

ATtiny1614/1616/1617 Automotive

Automotive Silicon Errata and Data Sheet Clarifications

The ATtiny1614/1616/1617 Automotive devices you have received conform functionally to the current device data sheet (www.microchip.com/DS40002021), except for the anomalies described in this document. The errata described in this document will likely be addressed in future revisions of the ATtiny1614/1616/1617 Automotive devices.

Notes:

- · This document summarizes all the silicon errata issues from all the silicon revisions, previous as well as current
- Refer to the Device/Revision ID section in the current device data sheet (www.microchip.com/DS40002021) for more detailed information on Device Identification and Revision IDs for your specific device, or contact your local Microchip sales office for assistance

1. Silicon Issue Summary

Legend

- Erratum is not applicable.
- **X** Erratum is applicable.

Peripheral	Issue Summary	Affected	Revisions
		Rev. A	Rev. B
	2.2.1 On 24-Pin Automotive Devices Pin PC5 is Not Available	Х	-
Device	2.2.2 Writing the OSCLOCK Fuse in FUSE.OSCCFG to '1' Prevents Automatic Loading of Calibration Values	х	Х
	2.3.1 AC Interrupt Flag Not Set Unless Interrupt is Enabled	Х	X
AC	2.3.2 False Triggers May Occur Under Certain Conditions	X	-
	2.3.3 False Triggering When Sweeping Negative Input of the AC When the Low-Power Mode is Disabled	х	-
	2.4.1 SAMPDLY and ASDV Does Not Work Together With SAMPLEN	Х	Х
	2.4.2 Pending Event Stuck When Disabling the ADC	Х	Х
	2.4.3 ADC Functionality Cannot be Ensured with CLKADC Above 1.5 MHz and a Setting of 25% Duty Cycle	Х	Х
ADC	2.4.4 ADC Interrupt Flags Cleared When Reading RESH	Х	Х
	2.4.5 Changing ADC Control Bits During Free-Running Mode not Working	Х	X
	2.4.6 One Extra Measurement Performed After Disabling ADC Free-Running Mode	Х	Х
	2.4.7 ADC Wake-Up with WCMP	Х	Х
	2.5.1 Connecting LUTs in Linked Mode Requires OUTEN Set to '1'	Х	Х
CCL	2.5.2 D-latch is Not Functional	X	Х
	2.5.3 The CCL Must be Disabled to Change the Configuration of a Single LUT	X	X
RTC	2.6.1 Any Write to the RTC.CTRLA Register Resets the RTC and PIT Prescaler	Х	Х
RIC	2.6.2 Disabling the RTC Stops the PIT	X	X
TCA	2.7.1 Restart Will Reset Counter Direction in NORMAL and FRQ Mode	Х	X
тсв	2.8.1 Minimum Event Duration Must Exceed the Selected Clock Period	Х	Х
	2.8.2 The TCB Interrupt Flag is Cleared When Reading CCMPH	X	Х
	2.8.3 TCB Input Capture Frequency and Pulse-Width Measurement Mode Not Working with Prescaled Clock	х	Х
	2.8.4 The TCA Restart Command Does Not Force a Restart of TCB	Х	Х
	2.8.5 CCMP and CNT Registers Operate as 16-Bit Registers in 8-Bit PWM Mode	х	Х

ATtiny1614/1616/1617 Automotive

Silicon Issue Summary

conti	continued			
Peripheral	Peripheral Issue Summary		Affected Revisions	
		Rev. A	Rev. B	
	2.9.1 TCD Event Output Lines May Give False Events	X	X	
	2.9.2 TCD Auto-Update Not Working	X	-	
TCD	2.9.3 Asynchronous Input Events Not Working When TCD Counter Prescaler is Used	X	X	
	2.9.4 Halting TCD and Wait for SW Restart Does Not Work if Compare Value A is '0' or Dual Slope Mode is Used	X	X	
	2.10.1 TIMEOUT Bits in the TWI.MCTRLA Register are Not Accessible	Х	Х	
TWI	2.10.2 TWI Master Mode Wrongly Detects the Start Bit as a Stop Bit	Х	Х	
IVVI	2.10.3 TWI Smart Mode Gives Extra Clock Pulse	Х	Х	
	2.10.4 The TWI Master Enable Quick Command is Not Accessible	Х	Х	
LIGA D.T.	2.11.1 TXD Pin Override Not Released When Disabling the Transmitter	Х	Х	
	2.11.2 Full Range Duty Cycle Not Supported When Validating LIN Sync Field	Х	Х	
USART	2.11.3 Frame Error on a Previous Message May Cause False Start Bit Detection	Х	Х	
	2.11.4 Open-Drain Mode Does Not Work When TXD is Configured as Output	Х	Х	

2. Silicon Errata Issues

2.1 Errata Details

- Erratum is not applicable.
- **X** Erratum is applicable.

