

Migrating from SAM9x5 to SAM9X60

Scope

This application note describes the hardware and software changes necessary to migrate a SAM9x5-based design to a SAM9x60 device. The SAM9x60 device provides increased performance compared to SAM9x5.

The changes listed in this document should be performed on the SAM9X60 device for proper operation. Other system changes may be required to accommodate new speeds or capabilities.

Additional information on the devices is available in the respective data sheets. See Reference Documents.

Note: In this document "SAM9x5" refers to any of the following products:

- SAM9G15
- SAM9G25
- SAM9G35
- SAM9X25
- SAM9X35

Reference Documents

The following documents are available on http://www.microchip.com.

Document Type	Document Title	Literature Number
Data sheet	SAM9X60	DS60001579
Data sheet	SAM9G15	11052
Data sheet	SAM9G25	11032
Data sheet	SAM9G35	11053
Data sheet	SAM9X25	11054
Data sheet	SAM9X35	11055

Table of Contents

Sc	эре		1
Re	ference	e Documents	1
1.	SAM	9x5 vs. SAM9X60 Feature Summary	4
2.	РСВ	Migration	6
	2.1.	Packages and Pinout	6
	2.2.	Power Supplies	
	2.3.	Power Sequences	8
	2.4.	Clocks	8
	2.5.	DDRC	8
	2.6.	NAND Flash Memory	9
	2.7.	USB	9
3.	Perip	oheral Multiplexing on I/O Lines	11
4.	Softv	vare Migration	12
	4.1.	Core/Bus Frequency	12
	4.2.	Clocks	12
	4.3.	Power Management - ULP1	15
	4.4.	Matrix	15
	4.5.	SRAM and L1 Cache Sizes	
	4.6.	DMA	15
	4.7.	USB Device	
	4.8.	Graphics	
	4.9.	Serial	
		DDRC	
		ADC	
		SDMMC	
		Audio	
		Security	
	4.15.	ROM Code	16
5.	Fixed	d SAM9x5 Errata	18
6.	Revis	sion History	19
	6.1.	DS00003166A - 10/2019	19
The	e Micro	ochip Website	20
Pro	oduct C	Change Notification Service	20
Cu	stome	r Support	20
		Devices Code Protection Feature	
		tice	
Tra	idemar	rks	21

Quality Management System	21
Worldwide Sales and Service	22

1. SAM9x5 vs. SAM9X60 Feature Summary

The following table summarizes the differences between SAM9x5 and SAM9X60 features.

Table 1-1. SAM9x5 vs. SAM9X60 Features

ltem	SAM9x5	SAM9X60	Comments	
	System			
Core/Bus frequency	400/133 MHz	600/200 MHz	-	
L1 cache size	16 Kbytes I + 16 Kbytes D	32 Kbytes I + 32 Kbytes D	-	
SRAM size	32 Kbytes	64 Kbytes + 4 Kbytes for OTP emulation	-	
OTP memory	-	 11-Kbyte OTP Area for user's certificates, keys and configuration Disable JTAG OTP bit Emulation mode (see SRAM) 	23 Kbytes allocated to user	
ROM boot	No security/encryption features	Secure boot with encryption, certificates and key management (see OTP)	_	
Power supplies	1.0V core voltage	1.1V core voltage2.5V regulator addedVDDQSPI segment	For PLLs and oscillators	
System controller, clocks, power management	 32 KHz RC can be stopped 12 to 16 MHz crystal 12 MHz required for USB operations 400 to 800 MHz PLLs Peripheral I/Os are clocked at MCK 	 32 KHz RC always on 12 to 48 MHz crystal Main RC calibration 32 KHz RC calibration More frequencies can fit USB operation; PLLs are fractional 600 to 1200 MHz PLLs with spread spectrum Generic clocks available for most peripheral I/Os Clocks monitoring ULP1 added, power consumption improved and wake-up time reduced Separated pins for reset input (NRST) and reset output (NRST_OUT) 	Safety for WDT, RSTC, etc. EMI/EMC improvement	
DMA	2x 8-channel DMAs	1x 16-channel DMA	_	
DDR controller	External resistors needed for PCB impedance matching	DDR I/Os with calibration for impedance matching, additional control signal	Reduced BOM cost and board space	
NAND Flash	16-bit	8-bit only	-	
Special Function Register	Memory mapped in Matrix section	Memory mapped in SFR section	-	
Peripheral Multiplexing on I/O lines	-	Compatible 7 lines added Peripherals added	-	
		Peripheral Upgrades		
еММС	HSMCI, eMMC 4.1	SDMMC, eMMC 4.51		

