

Atmel AVR4901: ASF - USB Vendor Class
Application

Features
• USB 2.0 compliance

- Chapter 9 compliance
- Full Speed (12Mbit/s), High Speed (480Mbit/s) data rates

• Control, Bulk, Isochronous and Interrupt transfer types
• Small stack size frees space for main application
• Remote wakeup support
• USB bus powered support
• Real time (O.S. compliance, interrupt driven)
• Support 8-bit and 32-bit AVR®

1 Introduction
The aim of this document is to provide an easy way to integrate a USB vendor
class application on a new or existing project.

8-/32-bit Atmel
Microcontrollers

Application Note

Rev. 8481A-AVR-01/12

2 Atmel AVR49011
8481A-AVR-01/12

2 Abbreviations
ASF: AVR Software Framework

CD: Composite Device: a USB device with more than one interface

CDC: Communication Device Class

FS: USB Full Speed

HID: Human Interface Device

HS: USB High Speed

LS: USB Low Speed

MSC: Mass Storage Class

UDC: USB device Controller

UDD: USB device Descriptor

UDI: USB device Interface

USB: Universal Serial Bus

SOF: Start of Frame

Atmel AVR49011

 3
8481A-AVR-01/12

3 Overview
This document includes six sections for all types of requirements when building a
USB device vendor application:

• Vendor class Specification
Provides information to help users with the vendor class specification and when
they need such solution

• Quick start
Describes how to start a ready to use vendor class device example

• Example description
Describes a vendor class device example

• Building a USB device vendor
Describes how to add a USB device vendor interface in a project

• Building a USB vendor class application
Describes how to add a USB vendor class application

• Vendor class in a USB composite device
Describes how to integrate a vendor class interface in a composite device project

For all these sections, it is recommended to know the main modules organization of a
vendor class application:

• User Application
• USB device Interface VENDOR (UDI-VENDOR)
• USB device Controller (UDC)
• USB device Driver (UDD)
For more advanced information concerning the USB stack implementation, please
refer to the Atmel® AVR4900 ASF USB Device stack application note.

Figure 3-1. USB vendor class solution architecture.

NOTE The USB device stack is available in the ASF in the common/services/usb directory.

UDD

UDC UDI – VENDOR

Application

USB Device stack from the ASF

http://atmel.com/dyn/resources/prod_documents/doc8360.pdf?doc_id=13244&family_id=607�

4 Atmel AVR49011
8481A-AVR-01/12

4 Vendor class specification
The development of a vendor class can be required when the existing class
(http://www.usb.org/developers/defined_class) does not correspond to the user
specification.

Before starting a vendor class specification, check in Table 4-1 that the native USB
classes are not applicable for your USB application.

Table 4-1. Analysis of native classes.
Class PROS. CONS.

HID

• Native driver
• USB Low Speed mode support
• Suitable for controlling or

monitoring an application

• Interrupt endpoint:
o low and full speed

64KB/s
o high speed 2.93MB/s

CDC

• High transfer rate
• Simple Host application

(terminal)
• Easy migration for USART based

applications

• Need of *.inf file under Windows®
• Driver not WHQL certified

MSC • Native driver • SCSI protocol adapted only for
mass storage

AUDIO
• Native driver
• Interesting to record or send data

stream

• No handshake data transfer
(isochronous)

When building a vendor class, the main important thing to specify is the transfer
modes used by endpoints.

These can be chosen based on the description given in Table 4-2.

Table 4-2. Endpoint type description.
Endpoint
type

Description Use case

Control
• Low transfer rate
• No need of new endpoint which

can reduce application footprint

• Configuration of the device

Interrupt
• Very low transfer
• Frequency guaranteed

• Real time constraints and low
bandwidth transfer

Bulk
• High transfer rate
• Transfer guaranteed (ACK)

• Large amount of data transfer

Isochronous
• Very High transfer rate
• Transfer not guaranteed

• Streaming application

http://www.usb.org/developers/defined_class�

Atmel AVR49011

 5
8481A-AVR-01/12

5 Quick start
The USB device vendor examples are available in Atmel AVR Studio® 5 and ASF.
Hereunder is the procedure to start a USB device vendor class example quickly:

1. Connect the board (for example the Atmel AVR XMEGA®-A3BU Xplained kit)
to the PC using the USB cable.

2. Connect the Atmel debugger (hereafter the JTAGICE3) to program the
device.

Figure 5-1 Board connection.