2.2 Device

2.2.1 On 24-Pin Automotive Devices Pin PC5 is Not Available

On 24-pin automotive devices pin PC5 is not available.

Work around

Do not connect pin PC5 and disable input on pin (PORTC.PINTCRL5.ISC=0x4).

Affected Silicon Revisions

Rev. A	Rev. B
X	-

2.2.2 Writing the OSCLOCK Fuse in FUSE.OSCCFG to '1' Prevents Automatic Loading of Calibration Values

Writing the OSCLOCK fuse in FUSE.OSCCFG to '1' prevents the automatic loading of calibration values from the signature row. The device will run with an uncalibrated OSC20M oscillator.

Work around

Do not use OSCLOCK for locking the oscillator calibration value. The oscillator calibration value can be locked by writing LOCK in CLKCTRL.OSC20MCALIBB to '1'.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.3 AC - Analog Comparator

2.3.1 AC Interrupt Flag Not Set Unless Interrupt is Enabled

ACn.STATUS.CMP is not set if the ACn.INTCTRL.CMP is not set.

Work Around

Enable ACn.INTCTRL.CMP or use ACn.STATUS.STATE for polling.

Affected Silicon Revisions

Rev. A	Rev. B
--------	--------

X	X
^	^

2.3.2 False Triggers May Occur Under Certain Conditions

False triggers may occur on falling input pin:

- If the slew rate on the input signal is greater than 2 V/µs for common-mode voltage below 0.5V
- If the slew rate on the input signal is greater than 10 V/μs for common-mode voltage above 0.5V
- If the slew rate on the input signal is greater than 10 V/µs for any common-mode voltage and Low-Power mode is enabled

Work Around

None.

Affected Silicon Revisions

Rev. A	Rev. B
X	-

2.3.3 False Triggering When Sweeping Negative Input of the AC When the Low-Power Mode is Disabled

A false trigger may occur if sweeping the negative input of the AC with a negative slope, and the AC has Low-Power mode disabled.

Work Around

Enable Low-Power mode in AC.CTRLA.LPMODE.

Affected Silicon Revisions

Rev. A	Rev. B
X	•

2.4 ADC - Analog-to-Digital Converter

2.4.1 SAMPDLY and ASDV Does Not Work Together With SAMPLEN

Using SAMPCTRL.SAMPLEN at the same time as CTRLD.SAMPDLY or CTRLD.ASDV will cause an unpredictable sampling length.

Work Around

When setting SAMPCTRL.SAMPLEN greater than 0x0, the CTRLD.SAMPDLY and CTRLD.ASDV must be cleared.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.4.2 Pending Event Stuck When Disabling the ADC

If the ADC is disabled during an event-triggered conversion, the event will not be cleared.

Work Around

Clear ADC.EVCTRL.STARTEI and wait for the conversion to complete before disabling the ADC.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.4.3 ADC Functionality Cannot be Ensured with CLK_{ADC} Above 1.5 MHz and a Setting of 25% Duty Cycle

The ADC functionality cannot be ensured if CLK_{ADC} > 1.5 MHz with ADCn.CALIB.DUTYCYC set to '1'.

Work Around

If ADC is operated with CLK_{ADC} > 1.5 MHz, ADCn.CALIB.DUTYCYC must be set to '0' (50% duty cycle).

Affected Silicon Revisions

Rev. A	Rev. B
Х	X

2.4.4 ADC Interrupt Flags Cleared When Reading RESH

ADCn.INTFLAGS.RESRDY and ADCn.INTFLAGS.WCOMP are cleared when reading ADCn.RESH.

