
 AN3320
 AVR318: Dallas 1-Wire® Master on tinyAVR® and

megaAVR®

Introduction

Author: Eivind Berntsen, Microchip Technology Inc.

Dallas 1-Wire® devices are unique in that only one wire, in addition to the ground, is needed to communicate with a
device. Power supply and communications are handled through only one connection. To communicate with a Dallas
1-Wire device, only one general purpose I/O pin is needed. This application note shows how a 1-Wire master can be
implemented on a Microchip AVR®, either in software only, or utilizing the U(S)ART module.

Features
• Supports Standard Speed Dallas 1-Wire Protocol
• Compatible With All AVRs
• Polled Or Interrupt-Driven Implementation
• Polled Implementation Requires No External Hardware

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 1

Table of Contents

Introduction...1

Features... 1

1. Theory of Operation - The Dallas 1-Wire® Protocol ...3

1.1. Basic Bus Signals...3
1.2. ROM Function Commands...6
1.3. Memory/Function Commands.. 7
1.4. Putting it All Together... 7
1.5. Cyclic Redundancy Check... 7

2. Implementation..9

2.1. Polled Drivers...9
2.2. CRC Computation.. 18
2.3. Code Examples..19

3. Get Source Code from Atmel | START..20

4. Getting Started.. 21

4.1. Source Code Overview.. 21

5. References..23

6. Revision History.. 24

The Microchip Website...25

Product Change Notification Service..25

Customer Support.. 25

Microchip Devices Code Protection Feature.. 25

Legal Notice... 25

Trademarks.. 26

Quality Management System... 26

Worldwide Sales and Service...27

 AN3320

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 2

1. Theory of Operation - The Dallas 1-Wire® Protocol
A 1-Wire bus uses only one wire for signaling and power. Communication is asynchronous and half-duplex, and it
follows a strict master/slave scheme. One or several slave devices can be connected to the bus at the same time.
Only one master should be connected to the bus.

The bus is idle high, so there must be a pull-up resistor present. To determine the value of the pull-up resistor, see
the data sheet of the slave device(s). All devices connected to the bus must be able to drive the bus low. An open-
collector or open-drain buffer is required if a device is connected through a pin that can not be put in a tri-state mode.

Signaling on the 1-Wire bus is divided into time slots of 60 μs. One data bit is transmitted on the bus per time slot.
Slave devices are allowed to have a time base that differs significantly from the nominal time base. This, however,
requires the timing of the master to be very precise to ensure correct communication with slaves with different time
bases. It is, therefore, very important to obey the time limits described in the following sections.

1.1 Basic Bus Signals
The master initiates every communication on the bus down to the bit-level. This means that for every bit that is to be
transmitted, regardless of direction, the master has to initiate the bit transmission. This is always done by pulling the
bus low, which will synchronize the timing logic of all units. There are five basic commands for communication on the
1-Wire bus: “Write 1”, “Write 0”, “Read”, “Reset”, and “Presence”.

“Write 1” signal
A “Write 1” signal is shown in the figure below. The master pulls the bus low for 1 to 15 μs. It then releases the bus
for the rest of the time slot.

Figure 1-1. "Write 1" Signal

“Write 0” signal
A “Write 0” signal is shown in the figure below. The master pulls the bus low for a period of at least 60 μs, with a
maximum length of 120 μs.

Figure 1-2. "Write 0" Signal

“Read” signal
A “Read” signal is shown in the figure below. The master pulls the bus low for 1 to 15 μs. The slave then holds the
bus low if it wants to send a ‘0’. If it wants to send a ‘1’, it simply releases the line. The bus should be sampled 15 μs
after the bus was pulled low. As seen from the master’s side, the “Read” signal is, in essence, a “Write 1” signal. It is
the internal state of the slave, rather than the signal itself that dictates whether it is a “Write 1” or “Read” signal.

Figure 1-3. “Read” Signal

“Reset/Presence” signal
A “Reset” and “Presence” signal is shown in the figure below. Note that the time scale is different from the first
waveforms. The master pulls the bus low for at least eight time slots, or 480 μs, and then releases it. This long low
period is called the “Reset” signal. If there is a slave present, it should then pull the bus low within 60 μs after it was
released by the master and hold it low for at least 60 μs. This response is called a “Presence” signal. If no presence

 AN3320
Theory of Operation - The Dallas 1-Wire® Protocol

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 3

signal is issued on the bus, the master must assume that no device is present on the bus, and further communication
is not possible.

Figure 1-4. "Reset" and "Presence" Signal

PresenceReset

Generating the signals in software
Generating the 1-Wire signals on an AVR in software only is straightforward. Simply changing the direction and value
of a general purpose I/O pin and generating the required delay is sufficient. A detailed description is given in the
Implementation section.

