

AN-140
Programmable Guide and Supporting

Software for KSZ88xxM Generic Bus Interface

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

May 2007

M9999-053107-1.0

Introduction
KSZ88xxM software drivers work for KSZ8841M,
KSZ8842M, and KSZ8862M devices and are
independent from hardware platforms and operating
systems. The KSZ88xxM software drivers support the
generic bus or non-PCI bus interface.
This application note provides step-by-step procedure as
to which registers and values need to be initialized, how
to transmit data from host processor to the device, and
how to receive data from the device to host processor as
well as available Application Programming Interface
(API) driver functions for user.
The following topics will be discussed:

• Initialization routine for KSZ88xxM devices
• Driver routine and flowchart for transmit

packet from host processor to KSZ88xxM
• Driver routine and flowchart for receive

packet from KSZ88xxM to host processor
• Hardware platform supported by KSZ88xxM

drivers
• KSZ88xxM driver Application Programming

Interface (API) reference

Please refer to individual of KSZ88XXM datasheet for
detail register information.

Initialization Routine for KSZ88xxM
Devices
The initialization routine is the first routine in the
hardware-specific sub-layer that the system calls during
initialization. The purpose of this routine is to prepare
the KSZ88xxM device and the software driver for
immediate use by the system.

Initialization Setting for Switch and PHY
Function Block Registers
This section describes the typical register settings for the
switch function block with generic bus interface. User
can use the default value for most of the switch
registers. The following Table 1 describes all registers
which need to be set to a value other than the default
value and read back to verify.

Register Name [bit] Description
BAR[15:0] Base address for KSZ88xxM. It will load from external EEPROM if EEEN=1, otherwise this value is

default 0x0300
MARH[15:0]
MARM[15:0]
MARL[15:0]

Host MAC address. It will load from external EEPROM if EEEN=1, otherwise this value is written by user.
MARH[15:0]->MAC[47:32], MARM[15:0]->MAC[31:16], MARL[15:0]->MAC[15:0]

MACAR1[15:0]
MACAR2[15:0]
MACAR3[15:0]

This MAC address is used for sending PAUSE frame. This value normally is same as MARH, MARM and
MARL.
MACAR1[15:0]->[47:32], MACAR2[15:0]->[31:16], MACAR3[15:0]->[15:0]

SGCR1[8] This bit set 1 to enable more aggressive back off algorithm in half-duplex mode to enhance performance
SGCR2[3] The switch does not drop packets when 16 or more collisions occur if this bit set to 1
SGCR3 [5] This bit set 1 to enable full-duplex flow control on switch Host port
P1/2CR2[12:11] The bit 12 set 1 always to enable flow control on the port, regardless of AN result

The bit 11 set 1 to enable port’s half-duplex back pressure
P1/2CR4[13] This bit set 1 to restart auto-negotiation
SIDER [15:0] Bit [15:1] is used to verify family ID, chip ID and revision ID. Bit [0] is set 1 to start the switch (for two port)

or operate (for one port) function
QRFCR[12] This bit set to 1 to configure the watermark at 2KBytes

Table 1. Initialization Setting for Switch and PHY Function Block Registers

Micrel, Inc. AN-140

May 2007 2 M9999-053107-1.0

Initialization Setting for Transmit Function Block Registers
This section describes the typical register settings for transmitting packets from host processor to KSZ88xxM with generic
bus interface. User can use the default value for most of the transmit registers. The following Table 2 describes all
registers which need to be set to a value other than the default value and read back to verify.

Register Name [bit] Description
TXCR[3:0] Set transmit control function as below:

Set bit 3 to enable transmit flow control. Set bit 2 to enable transmit padding.
Set bit 1 to enable transmit CRC. Set bit 0 to enable transmit block operation.

TXFDPR[14] Set bit 14 to enable QMU transmit frame data pointer auto increment.
ISR[15:0] Write 1 (0xFFFF) to clear all interrupt status bits in Interrupt Status Register.
IER[14] Set bit 14 to enable transmit interrupt.

Table 2. Initialization Setting for Transmit Function Block Registers

Initialization Setting for Receive Function Block Registers
This section describes the typical register settings for receiving packet from KSZ88xxM to host processor with generic bus
interface. User can use the default value for most of the receive registers. The following Table 3 describes all registers
which need to be set to a value other than the default value and read back to verify.

