AT91 Assembler Code Startup Sequence for C
Code Applications Software Based on the
AT91SAM7S64 Evaluation Board

1. Introduction

For reasons of modularity and portability most application code for the AT91SAM7S
ARM®-based microcontrollers is written in C. However, the startup sequence required
to initialize the ARM Processor Mode and certain key peripherals is heavily dependent
on the register architecture and memory mapping processor. For this reason the C-
startup sequence is written in assembler.

This Application Note describes an example of the AT91SAM7S C-startup sequence.
It is based on the C-startup sequence for the AT91SAM7S64 Evaluation Board work-
ing with the IAR 4.11A Development Tools. Further examples of C-startup sequences
are available in the AT91 software package.

The C-startup sequence is activated on power-up and after a reset.

ATMEL

AINE

Y ()

AT91
ARM® Thumb®
Microcontrollers

Application
Note

6131A-ATARM-04-Mar-05

ATMEL

2. C-Startup Sequence

2

Following reset, the processor starts to fetch instructions from 0x0, therefore there must be
some executable code accessible from that address. In an AT91SAM7S embedded system, this
requires embedded Flash to be present, at least initially, at address 0x0.

The simplest layout is accomplished by locating the application in embedded Flash at address
0x0 in the memory map. The application can then branch to the real entry point when it executes
its first instruction at the reset vector at address 0x0.

All applications written for AT91SAM7S ARM-based systems are embedded applications that
are contained in embedded Flash and execute on reset.

There are a number of factors that must be considered when writing embedded operating sys-
tems, or embedded applications that execute from reset without an operating system, including:
* Reset entry point in embedded Flash.
¢ Initializing the execution environment, such as exception vectors, stacks, 1/Os.
* Initializing the application.
* For example, copying initialization values for initialized variables from Flash to RAM and
resetting all other variables to zero.
e Linking an embedded executable image to place code and data in specific locations in RAM
memory.

For an embedded application without an operating system, the code in Flash must provide a
way for the application to initialize itself and start executing. No automatic initialization takes
place on reset, therefore the application entry point must perform some initialization before it can
call any C code.
The initialization code, located at address zero after reset, must:

* Mark the default entry point for the initialization code.

¢ Set up exception vectors.

¢ |nitialize the memory system.

* Initialize any critical I/O devices.

* |nitialize the stack pointer registers.

* Initialize any Register required by the interrupt system.

* Enable interrupts (if handled by the initialization code).

¢ Change processor mode if necessary.

* Change processor state if necessary.

After the environment has been initialized, the sequence continues with the application initializa-
tion and should enter the C code.

The C-startup file is the first file executed at power on and performs initialization of the microcon-
troller from the reset vector up to the calling of the application’s main routine.

The main program should be a closed loop and should not return. The ARM core begins execut-
ing instructions from address 0x0 at reset. For an AT91SAM7S embedded system this means in
embedded Flash at address 0x0 when the system is reset.

6131A-ATARM-04-Mar-05

3. C - Startup Example

A generic start-up file is included within this Application Note and others are available in the
AT91 software package. The example described is based on the AT91SAM7S64 Evaluation
Board, C-startup sequence working with IAR V4.11A Development Tool and debugging in
embedded Flash Memory or RAM Memory. This file must be modified in order to fit the needs of
the user application.

The AT91SAM7S64 Evaluation Board is described in the AT91 software package inside the
“compil” subdirectory. Each of these subdirectories contains the following files:

¢ The board.h file, defines the components of the board in C.

* One Cstartup.s79 file, defines standard boot for the board according to the software
development tools used.

¢ One Cstartup_xxx.c file, defines standard low level initialization for the board according to the
software development tools used.

The AT91 software package provides C-Startup files that explain how to boot an AT91SAM7S

device and how to branch to the main C function. The C-Startup file takes into account the spe-

cific features of the device, the board specific characteristics and the debug level required.

Note: The software example is delivered “As Is” without warranty or condition of any kind, either express,
implied or statutory. This includes without limitation any warranty or condition with respect to mer-

chantability or fitness for any particular purpose, or against the infringements of intellectual
property rights of others.

3.1 Area Definition

6131A-ATARM-04-Mar-05

In an ARM assembly language source file, the start of the module is marked by the PROGRAM
directive, this directive sets the module for the linker. Following this module the second directive
defines the segment named RSEG and the specific segment ICODE that defines C-startup and
exception code area.

At the reset, the ARM core sets ARM Mode and fetches a 32-bit ARM Instruction. The CODE32
directive sets the subsequent instructions to be interpreted as 32-bit ARM Instructions.

An embedded image is placed in embedded Flash at 0x0 by the assembler ORG directive.

