
AT91
ARM® Thumb®
Microcontrollers

Application
Note

 6131A–ATARM–04-Mar-05
AT91 Assembler Code Startup Sequence for C
Code Applications Software Based on the

AT91SAM7S64 Evaluation Board

1. Introduction
For reasons of modularity and portability most application code for the AT91SAM7S
ARM®-based microcontrollers is written in C. However, the startup sequence required
to initialize the ARM Processor Mode and certain key peripherals is heavily dependent
on the register architecture and memory mapping processor. For this reason the C-
startup sequence is written in assembler.

This Application Note describes an example of the AT91SAM7S C-startup sequence.
It is based on the C-startup sequence for the AT91SAM7S64 Evaluation Board work-
ing with the IAR 4.11A Development Tools. Further examples of C-startup sequences
are available in the AT91 software package.

The C-startup sequence is activated on power-up and after a reset.

2. C-Startup Sequence
Following reset, the processor starts to fetch instructions from 0x0, therefore there must be
some executable code accessible from that address. In an AT91SAM7S embedded system, this
requires embedded Flash to be present, at least initially, at address 0x0.

The simplest layout is accomplished by locating the application in embedded Flash at address
0x0 in the memory map. The application can then branch to the real entry point when it executes
its first instruction at the reset vector at address 0x0.

All applications written for AT91SAM7S ARM-based systems are embedded applications that
are contained in embedded Flash and execute on reset.

There are a number of factors that must be considered when writing embedded operating sys-
tems, or embedded applications that execute from reset without an operating system, including:

• Reset entry point in embedded Flash.

• Initializing the execution environment, such as exception vectors, stacks, I/Os.

• Initializing the application.

• For example, copying initialization values for initialized variables from Flash to RAM and
resetting all other variables to zero.

• Linking an embedded executable image to place code and data in specific locations in RAM
memory.

For an embedded application without an operating system, the code in Flash must provide a
way for the application to initialize itself and start executing. No automatic initialization takes
place on reset, therefore the application entry point must perform some initialization before it can
call any C code.

The initialization code, located at address zero after reset, must:

• Mark the default entry point for the initialization code.

• Set up exception vectors.

• Initialize the memory system.

• Initialize any critical I/O devices.

• Initialize the stack pointer registers.

• Initialize any Register required by the interrupt system.

• Enable interrupts (if handled by the initialization code).

• Change processor mode if necessary.

• Change processor state if necessary.

After the environment has been initialized, the sequence continues with the application initializa-
tion and should enter the C code.

The C-startup file is the first file executed at power on and performs initialization of the microcon-
troller from the reset vector up to the calling of the application’s main routine.

The main program should be a closed loop and should not return. The ARM core begins execut-
ing instructions from address 0x0 at reset. For an AT91SAM7S embedded system this means in
embedded Flash at address 0x0 when the system is reset.
 2
6131A–ATARM–04-Mar-05

AT91 ARM Thumb

 AT91 ARM Thumb
3. C - Startup Example
A generic start-up file is included within this Application Note and others are available in the
AT91 software package. The example described is based on the AT91SAM7S64 Evaluation
Board, C-startup sequence working with IAR V4.11A Development Tool and debugging in
embedded Flash Memory or RAM Memory. This file must be modified in order to fit the needs of
the user application.

The AT91SAM7S64 Evaluation Board is described in the AT91 software package inside the
“compil” subdirectory. Each of these subdirectories contains the following files:

• The board.h file, defines the components of the board in C.

• One Cstartup.s79 file, defines standard boot for the board according to the software
development tools used.

• One Cstartup_xxx.c file, defines standard low level initialization for the board according to the
software development tools used.

The AT91 software package provides C-Startup files that explain how to boot an AT91SAM7S
device and how to branch to the main C function. The C-Startup file takes into account the spe-
cific features of the device, the board specific characteristics and the debug level required.

Note: The software example is delivered “As Is” without warranty or condition of any kind, either express,
implied or statutory. This includes without limitation any warranty or condition with respect to mer-
chantability or fitness for any particular purpose, or against the infringements of intellectual
property rights of others.