Work Around

In 8-bit mode, read ADCn.RESH to clear the flag or clear the flag directly.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.4.5 Changing ADC Control Bits During Free-Running Mode not Working

If the control signals are changed during Free-Running mode, the new configuration is not ensured in the next measurement. This is valid for the ADCn.CTRLB, ADCn.CTRLC, ADCn.SAMPCTRL, ADCn.MUXPOS, ADCn.WINLT or ADCn.WINHT registers.

Work Around

Disable ADC Free-Running mode before updating the ADCn.CTRLB, ADCn.CTRLC, ADCn.SAMPCTRL, ADCn.MUXPOS, ADCn.WINLT or ADCn.WINHT registers.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.4.6 One Extra Measurement Performed After Disabling ADC Free-Running Mode

The ADC may perform one additional measurement after clearing ADCn.CTRLA.FREERUN.

Work Around

Write ADCn.CTRLA.ENABLE to '0' to stop the Free-Running mode immediately.

Affected Silicon Revisions

X

2.4.7 ADC Wake-Up with WCMP

When waking up from Standby sleep mode with ADC WCMP interrupt, the ADC is disabled for a few cycles before the device enters Active mode. A new INITDLY is required before the next conversion.

Work Around

Use INITDLY before the next conversion.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.5 CCL - Configurable Custom Logic

2.5.1 Connecting LUTs in Linked Mode Requires OUTEN Set to '1'

Connecting the LUTs in linked mode requires LUTnCTRLA.OUTEN set to '1' for the LUT providing the input source.

Work Around

Use an event channel to link the LUTs, or do not use the corresponding I/O pin for other purposes.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.5.2 D-latch is Not Functional

The CCL D-latch is not functional.

Work Around

None.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.5.3 The CCL Must be Disabled to Change the Configuration of a Single LUT

To reconfigure a LUT, the CCL peripheral must first be disabled (write ENABLE in CCL.CTRLA to '0'). Writing ENABLE to '0' will disable all the LUTs, and affects the LUTs not under reconfiguration.

Work Around

None

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.6 **RTC - Real-Time Counter**

2.6.1 Any Write to the RTC.CTRLA Register Resets the RTC and PIT Prescaler

Any write to the RTC.CTRLA register resets the 15-bit prescaler resulting in a longer period on the current count or period.

Work Around

None.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.6.2 Disabling the RTC Stops the PIT

Writing RTC.CTRLA.RTCEN to '0' will stop the PIT.

Writing RTC.PITCTRLA.PITEN to '0' will stop the RTC.

Work Around

Do not disable the RTC or the PIT if any of the modules are used.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.7 TCA - 16-Bit Timer/Counter Type A

2.7.1 Restart Will Reset Counter Direction in NORMAL and FRQ Mode

When the TCA is configured to the NORMAL or FRQ mode (WGMODE in TCAn.CTRLB is '0x0' or '0x1'), a RESTART command or Restart event will reset the direction to default. The default is counting upwards.

Work Around

None.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.8 TCB - 16-Bit Timer/Counter Type B

2.8.1 Minimum Event Duration Must Exceed the Selected Clock Period

Event detection will fail if TCBn receives an input event with a high/low period shorter than the period of the selected clock source (CLKSEL in TCBn.CTRLA). This applies to the TCB modes (CNTMODE in TCBn.CTRLB) Time-Out Check and Input Capture Frequency and Pulse-Width Measurement.

Work Around

Ensure that the high/low period of input events is equal to or longer than the selected clock source (CLKSEL in TCBn.CTRLA) period.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.8.2 The TCB Interrupt Flag is Cleared When Reading CCMPH

TCBn.INTFLAGS.CAPT is cleared when reading TCBn.CCMPH instead of CCMPL.

Work Around

Read both TCBn.CCMPL and TCBn.CCMPH.

Affected Silicon Revisions

Rev. A	Rev. B
Х	Х

2.8.3 TCB Input Capture Frequency and Pulse-Width Measurement Mode Not Working with Prescaled Clock

The TCB Input Capture Frequency and Pulse-Width Measurement mode may lock to Freeze state if CLKSEL in TCB.CTRLA is set to any other value than 0x0.

Work Around

Only use CLKSEL equal to 0x0 when using Input Capture Frequency and Pulse-Width Measurement mode.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.8.4 The TCA Restart Command Does Not Force a Restart of TCB

The TCA restart command does not force restarting the TCB when TCB is running in SYNCUPD mode. TCB is restarted only after a TCA OVF.