Generating the signals with a UART
The basic 1-Wire signals can also be generated by a UART. This requires both the TXD and RXD pins to be
connected to the bus. An external open-collector or open-drain buffer is required to allow slave devices to pull the bus
low when the UART output is high. The figure below shows the connection using NPN-transistors. The resistor values
are suggested values only. See the data sheet of the slave device for more information on the recommended pull-up
resistance.

Figure 1-5. Open Collector Buffer

BC 54
7

10K

10
0K

4.
7K

TXD

Bus

RXD

Vcc

BC 54
7

The UART data format used when generating 1-Wire signals is eight data bits, no parity, and one stop byte. One
UART data frame is used to generate the waveform for one bit or one RESET/PRESENCE sequence. The table
below shows how to set up the UART module to generate the waveforms and how to interpret the received data. The
corresponding UART bit patterns are shown in Figure 1-6, Figure 1-7, Figure 1-8, Figure 1-9, and Figure 1-10.

Table 1-1. UART Signaling

Signal Baud Rate Transmit Value Receive Value

Write 1 115200 FFh FFh

Write 0 115200 00h 00h

Read 115200 FFh FFh equals a ‘1’ bit. Anything else equals a ‘0’ bit.

Reset/Presence 9600 F0h F0h equals no presence. Anything else equals presence.

 AN3320
Theory of Operation - The Dallas 1-Wire® Protocol

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 4

Figure 1-6. "Write 1" Signal and UART Bit Pattern

STOPSTART 0 1 2 3 4 5 6 7

Waveform

UART bit pattern

Figure 1-7. "Write 0" Signal and UART Bit Pattern

STOPSTART 0 1 2 3 4 5 6 7

Waveform

UART bit pattern

Figure 1-8. "Read 0" Signal and UART Bit Pattern

STOPSTART 0 1 2 3 4 5 6 7

Waveform

UART bit pattern

Figure 1-9. "Read 1" Signal and UART Bit Pattern

STOPSTART 0 1 2 3 4 5 6 7

Waveform

UART bit pattern

 AN3320
Theory of Operation - The Dallas 1-Wire® Protocol

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 5

Figure 1-10. Reset/Presence Signal with the UART

STOPSTART 0 1 2 3 4 5 6 7

RESET PRESENCE

Waveform

UART bit pattern

1.2 ROM Function Commands
Every 1-Wire device contains a globally unique 64-bit identifier number stored in ROM. This number can be used to
facilitate addressing or identification of individual devices on the bus. The identifier consists of three parts; an 8-bit
family code, a 48-bit serial number, and an 8-bit CRC computed from the first 56 bits. A small set of commands that
operate on the 64-bit identifier is defined. These are called ROM function commands. The table below lists the six
defined ROM commands.

Table 1-2. ROM Commands

Command Code Usage

READ ROM 33H Identification

SKIP ROM CCH Skip addressing

MATCH ROM 55H Address specific device

SEARCH ROM F0H Obtain IDs of all devices on the bus

OVERDRIVE SKIP ROM 3CH Overdrive version of SKIP ROM

OVERDRIVE MATCH ROM 69H Overdrive version of MATCH ROM

READ ROM command
The “READ ROM” command can be used on a bus with a single slave to read the 64-bit unique identifier. If there are
several slave devices connected to the bus, the result of this command will be the AND result of all slave device
identifiers. Assumed that communication is flawless, the presence of several slaves is indicated by a failed CRC.

SKIP ROM command
The “SKIP ROM” command can be used when no specific slave is targeted. On a one-slave bus, the “SKIP ROM”
command is sufficient for addressing. On a multiple-slave bus, the “SKIP ROM” command can be used to address all
devices at once. This is only useful when sending commands to slave devices, e.g., to start temperature conversions
on several temperature sensors at once. It is not possible to use the “SKIP ROM” command when reading from slave
devices on a multiple-slave bus.

MATCH ROM command
The “MATCH ROM” command is used to address individual slave devices on the bus. After the “MATCH ROM”
command, the complete 64-bit identifier is transmitted on the bus. When this is done, only the device with exactly this
identifier is allowed to answer until the next reset pulse is received.