continued			
Item	SAM9x5	SAM9X60	Comments
Serial	USART0-2 SPI0-1 TWI0-2 UART0-1	FLEXCOM0-2 FLEXCOM4-5(*) FLEXCOM6-8 FLEXCOM9-10 FLEXCOM3-11-12 added (*)Some FLEXCOMs include extra IOSETs.	Some FLEXCOMs enable USART, SPI and TWI functions, or only UART and TWI
USB	2x HS + 1x FS transceivers 4-Kbyte DPRAM with dynamic allocation	3x HS transceivers External Full Speed resistors removed 16-Kbyte DPRAM; each end point has its own memory area	-
Soft Modem (SMD)	Embedded	Removed	-
LCD controller	4 layers: • Base • Overlay • High end • HW cursor 800x600 pixel resolution	4 layers: • Base • Overlay1 • Overlay2 • High end 1024x768 pixel resolution	_
2D graphics (GFX2D)	-	Added	-
ADC	10 bits	12 bits Internal triggers	-
64-bit Timer (PIT64B)	-	Added	-
QSPI	-	4-bit QSPI added with dedicated power supply	SDR and DDR support; eXecution In Place (XIP)
12SMCC	-	Added	-
CLASSD	-	Added	-
Encryption engines (TDES, AES, SHA, TRNG)	-	Added	-
Packages	BGA217, 15x15 mm ² , 0.8 mm pitch BGA247, 10x10 mm ² , 0.5 mm pitch	BGA196 11x11 mm ² 0.65 mm pitch for SiP with 64-Mbit SDRAM BGA228, 11x11 mm ² , 0.65 mm pitch BGA233 14x14 mm ² 0.8 mm pitch for SiP with 512-Mbit and 1-Gbit DDR2 SDR-SDRAM and DDR2-SDRAM SiP added	Accommodates 4-layer PCBs

2. PCB Migration

This section describes the hardware changes needed to migrate from SAM9x5 to SAM9X60. These changes are required in all systems.

2.1 Packages and Pinout

SAM9x5 and SAM9X60 packages differ. SAM9X60 BGA228 is designed to accommodate low-cost 4-layer PCBs when DDR2 is used.

Due to peripheral upgrades, some signals are removed or added in the pinout.

Table 2-1. Packages and Pinout

Peripheral	Removed from SAM9x5	Added on SAM9X60
	DFSDM/HFSDMA, DFSDP/HFSDPA	
USB	HFSDMB, HFSDPB	HHSDMC/HHSDPC
	HFSDMC, HFSDPC	
SMD	DIBN, DIBP	-
Boot ROM	BMS	_
DDRC	_	DDR_VREF, DDR_CAL
PIO lines	_	7 IOs (PIOB19 to PIOB25) for extra functions (QSPI, I2SMCC)

2.2 Power Supplies

Technology upgrade from 90 nm to 40 nm requires different power supplies.

Table 2-2. SAM9x5 vs. SAM9X60 Power Supplies

Power Rail	SAM9x5	SAM9X60
VDDCORE VDDUTMIC	0.9-1.1V, 1.0V typical	1.0-1.2V, 1.1V typical
VDDUTMIC	0.9-1.1V, 1.0V typical	Full CPU speed requires VDDCORE min = 1.1V
VDDPLLA	0.9-1.1V, 1.0V typical	VDDOUT25 replaces VDDPLLA. VDDOUT25 is the output of an internal 2.5V LDO and must be connected to an external decoupling capacitor.
VDDOSC	1.65-3.6V	2.7-3.6V

