Two-Wire Peripheral Expansion
for the AT89LP2052 Microcontroller

Features

¢ Software Driven 12C Interface
¢ Applicable to any AT89LP Microcontroller without TWI

1. Introduction

The attribute shared by most embedded controllers is their ability to interact with the
outside world. While this fact is generally accepted, the form this 1/O takes includes
everything from parallel and bit-addressable digital I/O, analog 1/O, as well as complex
functions such as a user interface panel. Furthermore, timing related activities such as
pulse width modulation, pulse accumulation, frequency measurement, and duty cycle
and phase determination are often lumped together under the heading of high speed
I/0. Additionally, while not necessarily 1/0 related, many small systems will benefit
from other functional extensions involving real time clocks, interval timers, and nonvol-
atile memories.

Traditional interface techniques for such peripheral functions rely on using a conven-
tional microprocessor data and address bus. While being inefficient in terms of printed
circuit board real estate and requiring multiple interconnections, this standard
approach offers good throughput and a choice of many established peripherals.
Regardless of the benefits, this method is useless when working with very small sin-
gle-chip microcontrollers that do not possess an external bus structure. What’s
required here is a synthesized expansion bus that does not excessively impose on the
microcontroller’s limited resources. That is, one that does not require too many I/O
pins, firmware, or processor bandwidth.

This application note details an extensible I/0O and memory expansion framework suit-
able for AT89LP2052 embedded systems. To best illustrate the point an inordinate
amount of external peripheral and memory functions will be accommodated while not
intruding unnecessarily on the controller’s limited 1/O resources.

2. The Evolving Controller

A well established player in the embedded arena has long been the venerable 8051,
quite possibly the epitome of an embedded controller. Although this fundamental
architecture has been pressed to serve in a multitude of derivative designs, many of
the scaled down versions have clearly been limited implementations. Worse, most of
these have been plagued by a number of subtle and disturbing compatibility issues:
almost compatible timers; SFRs, SFR bits, and 1/O ports in the wrong places; missing
instructions and missing functions.

Now everything has changed with the introduction of Atmel's AT89LP2052. This small
20-pin circuit, unlike some of its diminutive predecessors, includes the full 8051 fea-
ture set—essentially an 80C51 in a 20-pin package. It retains all the standard SFRs
and includes the full 256-bytes of internal data RAM. More importantly, the SFRs, SFR
bits, and ports retain their original locations and functions. The standard processing

ATMEL

Y ()

8051 Flash
Microcontroller

ApplicationNote

0593B-MICRO-6/11

ATMEL

core guarantees compatibility with many existing 8051 application programs, the multitude of
established library and support functions, and most importantly, the immense accumulated 8051
knowledge base.

The retention of the 256 bytes of internal data RAM proves to be a rather significant issue. This
can spell the difference between the option of developing code in a high level language such as
C or being left with no other choice than working exclusively in assembler. And obviously, having
a hardware UART opens up potential applications that were previously unattainable.

Packaging limitations reduce the AT89LP2052’s available on-chip I/O count to 15 pins. Although
this is enough to handle a wide range of applications, there will be some that will need more.

3. Serial Standards

It is easy to add a lot of functionality to a very small controller such as the AT89LP2052. Keeping
the number of pins budgeted for the expansion bus low is desirable since most AT89LP2052
based systems will benefit from preserving as much on-chip I/O as possible. In general, external
peripherals are no match for the Boolean processor’s bit-addressable I/O when high speed bit
manipulation is required. And then there are the unique pins such as the external interrupts, the
external timer controls, and the transmit and receive pins to the hardware UART. Quite obvi-
ously, a serial expansion bus is the only workable option, but this still leaves several alternatives
to choose from.

