Atmel AVR4901: ASF - USB Vendor Class
Application Alm l

Y ®

Features
* USB 2.0 compliance - _hi
- Chapter 9 compliance 8 l32 blt Atmel
- Full Speed (12Mbit/s), High Speed (480Mbit/s) data rates M icrocontrol IerS

Control, Bulk, Isochronous and Interrupt transfer types

Small stack size frees space for main application
Remote wakeup support . .
USB bus powered support Application Note
Real time (O.S. compliance, interrupt driven)
Support 8-bit and 32-bit AVR®

1 Introduction

The aim of this document is to provide an easy way to integrate a USB vendor
class application on a new or existing project.

Rev. 8481A-AVR-01/12

ATMEL

ATMEL

2 Abbreviations
ASF: AVR Software Framework
CD: Composite Device: a USB device with more than one interface
CDC: Communication Device Class
FS: USB Full Speed
HID: Human Interface Device
HS: USB High Speed
LS: USB Low Speed
MSC: Mass Storage Class
UDC: USB device Controller
UDD: USB device Descriptor
UDI: USB device Interface
USB: Universal Serial Bus
SOF: Start of Frame

2 Atmel AVR49011

8481A-AVR-01/12

3 Overview

NOTE

8481A-AVR-01/12

Atmel AVR49011

This document includes six sections for all types of requirements when building a
USB device vendor application:

e Vendor class Specification
Provides information to help users with the vendor class specification and when
they need such solution

e Quick start
Describes how to start a ready to use vendor class device example

o Example description
Describes a vendor class device example

¢ Building a USB device vendor
Describes how to add a USB device vendor interface in a project

¢ Building a USB vendor class application
Describes how to add a USB vendor class application

e Vendor class in a USB composite device
Describes how to integrate a vendor class interface in a composite device project

For all these sections, it is recommended to know the main modules organization of a
vendor class application:

e User Application

e USB device Interface VENDOR (UDI-VENDOR)

e USB device Controller (UDC)

e USB device Driver (UDD)

For more advanced information concerning the USB stack implementation, please
refer to the Atmel® AVR4900 ASF USB Device stack application note.

Figure 3-1. USB vendor class solution architecture.

Application

T T
1) Sy

ubDC UDI - VENDOR

ubDD

USB Device stack from the ASF

The USB device stack is available in the ASF in the common/services/usb directory.

ATMEL ;

http://atmel.com/dyn/resources/prod_documents/doc8360.pdf?doc_id=13244&family_id=607�

4 Vendor class specification

4

ATMEL

The development of a vendor class can be required when the existing class
(http://www.usb.org/developers/defined_class) does not correspond to the user

specification.

Before starting a vendor class specification, check in Table 4-1 that the native USB

classes are not applicable for your USB application.

Table 4-1. Analysis of native classes.

Class

PROS.

CONS.

HID

Native driver
USB Low Speed mode support

Suitable for controlling or
monitoring an application

Interrupt endpoint:

o low and full speed
64KB/s

o high speed 2.93MB/s

CDC

High transfer rate

Simple Host application
(terminal)

Easy migration for USART based
applications

Need of *.inf file under Windows®
Driver not WHQL certified

MSC

Native driver

SCSI protocol adapted only for
mass storage

AUDIO

Native driver

Interesting to record or send data
stream

No handshake data transfer
(isochronous)

When building a vendor class, the main important thing to specify is the transfer
modes used by endpoints.

These can be chosen based on the description given in Table 4-2.

Table 4-2. Endpoint type description.

Endpoint
type

Description

Use case

Control

Low transfer rate

No need of new endpoint which
can reduce application footprint

Configuration of the device

Interrupt

Very low transfer
Frequency guaranteed

Real time constraints and low
bandwidth transfer

Bulk

High transfer rate
Transfer guaranteed (ACK)

Large amount of data transfer

Isochronous

Very High transfer rate
Transfer not guaranteed

Streaming application

Atmel AVR49011

8481A-AVR-01/12

http://www.usb.org/developers/defined_class�

Atmel AVR49011

5 Quick start

The USB device vendor examples are available in Atmel AVR Studio® 5 and ASF.
Hereunder is the procedure to start a USB device vendor class example quickly:

1. Connect the board (for example the Atmel AVR XMEGA®-A3BU Xplained kit)
to the PC using the USB cable.

2. Connect the Atmel debugger (hereafter the JTAGICE3) to program the
device.

Figure 5-1 Board connection.