Figure 2-1. Typical Power Supply Implementations

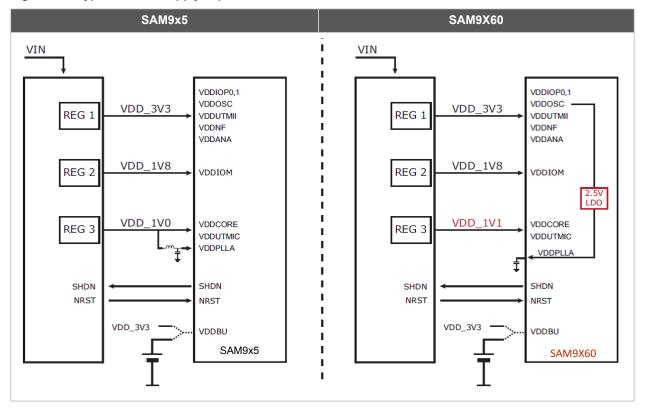
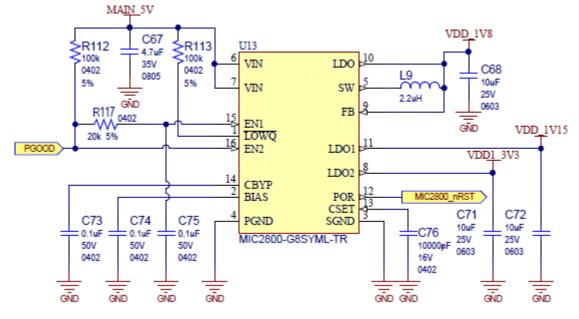
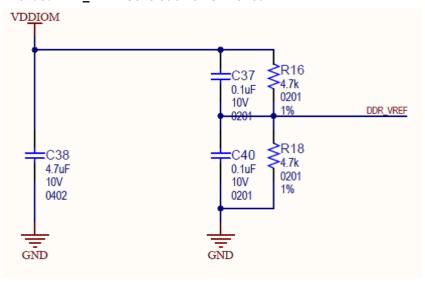



Figure 2-2. Recommended Implementation for Full CPU Speed, VDDCORE = 1.15V on SAM9X60



SAM9X60 includes additional power lines to support new features and new peripheral versions.

Table 2-3. SAM9X60 New Power Lines

Power Rail	SAM9x5	SAM9X60
DDR_VREF	_	Must follow VDDIOM/2
VDDQSPI	_	1.7-3.6V, 1.8V or 3.3V typical

Figure 2-3. Recommended DDR_VREF Generation on SAM9X60

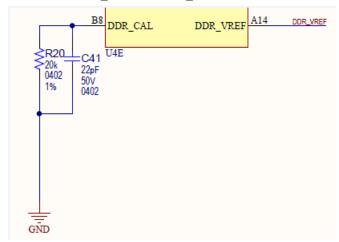
2.3 Power Sequences

New simplified power-up and power-down sequences apply on SAM9X60. Refer to the SAM9X60 data sheet for more details.

2.4 Clocks

The SAM9X60 crystal oscillator supports a wider range of external crystals. Refer to the SAM9X60 data sheet for detailed electrical recommendations.

Table 2-4. SAM9x5 vs. SAM9X60 Crystal Clocks

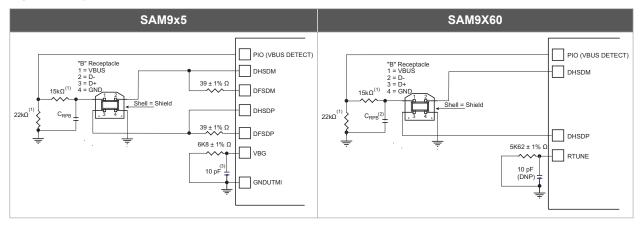

SAM9x5	SAM9X60
12 to 16 MHz crystal	12 to 48 MHz crystal

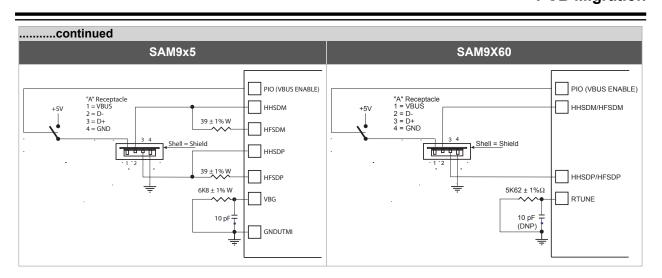
Note: The engineering sample ROM code has crystal detection limitations, so only a 24 MHz crystal must be used if a Non-Volatile Memory (NVM) is programmed via USB.

2.5 DDRC

The SAM9X60 device embeds a DDR PHY interface with calibrated output impedance. Compared to SAM9x5 designs, the serial resistors can be removed from the PCB DDR I/O lines. Calibration is done using a resistance connected to the DDR_CAL signal. Refer to the SAM9X60 data sheet for details.

Figure 2-4. SAM9X60 Recommended DDR_CAL and DDR_VREF


2.6 NAND Flash Memory


The PMECC that computes the ECC supports only 8-bit NAND Flash memories, so using 16-bit NAND Flash memories for new designs is not recommended.