3. Start AVR Studio 5 and click on “New Example Project from ASF”.

In the New Example Project’s list, select “USB Device Vendor Class Example”
based on the board you are using. The filter list can be used to find the example
quickly.

1

3

2

4

6 Atmel AVR49011
8481A-AVR-01/12

4. Compile, load and execute.

The project does not require any modification and only needs to be compiled, loaded
and ran. Connect the Atmel debugger supported by the board and press F5.

When running the application for the first time a Found New Hardware Wizard pops
up as showing below, select “No, not this time” and click on “Next”:

5. Load the driver using the inf file.

NOTE Since the USB vendor class is not supported by any native driver, user needs to
provide a proprietary driver or use a third party solution.

For this example, an open source solution “libusb” is used to support this device. An
inf file was generated by the libusb tool. Point to the folder avr4901/driver/ to install
the driver.

Atmel AVR49011

 7
8481A-AVR-01/12

Once the device is correctly installed, lunch the avr_vendor_class_example.exe from
the folder avr4901/tool/. This program will perform a loopback in all endpoints. A
status is displayed to show the correct execution of the application:

5.1 Hardware behavior

During the application execution the hardware (used board) should behave as below:

• A LED is on when USB device is in active mode and is off in SUSPEND mode
• A LED blinks showing that vendor class interface is enabled by the USB Host
• A LED is on when the loopback is running

Figure 5-2. Example with the Atmel XMEGA-A3BU Xplained board.
LED on when
USB is active LED blinks showing

Vendor interface is
enabled

LED blinks showing
loopback is running

8 Atmel AVR49011
8481A-AVR-01/12

The user interface description (specific to the board) is defined at the end of ui.c
source file. This file is available within the “Solution Explorer” under
“common/services/usb/class/vendor/device/example/part_number_board/”.

Figure 5-3 ui.c file location.

Atmel AVR49011

 9
8481A-AVR-01/12

6 Example description

6.1 Example content
The ASF provides a USB device vendor class example for various Atmel AVR
products. All these examples share common files and implement the same
application.

The Table 6-1 introduces a summary of the main files included in the USB device
vendor example. These files are associated to the modules described in Figure 3-1.

Table 6-1. USB device VENDOR example files.
Modules Files ASF paths Description
Application main.c

ui.c

conf_usb.h

Examples folder

Main loop.
Set up hardware switches and LEDs to show
operations.
USB device configuration.

udi_vendor.c/h common/services/usb/class/vendor/device/ Vendor class implementation UDI VENDOR

udi_vendor_desc.c
udi_vendor_conf.h common/services/usb/class/vendor/device/

USB Descriptors for an USB device with
vendor interface (not applicable for USB
composite device)

udc.c/h
udc_desc.h
udi.h
udd.h

common/services/usb/udc/ USB device Core

UDC

usb_protocol.h
usb_atmel.h common/services/usb/ USB Protocol constants

UDD usbb_device.c/h
usbc_device.c/h
usb_device.c/h

avr32/drivers/usbb/
avr32/drivers/usbc/
xmega/drivers/usb/

USB Drivers

6.2 Example behavior
The main.c and ui.c files implement the user interface vendor application. It is
based on three steps:

1. Start USB device:
udc_start();

udc_attach(); // Must be called when the USB cable is plugged

 // Cable plugged is detected via VBus events

2. Wait the enable of vendor interface via call-back and enable the loopback
process:
UDI_VENDOR_ENABLE_EXT() // Interface enabled callback

The callback calls:
- udi_vendor_bulk_out_run()// Enable transfer on interrupt OUT endpoint
- udi_vendor_interrupt_out_run()//Enable transfer on interrupt OUT endpoint
- udi_vendor_iso_out_run() //Enable transfer on isochronous OUT endpoint

10 Atmel AVR49011
8481A-AVR-01/12

3. Perform loopback in all endpoints (Control, Interrupt, Bulk and Isochronous):
// When a OUT data is received, then send this data on IN

void main_vendor_int_out_received(udd_ep_status_t status,

 iram_size_t nb_transfered)

{

 if (UDD_EP_TRANSFER_OK != status) {

 return; // Tranfert aborted, then stop loopback

 }

 ui_loop_back_state(true);