3. Start AVR Studio 5 and click on “New Example Project from ASF”.

”

In the New Example Project’s list, select “USB Device Vendor Class Example
based on the board you are using. The filter list can be used to find the example
quickly.

Stark Page

AVR Studio 5

The new Integrated Development Environment from Atmel

| Category: | services \\ 3 I |

All Projects -
1 [B1el Mew Example Project from ASF... Tethnology B USB Device CDC unit tests - STKB00 - ATxmega32A4U
@ Open Project...
. USE Device COC unit tests - XMEGA-A3BU ¥plained
! USE Device Custom Class Example - EVK1104
USE Device Custom Class Example - UC3C-EK
. USE Device HID Generic Example - STKE00 - ATxmega32A4U

New Example Project
Asf Version Show Projects: | Al
[F] Mew Praject. .. = USB Device COC unit tests - STK&00 - ATUC256L4U
Category . USB Device CDC unit tests - STKG00 - ATxmegal2841U
USB Device COC unit tests - UC3C-EK
USB Device COC unit tests - Unknown Board
Recent Projects USB Device CDC unit tests - XMEGA-B1 Xplainad

! USE Device Custom Class Example - EVK1101

. USE Device Custom Class Example - STKG00 - ATxmega? 554380

. USE Device Custom Class Example - STKG00 - ATxmega32a4U

" USB Device Custom Class Bxample - XMEGA-A3BU Xplained

! USE Device HID Generic Example - EVK1101
USE Device HID Generic Example - UC3C-EX

! USE Device HID Keyboard Example - EVK1101

AIMEL 5

®
8481A-AVR-01/12

6

NOTE

Atmel AVR49011

ATMEL

4. Compile, load and execute.

The project does not require any modification and only needs to be compiled, loaded
and ran. Connect the Atmel debugger supported by the board and press F5.

When running the application for the first time a Found New Hardware Wizard pops
up as showing below, select “No, not this time” and click on “Next”:

Found New Hardware Wizard

software?

@®

Welcome to the Found New
Hardware Wizard
‘windaws will zearch for current and updated software by

looking an wour cormputer, on the hardware installation CO, or an
the Windows Lpdate Web site [with your permiszion].

Eead our privacy policy

Can Windows connect ta Windows Update to search for

(D) Yes, thiz time only

W ytime | connect a device

Click Mext to continue.

[Mest »][Cancel

5. Load the driver using the inf file.

Since the USB vendor class is not supported by any native driver, user needs to
provide a proprietary driver or use a third party solution.

For this example, an open source solution “libusb” is used to support this device. An
inf file was generated by the libusb tool. Point to the folder avr4901/driver/ to install

the driver.

Found New Hardware Wizard
Please choose your search and installatian optians. .

(&) Search for the best driver in these locations.

Use the check boxes below to limit or expand the default search, which includes local
paths and removable media. The best driver found will be installed

[] Search remaovabls media (loppy, CO-ROM .]
Include this location in the search:

Do\ppNotessUSBAavi90T_asf_ush_device rew_ w | | Ofpwse |

() Dont search. | will chooss the diiver to install

Chaose this aption to select the device driver fiom a lis Swindows does not guarantes that
the driver you choose will be the best match for pour hardware.

<Back || Hew> | [Cancel

Found New Hardware Wizard

Please wait while the wizard installs the software _ .
\> Vendor Clsss Exampls

= =

Setting @ system restare point and backing up oid files in
cass your system nesds to be restored in the future.

8481A-AVR-01/12

Atmel AVR49011

Once the device is correctly installed, lunch the avr_vendor_class_example.exe from
the folder avr4901/tool/. This program will perform a loopback in all endpoints. A
status is displayed to show the correct execution of the application:

= C:\windows\system32\cmd.exe

Microsoft Windows XP [Version 5.1.26801
(C> Copyright 1985-2081 Microsoft Corp.