PROGRAM ?RESET

RSEG ICODE: CODE :ROOT (2)

CODE32 ; Always ARM mode after reset
org 0

reset:

ATMEL ;

3.2

4

ATMEL

Setup Exception Vectors

Exception Vectors are setup sequentially through the address space with branches to nearby
labels or branches and links to subroutines. During the normal flow of execution through a pro-
gram, the program counter increases enable the processor to handle events generated by
internal or external sources. Processor exceptions occur when the normal flow of execution is
diverted. Examples of such events are:

¢ Externally generated interrupts.
* An attempt by the processor to execute an Undefined Instruction.

The previous processor status Is preserved in SPSR. The Link register (R14) and the stack reg-
ister (R13) are also preserved by the hard-coded sequence. When handling such exceptions, so
that execution of the program that was running when the exception occurred can resume when
the appropriate exception routine has completed, the initialization code must set up the required
exception vectors (see Table 3-1).

The Flash is located at address 0x0 and the vectors consist of a sequence of hard-coded
instructions to branch to the handler for each exception. These vectors are mapped at address
0xO0....

Table 3-1. Exception Vectors

Exception Description

Reset Occurs when the processor reset pin is asserted. This
exception is only expected to occur for signalling power-up,
or for resetting. A soft reset can be done by branching to the
reset vector.

Undefined Instruction Occurs if neither the processor, or any attached coprocessor,
recognizes the currently executing instruction.

Software Interrupt (SWI) This is a user-defined synchronous interrupt instruction. It
allows a program running in User Mode, for example, to
request privileged operations that run in Supervisor Mode,
such as an RTOS function.

Prefetch Abort Occurs when the processor attempts to execute an
instruction that has prefetched from an illegal address.

Data Abort Occurs when a data transfer instruction attempts to load or
store data at an illegal address.

IRQ Occurs when the processor external interrupt request pin is
asserted (LOW) and the | bit in the CPSR is clear.

FIQ Occurs when the processor external fast interrupt request pin
is asserted (LOW) and the F bit in the CPSR is clear or when
an internal interrupt is redirected by Fast Forcing.

Processor exception handling is controlled by a vector table. The vector table is a reserved area
of 32 bytes, usually at the bottom of the memory map. It has one word of space allocated to
each exception type, and one word that is currently reserved. Because there is not enough
space to contain the full code for a handler except for the FIQ interrupt, the vector entry for each
exception type contains a branch instruction or load pc instruction to continue execution with the
appropriate handler.The FIQ exception handler can be written directly at the exception vector.

6131A-ATARM-04-Mar-05

B InitReset ; 0x00 Reset handler
undefvec:

B ndefvec ; 0x04 Undefined Instruction
swivec:

B swivec ; 0x08 Software Interrupt
pabtvec:

B pabtvec ; 0x0C Prefetch Abort
dabtvec:

B dabtvec ; 0x10 Data Abort
rsvdvec:

B rsvdvec ; 0xl14 reserved
irgvec:

B I RQ Handler Entry ; 0x18 IRQ
figvec: ; FIQ Handling

Table 3-2. Exception Vector Mapping

Mapping Exception Vectors
0x0000 0000 Reset

0x0000 0004 Undefined Instruction
0x0000 0008 Software Interrupt (SWI)
0x0000 000C Prefetch Abort

0x0000 0010 Data Abort

0x0000 0014 Reserved

0x0000 0018 IRQ

0x0000 001C FlQ

3.3 Reset Handler

From here, the code is executed from address 0.

InitReset:

ATMEL ;

6131A-ATARM-04-Mar-05

3.4

3.5

6

ATMEL

Low Level Initialization

After reset, the PLL, Embedded Flash Controller and Watchdog are not configured and some
peripherals that must be initialized before enabling interrupts should be considered as critical. If
these peripherals are not initialized at this point, they might cause spurious interrupts when inter-
rupts are enabled.

The AT91F_LowLevellnit function is defined in the C file from the AT91 software packages asso-
ciated to the evaluation board.

To call this function before C initialization, the assembly C-startup sets the C stack at the end of
RAM address. This function can be a write in Thumb® instruction or ARM instruction and called
by the BX interworking ARM instruction.

;- minimum C initialization
;- call AT91F LowLevelInit (void)
1ldr rl3,=_ iramend; temporary stack in internal RAM

;--Call Low level init function in ABSOLUTE through the Interworking

ldr r0,=AT91F_LowLevellInit
mov lr, pc
bx r0

AT91F_LowLevellnit Function

This function performs very low level hardware initialization. The function initializes itself.
* Flash Wait state and time setting depend on the PLL setting and the external oscillator.

At reset, the AT91SAM7S microcontroller starts with Flash default value at slow clock.
¢ Disable the Watchdog.

