

ADC Channel Switching Effect on I/O Pins

Author: Anthony Stram

Microchip Technology Inc.

INTRODUCTION

The analog functionality on microcontrollers can create complex interactions with the digital portion of the circuitry and the running firmware. The application can have undesired interactions unless the analog features are understood. This technical brief will describe the most common I/O issues that arise when switching between ADC channels.

BACKGROUND

Digital logic is utilized in controlling the analog channel multiplexer (MUX). As an artifact of using digital logic to switch between analog (ADC) channels, signals from different device pins can momentarily be connected. Two unrelated I/O pins can become connected when the ADC input channels are switched. The I/O can connect for the amount of time it takes the signal to propagate through the MUX to trigger the ADC channel to change. This connection can last up to 40 ns, which is longer than the minimum rise and fall times of the I/O pin logic, causing a glitch on the connected pins. This is enough time to have an effect on the pins since the rise and fall times of the pins are 15 to 30 ns. The effects of the glitch can last longer than 40 ns due to the time it takes for the pins to change their state back to their prior level.

As an example, if switching between ADC inputs AN2 and AN5, RB4 and RC0 could become connected for the duration of the switching time. Having RB4 set as an input that is driven half way between logic-high and logic-low can cause the glitch to be seen on RC0 if it is set as an output. When the two connected pins are at the same logic level, the glitch is minimized to less than 10 mV. In the extreme case where both pins are at differing logic levels, the glitch can be above 160 mV.

Another source of glitches can arise from switching the channels of the ADC itself. These glitches can be seen externally if the ADC input channel is also an input to an active comparator or op amp on the device. Three different sources of glitches can occur. Switching ADC channels changes the voltage across the ADC sample and hold capacitor (cap), which can cause glitches due to the potential differences across the cap. Depending

on the external voltage level applied across the cap, the glitch can be positive or negative in nature. A second glitch can occur while the first glitch is recovering. This second glitch is due to the cap being disconnected from the pin electronics. The third glitch happens when the conversion is complete and the cap is re-connected to the pin electronics.

WORKAROUND

Digital Inputs

When using the I/O pins as digital input, there are a few choices to avoid the ADC channel switching issues. If the input pin is being polled, an option is not to switch ADC channels while in the polling loop. If polling is not used, then the input pin should not be checked for a state change right after issuing an ADC channel switch. Insert a NOP (no operation) instruction after the channel change, and then check the input for state change. The better option, if only dealing with a state change, is software debouncing the input. Check the input several times, counting up the number of times a particular state is registered. Once enough counts of the state change are recorded, then the state variable can be changed. This way, any ADC channel switching glitches get filtered out of the possible state change.

Digital Outputs

Using the digital pin as an output can cause spurious glitches to external circuitry during the ADC channel switching. The output pin, when driven high or low, can see a glitch corresponding to the opposite direction of the driven state. As an example, if the output is driven high, then a negative going glitch of up to 200 mV below the high state can appear on the pin. This glitch can last anywhere from 15 to 40 ns depending on the settling time of the switching logic.

The main ways to reduce or eliminate the issue are to reduce the energy in the glitch, make external circuits immune to the glitch, or to filter out the glitch entirely. First, try adding a resistor to the output pin to limit the current in the glitch so that it will not appreciably affect external circuits. External circuits that have Schmitt Trigger inputs would be immune to the glitch due to their inherent hysteresis. Another option is to filter out the glitch.

A low-pass RC filter on the output pin will reduce or even eliminate any glitches from reaching the external circuitry. Several factors need to be accounted for in choosing the R and the C component values of the filter. The RC time constant should be longer than the time period of the glitch (t > 40 ns) to filter out the glitch.

EQUATION 1: RC TIME CONSTANT

$$t = R \times C$$

It is recommended to be careful with the frequency response of the RC low-pass filter, so that it does not interfere with the external circuit. At a minimum, the cut-off frequency should be a decade higher frequency than the highest frequency signal that the application will output on that pin.

EQUATION 2: CUT-OFF FREQUENCY

$$f_c = \frac{1}{2\pi RC}$$

As an approximation, using the glitch rise and fall times of 15 to 40 ns (tr) would give a frequency of interest in the range of 8 to 24 MHz (BW). This is a rough idea of the highest frequency component in the glitch based on the equation relating bandwidth to rise time.

EQUATION 3: BANDWIDTH TO RISE TIME RELATION

$$BW = \frac{0.35}{t_r}$$

Note:

 t_r = the 10-90% rise time of a square wave BW = the bandwidth of the signal

Analog Inputs

The first and second analog glitches can be reduced or eliminated by precharging the sample and the hold capacitor using the DAC. Set the DAC to a voltage level close to the expected voltage the ADC will sample to reduce the glitch. Charging the sample and the hold capacitor needs to be done before switching external ADC channels. If a close approximation of the voltage is known, then the DAC can be used to precharge the cap to a similar potential.

The third analog glitch is removed by switching the ADC to a different channel after the conversion is started, but before the conversion is complete. Start by selecting the conversion channel. Then start the conversion. Next, switch the ADC to the next channel to convert. Finally, the conversion completes and the process can be started over again.

CONCLUSION

Care should be taken when switching between ADC channels as the switching logic can inadvertently connect I/O pins. Using the recommendations above, most of the effects caused by channel switching can be mitigated. Modern MCUs with digital and analog components in close proximity can cause many previously unseen issues, but by following a few simple guidelines a robust application can be realized.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-765-2

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/

support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511

Fax: 86-28-8665-5511

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf

Tel: 49-2129-3766400

Germany - Karlsruhe

Tel: 49-721-625370 Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15