 // Send on IN endpoint the data received on endpoint OUT

 udi_vendor_interrupt_in_run(

 main_buf_loopback,

 nb_transfered,

 main_vendor_int_in_received);

}

// When a IN data has been sent, then the OUT transfer is enabled again

void main_vendor_int_in_received(udd_ep_status_t status,

 iram_size_t nb_transfered)

{

 if (UDD_EP_TRANSFER_OK != status) {

 return; // Tranfert aborted, then stop loopback

 }

 ui_loop_back_state(false);

 // Wait a full buffer

 udi_vendor_interrupt_out_run(

 main_buf_loopback,

 sizeof(main_buf_loopback),

 main_vendor_int_out_received);

}

Atmel AVR49011

 11
8481A-AVR-01/12

Figure 6-1. Example behavior sequence.

Application

udc_start()

UDC / UDI / UDD

udc_attach()

VBus high

UDI_VENDOR_ENABLE_EXT()

Data reception

Startup

main_vendor_int_out_received()

Enable loopback process

Reception of OUT data and
send it in IN endpoint

Enumeration

Step 1 - Started USB device

Step 2 - Wait the vendor interface enable

Step 3 – Loopback process

udi_vendor_interrupt_in_run()

udi_vendor_interrupt_out_run()

udi_vendor_bulk_out_run()

udi_vendor_iso_out_run()

Data received
by the host

main_vendor_int_in_received()
Sent of IN data and enable

OUT endpoint udi_vendor_interrupt_out_run()

12 Atmel AVR49011
8481A-AVR-01/12

7 Building a USB device vendor
The USB device vendor modules provide a USB vendor interface which can be used
to build a USB vendor class application.

These modules are available in Atmel AVR Studio 5 and can be imported in an AVR
Studio 5 project. This section describes how to add a USB device vendor in a project:

1. Import USB vendor module.
2. Configure personal USB parameters.
3. Call USB routines to run USB device.

7.1 Import USB module
To import the USB vendor module, follow the instructions below:

1. Open or create your project:
2. From project menu, choose “Select Drivers from AVR Software Framework”.

3. Select Services (1), choose USB vendor class (Single Interface Device) (2), and
click on the “Add to selection” button (3).

1

2
3

Atmel AVR49011

 13
8481A-AVR-01/12

7.2 USB configuration
All USB stack configurations are stored in the conf_usb.h file in the application
module. These configurations are simple and do not require any specific USB
knowledge.

There is one configuration section for each USB modules: UDC, UDI and UDD.

The UDC configuration possibilities are described in the Atmel AVR4900: ASF – USB
Device Stack application note in the Section 7.1.1: USB device configuration”.

The UDD configuration possibilities are described in the Atmel AVR4900: ASF – USB
Device Stack application note in the Section 7.1.3: USB drivers’ configuration”.

The UDI which is the vendor interface require some configuration described in Table
7-1.

Table 7-1. UDI vendor – configuration.

Define name Type Description

UDI_VENDOR_ENABLE_EXT Call-back function Call-back function called when vendor interface is enabled

UDI_VENDOR_DISABLE_EXT Call-back function Call-back function called when vendor interface is disabled

UDI_VENDOR_SETUP_OUT_RECEIVED Call-back function Call-back function called when OUT setup request is received

UDI_VENDOR_SETUP_IN_RECEIVED Call-back function Call-back function called when IN setup request is received

UDI_VENDOR_EPS_SIZE_INT_FS
UDI_VENDOR_EPS_SIZE_BULK_FS
UDI_VENDOR_EPS_SIZE_ISO_FS

constant

Interrupt endpoints size for full speed (up to 64)
Bulk endpoints size for full speed (8, 16, 32 or 64)
Isochronous size for full speed (up to 1023)

UDI_VENDOR_EPS_SIZE_INT_HS
UDI_VENDOR_EPS_SIZE_BULK_HS
UDI_VENDOR_EPS_SIZE_ISO_HS

constant

Interrupt endpoints size for full speed (up to 1024)
Bulk endpoints size for full speed (8, 16, 32,..,512)
Isochronous size for full speed (up to 1024)

NOTE It is important to verify the configuration defined in conf_clock.h file, because the
USB hardware requires a specific clock frequency (see comment in conf_clock.h
file).