Work Around

None

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.8.5 CCMP and CNT Registers Operate as 16-Bit Registers in 8-Bit PWM Mode

When the TCB operates in 8-bit PWM mode (CNTMODE in TCBn.CTRLB is ' 0×7 '), the low and high bytes for the CNT and CCMP registers operate as 16-bit registers for read and write. They cannot be read or written independently.

Work Around

Use 16-bit register access. Refer to the data sheet for further information.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.9 TCD - 12-Bit Timer/Counter Type D

2.9.1 TCD Event Output Lines May Give False Events

The TCD event output lines can give false events.

Work Around

Use the delayed event functionality with a minimum of one cycle delay.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.9.2 TCD Auto-Update Not Working

The TCD auto-update feature is not working.

Work Around

None.

Affected Silicon Revisions

Rev. A	Rev. B
X	-

2.9.3 Asynchronous Input Events Not Working When TCD Counter Prescaler is Used

When configuring the TCD to use asynchronous input events (CFG in TCDn.EVCTRLx is '0x2') and the TCD Counter Prescaler (CNTPRES in TCDn.CTRLA) is different from '0x0' events can be missed.

Work Around

Use the TCD Synchronization Prescaler (SYNCPRES in TCDn.CTRLA) instead of the TCD Counter Prescaler. Alternatively, use synchronous input events (CFG in TCDn.EVCTRLx is not '0x2') if the input events are longer than one CLK_TCD_CNT cycle.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.9.4 Halting TCD and Wait for SW Restart Does Not Work if Compare Value A is '0' or Dual Slope Mode is Used

Halting TCD and wait for software restart (INPUTMODE in TCDn.INPUTCTRLA is '0x7') does not work if compare value A is '0' (CMPASET in TCDn.CMPASET is '0x0') or Dual Slope mode is used (WGMODE in TCDn.CTRLB is '0x3').

Work Around

Configure the compare value A (CMPASET in TCDn.CMPASET) to be different from '0' and do not use Dual Slope mode (WGMODE in TCDn.CTRLB is not '0 \times 3').

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.10 TWI - Two-Wire Interface

2.10.1 TIMEOUT Bits in the TWI.MCTRLA Register are Not Accessible

The TIMEOUT bits in the TWI.MCTRLA register are not accessible from the software.

Work Around

When initializing TWI, set BUSSTATE in TWI.MSTATUS to an IDLE state by writing 0x1 to it.

Affected Silicon Revisions

Rev. A	Rev. B
X	Х

2.10.2 TWI Master Mode Wrongly Detects the Start Bit as a Stop Bit

If TWI is enabled in Master mode followed by an immediate write to the MADDR register, the bus monitor recognizes the Start bit as a Stop bit.

Work Around

Wait for a minimum of two clock cycles from TWI.MCTRLA.ENABLE until TWI.MADDR is written.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.10.3 TWI Smart Mode Gives Extra Clock Pulse

TWI Master with Smart mode enabled gives an extra clock pulse on the SCL line after sending NACK.

Work Around

None.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.10.4 The TWI Master Enable Quick Command is Not Accessible

TWI.MCTRLA.QCEN is not accessible from the software.

Work Around

None.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.11 USART - Universal Synchronous and Asynchronous Receiver and Transmitter

2.11.1 TXD Pin Override Not Released When Disabling the Transmitter

The USART will not release the TXD pin override if:

- The USART transmitter is disabled by writing the TXEN bit in USART.CTRLB to '0' while the USART receiver is disabled (RXEN in USART.CTRLB is '0')
- Both the USART transmitter and receiver are disabled at the same time by writing the TXEN and RXEN bits in USART.CTRLB to '0'

Work Around

There are two possible work arounds:

- Make sure the receiver is enabled (RXEN in USART.CTRLB is '1') while disabling the transmitter (writing TXEN in USART.CTRLB to '0')
- Writing to any register in the USART after disabling the transmitter will start the USART for long enough to release the pin override of the TXD pin

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.11.2 Full Range Duty Cycle Not Supported When Validating LIN Sync Field

For the LIN sync field, the USART validates each bit to be within ±15% instead of the time between falling edges as described in the LIN specification, which allows a minimum duty cycle of 43.5% and a maximum duty cycle of 57.5%.