2.7 USB

On SAM9X60, Full Speed and High Speed signals are merged. Resistors on Full Speed signals are integrated into the USB peripherals. No external resistors are needed. The capacitor appears on the schematic but it is optional. It can be added in harsh environments.

Figure 2-5. Typical USB Implementations

3. Peripheral Multiplexing on I/O Lines

Peripheral multiplexing on I/O lines is fully compatible: each SAM9x5 peripheral has an equivalent on SAM9X60.

SAM9X60 features new peripherals on existing lines, and new peripherals on new lines.

Table 3-1. Peripheral Enhancements and Additions

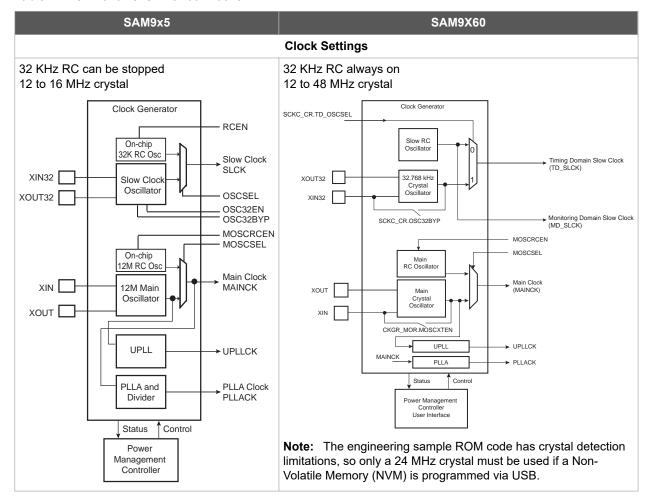
PIO Line	SAM9x5 Function	SAM9x5 Peripheral ID	SAM9X60 Function	SAM9X60 Peripheral ID
-	USART0	5	FLEXCOM0 ⁽¹⁾	5
_	USART1	6	FLEXCOM1 ⁽¹⁾	6
_	USART2	7	FLEXCOM2 ⁽¹⁾	7
-	SPI0	13	FLEXCOM4 ⁽¹⁾⁽²⁾	13
-	SPI1	14	FLEXCOM5 ⁽¹⁾⁽²⁾	14
-	TWI0	9	FLEXCOM6 ⁽³⁾	9
_	TWI2	11	FLEXCOM8 ⁽³⁾	11
PA24-27	-	_	CLASSD	42
PB19-23	-	_	I2SMCC	34
PB19-24	-	-	QSPI	35
PB19-20	-	_	FLEXCOM11 ⁽³⁾	32
PB21-22	-	_	FLEXCOM12 ⁽³⁾	33
_	TWI1	10	FLEXCOM7 ⁽³⁾	10
-	UART0	15	FLEXCOM9 ⁽³⁾	15
	UART1	16	FLEXCOM10 ⁽³⁾	16
PC22-26, PC30	-	-	FLEXCOM3 ⁽¹⁾	8

Note:

- 1. This fully-featured FLEXCOM enables USART, SPI and TWI.
- 2. Other IOSETs are available for some signals.
- 3. This FLEXCOM reduced to two wires enables UART and TWI.

4. Software Migration

This section describes the software changes that are likely to be required to migrate from SAM9x5 to SAM9X60. For any software samples, refer to Linux[®] or software package deliveries.


4.1 Core/Bus Frequency

Updated any timings or delay calculations.

4.2 Clocks

SAM9x5 and SAM9X60 support different crystals and manage PLLs differently. SAM9X60 provides generic clocks for most peripherals. Power Management Controller interfaces differ also, so software modifications are required.