SEARCH ROM command
The “SEARCH ROM” command can be used when the identifiers of all slave devices are not known in advance. It
makes it possible to discover the identifiers of all the slaves present on the bus. First, the “SEARCH ROM” command
is transmitted on the bus. The master then reads one bit from the bus. Each slave places the first bit of its identifier

 AN3320
Theory of Operation - The Dallas 1-Wire® Protocol

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 6

on the bus. The master will read this as the logical AND result of the first bit of all slave identifiers. The master then
reads one more bit from the bus. Each slave then places the complement of the first bit of its identifier on the bus.
The master will read this as the logical AND of the complement of the first bit of the identifier of all slaves. If all
devices have ‘1’ as the first bit, the master will have read 10b. Similarly, if all devices have ‘0’ as the first bit, the
master will have read 01b. In these cases, the bit can be stored as the first bit of all addresses. The master will then
write back this bit, which in effect, will tell all slaves to keep sending identifier bits. If there are devices with both ‘0’
and ‘1’ as the first bit in the identifier on the bus, the master will have read 00. In this case, the master must choose,
whether to continue with the addresses that have ‘0’ in this position or ‘1’. The choice is transmitted on the bus, in
effect making all slaves that do not have this bit in this position of the identifier, enter an idle state.

The master then goes on to read the next bit, and the process is repeated until all 64 bits are read. The master
should then have discovered one complete 64-bit identifier. To discover more identifiers, the “SEARCH ROM”
command should be run again, but this time a different choice for the bit value should be made the first time there is a
discrepancy. Repeating this once for each slave device should discover all slaves. Note that when one search has
been performed, all slaves except one should have entered an idle state. It is now possible to communicate with the
active slave without specifically addressing it with the MATCH ROM command.

Overdrive ROM commands
The overdrive ROM commands are not covered here since overdrive mode is outside the scope of this document,
only covering standard speed.

1.3 Memory/Function Commands
Memory/function commands are commands that are specific to one device or a class of devices. These commands
typically deal with reading and writing of internal memory and registers in slave devices. Several memory/function
commands are defined, but all commands are not used by all devices. The order of writes and reads is specific to
each device, not part of the general specification. Memory commands will, therefore, not be covered in detail here.

1.4 Putting it All Together
All 1-Wire devices follow a basic communication sequence:

1. The master sends the “Reset” pulse.
2. The slave(s) respond with a ”Presence” pulse.
3. The master sends a ROM command. This effectively addresses one or several slave devices.
4. The master sends a Memory command.

Note:  To reach each step, the last step has to be completed. It is, however, not necessary to complete the whole
sequence. E.g., it is possible to send a new “Reset” after finishing a ROM command to start a new communication.

1.5 Cyclic Redundancy Check
Cyclic Redundancy Check (CRC) is used by 1-Wire devices to ensure data integrity. The theory behind CRC is
outside the scope of this document and will not be further discussed. See “Reference, 2” for more information on
CRC.

Two different CRC’s are commonly found in 1-Wire devices. One 8-bit CRC (Dallas One Wire CRC, DOW-CRC, or
simply CRC8) and one 16-bit CRC (CRC16). CRC8 is used in the ROM section of all devices. CRC8 is also, in some
devices, used to verify other data like commands issued on the bus. CRC16 is used by some devices to check for
errors on larger data sets.

The hardware equivalent of the 8-bit CRC used on the 64-bit identifier is shown in the first figure below. The blocks
represent the individual bits in an 8-bit shift register. The equivalent CRC polynomial is X8+X5+X4+1.

 AN3320
Theory of Operation - The Dallas 1-Wire® Protocol

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 7

Figure 1-11. Hardware Equivalent of an 8-bit CRC used in 1-Wire Devices

X0 X1 X2 X3 X4 X5 X6 X7

Input
X8

The hardware equivalent of the 16-bit CRC used in some 1-Wire devices is shown in the figure below. The blocks
represent the individual bits in a 16-bit shift register. The equivalent polynomial is X16+X15+X2+1.

Figure 1-12. Hardware Equivalent of a 16-bit CRC used in 1-Wire Devices

Input

X0 X1 X2 X3 X4 X5 X6 X7

X8 X9 X10 X11 X12 X13 X14 X15 X16

 AN3320
Theory of Operation - The Dallas 1-Wire® Protocol

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 8

2. Implementation
Three different 1-Wire implementations are discussed here; software only (polled), polled UART, and interrupt-driven
UART. A short description of each is given below. Detailed information about the usage of the drivers is not included
in this document. See the documentation included with the source code for this application note for details on how to
use the different drivers.

It is possible to implement the 1-Wire protocol in software only, without using any special hardware. This solution has
the advantage that the only hardware it occupies is one general purpose I/O pin (GPIO). Since all GPIO pins on the
AVR are bi-directional and have selectable internal pull-up resistors, the AVR can control a 1-Wire bus with no
external support-circuitry. In case the internal pull-up resistor is not suitable for the current configuration of slave
devices, only one external resistor is needed. On the downside, this implementation relies on busy waiting during
“Reset/Presence” and bit signaling. To ensure correct timing on the 1-Wire bus, interrupts must be disabled during
the transmission of bits. The allowed delay between transmission of two bits (recovery time) has no upper limit,
however, so it is safe to handle interrupts after every bit transmission. This makes the worst-case interrupt latency
due to 1-Wire bus activity equal to the execution time of the “Reset/Presence” signal, less than 1 ms.