C:“Documents and Settings“nnaouar>D:“AppNotes“USBu\avr4?81_asf_ush_device_new_cl
zsswtrunkstoolhavr_vendor_class_example .exe

PC tool for ASF vendor class example (Ul.1>
Initialization library "libush'. ..
Search device...
USE Device of ASF vendor class example found:
— Device version: 1.8
— Manufacturename: ATMEL ASF

sochronous enpoint loop bhack...
Tests completed.

C:“Documents and Settings“nnaouar>_

5.1 Hardware behavior

During the application execution the hardware (used board) should behave as below:

e ALED is on when USB device is in active mode and is off in SUSPEND mode
e A LED blinks showing that vendor class interface is enabled by the USB Host
o ALED is on when the loopback is running

Figure 5-2. Example with the Atmel XMEGA-A3BU Xplained board.

AIMEL 7

®
8481A-AVR-01/12

ATMEL

The user interface description (specific to the board) is defined at the end of ui.c
source file. This file is available within the “Solution Explorer” under
“‘common/services/usb/class/vendor/device/example/part_number_board/”.

Figure 5-3 ui.c file location.

Solution Explorer * I X
= 7 services L
[clock,
[gpio
[sleeprgr
= | ush
= | class
= [& wendor
=l |7 device
=l |5 example
= 5 atxmeqazShaibu_xmega_asbu_xplained
] uic
2| ult—rermorT

=| udi_vendor_conf.h

cl

E’l udi_wendor.h
[

cl

.'i’l usb_prokocol_wendaor.b

#- [udc
[Z] usb_atrel.h
=] usb_protocal.h
+- [utils
=] LF =mega
+- [boards

Atmel AVR49011

8481A-AVR-01/12

6 Example description

6.1 Example content

Atmel AVR49011

The ASF provides a USB device vendor class example for various Atmel AVR
products. All these examples share common files and implement the same
application.

The Table 6-1 introduces a summary of the main files included in the USB device
vendor example. These files are associated to the modules described in Figure 3-1.

Table 6-1. USB device VENDOR example files.

Modules Files ASF paths Description
Application main.c Main loop.
ui.c Set up hardware switches and LEDs to show
Examples folder operations.
conf usb.h USB device configuration.
UDI VENDOR udi vendor.c/h common/services/usb/class/vendor/device/ | Vendor class implementation
udi vendor desc.c USB Descriptors for an USB device with
udi vendor conf.h common/services/usb/class/vendor/device/ | vendor interface (not applicable for USB
B - composite device)
ubC udc.c/h
udc desc.h .
LT common/services/usb/udc/ USB device Core
udi.h
udd.h
usb protocol.h .
- common/services/usb/ USB Protocol constants
usb_atmel.h
ubD usbb_device.c/h avr32/drivers/usbb/
usbc _device.c/h avr32/drivers/usbc/ USB Drivers
usb_device.c/h xmegal/drivers/usb/

6.2 Example behavior

8481A-AVR-01/12

The main.c and ui.c files implement the

based on three steps:

1. Start USB device:
udc_start();

udc_attach() ;

user interface vendor application. It is

// Must be called when the USB cable is plugged

// Cable plugged is detected via VBus events

2. Wait the enable of vendor interface via call-back and enable the loopback
process:

UDI VENDOR ENABLE EXT ()

The callback calls:
- udi_vendor_bulk out_run()// Enable transfer on interrupt OUT endpoint

// Interface enabled callback

- udi vendor interrupt out run()//Enable transfer on interrupt OUT endpoint

- udi vendor iso out run()

AIMEL

®

//Enable transfer on isochronous OUT endpoint

ATMEL

3. Perform loopback in all endpoints (Control, Interrupt, Bulk and Isochronous):
// When a OUT data is received, then send this data on IN

void main vendor int out received(udd ep status_t status,

iram size t nb transfered)

if (UDD _EP TRANSFER OK != status) {
return; // Tranfert aborted, then stop loopback
}
ui loop back state(true);
// Send on IN endpoint the data received on endpoint OUT
udi_vendor_interrupt in_run/(
main buf loopback,
nb_ transfered,
main_vendor_int_in_ received);
}
// When a IN data has been sent, then the OUT transfer is enabled again
void main vendor int in received(udd ep status_t status,

iram size t nb transfered)

if (UDD_EP TRANSFER OK != status) {
return; // Tranfert aborted, then stop loopback
}
ui loop back state(false);
// Wait a full buffer
udi vendor interrupt out run(
main buf loopback,
sizeof (main buf loopback),

main vendor int out received);