Table 4-1. SAM9x5 vs. SAM9X60 Clocks

continued	
SAM9x5	SAM9X60
	Use the internal 32 kHz RC oscillator to clock safely peripherals that do not need accuracy: • Watchdog timer • APMC • Reset controller • Shutdown controller Only the RTC is connected to the external 32 KHz oscillator.
Clo	ock Setting Registers
CKGR_MOR sets the main oscillator. PMC_MCKR sets CPU and MCK clocks.	 CKGR_MOR includes additional bits: ULP1 enables ULP1 low-power mode. XT32KFME enables 32 KHz crystal frequency monitor. BMCKIC enables MCK monitoring. PMC_OCR performs Main RC calibration. PMC_MCKLIM programs MCK monitor limits. PMC_CPU_CKR sets CPU and MCK clocks.
	PLL Settings
400 to 800 MHz PLLs	600 to 1200 MHz PLLs
PLLs are not fractional. PLLA clock ouput is:	PLLs are fractional. 12 MHz is not required to ensure USB clock accuracy.
PLLACK = MAINCK / DIVA * MULA	The COREPLLCK operating frequency is defined as:
MAINCK Divider PLLA MULA PLLA PLLA I't or, Z Divider PLLACK UPLL requires a 12 MHz crystal to generate 12x40 = 480 MHz frequency.	$f_{\text{COREPLLCK}} = f_{\text{ref}} \bigg(\text{MUL} + 1 + \frac{\text{FRACR}}{2^{22}} \bigg)$ The PLLA clock frequency is defined by the following formula: $f_{\text{PLL Clock}} = \frac{f_{\text{COREPLLCK}}}{(\text{DIVPMC} + 1)}$ The UPLL clock frequency is defined by the following formula: $f_{\text{PLL Clock}} = \frac{f_{\text{COREPLLCK}}}{2}$ Spread spectrum is embedded.

continued		
SAM9x5	SAM9X60	
PI	LL Setting Registers	
CKGR_PLLAR and PMC_PLLICPR set PLLA. PMC_USB sets USB clock.	PMC_PLL_CTRL0, PMC_PLL_CTRL1 and PMC_PLL_ACR configure PLLs.	
TIMO_GGB GGB GGB GIGGK.	PMC_PLL_SSR sets the spread spectrum.	
	PMC_PLL_UPDT applies the modification in a glitch-free manner to the selected PLLs.	
	ID = 0 for system PLL (former PLLA)	
	ID = 1 for USB PLL	
	PMC_USB sets USB clock.	
Peri	ipheral Clock Settings	
PMC_PCR enables and disables a peripheral	Only PMC_PCR can be used.	
using its identifier (PID).	The peripheral clock status is shown in PMC_PCR, or	
Alternatively, PMC_PCER and PMC_PCDR can be used to enable and disable a peripheral using the PID.	alternatively in PMC_CSRx.	
The peripheral clock status is shown in PMC_PCSR.		
Ge	eneric Clock Settings	
No generic clock is available.	A generic clock is available for most (serial) peripherals, making it possible to use: • a lower frequency for baud rates than for the peripheral clock, • serial baud rates that are not synchronous with the system clock, nor with other serial baud rates.	
	Source, divider and enable are selectable in PMC_PCR.	
	Prescaler /1, /2, /3, /256 GCLK[PID] (to peripherals) The generic clock status is shown in PMC_PCR, alternatively in PMC_GCSRx.	
	Peripherals supporting the generic clocks are listed in the datasheet, in table Peripherals Identifiers.	

continued				
SAM9x5	SAM9X60			
Programmable Clock Settings				
PMC_SCER and PMC_SCDR enable/disable PCKs.	Bitfield size is different. PMC_SCER and PMC_SCDR enable/disable PCKs.			

4.3 Power Management - ULP1

SAM9X60 introduces Ultra-Low Power 1 (ULP1) mode. In this mode, all clocks in the system are fed with the main clock (internal fast 12 MHz RC oscillator) and the main crystal is disabled. Power consumption is lower than ULP0 and wake-up time is far shorter (a few µs vs. a few ms in ULP0). The system wakes up with a programmable event (RTC/RTT alarm, USB Resume, Wake-On-LAN, WKUP1..13 lines).

One major use case for ULP1 is the support of USB device Suspend mode. In such applications, the MPU is powered by the USV VBUS rail. The total power allocated to a USB power system is 12.5 mW at 5V.

If USB Host applications are used, the suspend control of the USB PHYs must be implemented in the Special Function Registers (SFR), as they are not managed by the EHCI/OHCI peripherals.

ULP1 is controlled with bit PMC MOR.ULP1.

4.4 Matrix

Due to architecture upgrade and peripheral modifications, SAM9x5 and SAM9x60 master/slave tables differ. Matrix configuration software updates are required accordingly. Refer to the SAM9x60 data sheet for more details.

4.5 SRAM and L1 Cache Sizes

SRAM size is doubled to 64 Kbytes and I + D L1 cache sizes are doubled to 32 + 32 Kbytes. Modify cache management routines accordingly.

4.6 DMA

DMA is updated to a more featured version. Two 8-channel DMAs are replaced by one 16-channel DMA. Update software accordingly.

4.7 USB Device

USB device DPRAM is now 16,448 bytes, versus 4 Kbytes on SAM9x5. No dynamic allocation is needed; each endpoint has its own dedicated area in DPRAM.