The polled UART driver uses the UART module found on many AVRs to generate the necessary waveforms at the
bit-level. The rest of the driver is equal to the software only driver. The main advantage with this driver compared to
the software-only driver is code size and the fact that interrupts do not need to be turned off during bit signaling since
the UART module handles the timing details independently. On the downside, it requires two GPIO pins and some
external support circuitry.

The interrupt-driven UART driver uses the UART to generate the waveforms in the same way as the polled UART
driver. Also, takes advantage of the interrupt capabilities found in the UART module to automate sending or receiving
up to 255 bits of data.

2.1 Polled Drivers
The polled drivers are divided into two parts. The bit-level waveform generation and the higher-level commands like
transmission of bytes and implementation of ROM commands. Only the bit-level procedures are different between the
two versions, but they are implemented with a common interface, allowing the higher-level commands to be used
with either driver.

2.1.1 Software Only Implementation
With the software only implementation provided with this application note, it is possible to have several 1-Wire buses
connected to one AVR. All buses must, however, be connected to the same I/O port, but which port is optional at
compile-time. This limits the number of buses to eight, but the placement of buses within the port is fully configurable.
All pins not used for 1-Wire buses are unaffected. Since all 1-Wire buses are connected to the same port, several
operations can be performed on one or more buses at the same time. This is accomplished through an argument
called pin or pins, that is passed to every function. This argument should contain a bitmask of the pins that should be
used for this operation. It is, for instance, possible to send the Reset signal to eight buses at the same time by
passing 0xff as the pins argument. The value returned from the same function will be a bitmask of all buses where
one or more slave devices answered with a presence signal. This bitmask can then be passed as the pins argument
to a function issuing the SKIP ROM command, and so on. All functions in this implementation support pin selection.
As a general rule, all commands that write to the bus can address several buses at the same time. Commands that
read more than one bit from the bus in some way can only address one bus.

Initialization
The initialization procedure for the software only 1-Wire interface is really simple. It consists only of setting the 1-Wire
pins in input mode, and enable the internal pull-up resistor, if required, to put the bus in idle mode. Some devices will
react to this rising edge on the bus as the end of a Reset signal and reply with a Presence signal. To ensure that this
signal does not interfere with any communication, a delay equally long to the reset recovery time is inserted.

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 9

Bit-level functions
The bit-level functions are implemented according to application note AN126 from Maxim Integrated. All timing
parameters comply with the recommended values in this application note. Ten different delays are needed. These are
listed in the table below.

Table 2-1. Bit Transfer Layer Delays

Parameter Recommended Delay [μs]

A 6

B 64

C 60

D 10

E 9

F 55

G 0

H 480

I 70

J 410

Note:  G delay is zero in standard mode.

Since the I/O operations are implemented in C and not assembly language, compiler optimizations and other factors
could affect timing. It is recommended to observe the waveforms generated by each bit-level function with an
oscilloscope and adjust delays if needed.

The bit transfer layer functions are implemented, as shown in the figure below. Note that the function
“DetectPresence” both sends the “Reset” signal, and listens for the “Presence signal”. Note that all bit transfer layer
functions can address several buses at the same time.

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 10

Figure 2-1. Bit Transfer Layer Functions

WriteBit1 WriteBit0 ReadBit

Return Return

Return

DetectPresence

Return

Disable interrputs

Restore interrupts

Disable interrputs

Restore interrupts

Disable interrputs

Restore interrupts

Disable interrputs

Restore interrupts

Drive bus low

Delay A

Relase bus

Delay B

Drive bus low

Delay C

Release bus

Delay D

Drive bus low

Delay A

Release bus

Delay E

Read bus state

Delay F

Drive bus low

Delay H

Release bus

Delay I

Read bus state

Delay J

Two macros are included to drive the bus low and to release the bus. These are implemented as macros because
they occur frequently, and the overhead caused by function calls is unwanted because of the strict timing
requirements.

2.1.2 Polled UART Implementation
In this implementation, all the timing details are taken care of by the UART module. To send a bit, the UART baud
rate is set to the appropriate value, and the UART data register is loaded with a value that will generate the desired
waveform as described in the “Generating the signals with a UART” section.