Two primary categories of serial communication are defined: asynchronous and synchronous.
Self-timed asynchronous communication is generally used for interfacing a microcontroller to
other intelligent controllers or to a host computer. The intrinsic timing constraints make this
method costly in terms of hardware or processor bandwidth (depending on the particular imple-
mentation). Although asynchronous methods are routinely applied in point-to-point or
multidropped communication schemes, this necessitates some form of high level protocol. The
implication is a level of processing capacity that falls well outside the domain of most dedicated
peripheral circuits. Because of this, and because of the inherent timing constraints, asynchro-
nous communication proves to be an inappropriate choice for a general purpose peripheral
expansion bus.

Synchronous communication coordinates data transfer under control of a clock signal that is
generated by the master controller. This clock signals when data bits are valid for both sending
and receiving. Since the master controller generates the synchronizing clock, the protocol allows
for a variable transfer rate. Here, the limiting factor is the maximum clock frequency. Usually, the
minimum can go to DC. This can be an extremely important attribute in an embedded system
where the master controller must vary the transfer rate according to varying degrees of interrupt
loading and the stringency of processing multi-priority real time events.

The Microwire™ and SPI (Serial Peripheral Interface) standards are examples of popular syn-
chronous protocols used for peripheral 1/0. Even though an abundance of valuable peripherals
exist that conform to these standards, their usefulness is diminished by the fact that the protocol
provides no built-in means of addressing individual peripherals on a shared bus. Instead, each
device uses a discreet chip select that must be individually asserted by the master controller
before any communication can take place. This can pose significant problems if a number of
peripheral devices must be accommodated concurrently since the number of I/O pins escalates.
This constraint renders Microwire and SPI effective only if the system requires a small amount of
peripheral functions.

2 Two-Wire Peripheral Expansion m—

0593B-MICRO-6/11

Eeee———————————— | WO-\Wire Peripheral Expansion

4. Two-Wire Protocol

When a small system must support a moderate-to-large set of external peripherals (especially if
additional functions may ultimately be necessary), the Inter-Integrated Circuit (1°C™) standard
offers an answer to the 1/O pin dilemma. I2C uses just two wires for communication regardless of
the number of peripherals that are supported. More than just a methodology for transporting bits
and bytes, I1°C introduces the benefits of a true bus architecture to the realm of 2-wire serial
communications.

The two signal lines are defined as clock (SCL) and data (SDA). Electrically, these bi-directional
lines are specified as open collector and, therefore, must be supplied with pull-up resistors to the
positive supply rail. Since the lines are passively pulled up, they are in the recessive state when
they are not being driven. Any device on the bus is free to pull these lines low thereby asserting
the dominant state. This phenomenon is utilized for a variety of bus management functions
including wait state synchronization and bus arbitration.

This 2-wire bus not only carries data and control information but is also used to establish
addressability in order to select a specific bus member for data transfer. Additional information
can also be transferred to access specific locations within memory devices and to access spe-
cial configuration and status registers within complex peripherals. Although most applications
will be content using I1°C in a mastet/slave configuration, the protocol supports multi-master
capabilities that can be used for direct processor-to-processor communication or for implement-
ing shared memories or peripherals that can be accessed from multiple processors residing on a
common bus.

Standard 12C throughput is specified nominally at 100 kbps with some newer devices capable of
sustaining a 400 kbps transfer rate. This is more than adequate for many applications. Fre-
quently, the peripherals used will be low utilization devices such as real time clocks, nonvolatile
memories, and data converters that do not require high speed access. The maximum line length
specification of 10 meters opens the intriguing potential of locating various devices “where the
action is.” The central controller can thus orchestrate the functions of a moderately dispersed
system as easily as one that is self contained.

Before examining some of the available peripherals and looking at how they can be used in a
small embedded system it would be informative to summarize some 1°C fundamentals. Since
information is available on the I12C standard, the following discussion will be limited to a brief
overview of some of the most basic features of the protocol. Furthermore, the scope will be
restricted to a master/slave peripheral scenario.

5. I°C Protocol Recap

For our simple master/slave implementation two categories of bus members will be defined: The
bus master which initiates and coordinates the particular transmit or receive operation and the
bus slave that carries out the requested function.