Work Around

None.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

2.11.3 Frame Error on a Previous Message May Cause False Start Bit Detection

A false start bit detection will trigger if receiving a frame with RXDATAH.FERR set and reading the RXDATAL before the RxD line goes high.

Work Around

Wait for the RXD pin to go high before reading RXDATA by, for instance, polling the bit in PORTn.IN where the RXD pin is located.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

ATtiny1614/1616/1617 Automotive

Silicon Errata Issues

2.11.4 Open-Drain Mode Does Not Work When TXD is Configured as Output

When the USART TXD pin is configured as an output, it can drive the pin high regardless of whether the Open-Drain mode is enabled or not.

Work Around

Configure the TXD pin as an input by writing the corresponding bit in PORTx.DIR to '0' when using Open-Drain mode.

Affected Silicon Revisions

Rev. A	Rev. B
X	X

3. **Data Sheet Clarifications**

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (www.microchip.com/DS40002021).

Note: Corrections are shown in bold. Where possible, the original bold text formatting has been removed for clarity.

3.1 **Memories**

3.1.1 **Fuses - Factory Default Values**

A clarification has been made for the Fuse Description section in regards to the fuse default values. The data sheet refers to these values as reset values when they should have been given as factory-programmed values. Also, they are given in both hexadecimal and binary values, which are contradicting each other.

The following sentence has been added to each sub-section of the *Fuse Description* section.

The default value given in this fuse description is the factory-programmed value, and should not be mistaken for the Reset value.

The table below lists the reset values given by the data sheet and the actual factory-programmed default values.

Fuse	Stated Reset Val	ue in Data Sheet	Actual Factory Default on Device		
	Hexadecimal	Binary	Hexadecimal	Binary	
WDTCFG	-	`b00000000	0x00	, роооооооо	
BODCFG	-	`b00000000	0x00	`ъ00000000	
OSCCFG	-	`b0xxxxx01	0x01	`ь00000001	
TCD0CFG	-	`b00000000	0x00	`ъ00000000	
SYSCFG0	-	`b111X0110	0xF6	`b11110110	
SYSCFG1	-	`bxxxxx111	0x07	`ь00000111	
APPEND	-	`b00000000	0x00	`ъ00000000	
BOOTEND	-	`b00000000	0x00	`ъ00000000	
LOCKBIT	-) b00000000	0xC5	`b11000101	

3.2 Sleep Controller (SLPCTRL)

3.2.1 **Sleep Mode Activity Overview**

A clarification has been made to Table 12-2 Sleep Mode Activity Overview, where the single table has been split into three separate tables for clarity. Functional changes are shown in **bold**.

Table 3-1. Sleep Mode Activity Overview for Peripherals

Peripheral	Active in Sleep Mode				
	Idle Standby Power-Dow				
CPU	-	-	-		
RTC	X	X ⁽¹⁾	X ⁽²⁾		
WDT	X	X	X		
BOD	x	x	X		

continued					
Peripheral	Active in Sleep Mode				
	ldle	Standby	Power-Down		
EVSYS	x	x	x		
CCL	X	X ⁽¹⁾	-		
ACn					
ADCn/PTC					
TCBn					
All other peripherals	X	-	-		

Notes:

- 1. The RUNSTBY bit of the corresponding peripheral must be set to enter the active state.
- PIT only.

Table 3-2. Sleep Mode Activity Overview for Clock Sources

Clock Source	Active in Sleep Mode					
	Idle Standby Power-Down					
Main clock source	X	X ⁽¹⁾	-			
RTC clock source	X	X ⁽¹⁾	X ⁽²⁾			
WDT oscillator	X	X	X			
BOD oscillator ⁽³⁾	x	x	x			
CCL clock source	x	X ⁽¹⁾	-			

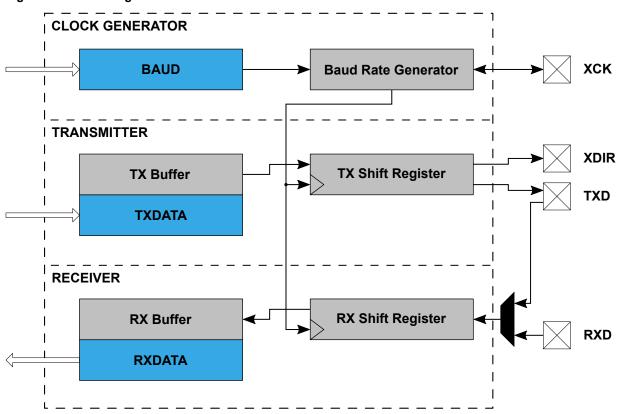
Notes:

- 1. The RUNSTBY bit of the corresponding peripheral must be set to enter the active state.
- The BOD oscillator runs only in Sampled mode.