3.1 Area Definition

In an ARM assembly language source file, the start of the module is marked by the PROGRAM
directive, this directive sets the module for the linker. Following this module the second directive
defines the segment named RSEG and the specific segment ICODE that defines C-startup and
exception code area.

At the reset, the ARM core sets ARM Mode and fetches a 32-bit ARM Instruction. The CODE32
directive sets the subsequent instructions to be interpreted as 32-bit ARM Instructions.

An embedded image is placed in embedded Flash at 0x0 by the assembler ORG directive.
;---

PROGRAM ?RESET

RSEG ICODE:CODE:ROOT(2)

CODE32 ; Always ARM mode after reset

org 0

reset:
 3
6131A–ATARM–04-Mar-05

3.2 Setup Exception Vectors

Exception Vectors are setup sequentially through the address space with branches to nearby
labels or branches and links to subroutines. During the normal flow of execution through a pro-
gram, the program counter increases enable the processor to handle events generated by
internal or external sources. Processor exceptions occur when the normal flow of execution is
diverted. Examples of such events are:

• Externally generated interrupts.

• An attempt by the processor to execute an Undefined Instruction.

The previous processor status Is preserved in SPSR. The Link register (R14) and the stack reg-
ister (R13) are also preserved by the hard-coded sequence. When handling such exceptions, so
that execution of the program that was running when the exception occurred can resume when
the appropriate exception routine has completed, the initialization code must set up the required
exception vectors (see Table 3-1).

The Flash is located at address 0x0 and the vectors consist of a sequence of hard-coded
instructions to branch to the handler for each exception. These vectors are mapped at address
0x0....

Processor exception handling is controlled by a vector table. The vector table is a reserved area
of 32 bytes, usually at the bottom of the memory map. It has one word of space allocated to
each exception type, and one word that is currently reserved. Because there is not enough
space to contain the full code for a handler except for the FIQ interrupt, the vector entry for each
exception type contains a branch instruction or load pc instruction to continue execution with the
appropriate handler.The FIQ exception handler can be written directly at the exception vector.

Table 3-1. Exception Vectors

Exception Description

Reset Occurs when the processor reset pin is asserted. This
exception is only expected to occur for signalling power-up,
or for resetting. A soft reset can be done by branching to the
reset vector.

Undefined Instruction Occurs if neither the processor, or any attached coprocessor,
recognizes the currently executing instruction.

Software Interrupt (SWI) This is a user-defined synchronous interrupt instruction. It
allows a program running in User Mode, for example, to
request privileged operations that run in Supervisor Mode,
such as an RTOS function.

Prefetch Abort Occurs when the processor attempts to execute an
instruction that has prefetched from an illegal address.

Data Abort Occurs when a data transfer instruction attempts to load or
store data at an illegal address.

IRQ Occurs when the processor external interrupt request pin is
asserted (LOW) and the I bit in the CPSR is clear.

FIQ Occurs when the processor external fast interrupt request pin
is asserted (LOW) and the F bit in the CPSR is clear or when
an internal interrupt is redirected by Fast Forcing.
 4
6131A–ATARM–04-Mar-05

AT91 ARM Thumb

 AT91 ARM Thumb
;--------------------

;- Exception vectors

;--------------------

B InitReset ; 0x00 Reset handler

undefvec:

B ndefvec ; 0x04 Undefined Instruction

swivec:

B swivec ; 0x08 Software Interrupt

pabtvec:

B pabtvec ; 0x0C Prefetch Abort

dabtvec:

B dabtvec ; 0x10 Data Abort

rsvdvec:

B rsvdvec ; 0x14 reserved

irqvec:

B I RQ_Handler_Entry ; 0x18 IRQ

fiqvec: ; FIQ Handling

3.3 Reset Handler

From here, the code is executed from address 0.
;----------------

;- Reset Handler

;----------------

InitReset:

Table 3-2. Exception Vector Mapping

Mapping Exception Vectors

0x0000 0000 Reset

0x0000 0004 Undefined Instruction

0x0000 0008 Software Interrupt (SWI)

0x0000 000C Prefetch Abort

0x0000 0010 Data Abort

0x0000 0014 Reserved

0x0000 0018 IRQ

0x0000 001C FIQ
 5
6131A–ATARM–04-Mar-05

3.4 Low Level Initialization

After reset, the PLL, Embedded Flash Controller and Watchdog are not configured and some
peripherals that must be initialized before enabling interrupts should be considered as critical. If
these peripherals are not initialized at this point, they might cause spurious interrupts when inter-
rupts are enabled.