5.1 Special Conditions

0593B-MICRO-6/11

The I12C protocol establishes a number of unique line conditions that are initiated by asserting
the SDA and SCL lines in specific combinations. For example, all bus operations are initiated by
issuing a START condition which causes all bus members to listen for incoming data. The mas-
ter accomplishes this from an idle state by first pulling SDA low and then pulling SCL low.

The conclusion of a data transfer sequence is framed with the complement of the START condi-
tion which, naturally enough, is called the STOP condition. Beginning with SCL and SDA low,

ATMEL ;

5.2

5.3

Data Transfer

ATMEL

the master first releases SCL and then releases SDA. You will notice that the line transitions
occur just opposite to those of a START condition. The STOP condition signals that the bus has
been released and indicates that all bus members may expect another transmission to start at
any time.

The start and stop conditions indicate special bus seize and release phases. Once bus control
has been established, data is transferred in a conventional clocked fashion eight bits at a time,
MSB first. Data bits are set up when SCL is low and must remain stable while SCL is high. After
holding SCL high for a period of time, the master pulls SCL low before the state of SDA is
allowed to change. Notice that the only time SDA is permitted to change while SCL is high is in a
START or STOP condition.

The fact that the master controls the system clock does not necessarily imply that it has absolute
control over the transfer rate. As noted, IC’s wire AND characteristic allows either the master or
the slave device to place either SCL or SDA in the dominant low state. This capability allows
slower slaves to cope with a high speed master at either the bit or the byte level. At the bit level
the data transfer can be slowed down when the slave extends the SCL low interval. The master
checks the state of SCL while transferring data and will not proceed while SCL is being held low.
This is the 12C version of a wait state. Note that even though the transfer rate is variable, param-
eters such as setup time, hold time, and the minimum clock high and low times must not be
violated.

In some cases it may be necessary for a slave to prevent the master from initiating any bus
activity which might be the case if it requires additional time to process received data. A slave
can accomplish this by pulling SCL low. Since the master will generate a start condition only
when the bus is free (SDA and SCL high), this forces the master into a hold state until SCL and
SDA are freed.

In general, each data byte transferred requires an acknowledgment. This is implemented as a
bit-level function that occurs on the 9th clock pulse immediately following a data byte transfer.
Subsequent to the transmittal of the 8th data bit, the transmitter releases SDA to the high state.
At this point the receiver must signal the successful receipt of the data byte by pulling SDA to a
logic low. This acknowledgment must be asserted by the time the master drives SCL high and
must remain stable during the SCL high time. This acknowledge bit is evaluated by the transmit-
ter in order to determine the status of the data byte transmission.

Device Addressing

Following the assertion of the start condition, a 7-bit slave address is transmitted by the master.
Remember that I1°C defines all data transfers as 8-bit entities. In the case of the 7-bit slave
address the 8th bit functions as the direction bit, the read/write indicator. When it is a 0 the sub-
sequent transfer will be a write to the slave. A 1 indicates the ensuing operation will be a read
from the slave. Once the address is received, all slaves compare the received address with their
own. A match results in an acknowledge to the master from the selected slave device indicating
it is ready to perform the requested operation.

An I12C peripheral address is composed of two parts. The fixed part is defined by the 1°C bus
committee and is assigned based on device type. The programmable part comprises the lower
order bits and is selected at the slave by strapping address pins high or low. The number of
available programmable bits depends on the number of pins can be made available for this func-

Two-Wire Peripheral Expansion m———

0593B-MICRO-6/11

Eeee———————————— | WO-\Wire Peripheral Expansion

tion on a particular IC. This scheme allows for multiple peripherals of the same category to
reside on the bus at the same time and still be uniquely identifiable.

6. I°C Summary

Depending on the particular application, using the 1°C bus can get considerably more compli-
cated than implied in the preceding description. Nonetheless, a great deal of practical
functionality can be supported using just a master/slave subset of the protocol. The following is a
summary of the main points just touched upon.