10 Atmel AVR49011

8481A-AVR-01/12

Atmel AVR49011

Figure 6-1. Example behavior sequence.

udc_attach()

Application UDC /UDI/ UDD

! Steo 1. Started USB device . . 1 T udestarty | |

: 1
i Step 1 - Started USB device Startup|_| udc_sta (); :
1 1
i VBus high E
| < i
1 1
1 1
1 1
1 1
1 1

Step 2 - Wait the vendor interface ena

Enumeration
UDI_VENDOR_ENABLE_EXT() r

<

udi_vendor _interrupt_out_run()
Enable loopback process >
udi_vendor_bulk_out_run()

Step 3 — Loopback process

Data reception
main_vendor_int_out_received() r%

1
1
1
1
I
1
1
1
|
1
Reception of OUT data and [~))] !
send it in IN endpoint udi_vendor_interrupt_in_run() :
1

1

1

1

1

1

I

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

: »
1

! Data received
l by the host
' main_vendor_int_in_received()

1 dl

1

1

1

1

1

1

Sent of IN data and enable L N

OUT endpoint udi_vendor_interrupt_ out_run()k |

=N

AIMEL 1"

®
8481A-AVR-01/12

7 Building a USB device vendor

ATMEL

The USB device vendor modules provide a USB vendor interface which can be used
to build a USB vendor class application.

These modules are available in Atmel AVR Studio 5 and can be imported in an AVR
Studio 5 project. This section describes how to add a USB device vendor in a project:

1. Import USB vendor module.

2. Configure personal USB parameters.
3. Call USB routines to run USB device.

7.1 Import USB module

To import the USB vendor module, follow the instructions below:

1. Open or create your project:

2. From project menu, choose “Select Drivers from AVR Software Framework”.

Fle Edt Wiew WAssistd Project

e Rt R ™ - Select Drivers from AYR Software Framework... |
PE X%

adc_example.c X

Build Debug Tools

Set as Startlp Project

_:I ADC_EXAMPLEZ Propertes,., AlE+F7

Window Help

== :E|He>< |gv;

= adc_example.c

X ‘ 3 I¢> Oy Documentsiiyse\My DocumentsiAwrStudio\ADC_EXAMPLEZNADC_EXAMPLE Z\srchade_exan

*

/*This file has been prepared for Doxygen automatic documentation generation.*/
(= /*! \{11e 33 R R SR SRR S R SRS R S R SRR S RO S R R R R s R S RO R S R R SR R R Rk R R ok R kR

3. Select Services (1), choose USB vendor class (Single Interface Device) (2), and
click on the “Add to selection” button (3).

Available Modules

Show: Senvices

Select Drivers, Components, and Services

AVR Software Framework Wizard- Edit project USER_APPLICATION1

Search for modules

Version: 2.9.0

Selected Modules

3‘ UTILITY - Generic board support (driver)
3‘ GPIC - General purpose InputfOutput (senvice)

Name

MEMORY - Memory Control Access

Sensors - Sensor Device Stack

SPI - Serial Peripheral Interface Master (Common APT)
TIMING - Clack Contral

TWI - Two-Wire Interface (Commaon APT)

USART - Serial interface

USB CDC (Composite Device)

USE CDC (Single Interface Davice)

USB HID Generic {Composite Device)

USB HID Generic (Single Interface Device)

USE HID Keyboard (Composite Device)

USB HID Keyboard (Single Interface Device)

USE HID Mouse (Composite Device)

USB HID Mouse (Single Interface Device)

USE MSC (Composite Device)

USE M5C (Single Interface Device)

USE PHDC (Composite Device)

USE PHDC (Single Interface Device)

2

USE vendor class{Composite Device)

Type
sarvica A
service
sarvice
service
sarvice
servica
sarvice
servica
service
sarvice
service
sarvice
sarvica
service
sarvica
service
sarvice
service

s‘ IOPORT - Input/Cutput Port Controller {driver)

servica v

[_addtoscectin>>] 3

12 Atmel AVR49011

USB vendor class (Single Interface Device)

210
Provides USB vendor class interface configurated to run on USB device with 2 single interface.

Mote that the Compaosite Device USE services can support several USE services at the same time, while the Single Interface Device can only support one service at a
Please check this when including the USE services in your project.