At reset, the AT91SAM7S microcontroller has enabled the Watchdog.
¢ Set the PLL.
At reset, the AT91SAM7S microcontroller starts with the internal slow clock RC oscillator to min-

imize the power required to start up the system and the main oscillator is disabled. The PLL can
be started by setting the configuration to run with the PLL to speed up the startup sequence.

¢ AIC vector initialization
After reset, the Advanced Interrupt Controller (AIC) is not configured. The AT91F_LowLevellnit

function initializes the AIC by setting up the default interrupt vectors. The default Interrupt han-
dler functions are defined in the C-startup file. These functions can be re-write.

The following function is used for AT91SAM7S64 evaluation board initialization. The specific
directive “@ ICODE” links the object code in the C-startup segment area.

6131A-ATARM-04-Mar-05

void AT91F LowLevelInit (void) @ "ICODE"

{

int i;

AT91PS_ PMC pPMC = AT91C_BASE PMC;
//* Set Embedded Flash Controller

AT91C_BASE_MC->MC_FMR= ((AT91C_MC_FMCN) & (50 <<16)) | AT91C_MC_FWS_1FWS;
//* Watchdog Disable

AT91C_BASE WDTC->WDTC WDMR= AT91C SYSC WDDIS;
//* Set MCK
// 1 Enabling the Main Oscillator:

DPPMC->PMC_MOR= ((AT91C_CKGR OSCOUNT & (0x06<<8) | AT91C CKGR_MOSCEN)) ;
// Startup time

while (! (pPMC->PMC_SR & AT91C_PMC_MOSCS)) ;
//* Set PLL

PPMC->PMC_PLLR= ((AT91C_CKGR DIV & 0x05) |

(AT91C_CKGR PLLCOUNT & (16<<8)) |
(AT91C_CKGR MUL & (25<<16)));

//* Startup time

while (! (pPMC->PMC SR & AT91C_PMC LOCK)) ;
//* select the PLL clock divided by 2

PPMC->PMC_MCKR= AT91C_PMC_CSS_PLI_CLK | AT91C_PMC_PRES_CLK 2;

//* Set default interrupts handler vectors

AT91C_BASE_AIC->AIC SVR[0]= (int) AT91F Default FIQ handler;
for (i=1;i < 31; i++)
{

AT91C_BASE_AIC—>AIC_SVR[i]= (int) AT91F Default IRQ handler;

}

AT91C BASE AIC->AIC SPU= (int) AT91F Spurious handler;

3.6 Initialize ARM Mode Registers

Interrupt, and supervisor stacks are located at the top of RAM memory. Generally, abort-status,
undefined instruction and user stacks are not used in a simple embedded system.

The C-startup code initializes the stack pointer registers. Depending on the interrupts and
exceptions desired, some or all of the following stack pointers may require initialization:
* Supervisor stack must always be initialized.

¢ IRQ stack must be initialized if IRQ interrupts are used. It must be initialized before interrupts
are enabled.

* FIQ Stack is not used by the standard AT91SAM7S FIQ Handler and does not need
initialization. Only the FIQ register needs initialization.

¢ Abort-status stacks must be initialized if data and prefetch abort are handled.
¢ Undefined Instruction stack must be initialized if undefined instructions are handled.

ATMEL 7

6131A-ATARM-04-Mar-05

3.7

3.8

8

ATMEL

Assuming that the IRQ handler is used, the interrupt stack requires 2 words x 8 priority level x 4
bytes when using the vectoring. The Interrupt Stack must be adjusted depending on the interrupt
handlers. Other stacks are not defined to gain memory size.

RSEG INTRAMEND REMAP
#define iramend SFB(INTRAMEND REMAP)
ldr r0, =_ iramend
;- Set up Fast Interrupt Mode and set FIQ Mode Stack
msr CPSR c, #ARM MODE FIQ | I BIT | F BIT
;- Init the FIQ register
ldr 8, =AT91C BASE AIC
;- Set up Interrupt Mode and set IRQ Mode Stack
msr CPSR_c, #ARM MODE_IRQ | I_BIT | F_BIT
mov rl3, 0 ; Init stack IRQ
sub r0, r0, #IRQ STACK SIZE

Change Processor Mode and Enable Interrupts

The initialization code can now enable interrupts if necessary, by clearing the interrupt disable
bits in the CPSR. This is the earliest point that it is safe to enable interrupts. At this stage the
processor is still in Supervisor Mode.

msr CPSR_c, #ARM_MODE_SVC

mov rl3, r0

Initialize Software Variable and Branch to Main Function

The next task is to initialize the data memory by entering a loop that writes zeroes into alloca-
tions used for data storage and code. This may seem superfluous, but there are two reasons for

this:
1. In C language, any non-initialized variable is supposed to contain zero as an initial
value.
2. This makes the program behavior reproducible, even if not all variables are initialized
explicitly.