* A high-to-low transition of SDA while SCL is high signals a START condition.

* A low-to-high transition of SDA while SCL is high signals a STOP condition.

* ISDA must be stable during the high period of SCL while data is being transferred.

¢ Data is transferred MSB first, 8 bits at a time.

» Every byte transferred must be followed by an acknowledgment bit (generally).

* The I2C bus is considered busy following a START condition.

* The I2C bus is considered free a certain time after the STOP condition.

Figure pictorially illustrates the criteria for data validity, Figure 6-2 a START and STOP condi-
tion, and Figure 6-3 a data transfer sequence.

Figure 6-1. Two-Wire Protocol Timing - Data Validity
\ | \

w
SDA / A |

{ I {
|

scL / \J \
1 DATA STABLE DATA STABLE f

DATA
CHANGE

Figure 6-2. Two-Wire Protocol Timing - Start and Stop Definition

SDA

SCL | | | |

ATMEL ;

0593B-MICRO-6/11

ATMEL

Figure 6-3. Two-Wire Protocol Timing - Acknowledge Response from Receiver

- | |
SCLW 8 | 9

DATA OUTPUT
FROM
TRANSMITTER

DATA OUTPUT
FROM
RECEIVER

X +

START ACKNOWLEDGE

7. Simple and Registered Devices

Simple I2C devices such as parallel /0 ports contain only one register that is located at the base
address of the chip. Accessing such a device involves merely addressing the chip and then per-
forming a read or write operation.

There are a number of devices, however, that contain multiple internal locations. These include
memories, real time clocks, and data converters. Memory devices contain a linear memory array
whereas other devices might have multiple data registers and control and status registers
located at various internal addresses. Regardless of the implementation details, it is obvious that
some means of specifying the internal address is required.

Selecting such a device’s internal address involves the standard sequence of establishing a
START condition followed by a transmittal of the slave address with the command bit set to
write. The next byte transmitted is the actual register address which effectively sets the device’s
internal address generator to its initial value. 1°C allows combining the initial register addressing
phase and the subsequent data transfer phase into a single functional sequence. In the case of
a registered write operation, the slave will already have been placed into write mode prior to the
transmission of the register address. Any subsequent data transmitted to the slave will be
deposited into the specified internal location. A read operation requires one additional step.

Since the slave is in write mode following the register address transmission, it must be explicitly
prepared for a read operation. One way to “turn the line around” is to conclude the write
sequence by setting the STOP condition and by explicitly starting a new read operation.
Although this works, it does incur additional, and unnecessary, overhead. This inefficiency can
be circumvented by skipping the STOP condition and, instead, immediately issuing a repeated
START condition. Now, a read operation is initiated by transmitting the slave address with the
command bit set to read.

6 Two-Wire Peripheral Expansion m—

0593B-MICRO-6/11

Eeee———————————— | WO-\Wire Peripheral Expansion

8. SoftI’C

To the experienced engineer the preceding discussion would have undoubtedly suggested a
number of firmware-based approaches for the implementation of the I2C protocol. This is only
natural since a Boolean processor like the AT89LP2052 makes such an implementation
extremely efficient and straightforward. Now, it’s well known that a number of popular microcon-
trollers provide built-in hardware support for I°C, but how much support are you really getting?

What may not immediately be apparent from a superficial examination is that many controllers
provide this hardware assistance only at the bit level. This is truly rudimentary support that con-
sumes valuable processor silicon to little advantage. In fact, it has been the experience of many
engineers that using such minimalistic hardware support can actually result in greater software
complexity and the use of more program memory than a purely firmware based approach. And
remember, working entirely in firmware allows you to implement however much, or little, of the
I2C protocol as is necessary or appropriate to the task at hand.