4.8 Graphics

The LCD controller is improved. The hardware cursor layer is replaced by an overlay. Resolution is better (1024x768 vs. 800x600). Update software accordingly.

SAM9X60 introduces GFX2D, a new peripheral performing memory data move operations. Software is to be developed in order to support GFX2D and allow better performances for graphic operations. GFX2D peripheral identifier (PID) is 36.

4.9 Serial

Any SAM9x5 serial link such as USART, UART, SPI or I²C is updated to a FLEXCOM. Each FLEXCOM includes all serial features. As the software for USART, SPI and TWI are compatible, to work properly on SAM9x60 the only

modification consists in selecting the mode (USART, SPI, TWI) in the FLEX_MR register. Note that the FLEXCOM SPI function does not embed all SPI Chip Selects. NPCS1, NPCS2 and NPCS3 are no longer supported. Update software accordingly.

FLEXCOM3, FLEXCOM11 and FLEXCOM12 are added with respective PIDs 8, 31 and 32.

The SAM9X60 device features a 4-bit QSPI peripheral (PID 35). The QSPI clock is enabled and disabled using bits PMC_SCER.QSPICLK and PMC_SCDR.QSPICLK, respectively.

4.10 DDRC

Due to the following upgrades, the whole DDR controller initialization must be modified.

- Different controllers are used: SAM9x5 embeds one DDR controller that supports DDR2-SDRAM and SDR-SDRAM, while SAM9X60 embeds two separate controllers:
 - A multiport DDR controller to support DDR2-SDRAM and LPDDR1-SDRAM
 - An SDRAM controller to support SDR-SDRAM and LPSDR-SDRAM
- 2. On SAM9X60, SDR-SDRAM calibration is done automatically once at the initialization phase. DDR2-SDRAM and LPDDR1-SDRAM calibrations can be done at any time using the MPDDRC I/O Calibration register (MPDDRC_IO_CALIBR).

4.11 ADC

10-bit ADC is replaced by 12-bit ADC with more integration features, mainly PWM event and TC output internal triggers and PWM fault input drive. Update software accordingly.

Refer to the SAM9X60 data sheet for more details.

4.12 **SDMMC**

SDMMC is an evolution of HSMCI with a modified user interface. Features are upgraded and require software modification.

4.13 Audio

Multichannel I²S and CLASSD are added to existing SSC. Respective PIDs are 34 and 42.

Refer to 3. Peripheral Multiplexing on I/O Lines and to the SAM9X60 data sheet for more details.

4.14 Security

Security peripherals (TDES, AES, SHA, TRNG and Secure Boot) are added in SAM9X60. Respective PIDs are 40, 39, 41 and 38.

An OTP area is available to store user's certificates, keys and configuration.

A "disable JTAG" OTP bit is added to configuration bits.

An OTP Emulation mode is embedded to ease development. Use OTP with stable software only.

Refer to the SAM9X60 data sheet for more details.

4.15 ROM Code

The SAM9X60 ROM code features a secure bootloader supporting code integrity check, code authentication and code encryption.

Software Migration

A boot sequence register is added to define the NVM boot order. The boot select controller (BSC) is a 32-bit register in OTP. It is a scratchpad used by the boot program to store and read the bootable media location. It features a 16-bit write protection key on the MSBs and a 16-bit scratchpad on the LSBs.

Refer to the SAM9X60 data sheet for more details.

5. Fixed SAM9x5 Errata

The following SAM9x5 errata are fixed in SAM9X60. For further details on each erratum, refer to the SAM9x5 data sheets.

- · EBI: Data lines are Hi-Z after reset
- RSTC: Reset during SDRAM accesses
- SMC: SMC DELAY I/O registers are write-only
- UHPHS/UDPHS: Bad Lock of the USB High speed transceiver DLL
- · LCDC: LCDC PWM is not usable
- RTC: Interrupt Mask Register cannot be used
- SSC swaps channels in underrun/overrun conditions

- 6. Revision History
- 6.1 DS00003166A 10/2019

First issue.

The Microchip Website

Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Embedded Solutions Engineer (ESE)
- · Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these
 methods, to our knowledge, require using the Microchip products in a manner outside the operating
 specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of
 intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-4780-1

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit http://www.microchip.com/quality.

Worldwide Sales and Service

	1011/01010	1011/210/210	
AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4450-2828
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
http://www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
http://www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			
Fax: 905-695-2078			