Table 3-3. Sleep Mode Wake-Up Sources

Wake-Up Sources	Active in Sleep Mode			
	Idle	Standby	Power-Down	
PORT Pin Interrupt	X	X	χ ⁽¹⁾	
BOD VLM interrupt	x	X	Х	
RTC interrupts	X	X ⁽²⁾	X ⁽³⁾	
TWIn Address Match interrupt	X	X	X	
USARTn Start-of-Frame interrupt	-	X	-	
TCBn interrupts	x	X ⁽²⁾	-	
ADCn/PTC interrupts	X	X ⁽²⁾	-	
ACn interrupts	x	X ⁽⁴⁾	-	
All other interrupts	X	-	-	

Notes:


- The I/O pin must be configured according to Asynchronous Sensing Pin Properties in the PORT section.
- 2. The RUNSTBY bit of the corresponding peripheral must be set to enter the active state.
- 3. PIT only.
- 4. When the RUNSTDBY bit is set, the AC will operate without updating its Status register or triggering interrupts. If another peripheral has requested CLK_PER, the AC will use the clock to update the Status register and trigger interrupts.

3.3 Universal Synchronous and Asynchronous Receiver and Transmitter (USART)

3.3.1 TXDATA Buffer

The block diagram is missing that USART TX is double-buffered from Figure 25-1 in the data sheet. Added **TX Buffer** is shown below.

Figure 3-1. Block Diagram

The following text is changed in the *Overview* section:

The transmitter consists of a two-level write buffer.

The following text is changed in the Data Transmission section:

The data transmission is initiated by loading the **Transmit Data (USARTn.TXDATAL and USARTn.TXDATAH)** registers with the data to be sent. The data in the **Transmit Data registers are moved to the TX Buffer** once it is empty and then to the Shift register once it is empty and ready to send a new frame.

3.4 Analog-to-Digital Converter (ADC)

Calibration 3.4.1

Clarifications have been made to the ADCn.CALIB.DUTYCYC register description:

- Redundant text referring to a minimum operating voltage of 2.7V has been removed
- CLK_{ADC} information moved to ADC electrical characteristics

Bit 0 - DUTYCYC Duty Cycle

This bit determines the duty cycle of the ADC clock.

Value	Description
0	50% duty cycle
1	25% duty cycle

3.5 **Electrical Characteristics**

3.5.1 ADC

A clarification has been made to the electrical characteristics for the ADC peripheral:

· Added a note for 50% duty cycle

Table 3-4. Clock and Timing Characteristics

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
f _{ADC}	Sample rate	1.1V ≤ V _{REF}	15	-	115	ksps
		1.1V ≤ V _{REF} (8-bit resolution)	15	-	150	
		V _{REF} = 0.55V (10-bit)	7.5	-	20	
CLK _{ADC}	Clock frequency	V _{REF} = 0.55V (10-bit)	100	-	260	kHz
		1.1V ≤ V _{REF} (10-bit)	200	-	1500	
		1.1V ≤ V _{REF} (8-bit resolution)	200	-	2000(1)	
Ts	Sampling time		2	2	33	CLK _{ADC} cycles
T _{CONV}	Conversion time (latency)	Sampling time = 2 CLK _{ADC}	8.7	-	50	μs
T _{START}	Start-up time	Internal V _{REF}	-	22	-	μs

Note:

1. Clock frequencies above 1500 kHz require a 50% duty cycle.

3.5.2 AC

A clarification has been made to the electrical characteristics for the AC peripheral:

- · Updated AC hysteresis max./min. characterizations
- · Updated AC hysteresis typical characterizations