EET TN

8481A-AVR-01/12

7.2 USB configuration

Atmel AVR49011

All USB stack configurations are stored in the conf usb.h file in the application
module. These configurations are simple and do not require any specific USB
knowledge.

There is one configuration section for each USB modules: UDC, UDI and UDD.

The UDC configuration possibilities are described in the Atmel AVR4900: ASF — USB
Device Stack application note in the Section 7.1.1: USB device configuration”.

The UDD configuration possibilities are described in the Atmel AVR4900: ASF — USB
Device Stack application note in the Section 7.1.3: USB drivers’ configuration”.

The UDI which is the vendor interface require some configuration described in Table
7-1.

Table 7-1. UDI vendor — configuration.

Define name

Type Description

UDI_VENDOR_ENABLE_EXT

Call-back function Call-back function called when vendor interface is enabled

UDI_VENDOR_DISABLE_EXT

Call-back function Call-back function called when vendor interface is disabled

UDI_VENDOR_SETUP_OUT_RECEIVED

Call-back function

Call-back function called when OUT setup request is received

UDI_VENDOR_SETUP_IN_RECEIVED

Call-back function

Call-back function called when IN setup request is received

UDI_VENDOR_EPS_SIZE_INT_FS

Interrupt endpoints size for full speed (up to 64)

UDI_VENDOR_EPS_SIZE_BULK_FS constant Bulk endpoints size for full speed (8, 16, 32 or 64)
UDI_VENDOR _EPS SIZE ISO _FS Isochronous size for full speed (up to 1023)

UDI_VENDOR_EPS_SIZE_INT_HS Interrupt endpoints size for full speed (up to 1024)
UDI_VENDOR_EPS_SIZE BULK_HS constant Bulk endpoints size for full speed (8, 16, 32,..,512)

UDI_VENDOR_EPS_SIZE_ISO_HS

Isochronous size for full speed (up to 1024)

NOTE

It is important to verify the configuration defined in conf clock.h file, because the

USB hardware requires a specific clock frequency (see comment in conf clock.h

file).

7.3 USB implementation

This section describes source code to add to run a USB device vendor application.

The implementation is made of three steps:

1. Start USB device.
2. Wait the enable of vendor interface by the Host.
3. Transfer data on USB bus.

7.3.1 USB device control

Only two function calls are needed to start a USB device application, see Figure 7-1.

8481A-AVR-01/12

AIMEL 13

®

http://atmel.com/dyn/resources/prod_documents/doc8360.pdf?doc_id=13244&family_id=607�
http://atmel.com/dyn/resources/prod_documents/doc8360.pdf?doc_id=13244&family_id=607�
http://atmel.com/dyn/resources/prod_documents/doc8360.pdf?doc_id=13244&family_id=607�
http://atmel.com/dyn/resources/prod_documents/doc8360.pdf?doc_id=13244&family_id=607�

ATMEL

Figure 7-1. USB device application sequence.

To start a USB device application
udc_start()

VBus monitoring available
udc_include_vbus_monitoring()

Wait for VBUS power
UDC_VBUS_EVENT()

yes

A 4

Enable D+ pull-up resistors
udc_attach()

Y
Bus enumeration

NOTE In case of a new project, the USB stack requires to enable interrupts and to initialize
the clock and sleepmgr services.