Register Name [bit] Description
RXCR[10][7:5][3][0] Set receive control function as below:

Set bit 10 to enable receive flow control. Set bit 7 to enable receive broadcast frames.
Set bit 6 to enable receive multicast frames Set bit 5 to enable receive unicast frames
Set bit 3 to enable receive to strip CRC. Set bit 0 to enable receive block operation.

RXFDPR[14] Set bit 14 to enable QMU receive frame data pointer auto increment.
IER[13] Set bit 13 to enable receive interrupt.

Table 3. Initialization Setting for Receive Function Block Registers

Driver Routine for Transmit Packet from Host Processor to KSZ88xxM
The transmit routine is called by the upper layer to transmit a contiguous block of data through the Ethernet controller. It is
user’s choice to decide how the transmit routine is implemented. The software may elect to wait until the Ethernet
controller is ready to transmit new data and then synchronously send the new frame, or it may append the new frame to a
queue in software and transmit the data asynchronously when a transmit completed interrupt signals that the controller is
able to accept a new transmit request.
If the Ethernet controller encounters an error while transmitting the frame, it’s the user’s choice to decide whether the
driver should attempt to retransmit the same frame or discard the data.
Table 4 and the flowchart show the steps for transmit packet from host processor to KSZ88xxM.

Micrel, Inc. AN-140

May 2007 3 M9999-053107-1.0

Sequence Register Name[bit] Description
0 Host CPU There are two variables are needed from the upper layer to transmit a data packet

frame.
1. Packet data pointer (pTxData). It points to the host CPU system memory space
contains the complete Ethernet packet data.
2. Packet length (txPacketLength). The Ethernet packet data length not includes CRC.
Process the following from step 1 to 8 for every transmit packet to KSZ88xxM.

1 TXMIR [12:0]
Bank 16,
0ffset 0x08

Read value from TXMIR to check if QMU TXQ has enough amount of memory for the
Ethernet packet data. Compare the read value with (txPacketLength+4), if less than
(txPacketLength+4), Exit.

2 QDRL[15:0]
Bank 17,
0ffset 0x08

Write the frame ID and destination port to “control word” of the first 16-bit to QDRL
register. The internal switch engine forwards the packets according to the control word.

3 QDRH[15:0]
Bank 17,
0ffset 0x0A

Write the packet length (txPacketLength) to the “byte count” of the second 16-bit to
QDRH register.

4 QDRL[15:0]
Bank 17,
0ffset 0x08

Write 2-byte of Ethernet packet data pointer by pTxData to the QMU TXQ through the
QDRL register. Increase pTxData pointer by 2.

5 QDRH[15:0]
Bank 17,
0ffset 0x0A

Write 2-byte of Ethernet packet data pointer by pTxData to the QMU TXQ through the
QDRH register. Increase pTxData by 2.

6 Host CPU Subtract txPacketLength by 4.
If txPacketLength > 0 goto step 4, else goto step 7.

7 TXQCR[0]
Bank 17,
Offset 0x00

Write “1” to TXQCR[0] to issue the ENQUEUE transmits command for the KSZ88xxM to
transmit the Ethernet packet to the network.

8 ISR[14]
Bank 18,
Offset 0x02

When this bit is set, it indicates that the TXQ has transmitted at least a frame to the
network and the QMU TXQ is ready for new frames from the host CPU.

Table 4. Transmit Packet from Host Processor to KSZ88xxM

Micrel, Inc. AN-140

May 2007 4 M9999-053107-1.0

Receive Packet from KSZ88xxM to Host Processor
The software driver receives data packet frames from the KSZ88xxM device either as a result of polling or an interrupt
based service. When an interrupt is received, the OS invokes the interrupt service routine that is in the interrupt vector
table.
If your system has OS support, to minimize interrupt lockout time, the interrupt service routine should handle at interrupt
level only those tasks that require minimum execution time, such as error checking or device status change. The routine
should queue all the time-consuming work to transfer the packet from the KSZ88xxM RXQ into system memory at task
level.