Table 3-5. Analog Comparator Characteristics, Low-Power Mode Disabled

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
V _{IN}	Input voltage		-0.2	-	V_{DD}	V

co	continued						
Symbol	Description	Condition	Min.	Тур.	Max.	Unit	
C _{IN}	Input pin capacitance	PA6	-	9	-	pF	
		PA7, PB5, PB4	-	5	-		
V _{OFF}	Input offset voltage	$0.7V < V_{IN} < (V_{DD} - 0.7V)$	-20	±5	20	mV	
		$V_{IN} = [-0.2V, V_{DD}]$	-40	±20	40		
IL	Input leakage current		-	5	-	nA	
T _{START}	Start-up time		-	1.3	-	μs	
V _{HYS}	Hysteresis	HYSMODE=0x0	0	0	10	mV	
		HYSMODE=0x1	0	10	30		
		HYSMODE=0x2	10	30	90		
		HYSMODE=0x3	20	55	150		
t _{PD}	Propagation delay	25 mV Overdrive, V _{DD} ≥ 2.7V, Low-Power mode disabled	-	50	-	ns	

Table 3-6. Analog Comparator Characteristics, Low-Power Mode Enabled

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
V _{IN}	Input voltage		0	-	V _{DD}	V
C _{IN}	Input pin capacitance	PA6	-	9	-	pF
		PA7, PB5, PB4	-	5	-	
V _{OFF}	Input offset voltage	$0.7V < V_{IN} < (V_{DD} - 0.7V)$	-30	±10	30	mV
		V _{IN} =[0V, V _{DD}]	-50	±30	50	
IL	Input leakage current		-	5	-	nA
T _{START}	Start-up time		-	1.3	-	μs
V _{HYS}	Hysteresis	HYSMODE=0x0	0	0	10	mV
		HYSMODE=0x1	0	10	30	
		HYSMODE=0x2	5	30	90	
		HYSMODE=0x3	12	55	190	
t _{PD}	Propagation delay	25 mV Overdrive, V _{DD} ≥ 2.7V	-	150	-	ns

3.5.3 PTC Characteristics - Operating Ratings

Clarifications have been made to the electrical characteristics for the PTC peripheral:

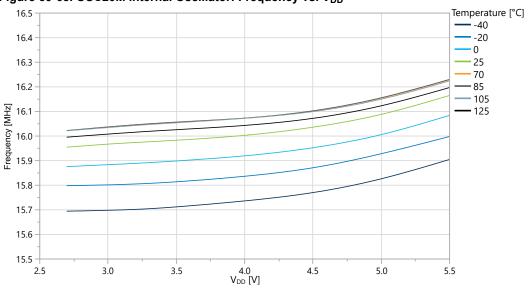
- Redundant V_{DD} and CLK_{PER} characteristics have been removed
- CLK_{ADC} characteristics have been added

Table 3-7. Peripheral Touch Controller Characteristics - Operating Ratings

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
C _{LOAD}	Maximum load		-	48	-	pF
C _{INT}			_	30	_	pF
	Driven Shield Capacitive Drive		-	300	-	pF

continued						
Symbol	Description	Condition	Min.	Тур.	Max.	Unit
CLK _{ADC}	Supported ADC clock frequency	25% duty cycle	200	-	1500	kHz
		50% duty cycle	200	-	2000	

3.6 Typical Characteristics


3.6.1 OSC20M Characteristics

A clarification has been made to Figure 39-67. OSC20M Internal Oscillator: Frequency vs. Temperature and Figure 39-68. OSC20M Internal Oscillator: Frequency vs. V_{DD} , due to incorrect frequency ranges presented in the plots. Correct plots are shown below.

Figure 39-67. OSC20M Internal Oscillator: Frequency vs. Temperature

Figure 39-68. OSC20M Internal Oscillator: Frequency vs. V_{DD}

3.7 Package Drawings

3.7.1 Package Marking Information

Package marking information is missing in the data sheet. This section contains all package marking information for ATtiny1614/1616/1617 Automotive devices.