Initialization
To initialize the 1-Wire interface for the polled UART driver, the UART module has to be initialized with the right
parameters. Enable transmission and reception, set data format to eight bits, no parity, one stop bit and set the baud
rate to 115.2 kBaud.

This will cause the TXD pin to enter a UART idle state, which is a logic high. Slave devices will interpret this rising
edge as the end of a RESET signal, and answer with a presence signal.

Bit-level functions
All bit-level functions in the Polled UART driver are implemented through one common function called
OWI_TouchBit. This function outputs the first input argument to the UART module, waits until the UART reception is
complete, and then returns the AVR318112579A-AVR-09/04 received value. Each of the bit-level functions calls
OWI_TouchBit with the value that will generate the correct waveform on the bus.

The interface to these functions is the same as for the software only implementation. The pins argument is,
however, not necessary in the polled UART driver. A set of macros makes it possible to call these functions with or
without the pins argument. If the pins argument is included, it will be removed by the macros.

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 11

2.1.3 Higher Level Functions
Note that many functions in this layer accept an argument of type unsigned char pointer. This pointer should point to
an array of eight bytes of memory that can be used by the function. Allocation, and sometimes initialization of these
arrays must be done by the caller. This document clearly states when the memory has to be initialized in a special
way before calling a function.

2.1.3.1 Byte Transmission Functions
Figure 2-2. Byte Transmission Functions

SendByte ReceiveByte

temp = data & 0x01

ReadBit

Result of
ReadBit

Right shift data

Set msb of data

0

1

Bits left?

Return data

Yes

No

Set data = 0

Value of temp

1

0

Right shift data

WriteBit1 WriteBit0

Bits left?

Yes

Return

No

2.1.3.2 ROM Commands
All general ROM commands for standard speed communication are implemented.

The simplest ROM command is the SKIP ROM command. It simply calls the SendByte function with the SKIP ROM
command byte as argument.

Flowcharts for the READ ROM and MATCH ROM commands are shown in the figure below.

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 12

Figure 2-3. Read ROM Flowchart and Match ROM Flowchart

ReadRom

SendByte(READ ROM
command)

Finished all 8
bytes?

MatchRom

Send MATCH ROM
command

SendByte

Finished all 8
bytes?

No

Yes

Return

ReceiveByte
No

Return

Yes

The flowchart for the SEARCH ROM command is shown in the figure below. This function will find one slave device
for each time it is run until there are no undiscovered slave devices on the bus. The last time it is run, it will return
OWI_ROM_SEARCH_FINISHED. In addition to the ‘pin’ parameter, used to select which bus to perform the search
on, two parameters must be passed to this function: ‘lastDeviation’ and ‘bitPattern’. These parameters control the
slave device search. Refer to the table below to understand how to use these parameters to complete a full search
for all slave devices.

Table 2-2. bitPattern and lastDeviation Usage

BitPattern lastDeviation

First time Zero filled eight byte array 0

Consecutive runs A copy of the eight-byte array returned through bitPattern
pointer last run

Value returned from SearchRom
last run

The function is implemented in this way to give the caller maximum flexibility. The example software for the polled
driver shows how it can be used to implement the full search.

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 13

Figure 2-4. Search ROM Command

SearchRom

Set bitIndex = 1

Send SEARCH
ROM command

Read bit twice

Both bits = 1?

Send
bitPattern[bitIndex]

Return
newDeviation

bit1 ‡ bit2

Error, set newDeviation to
ROM_SEARCH_FAILEDYes

Set
bitPattern[bitIndex]

to first bit read

No

No

Yes

bitIndex =
lastDeviation?

Set
bitPattern[bitIndex]

to 1
Yes

bitIndex >
lastDeviation?

No

Yes
Set

bitPattern[bitIndex]
to 0

Set newDeviation to
bitIndex

bitPattern[bitIndex] = 0? Yes

No

Increment bitIndex

bitIndex > 64?

No

Yes

Set newDeviation to
0

No

Error

All slaves have the same
bit at this position

There are
both 0's and

1's at this
bit position.

This is
where the

actual
search takes

place.

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 14

2.1.4 Timing Considerations
It is important to be able to generate the waveforms as precisely as possible. To do this, precise delays are needed.
The number of clock cycles needed to delay for a certain number of microseconds is computed at compile time.
When generating waveforms, some clock cycles are lost when pulling the bus low and when releasing the bus. These
clock cycles are subtracted from the number of clock cycles needed to generate the delay. If the clock frequency is
too low, this could generate a negative delay. A clock frequency higher than 2.17 MHz is needed to be able to
generate the shortest delays.

2.1.5 Interrupt-driven UART Implementation
The interrupt-driven UART driver has the same hardware requirement as the polled UART driver.