Host receives an Ethernet pkt from
upper layer and prepares transmit pkt
data (data, data_length, port ID). The
transmit queue frame format is shown

in Table 3 of data sheet

Check if KSZ88xxM TXQ
Memory size is available for this

pkt?
(Read TXMIR Reg)

Host starts write transmit data (control
word, byte count and pkt data) to

QDRL/QDRH Regs. This is moving
transmit data from Host to KSZ8842M

TXQ

Write an “1” to TXQCR[0] reg
to issue a transmit command

to the TXQ. The TXQ will
Transmit data to the switch/port

Read ISR[14] reg, it indicates that
the TXQ has completed to transmit

at least one pkt to the switch/port, then
Write “1” to clear this bit

Yes

No

KSZKSZKSZKSZ88888888xxM Transmit FlowchartxxM Transmit FlowchartxxM Transmit FlowchartxxM Transmit Flowchart

Micrel, Inc. AN-140

May 2007 5 M9999-053107-1.0

Sequence Register Name[bit] Description
0 Host CPU There are two methods to receive a complete Ethernet packet from KSZ88xxM device to

upper layer either as a result of polling or servicing an interrupt.
1. By polling, set a timer routine to periodically execute step 1.
2. By servicing an interrupt, when interrupt occurs to execute step 1.
Allocate a system memory space (address by pRxData) which big enough to hold an
Ethernet packet frame.

1 ISR [13]
Bank 18,
0ffset 0x02

Read value from ISR to check if RXIS Receive Interrupt bit is set.
If this bit is set, go to next step 2.
If this bit is not set, then Exit.

2 ISR [13]
Bank 18,
0ffset 0x02

Write “1” to acknowledge and clear RXIS Receive Interrupt bit.

3 RXMIR[12:0]
Bank 16,
0ffset 0x0A

Read value from RXMIR to check if QMU RXQ still has more packet data to be read.
If read value <= 0, Exit.

4 QDRL[15:0]
Bank 17,
0ffset 0x08

Read first 2-byte of “status word” from QDRL to check if this is a good frame.
If the bit [15] is 0 in “status word”, goto step 9;
If one of the bit[0], bit[1] or bit[2] is 1, goto step 9.

5 QDRH[15:0]
Bank 17,
0ffset 0x0A

Read next 2-byte of “byte count” from QDRH to get this received packet length.
Subtract the read value by 4 byte (CRC), and store into rxPacketLength variable.
If rxPacketLength <= 0, goto step 9. Otherwise goto next step 6.

6 QDRL[15:0]
Bank 17,
0ffset 0x08

Read 2-byte of Ethernet packet to system memory pointer by pRxData from the QMU RXQ
through the device registers QDRL. Increase pRxData pointer by 2.

7 QDRH[15:0]
Bank 17,
0ffset 0x0A

Read 2-byte of Ethernet packet to system memory pointer by pRxData from the QMU RXQ
through the device registers QDRH. Increase pRxData pointer by 2.

8 Host CPU Subtract rxPacketLength by 4.
If rxPacketLength > 0 goto step 6, else goto step 9.

9 RXQCR[0]
Bank 17,
0ffset 0x02

Write “1” to RXQCR[0] to release the current receive frame buffer.
Goto step 3 to see if there is more data frame in the QMU RXQ to be read.

Table 5. Receive Packet from KSZ88xxM to Host Processor

Micrel, Inc. AN-140

May 2007 6 M9999-053107-1.0

 Is receive interrupt status bit set
 and check if the RXQ memory is > 0?
 (read ISR[13] and RXMIR[12:0])

Host starts read received data (Status
word, byte count and pkt data) from
QDRL/QDRH Regs. This is moving

received data from RXQ to Host

Write “1” to RXQCR[0] to release
current receive frame buffer to free the
RXQ memory after host read a
received data pkt

Write “1” to ISR[13] to clear this bit

Yes

No

KSZKSZKSZKSZ88888888xxM Receive FlowchartxxM Receive FlowchartxxM Receive FlowchartxxM Receive Flowchart

Micrel, Inc. AN-140

May 2007 7 M9999-053107-1.0

Hardware Platform Supported by KSZ88xxM Drivers
Other than the platform/OS independent KSZ88xx hardware driver, Micrel also provides the following platform/OS
dependent sample drivers as shown in the Table 6.