— The table of initial values for the initialized variable (in the C language sense) is
copied to the location in RAM where the variables are positioned.
— The linker puts the initial values in the same order as the variables in RAM, thus a
mere block copy is sufficient for this initialization.
— The linker puts the RAM code source segment in the Embedded Flash area.
The initial values for any initialized variables and RAM code must be copied from Flash to RAM.

All other variables must be initialized to zero. The “__Segment_init” function copy the corre-
sponding embedded Flash code in the RAM area and initialize the data segments.

6131A-ATARM-04-Mar-05

6131A-ATARM-04-Mar-05

The C initialization is processed by an IAR setup function __segment _init, this function is
included in the C-lAR library and can be used in Thumb or ARM instruction sets.

EXTERN _segment init
; Initialize segments.
; _ segment init is assumed to use
ldr 1r0,=_ segment init
mov 1lr, pc

bx r0

When the compiler compiles a function called main(), it generates a PUBLIC reference to the
symbol main. The function main() should be a closed loop and should not return.

;- Branch on C code Main function (with interworking)

EXTERN main
ldr r0,=main

bx r0

ATMEL ;

ATMEL

4. Revision History

Doc. Rev Date Comments Change Request Ref.
6131A 04-Mar-05 First issue - Qualified

6131A-ATARM-04-Mar-05

AIMEL

I (°)
Atmel Corporation Atmel Operations
2325 Orchard Parkway Memory RF/Automotive
San Jose, CA 95131, USA 2325 Orchard Parkway Theresienstrasse 2
Tel: 1(408) 441-0311 San Jose, CA 95131, USA Postfach 3535
Fax: 1(408) 487-2600 Tel: 1(408) 441-0311 74025 Heilbronn, Germany
Fax: 1(408) 436-4314 Tel: (49) 71-31-67-0
. Fax: (49) 71-31-67-2340
Regional Headquarters Microcontrollers
Europe 2325 Orchard Parkway 1150 East Cheyenne Mtn. Blvd.
Atmel Sarl San Jose, CA 95131, USA Colorado Springs, CO 80906, USA
Route des Arsenaux 41 Tel: 1(408) 441-0311 Tel: 1(719) 576-3300
Case Postale 80 Fax: 1(408) 436-4314 Fax: 1(719) 540-1759
CH-1705 Fribour
Switzerland g La Chantrerie Bz.ometrtcs/Imagmg/Ht-Rel MPU/
Tel: (41) 26-426-5555 BP 70602 High Speed Converters./RF Datacom
Fax: (41) 26-426-5500 44306 Nantes Cedex 3, France Avenue de Rochepleine
Tel: (33) 2-40-18-18-18 BP 123
Asia Fax: (33) 2-40-18-19-60 38521 Saint-Egreve Cedex, France
Room 1219 Tel: (33) 4-76-58-30-00
Chinachem Golden Plaza ASICIASSP/Smart Cards Fax: (33) 4-76-58-34-80

77 Mody Road Tsimshatsui Zone Industrielle
East Kowloon 13106 Rousset Cedex, France

Hong Kong Tel:.(33) 4-42-53-60-00
Tel: (852) 2721-9778 Fax: (33) 4-42-53-60-01

Fax: (852) 2722-1369
1150 East Cheyenne Mtn. Blvd.

Japan Colorado Springs, CO 80906, USA
9F, Tonetsu Shinkawa Bldg. Tel: 1(719) 576-3300
1-24-8 Shinkawa Fax: 1(719) 540-1759
Chuo-ku, Tokyo 104-0033))
Japan Scottish Enterprise Technology Park
Tel: (81) 3-3523-3551 Maxwell Building
Fax: (81) 3-3523-7581 East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.

POWERED

>
)
=

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof and others are registered trademarks, and Everywhere
You AreSM and others are trademarks of Atmel Corporation or its subsidiaries. ARM®, ARM Powered® and Thumb® are the registered trademarks
of ARM Limited. Other terms and product names may be trademarks of others. _

@ Printed on recycled paper.

6131A-ATARM-04-Mar-05

	1. Introduction
	2. C-Startup Sequence
	3. C - Startup Example
	3.1 Area Definition
	3.2 Setup Exception Vectors
	3.3 Reset Handler
	3.4 Low Level Initialization
	3.5 AT91F_LowLevelInit Function
	3.6 Initialize ARM Mode Registers
	3.7 Change Processor Mode and Enable Interrupts
	3.8 Initialize Software Variable and Branch to Main Function

	4. Revision History