The basic functionality of the interrupt-driven implementation presented in this application note is to automate
transmission and reception of larger chunks of data on the bus. This is done in two Interrupt Service Routines (ISRs).
A set of helper functions can be called to set up all the necessary parameters, and these ISRs completes the
transaction automatically. It is possible to do a Reset/Presence sequence or transfer anywhere between 1 and 255
bits of data in one direction without intervention.

To make the ISRs as simple as possible, they do not differentiate between transmission and reception. The UDRE
ISR simply sends one bit from the data buffer every time it is run. The RXC ISR receives the same bit and puts it
back into the data buffer no matter which direction data was sent. During transmission, the data sent will be identical
to the data received, and the data buffer remains unchanged. During the reception, only ‘1’s should be transmitted,
since the ‘write 1’ waveform is the same as the read waveform. The signal is sampled to find the value written by the
slave device. This value is then placed in the data buffer.

Three global flags signal the state of the 1-Wire driver; busy, presence, and error. The busy flag is set as long as
there is more data to transfer. The presence flag is set if a Presence signal is detected when sending a Reset signal.
This flag remains set until a Reset signal on the bus does not return a Presence signal. The error flag is set when the
UART receiver detects a frame error. In this situation, a new Reset signal should be transmitted on the bus. This will
reset all slaves on the bus, as well as the internal state of UDRE and RXC ISRs.

As ISRs should be executed as quickly as possible, more complex functions like ROM commands are not
implemented in the ISRs. The included example code shows how such behavior could be implemented in a Finite
State Machine (FSM).

2.1.5.1 The Interrupt Service Routines
Flowcharts for the ISRs are shown in the two figures below. The UART Data Register Empty (UDRE) ISR is run every
time there is room for data in the UART transmission buffer. The UART Receive Complete (RXC) ISR is run every
time data has been received and is ready in the UART reception buffer. Flowcharts for the helper functions are shown
in figure Helper Functions.

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 15

Figure 2-5. UDRE Interrupt Service Routine

UDRE ISR

Write '0' bit

LSB
of Transmit
buffer=1?

Write '1' bit

Yes

Right shift Transmit
buffer

Increase bits sent

bits sent =
bufferLength?

Return

Yes No

No

Set bits sent to 0

Stop further
transmission

Transmit buffer =
OWI data buffer[0]

No

Adjust byte index
and fetch new byte
to transmit buffer

BAUD rate
= 9600

No

Transmit Reset
signal

Set bits sent = 0

Yes

Stop further
transmission

Bits sent = 0? Yes

Full byte sent?

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 16

Figure 2-6. RXC Interrupt Service Routine

UART RXC ISR

Baud Rate =
9600

Set/clear presence
flag

Yes

Set Baud Rate =
115200

Received a '1'
bit?

Set msb of receive
buffer

Yes

No

Increase bits
received

bits received =
buffer lenght?

No

Return

Clear OWI busy flag

Yes

Set bits received = 0

Clear OWI busy flag

Right shift receive
buffer

OWI data
buffer[ibyte index] =

receive buffer

Frame error?

No

Yes

Read UART data
register

Flag error

Place receive buffer
in dataBuffer

Bits received = 0

Adjust receive
buffer

Read UART data
register

No

Set byte index = 0

Clear OWI busy flag

Stop further
transmission

Increase byteIndex

Full byte
received

No

Yes

No need to explicitly set msb to
'0', since a '0' was just shifted

in.

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 17

2.1.5.2 Helper Functions
The helper functions set up some parameters that are necessary for the automated interrupt-driven transmission to
succeed. After setting up all the necessary parameters, the transmission is initiated by enabling the UDRE interrupt.

Flowcharts for the helper functions are shown in the figure below.

Note that the ReceiveData function fills the data buffer with ‘1’s and calls the TransmitData function. The RXC ISR
will sample the signal and place the value read from the slave device into the data buffer.

Figure 2-7. Helper Functions

TransmitData

Set data buffer
pointer

Set OWI busy flag

DetectPresence

Baud rate = 9600

Set OWI busy flag

Return

Return

Start transmission

Set buffer length

ReceiveData

Return

TransmitData

Fill data with 1s

Start transmission

2.2 CRC Computation
The algorithm used to compute the two different CRC’s are described below.

The CRC is either set to 0 or a CRC “seed”. This is explained below.
1. Find the "logical exclusive or" (XOR) between the LSB of the CRC and the LSB of the data.
2. If this value is 0. Right shift CRC.
3. If the value was 1:

3.1. Find the new CRC value by taking the "logical exclusive or" (XOR) of the CRC and the CRC
polynomial.

3.2. Right shift CRC.
3.3. Set the MSB of the CRC to 1.

4. Right-shift the data.
5. Repeat the complete sequence eight times.

This algorithm can be used to compute both CRC8 and CRC16. The only difference is the width of the CRC shift
register (eight bits for CRC8, 16 bits for CRC16) and the value of the polynomial. This number will simulate the
connection of the XOR gates in hardware. The value of the polynomial is 18h for CRC8 and 4002h for CRC16.