7.3 USB implementation
This section describes source code to add to run a USB device vendor application.

The implementation is made of three steps:

1. Start USB device.
2. Wait the enable of vendor interface by the Host.
3. Transfer data on USB bus.

7.3.1 USB device control

Only two function calls are needed to start a USB device application, see Figure 7-1.

http://atmel.com/dyn/resources/prod_documents/doc8360.pdf?doc_id=13244&family_id=607�
http://atmel.com/dyn/resources/prod_documents/doc8360.pdf?doc_id=13244&family_id=607�
http://atmel.com/dyn/resources/prod_documents/doc8360.pdf?doc_id=13244&family_id=607�
http://atmel.com/dyn/resources/prod_documents/doc8360.pdf?doc_id=13244&family_id=607�

14 Atmel AVR49011
8481A-AVR-01/12

Figure 7-1. USB device application sequence.

NOTE In case of a new project, the USB stack requires to enable interrupts and to initialize

the clock and sleepmgr services.

Example:
<conf_usb.h>

#define UDC_VBUS_EVENT(b_vbus_high) \

vbus_event(b_vbus_high)

<main C file>:

main() {

// Authorize interrupts

irq_initialize_vectors();

cpu_irq_enable();

// Initialize the sleep manager service

sleepmgr_init();

// Initialize the clock service

sysclk_init();

// Enable USB Stack device

udc_start();

if (!udc_include_vbus_monitoring()) {

 // VBUS monitoring is not available on this product

To start a USB device application
udc_start()

VBus monitoring available
udc_include_vbus_monitoring()

Wait for VBUS power
UDC_VBUS_EVENT()

Enable D+ pull-up resistors
udc_attach()

Bus enumeration

no

no

yes

yes

Atmel AVR49011

 15
8481A-AVR-01/12

 // thereby VBUS has to be considered as present

 vbus_event (true);

}
}

vbus_event(b_vbus_high) {

if (b_vbus_high) {

// Connect USB device

udc_attach();

}else{

// Disconnect USB device

udc_detach();

}

}

7.3.2 USB interface control

After the device enumeration (detecting and identifying USB devices), the USB Host
starts the device configuration. When the USB vendor class interface is accepted, the
USB host enables this interface and the UDI_VENDOR_ENABLE_EXT() callback
function is called.

When the USB device is unplugged or is reset by USB Host, the USB interface is
disabled and the UDI_VENDOR_DISABLE_EXT() callback function is called.

Example:
<conf_usb.h>

#define UDI_VENDOR_ENABLE_EXT() \

vendor_enable()

#define UDI_VENDOR_DISABLE_EXT() \

vendor_disable()

<user C file>:

vendor_enable() {

// Start an ADC conversion

…
return true;

}

vendor_disable() {

// Stop the ADC conversion

…

}

16 Atmel AVR49011
8481A-AVR-01/12

7.3.3 USB vendor functions

The USB vendor class functions described in Table 7-2 allow to send or to receive
data.

Table 7-2. UDI vendor class – data functions.
Declaration Description

udi_vendor_interrupt_in_run () Start transfer in an IN interrupt endpoint

udi_vendor_interrupt_out_run () Start transfer in an OUT interrupt endpoint

udi_vendor_bulk_in_run () Start transfer in an IN bulk endpoint

udi_vendor_bulk_out_run () Start transfer in an OUT bulk endpoint

udi_vendor_iso_in_run () Start transfer in an IN isochronous endpoint

udi_vendor_iso_out_run () Start transfer in an OUT isochronous endpoint

7.4 Vendor class and USB Host support
Since the USB vendor class is specified by the user, there is no native support with
any operating system. The user has to build an own driver and host application.
However some solutions exist to help to build a fast solution. The most popular and
free of charge are:

o Libusb: This solution has the advantage to support multi-operating system
platforms (Windows, Linux®, Mac OS®) and offers an open source solution.
Atmel provide an example using this solution available within the Atmel
AVR4901 application note. For further information regarding libusb, please
refer to http://www.libusb.org/

o WinUSB: This solution is provided by and dedicated to Windows platforms
(native form Windows Vista®). WinUSB does not support isochronous transfer
mode. For further information please refer to http://msdn.microsoft.com/en-
us/library/windows/hardware/ff540196(v=vs.85).aspx

http://www.libusb.org/�
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540196(v=vs.85).aspx�
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540196(v=vs.85).aspx�

Atmel AVR49011

 17
8481A-AVR-01/12

8 Vendor class in a USB composite device
The information required to build a composite device is available in the Atmel
AVR4902 ASF - USB Composite Device application note. A familiarity with this
application note is mandatory.