The AT91F_LowLevelInit function is defined in the C file from the AT91 software packages asso-
ciated to the evaluation board.

To call this function before C initialization, the assembly C-startup sets the C stack at the end of
RAM address. This function can be a write in Thumb® instruction or ARM instruction and called
by the BX interworking ARM instruction.

;-----------------------

;- Low level init

;-----------------------

;- minimum C initialization

;- call AT91F_LowLevelInit(void)

ldr r13,=__iramend; temporary stack in internal RAM

;--Call Low level init function in ABSOLUTE through the Interworking

ldr r0,=AT91F_LowLevelInit

mov lr, pc

bx r0

3.5 AT91F_LowLevelInit Function

This function performs very low level hardware initialization. The function initializes itself.

• Flash Wait state and time setting depend on the PLL setting and the external oscillator.

At reset, the AT91SAM7S microcontroller starts with Flash default value at slow clock.

• Disable the Watchdog.

At reset, the AT91SAM7S microcontroller has enabled the Watchdog.

• Set the PLL.

At reset, the AT91SAM7S microcontroller starts with the internal slow clock RC oscillator to min-
imize the power required to start up the system and the main oscillator is disabled. The PLL can
be started by setting the configuration to run with the PLL to speed up the startup sequence.

• AIC vector initialization

After reset, the Advanced Interrupt Controller (AIC) is not configured. The AT91F_LowLevelInit
function initializes the AIC by setting up the default interrupt vectors. The default Interrupt han-
dler functions are defined in the C-startup file. These functions can be re-write.

The following function is used for AT91SAM7S64 evaluation board initialization. The specific
directive “@ ICODE” links the object code in the C-startup segment area.
 6
6131A–ATARM–04-Mar-05

AT91 ARM Thumb

 AT91 ARM Thumb
void AT91F_LowLevelInit(void) @ "ICODE"

{

 int i;

 AT91PS_PMC pPMC = AT91C_BASE_PMC;

//* Set Embedded Flash Controller

AT91C_BASE_MC->MC_FMR= ((AT91C_MC_FMCN)&(50 <<16)) | AT91C_MC_FWS_1FWS;

//* Watchdog Disable

AT91C_BASE_WDTC->WDTC_WDMR= AT91C_SYSC_WDDIS;

//* Set MCK

// 1 Enabling the Main Oscillator:

pPMC->PMC_MOR= ((AT91C_CKGR_OSCOUNT & (0x06<<8) | AT91C_CKGR_MOSCEN));

// Startup time

while(!(pPMC->PMC_SR & AT91C_PMC_MOSCS));

//* Set PLL

pPMC->PMC_PLLR= ((AT91C_CKGR_DIV & 0x05) |

 (AT91C_CKGR_PLLCOUNT & (16<<8)) |

 (AT91C_CKGR_MUL & (25<<16)));

//* Startup time

while(!(pPMC->PMC_SR & AT91C_PMC_LOCK));

//* select the PLL clock divided by 2

pPMC->PMC_MCKR= AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_2;

//* Set default interrupts handler vectors

AT91C_BASE_AIC->AIC_SVR[0]= (int) AT91F_Default_FIQ_handler;

for (i=1;i < 31; i++)

{

AT91C_BASE_AIC->AIC_SVR[i]= (int) AT91F_Default_IRQ_handler;

}

AT91C_BASE_AIC->AIC_SPU= (int) AT91F_Spurious_handler;

}

3.6 Initialize ARM Mode Registers

Interrupt, and supervisor stacks are located at the top of RAM memory. Generally, abort-status,
undefined instruction and user stacks are not used in a simple embedded system.

The C-startup code initializes the stack pointer registers. Depending on the interrupts and
exceptions desired, some or all of the following stack pointers may require initialization:

• Supervisor stack must always be initialized.

• IRQ stack must be initialized if IRQ interrupts are used. It must be initialized before interrupts
are enabled.

• FIQ Stack is not used by the standard AT91SAM7S FIQ Handler and does not need
initialization. Only the FIQ register needs initialization.