The algorithms are implemented to find the CRC value of one byte at a time, but a CRC “seed” can be passed as an
argument to the CRC routines. In this way, the result of one CRC operation can be passed to the next one along with
the next byte, in effect computing the CRC of an arbitrary number of bytes.

CRC checking of 64-bit identifiers is implemented in OWI_CheckRomCRC. It simply computes the CRC8 value of the
first 56 bits and compares it to the last eight bits of the identifier.

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 18

2.3 Code Examples
The two code examples included shows how to use the different implementations of the 1-Wire driver.

2.3.1 Polled Example
The code example for the polled drivers will search the buses defined by “BUSES” for devices. The devices are
stored in an array of type OWI_device. OWI_device is a struct containing information about what bus a device is
connected to and its 64-bit identifier. The driver then searches through the available slave devices for a DS1820
temperature sensor on PORTD0. If the device is found on the bus, it will constantly be negotiated in an eternal loop.
In each iteration, the temperature of the DS1820 is polled, and the temperature is output to PORTB, so it can be
observed, for instance, on the LEDs of an STK®600 development board.

This code example is intended to show how the different parts of the driver can be used. The code is very general,
and not optimized for the objective. Note that because of this, the code example will not fit on a device with less than
4 KB of program memory. The driver is, however, fully compatible with all AVR microcontrollers, including 1 KB
devices.

2.3.2 Interrupt-Driven Example
In the interrupt-driven example, a finite state machine (FSM) is implemented. If the driver is not busy transmitting data
on the bus, this FSM is called from an eternal loop. When the driver is busy, the FSM will be skipped to allow any
other code to be run. The FSM itself assumes that there is a sole DS1820 temperature sensor available on the bus. It
will read the current temperature, and compute the CRC to make sure that it was read correctly. The temperature is
then put in a global variable. Whenever the driver is busy, the eternal loop outputs the temperature to PORTB, so it
can be observed, for instance, on the LEDs of an STK600 development board.

 AN3320
Implementation

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 19

3. Get Source Code from Atmel | START
The example code is available through Atmel | START, which is a web-based tool that enables configuration of
application code through a Graphical User Interface (GUI). The code can be downloaded for both Atmel Studio and
IAR Embedded Workbench® via the direct example code-link below or the Browse examples button on the Atmel |
START front page.

The Atmel | START webpage: https://start.atmel.com/

Example Code

• Polled example:
– https://start.atmel.com/#example/Atmel:avr318_dallas1wire:

1.0.0::Application:AVR318_Dallas1Wire_Master_Polled:
• Interrupt driven example:

– https://start.atmel.com/#example/Atmel:avr318_dallas1wire:
1.0.0::Application:AVR318_Dallas1Wire_Master_Interrupt:

Click User guide in Atmel | START for details and information about example projects. The User guide button can be
found in the example browser, and by clicking the project name in the dashboard view within the Atmel | START
project configurator.

Atmel Studio

Download the code as an .atzip file for Atmel Studio from the example browser in Atmel | START by clicking
Download selected example. To download the file from within Atmel | START, click Export project followed by
Download pack.

Double click the downloaded .atzip file, and the project will be imported to Atmel Studio 7.0.

IAR Embedded Workbench

For information on how to import the project in IAR Embedded Workbench, open the Atmel | START User Guide,
select Using Atmel Start Output in External Tools, and IAR Embedded Workbench. A link to the Atmel | START User
Guide can be found by clicking Help from the Atmel | START front page or Help And Support within the project
configurator, both located in the upper right corner of the page.