Example:

<conf usb.h>
#define UDC_VBUS EVENT (b_vbus_high) \
vbus_event (b_vbus high)

<main C file>:
main () {
// Authorize interrupts
irqg initialize vectors();
cpu_irqg enable();
// Initialize the sleep manager service
sleepmgr init();
// Initialize the clock service
sysclk init();
// Enable USB Stack device
udc_start();
if (!'udc_include vbus monitoring()) {

// VBUS monitoring is not available on this product

14 Atmel AVR49011

8481A-AVR-01/12

7.3.2 USB interface control

8481A-AVR-01/12

Atmel AVR49011

// thereby VBUS has to be considered as present

vbus event (true);

}

vbus_event (b_vbus high) {
if (b_vbus high) {
// Connect USB device
udc_attach();
lelse{
// Disconnect USB device
udc_detach () ;

After the device enumeration (detecting and identifying USB devices), the USB Host
starts the device configuration. When the USB vendor class interface is accepted, the
USB host enables this interface and the UDI_VENDOR_ENABLE_EXT() callback
function is called.

When the USB device is unplugged or is reset by USB Host, the USB interface is
disabled and the UDI_VENDOR_DISABLE_EXT() callback function is called.

Example:

<conf usb.h>

#define UDI_VENDOR _ENABLE EXT () \
vendor enable ()

#define UDI_VENDOR DISABLE EXT() \

vendor disable ()

<user C file>:
vendor enable () {

// Start an ADC conversion

return true;

}
vendor disable() {

// Stop the ADC conversion

ATMEL 1

ATMEL

7.3.3 USB vendor functions

The USB vendor class functions described in Table 7-2 allow to send or to receive

data.

Table 7-2. UDI vendor class — data functions.
Declaration Description
udi_vendor_interrupt_in_run () Start transfer in an IN interrupt endpoint
udi_vendor_interrupt_out_run () Start transfer in an OUT interrupt endpoint
udi_vendor_bulk_in_run () Start transfer in an IN bulk endpoint
udi_vendor_bulk_out_run () Start transfer in an OUT bulk endpoint
udi_vendor_iso_in_run () Start transfer in an IN isochronous endpoint
udi_vendor_iso_out_run () Start transfer in an OUT isochronous endpoint

7.4 Vendor class and USB Host support

Since the USB vendor class is specified by the user, there is no native support with
any operating system. The user has to build an own driver and host application.
However some solutions exist to help to build a fast solution. The most popular and
free of charge are:

o Libusb: This solution has the advantage to support multi-operating system
platforms (Windows, Linux®, Mac OS®) and offers an open source solution.
Atmel provide an example using this solution available within the Atmel
AVR4901 application note. For further information regarding libusb, please
refer to http://www.libusb.org/

o WinUSB: This solution is provided by and dedicated to Windows platforms
(native form Windows Vista®). WinUSB does not support isochronous transfer
mode. For further information please refer to http://msdn.microsoft.com/en-
us/library/windows/hardware/ff540196(v=vs.85).aspx

16 Atmel AVR49011

8481A-AVR-01/12

http://www.libusb.org/�
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540196(v=vs.85).aspx�
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540196(v=vs.85).aspx�

Atmel AVR49011

8 Vendor class in a USB composite device

8.1 USB configuration

8481A-AVR-01/12

The information required to build a composite device is available in the Atmel
AVR4902 ASF - USB Composite Device application note. A familiarity with this
application note is mandatory.

This section introduced only the specific information required to build a composite
device with a vendor class interface.

In addition to the USB configuration described in Section 7.2, the following values
must be defined in the conf usb.n file:

USB_DEVICE_EP_CTRL_SIZE
Endpoint control size.

This must be:

e 8,16, 32, or 64 for full speed device (8 is recommended to save RAM)
o 64 for a high speed device

UDI_VENDOR_EP_INTERRUPT_IN
IN interrupt endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_INT_FS is 0).

UDI_VENDOR_EP_INTERRUPT_OUT
OUT interrupt endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_INT_FS is 0).

UDI_VENDOR_EP_BULK_IN
IN bulk endpoint number wused by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_BULK_FS is 0).

UDI_VENDOR_EP_ BULK_OUT
OUT bulk endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_BULK_FS is 0).

UDI_VENDOR_EP_ISO_IN
IN isochronous endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_ISO_FS is 0).

UDI_VENDOR_EP_ISO_OUT
OUT isochronous endpoint number used by the vendor interface (ignored if
UDI_VENDOR_EPS_SIZE_ISO_FS is 0).

UDI_VENDOR_IFACE_NUMBER
Interface number of the vendor interface.

