) ; // update HOUR value in RTCC

spi_rtcc_wr(RTCMIN,min) ; // update MINUTES value in RTCC

sec = sec | ST ; // restore oscillator START bit

spi_rtcc_wr(RTCSEC,sec) ; // update SECONDS value in RTCC

void display_time(void) {  // displays all time/date variables:

 // YEAR, MONTH, DATE, HOUR, MINUTES, SECONDS 

yr = spi_rtcc_rd(RTCYEAR) ;  // read YEAR

mon = spi_rtcc_rd(RTCMTH) ;  // read MONTH

mon = mon & (~LPYR) ;  // mask the leap year bit

dat = spi_rtcc_rd(RTCDATE) ;  // read DATE

hr = spi_rtcc_rd(RTCHOUR) ;  // read HOUR

min = spi_rtcc_rd(RTCMIN) ;  // read MIN

sec = spi_rtcc_rd(RTCSEC) ;  // read SEC; once finished the RTCC's READ

wrcmnd_lcd(SET_DDRAM+N2_ROW1+07) ;  // set 'YEAR' position on the first row

yr_to_lcd(); wrdata_lcd(' ') ;  // display YEAR + separator

mon_to_lcd(); wrdata_lcd(' ') ;  // display MONTH + separator

dat_to_lcd() ;  // display DATE

wrcmnd_lcd(SET_DDRAM+N2_ROW2+07) ;  // set HOUR position on the second row

hr_to_lcd(); wrdata_lcd(' ') ;  // display HOUR + separator

min_to_lcd() ;  // display MINUTES

if((sec&0x7f)%2){ wrdata_lcd(':') ;} // display separator ':' for odd seconds

else            { wrdata_lcd(' ');} // display separator ' ' for even seconds

sec_to_lcd() ;} // display SECONDS, end of DISPLAY function
DS00001950B-page 8  2015-2017 Microchip Technology Inc.
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ACCESSING THE RTCC REGISTERS

There are two basic functions for accessing the RTCC
registers: one for writes and one for reads. Each of
them was fully described in the above paragraphs.
Both use register addresses, inside the SRAM zone of
the SPI RTCC. 

As described in the MCP795XXX data sheet
(DS20002280), the addresses of the RTCC register are
shown in Table 1.

TABLE 1: RTCC REGISTER ADDRESSES

According to these addresses, in the basic read/write
functions, only the register’s address will differ. Reads
are used in the interrupt function (once/second). Writes
are used in the initialization function and in the setup
sequence (the main function).

An SPI access to the RTCC needs two SPI commands
as: 

All register addresses and flag masks, are defined in
“spi_rtcc_drivers.h”.

Address
Register

Name
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

00h RTCHSEC HSECTEN3 HSECTEN2 HSECTEN1 HSECTEN0 HSECONE3 HSECONE2 HSECONE1 HSECONE0

01h RTCSEC ST SECTEN2 SECTEN1 SECTEN0 SECONE3 SECONE2 SECONE1 SECONE0

02h RTCMIN — MINTEN2 MINTEN1 MINTEN0 MINONE3 MINONE2 MINONE1 MINONE0

03h RTCHOUR TRIMSIGN 12/24 AM/PM
HRTEN1

HRTEN0 HRONE3 HRONE2 HRONE1 HRONE0

04h RTCWKDAY — — OSCRUN PWRFAIL VBATEN WKDAY2 WKDAY1 WKDAY0

05h RTCDATE — — DATETEN1 DATETEN0 DATEONE3 DATEONE2 DATEONE1 DATEONE0

06h RTCMTH — — LPYR MTHTEN0 MTHONE3 MTHONE2 MTHONE1 MTHONE0

07h RTCYEAR YRTEN3 YRTEN2 YRTEN1 YRTEN0 YRONE3 YRONE2 YRONE1 YRONE0

08h CONTROL OUT SQWEN ALM1EN ALM0EN EXTOSC CRSTRIM SQWFS1 SQWFS0

09h OSCTRIM TRIMVAL7 TRIMVAL6 TRIMVAL5 TRIMVAL4 TRIMVAL3 TRIMVAL2 TRIMVAL1 TRIMVAL0

READ 0001 0011 Read RTCC/SRAM array
beginning at selected 
address

WRITE 0001 0010 Write RTCC/SRAM data to
memory array beginning at
selected address
 2015-2017 Microchip Technology Inc. DS00001950B-page 9
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CONCLUSION

This application note presents how to control (display
and setup) an electronic watch, based on Microchip’s
SPI RTCC, MCP795WXX. The project is performed on
a PIC18 Explorer demo board, using the on-board
resources: LCD (accessed through the SPI bus) and
push buttons. The code (drivers and main function) is
written in C, using MPLAB® X v3.55 and XC8 compiler
v1.34. The target microcontroller is the PIC18F87J11.
DS00001950B-page 10  2015-2017 Microchip Technology Inc.
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APPENDIX A: REVISION HISTORY

Revision A (June 2015)

• Initial release of this document.

Revision B (July 2017)

• Updated bit and register names to match new 
data sheet format.
 2015-2017 Microchip Technology Inc. DS00001950B-page 11
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Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the 
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our 
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data 
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not 
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
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