 AN3320
Get Source Code from Atmel | START

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 20

https://start.atmel.com/
https://start.atmel.com/#example/Atmel%3Aavr318_dallas1wire%3A1.0.0%3A%3AApplication%3AAVR318_Dallas1Wire_Master_Polled%3A
https://start.atmel.com/#example/Atmel%3Aavr318_dallas1wire%3A1.0.0%3A%3AApplication%3AAVR318_Dallas1Wire_Master_Polled%3A
https://start.atmel.com/#example/Atmel%3Aavr318_dallas1wire%3A1.0.0%3A%3AApplication%3AAVR318_Dallas1Wire_Master_Interrupt%3A
https://start.atmel.com/#example/Atmel%3Aavr318_dallas1wire%3A1.0.0%3A%3AApplication%3AAVR318_Dallas1Wire_Master_Interrupt%3A
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-START-User-Guide-DS50002793A.pdf

4. Getting Started
This section outlines how to get started with the example code included with this application note.

4.1 Source Code Overview

4.1.1 Polled Driver
A short description of each file in the polled driver is shown in the table below.

Table 4-1. Polled Driver Files

File Contains

main.c Code example for the polled driver

OWISWBitFunctions.c Implementation of the software only bit-level functions

OWIUARTBitFunctions.c Implementation of the UART bit-level functions

OWIBitFunctions.h Common header file for OWISWBitFunctions.c and OWIUARTBitfunctions.c

OWIHighLevelFunctions.c High-level functions

OWIHighLevelFunctions.h Header file for OWIHighLevelFunctions.c

OWIPolled.h Configuration header file for the polled drivers

• Open the Atmel Studio 7 project or IAR project. (After downloading .atzip from Atmel START and importing in
Atmel Studio 7 or IAR.)

• Open the file OWIPolled.h for editing and locate the section named “User defines”
• Choose between ‘software only’ or ‘UART driver’ by uncommenting one of the lines as described in the file
• Move down to the section corresponding to the selected driver
• Adjust the defines in the section according to the hardware setup as described in the file
• The project is now ready to be compiled
• Driver mode can be selected as OWI_SOFTWARE_DRIVER or OWI_UART_DRIVER from the OWIPolled.h file. For

OWI_UART_DRIVER mode, the open-drain circuit needs to be connected at TXD and RXD pins, as shown in the
figure below. DQ is one wire interface from the 1-Wire device.
Figure 4-1. Open Drain Circuit

4.1.2 Interrupt-driven Driver
A short description of each file in the interrupt-driven driver is shown in the table below.

Table 4-2. Interrupt Driver Files

File Contains

main.c Code example for the interrupt-driven driver

OWIInterruptDriven.h Configuration header file for the interrupt-driven driver

 AN3320
Getting Started

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 21

...........continued
File Contains

OWIIntFunctions.c Implementation of the interrupt-handlers and helper functions

OWIIntFunctions.h Header file for OWIIntFunctions.c

To get started with the interrupt-driven driver, follow the steps below:
• Open the Atmel Studio 7 project or IAR project. (After downloading .atzip from Atmel START and importing in

Atmel Studio 7 or IAR.)
• Open the file OWIInterruptDriven.h for editing and locate the section named “User defines”
• Change the defines in the “User defines” section to reflect the hardware setup
• The project is now ready to be compiled
• Open drain circuit needs to be connected at TXD and RXD pins as shown in the figure Open Drain Circuit

 AN3320
Getting Started

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 22

5. References
1. Application note 126, 1-Wire communication through software, Maxim Integrated, 2002.
2. Application note 937, Book of iButton standards, Maxim Integrated, 2002.
3. Tutorials 214, Using a UART to implement a 1-wire bus master, Maxim Integrated, 2002.

 AN3320
References

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 23

6. Revision History
Doc. Rev. Date Comments

A 11/2019 Converted to Microchip format and
replaced the Atmel document
number 2579

2579B 10/2016 Atmel START code release

2579A 09/2004 Initial document release

 AN3320
Revision History

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 24

The Microchip Website
Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files
and information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

 AN3320

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 25

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-5272-0

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit http://www.microchip.com/quality.

 AN3320

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 26

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
http://www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2019 Microchip Technology Inc. Application Note DS00003320A-page 27

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Features
	Table of Contents
	1. Theory of Operation - The Dallas 1-Wire® Protocol
	1.1. Basic Bus Signals
	1.2. ROM Function Commands
	1.3. Memory/Function Commands
	1.4. Putting it All Together
	1.5. Cyclic Redundancy Check

	2. Implementation
	2.1. Polled Drivers
	2.1.1. Software Only Implementation
	2.1.2. Polled UART Implementation
	2.1.3. Higher Level Functions
	2.1.3.1. Byte Transmission Functions
	2.1.3.2. ROM Commands

	2.1.4. Timing Considerations
	2.1.5. Interrupt-driven UART Implementation
	2.1.5.1. The Interrupt Service Routines
	2.1.5.2. Helper Functions

	2.2. CRC Computation
	2.3. Code Examples
	2.3.1. Polled Example
	2.3.2. Interrupt-Driven Example

	3. Get Source Code from Atmel | START
	4. Getting Started
	4.1. Source Code Overview
	4.1.1. Polled Driver
	4.1.2. Interrupt-driven Driver

	5. References
	6. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