USB_DEVICE_MAX_EP

Total number of endpoints in the application. This must include the number of
endpoints used by vendor interface (0 to 6 depend on UDI_VENDOR_EPS_SIZE_X
defines).

ATMEL 2

http://www.atmel.com/dyn/resources/prod_documents/doc8445.pdf�
http://www.atmel.com/dyn/resources/prod_documents/doc8445.pdf�

8.2 USB descriptor

The USB device Descriptor of composite device, defined in conf usb.h file, must

ATMEL

include a vendor interface:

//!' Define structure of composite interfaces descriptor
#define UDI_COMPOSITE DESC T \
udi vendor desc t udi vendor; \
//! Fill composite interfaces descriptor for Full Speed
#define UDI_COMPOSITE DESC FS \
.udi vendor = UDI VENDOR DESC FS, \
//! Fill composite interfaces descriptor for High Speed
#define UDI_COMPOSITE DESC HS \
.udi_vendor = UDI_VENDOR DESC_HS, \
//' Fill Interface APIs corresponding at interfaces descriptor
#define UDI_COMPOSITE API \

18

Atmel AVR49011

&udi api vendor, \

8481A-AVR-01/12

Atmel AVR49011

9 Table of contents

Atmel AVR4901: ASF - USB Vendor Class Application................... 1
FEALUIES ... 1
T INrOAUCTION ... ———— 1
2 ADDIEVIALIONSceeeeeeeeeeeeeiereseisisisssissssssssssssssssssssssssssssssnnn 2
B 0 Y= gV S 3
4 Vendor class specification............ccceeeeuueeeeereeeemmeeeieecciseeseenennneens 4
L @ T[] < T 5
5.1 Hardware DENAVIONcuuiiiiiiiiii et 7
6 Example deSCriPtioN............ccooeeeeeeeeereeeeseenmeeessennasssssenmsssnsnnnasssnnnnns 9
6.1 Example content........cooooiiiii i 9
6.2 Example behavior.........coooo oo 9

7 Building a USB device vendorceeeeeeeeeeeeececeeseeseenneeennnnas 12
7.1 1Mport USB MOAUIE ...t 12
AV ST = R o] g1 T 0] =1 1] o USRS 13
7.3 USB implementation...............ooooiiiiiiiiiiii e 13
7.3.1 USB dEVICE CONIOL ...ttt 13
7.3.2 USB interface CONTIOL.......coouiiiiiiiiie ittt 15
7.3.3 USB veNdOr FUNCHONScoouiiiiiiiiit e 16

7.4 Vendor class and USB HOSt SUPPOIt..........cooieiiiiiiiiiieecceccieeee e 16

8 Vendor class in a USB composite device............ccceueeeeuuuccesanns 17
8.1 USB CONfIQUIAtioNeoiiiiiiiieiiiiiee ettt e e e 17
8.2 USB dESCHIPION ...t e e e e e e 18
9 Table Of CONLENTScoceeeeiiee e 19

AIMEL “’

8481A-AVR-01/12

AIMEL

Y ©

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan

2325 Orchard Parkway Unit 01-5 & 16, 19F Business Campus 16F, Shin Osaki Kangyo Bldg.
San Jose, CA 95131 BEA Tower, Milennium City 5 Parkring 4 1-6-4 Osaki Shinagawa-ku
USA 418 Kwun Tong Road D-85748 Garching b. Munich Tokyo 104-0032

Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) 3-6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) 3-6417-0370

Fax: (+852) 2722-1369

© 2012 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, XMEGA®, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of Microsoft Corporation in U.S.
and or other countries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

8481A-AVR-01/12

http://www.atmel.com/�

	1 Introduction
	2 Abbreviations
	3 Overview
	4 Vendor class specification
	5 Quick start
	5.1 Hardware behavior

	6 Example description
	6.1 Example content
	6.2 Example behavior

	7 Building a USB device vendor
	7.1 Import USB module
	7.2 USB configuration
	7.3 USB implementation
	7.3.1 USB device control
	7.3.2 USB interface control
	7.3.3 USB vendor functions

	7.4 Vendor class and USB Host support

	8 Vendor class in a USB composite device
	8.1 USB configuration
	8.2 USB descriptor

	9 Table of contents