This section introduced only the specific information required to build a composite
device with a vendor class interface.

8.1 USB configuration
In addition to the USB configuration described in Section 7.2, the following values
must be defined in the conf_usb.h file:

USB_DEVICE_EP_CTRL_SIZE
Endpoint control size.

This must be:

• 8, 16, 32, or 64 for full speed device (8 is recommended to save RAM)
• 64 for a high speed device
UDI_VENDOR_EP_INTERRUPT_IN
IN interrupt endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_INT_FS is 0).

UDI_VENDOR_EP_INTERRUPT_OUT
OUT interrupt endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_INT_FS is 0).

UDI_VENDOR_EP_BULK_IN
IN bulk endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_BULK_FS is 0).

UDI_VENDOR_EP_ BULK_OUT
OUT bulk endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_BULK_FS is 0).

UDI_VENDOR_EP_ISO_IN
IN isochronous endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_ISO_FS is 0).

UDI_VENDOR_EP_ ISO_OUT
OUT isochronous endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_ISO_FS is 0).

UDI_VENDOR_IFACE_NUMBER
Interface number of the vendor interface.

USB_DEVICE_MAX_EP
Total number of endpoints in the application. This must include the number of
endpoints used by vendor interface (0 to 6 depend on UDI_VENDOR_EPS_SIZE_X
defines).

http://www.atmel.com/dyn/resources/prod_documents/doc8445.pdf�
http://www.atmel.com/dyn/resources/prod_documents/doc8445.pdf�

18 Atmel AVR49011
8481A-AVR-01/12

8.2 USB descriptor
The USB device Descriptor of composite device, defined in conf_usb.h file, must
include a vendor interface:

//! Define structure of composite interfaces descriptor

#define UDI_COMPOSITE_DESC_T \

 udi_vendor_desc_t udi_vendor; \
 ...

//! Fill composite interfaces descriptor for Full Speed

#define UDI_COMPOSITE_DESC_FS \

 .udi_vendor = UDI_VENDOR_DESC_FS, \

 ...

//! Fill composite interfaces descriptor for High Speed

#define UDI_COMPOSITE_DESC_HS \

 .udi_vendor = UDI_VENDOR_DESC_HS, \

 ...

//! Fill Interface APIs corresponding at interfaces descriptor

#define UDI_COMPOSITE_API \

 &udi_api_vendor, \

 ...

Atmel AVR49011

 19
8481A-AVR-01/12

9 Table of contents
Atmel AVR4901: ASF - USB Vendor Class Application 1
Features... 1
1 Introduction .. 1
2 Abbreviations ... 2
3 Overview... 3
4 Vendor class specification.. 4
5 Quick start .. 5

5.1 Hardware behavior .. 7
6 Example description.. 9

6.1 Example content.. 9
6.2 Example behavior.. 9

7 Building a USB device vendor .. 12
7.1 Import USB module ... 12
7.2 USB configuration ... 13
7.3 USB implementation.. 13

7.3.1 USB device control .. 13
7.3.2 USB interface control... 15
7.3.3 USB vendor functions.. 16

7.4 Vendor class and USB Host support... 16
8 Vendor class in a USB composite device.................................... 17

8.1 USB configuration ... 17
8.2 USB descriptor .. 18

9 Table of contents ... 19

8481A-AVR-01/12

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
16F, Shin Osaki Kangyo Bldg.
1-6-4 Osaki Shinagawa-ku
Tokyo 104-0032
JAPAN
Tel: (+81) 3-6417-0300
Fax: (+81) 3-6417-0370

 © 2012 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, XMEGA®, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of Microsoft Corporation in U.S.
and or other countries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1 Introduction
	2 Abbreviations
	3 Overview
	4 Vendor class specification
	5 Quick start
	5.1 Hardware behavior

	6 Example description
	6.1 Example content
	6.2 Example behavior

	7 Building a USB device vendor
	7.1 Import USB module
	7.2 USB configuration
	7.3 USB implementation
	7.3.1 USB device control
	7.3.2 USB interface control
	7.3.3 USB vendor functions

	7.4 Vendor class and USB Host support

	8 Vendor class in a USB composite device
	8.1 USB configuration
	8.2 USB descriptor

	9 Table of contents