• Abort-status stacks must be initialized if data and prefetch abort are handled.

• Undefined Instruction stack must be initialized if undefined instructions are handled.
 7
6131A–ATARM–04-Mar-05

Assuming that the IRQ handler is used, the interrupt stack requires 2 words x 8 priority level x 4
bytes when using the vectoring. The Interrupt Stack must be adjusted depending on the interrupt
handlers. Other stacks are not defined to gain memory size.

;---------------------

;- Setup each mode

;---------------------

RSEG INTRAMEND_REMAP

#define __iramend SFB(INTRAMEND_REMAP)

ldr r0, =__iramend

;- Set up Fast Interrupt Mode and set FIQ Mode Stack

msr CPSR_c, #ARM_MODE_FIQ | I_BIT | F_BIT

;- Init the FIQ register

ldr r8, =AT91C_BASE_AIC

;- Set up Interrupt Mode and set IRQ Mode Stack

msr CPSR_c, #ARM_MODE_IRQ | I_BIT | F_BIT

mov r13, r0 ; Init stack IRQ

sub r0, r0, #IRQ_STACK_SIZE

3.7 Change Processor Mode and Enable Interrupts

The initialization code can now enable interrupts if necessary, by clearing the interrupt disable
bits in the CPSR. This is the earliest point that it is safe to enable interrupts. At this stage the
processor is still in Supervisor Mode.

;--
-

;- Setup Application Operating Mode Enable the interrupts and set Stack

;--
-

msr CPSR_c, #ARM_MODE_SVC

mov r13, r0

3.8 Initialize Software Variable and Branch to Main Function

The next task is to initialize the data memory by entering a loop that writes zeroes into alloca-
tions used for data storage and code. This may seem superfluous, but there are two reasons for
this:

1. In C language, any non-initialized variable is supposed to contain zero as an initial
value.

2. This makes the program behavior reproducible, even if not all variables are initialized
explicitly.

– The table of initial values for the initialized variable (in the C language sense) is
copied to the location in RAM where the variables are positioned.

– The linker puts the initial values in the same order as the variables in RAM, thus a
mere block copy is sufficient for this initialization.

– The linker puts the RAM code source segment in the Embedded Flash area.

The initial values for any initialized variables and RAM code must be copied from Flash to RAM.
All other variables must be initialized to zero. The “__Segment_init” function copy the corre-
sponding embedded Flash code in the RAM area and initialize the data segments.
 8
6131A–ATARM–04-Mar-05

AT91 ARM Thumb

 AT91 ARM Thumb
The C initialization is processed by an IAR setup function __segment _init, this function is
included in the C-IAR library and can be used in Thumb or ARM instruction sets.

;---

;- Branch on C initialization code (with interworking)

;---

EXTERN__segment_init

; Initialize segments.

; __segment_init is assumed to use

ldr r0,=__segment_init

mov lr, pc

bx r0

When the compiler compiles a function called main(), it generates a PUBLIC reference to the
symbol main. The function main() should be a closed loop and should not return.

;---

;- Branch on C code Main function (with interworking)

;---

EXTERN main

ldr r0,=main

bx r0
 9
6131A–ATARM–04-Mar-05

4. Revision History

Doc. Rev Date Comments Change Request Ref.

6131A 04-Mar-05 First issue - Qualified
 10
6131A–ATARM–04-Mar-05

AT91 ARM Thumb

 Printed on recycled paper.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof and others are registered trademarks, and Everywhere
You AreSM and others are trademarks of Atmel Corporation or its subsidiaries. ARM®, ARM Powered® and Thumb® are the registered trademarks
of ARM Limited. Other terms and product names may be trademarks of others.

6131A–ATARM–04-Mar-05

	1. Introduction
	2. C-Startup Sequence
	3. C - Startup Example
	3.1 Area Definition
	3.2 Setup Exception Vectors
	3.3 Reset Handler
	3.4 Low Level Initialization
	3.5 AT91F_LowLevelInit Function
	3.6 Initialize ARM Mode Registers
	3.7 Change Processor Mode and Enable Interrupts
	3.8 Initialize Software Variable and Branch to Main Function

	4. Revision History