Figure 3-2. Package Marking Information

Rev. 30-009000A-AV

Legend: XX...X Customer-specific information or Microchip part number
Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code

(e3) Pb-free JEDEC® designator for Matte Tin (Sn)

The: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

Figure 3-3. 14-Pin SOIC

General

Example

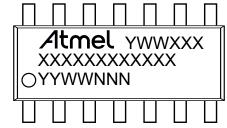
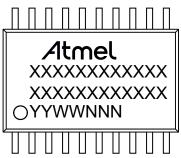



Figure 3-4. 20-Pin SOIC

Example

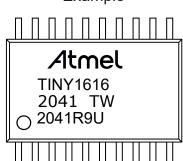


Figure 3-5. 20-Pin VQFN

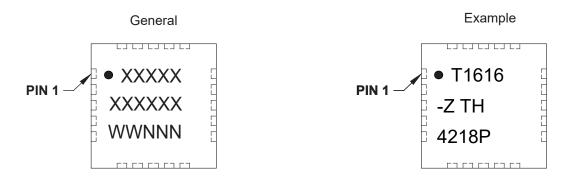
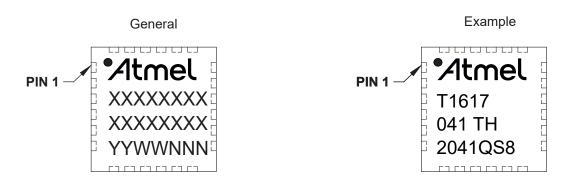



Figure 3-6. 24-Pin VQFN

3.7.2 Package Drawings

The information in the *Device and Package Maximum Weight* and *Package Reference* tables might be outdated. Refer to the RoHS information table on the device product page for up-to-date information.

The Moisture Sensitivity Level (MSL) information in the data sheet might be wrong, as this depends on the assembly site. To determine the MSL information for Microchip device shipments received from Microchip, review the label affixed to each bag, reel and inner box.

If neither the bag, reel or inner box is available, MSL information can be determined by reviewing Table 3.3 in the *Package Qualification Summary Report* posted at microchip.com/quality. The report is organized by package type and assembly site.

4. **Document Revision History**

Note: The document revision is independent of the silicon revision.

Revision History 4.1

Doc. Rev.	Date	Comments
E	09/2021	 Updated Affected Silicon Revisions table for erratum 2.2.1 On 24-Pin Automotive Devices Pin PC5 is Not Available Added data sheet clarification: Typical Characteristics: 3.6.1 OSC20M Characteristics Editorial updates
D	05/2021	 Added silicon revision B Added errata: CCL: The CCL Must be Disabled to Change the Configuration of a Single LUT TCA: Restart Will Reset Counter Direction in NORMAL and FRQ Mode TCB: CCMP and CNT Registers Operate as 16-Bit Registers in 8-Bit PWM Mode TCD: Asynchronous Input Events Not Working When TCD Counter Prescaler is Used Halting TCD and Wait for SW Restart Does Not Work if Compare Value A is '0' or Dual Slope Mode is Used Updated errata: RTC: Any Write to the RTC.CTRLA Register Resets the RTC and PIT Prescaler TWI: TIMEOUT Bits in the TWI.MCTRLA Register are Not Accessible Added data sheet clarifications: Memories: Fuses - Factory Default Values SLPCTRL: Sleep Mode Activity Overview USART: TXDATA Buffer
С	06/2020	 Added errata: Device: Writing the OSCLOCK Fuse in Fuse.OSCCFG to '1' Prevents Automatic Loading of Calibration Fuses USART: Full Range Duty Cycle Not Supported When Validating LIN Sync Field Open-Drain Mode Does Not Work When TXD is Configured as Output Added clarification for electrical characteristics for AC peripheral
В	10/2019	 Updated document template Updated errata 2.4.3 ADC Functionality Added clarification for ADCn.CALIB.DUTYCYC register description Added clarification for electrical characteristics of ADC and PTC peripheral
Α	06/2019	Initial document release

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- **Technical Support**

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/ design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLog, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-5224-8829-3

ATtiny1614/1616/1617 Automotive

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
ГеІ: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Ouluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
el: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
ax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Vestborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
tasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
el: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
)allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
lovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
el: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
louston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
el: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
ndianapolis	China - Xiamen	161. 04-20-3440-2100	Tel: 31-416-690399
loblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
el: 317-773-8323	China - Zhuhai		Norway - Trondheim
Eax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
el: 317-536-2380	161. 00-7 30-32 10040		Poland - Warsaw
os Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
el: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			
			Spain - Madrid Tel: 34-91-708-08-90
el: 951-273-7800			
Raleigh, NC			Fax: 34-91-708-08-91
el: 919-844-7510			Sweden - Gothenberg
lew York, NY			Tel: 46-31-704-60-40
el: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
el: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Геl: 905-695-1980			
Fax: 905-695-2078			