Buses Microprocessor Operating System Protocol Stack Compiler Option
Definition

Software
Driver

Zilog eZ80L92 ZTP 1.3.2 ZTP 1.3.2 _EZ80L92 KS88xx 8-Bit
Generic
Bus Renesas M16C/62P None OpenTCP 1.0.4 M16C_62P KS88xx

16-Bit
Generic
Bus

Renesas M16C/62P None OpenTCP 1.0.4 M16C_62P KS88xx

Renesas SH7751R vxWorks 5.5.1 Tornado 2.2.1 vxWorks 5.5.1 Tornado 2.2.1 DEF_VXWORKS KS88xx
Renesas SH7760 WinCE 5.0 WinCE 5.0 _WIN32 KS88xx
 Linux 2.4/2.6 Linux 2.4/2.6 DEF_LINUX KS88xx

32-Bit
Generic
Bus

 Windows 2000/XP Windows 2000/XP _WIN32 KS88xx

Note: All the KS88xx software drivers are available upon request

Table 6. KSZ88xx Driver Platform Support

The KS88xx driver can be built for different sets of drivers:

• KS8841 driver for KSZ8841M generic bus device
• KS8842 driver for KSZ8842M/KSZ8862M generic bus device

The drivers are designed to operate the KSZ88xx devices and demonstrate their hardware features. They share some
common code that is called the KS884X library. This library provides an application programming interface to program
the KSZ88xx hardware. Because the library code is shared in several platforms, the drivers may not run efficiently. To
increase performance, the conditional INLINE can be defined to put some functions inline.
The generic version of the KSZ884X driver is used for generic bus. It uses a list of banks to access registers.
There are some identifiers that must be defined from the compiler options to generate a particular driver for a particular
device.

DEF_KS8841 DEF_KS8842 KS_ISA_BUS KS_ISA Driver
Yes No Yes Yes KSZ8841 Generic Bus Driver
No Yes Yes Yes KSZ8842/8862 Generic Bus Driver

Table 7. Definition to Generate a Particular KSZxx Driver

Micrel, Inc. AN-140

May 2007 8 M9999-053107-1.0

KSZ88xxM Driver Application Programming Interface (API) Reference
The KSZ88xx driver contains a rich set of API functions that are used to configure all the KSZ88xxM device features.
Functions within the API are organized within logical groups and alphabetized within each group. A description of each
API group is shown in Table 8.

API Name Function Description
Device Accesses APIs Provides functions and macros to read /write device registers.
Device Initialization APIs For device initializations.
Device Interrupt APIs To handle the device interrupts.
Device Transmit APIs For target host CPU transmits the packet from host system memory to device.
Device Receive APIs For target host CPU receives the packet from device to the host system memory.
Set Device PHY APIs Provides functions to configure device PHY operation.
Set Device Ports APIs Provides functions to configure device port operation.
Set Device LinkMD APIs Provides functions to configure device LinkMD feature to test cable diagnostics capabilities

to determine cable length, diagnose faulty cables, and determine distance to fault.
Set Wake-on-LAN APIs Provides functions to configure device Wake-on-LAN function for KSZ8841/61M only. When

device detects a wake up event by receipt of a Magic Packet, it asserts the PMEN pin to low
which could connect to host system to put the system into a powered state.

Set Device STP APIs Provides functions to set Spanning Tree states on the device for KSZ8842/62M only.
Set Device VLAN APIs Provides functions to configure VLAN function on the device for KSZ8842/62M only.
Set Device Rate Limiting
APIs

Provides functions to configure broadcast storm protection and rate-limiting control at the
ingress and egress ports on the device KSZ8842/62M only.

Set Device QoS APIs Provides functions to configure QoS priority control, including port-based priority, 802.1p
based priority and DiffServ based priority on the device KSZ8842/62M only.

Set Device Mirror APIs Provides functions to configure Port Mirroring, Monitoring and Sniffing operations on the
device KSZ8842/62M only.

Set Device Table
Accesses APIs

Provides functions to read/write device indirect registers including up to 16 group VLAN
table, 8 entries of static MAC table, 1K entries of dynamic MAC table and 34 MIB counters
per port for KSZ8842/62M only.

Note: Please refer to “KSZ88xx Programming Guide” for more detail.

Table 8. KSZ88xxm Driver API Groups

Micrel, Inc. AN-140

May 2007 9 M9999-053107-1.0

Conclusion
This application note has highlighted all software drivers and APIs available for the KSZ88xxM Embedded family of
Ethernet Controllers.
In order to meet the needs of diversified embedded system design, Micrel provides all software drivers to support the
following popular OS platforms:

• Windows CE 5.0 & 6.0
• Linux 2.4
• Linux 2.6
• VxWorks 5.5 (For Renesas SH7551R)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s

use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.

© 2007 Micrel, Incorporated.