When considering a firmware-based IC driver it's important to realize that the intrinsic advan-
tage of a synchronous protocol is its ability to vary the data transfer rate in accordance with the
prevailing conditions. Asynchronous communication is far more problematic due to the inherent
timing constraints and is better left to a hardware UART for all but the most trivial protocols.
Given the choice, a hardware UART and firmware I2C makes a lot of sense from a number of
perspectives. Additionally, the AT89LP2052’s two-level priority interrupt structure, hardware
UART, two external interrupts, and two 16-bit timer/counters with interrupt capability let you
structure a system in a manner consistent with modern design practices. Using these resources,
it is possible to implement all time-critical functions such as task scheduling, communications,
system timing, and real-time event processing as interrupt service routines. This can result in a
greatly simplified application program.

9. A Generic I2C Driver

0593B-MICRO-6/11

Although the basic functions of an I2C driver can be partitioned in a seemingly endless number
of ways, the approach adopted greatly limits the possible permutations without being overly
restrictive. The driver module contains four user callable entry points for reading and writing to
both simple and registered devices. In order to confine the number of variations, and to con-
serve code space, the registered I°C support routines operate a byte at a time and, therefore, do
not support streaming at the driver level.

Although allowing the driver to directly handle multi-byte transfers would result in significantly
increased throughput, speed often is not an issue. Instead, stream I/O is left to the device-spe-
cific second level functions on a need-to-do basis. In fact, a convincing case can be made for
placing

this type of functionality away from the driver. After all, in order for the driver to be truly generic it
should, by definition, possess no device specific characteristics. As a specific example, consider
[2C EEPROMs. These come in a wide variety of memory densities with differently sized pages
and different internal configurations. They all seem to possess minor peculiarities that become
especially evident when performing sequential write operations. Obviously a driver specifically
designed to deal effectively with a particular device becomes completely dysfunctional when
used with a different one.

The assembly language support module is available on the Atmel Web Site. To conserve pro-
gram memory all branching is performed using absolute address mode instructions which is
adequate to fully navigate the 2K program space of the AT89LP2052. Should it be desirable to
operate this driver in a larger device simply substitute the absolute branch instructions with the
corresponding long versions.

ATMEL 7

ATMEL

The module begins with a set of MACROs that establish several low level functions. These
include a rudimentary bit delay, SCL control and synchronization, and 1°C START and STOP
conditions. These are all implemented as instruction MACROs since their small size does not
justify the overhead of a function call. Here, Bit_Delay consumes processor cycles to provide a
short delay required to meet the basic 100-kHz I12C timing parameters on a 12-MHz
AT89LP2052. Set_SCL releases the SCL line and synchronizes with slave devices that may be
asserting clock-stretching wait states. Clr_SCL simply pulls the SCL line to a logic low while
Emit_Clock invokes Set_SCL and Clr_SCL in sequence. Finally the Start and Stop MACROs
embody the 1°C START and STOP conditions.

Next are two general purpose subroutines for transmitting and receiving bytes of data over the
I2C bus. These primitives are invoked by the public routines and are responsible for transporting
data bytes while providing error checking and synchronization with some help from the previ-
ously defined MACROs. Xmit_Byte evaluates the acknowledge from the slave whereas
Rec_Byte does not handle the acknowledge generation. When receiving, the acknowledgment
is properly a function of the specific operation being performed and must be handled by the call-
ing function. These subroutines communicate their completion status back to the higher func-
tions through the carry flag.

Finally, the four public entry points appear that are accessible from the main application pro-
gram. These include the transmit and receive routines for both registered and simple devices.
These perform the requisite initial bus synchronization and make use of the previously defined
subroutines and MACROs to orchestrate the requested operation. Status information, either
from the called subroutine or generated locally, is conveyed to the application to indicate the
completion status of the requested operation. Should a problem occur, it is up to the caller to
sort it out. This makes sense since the appropriate response is often dependent on the type of
device that is being accessed. For instance, fault status may simply mean that the device is not
present or not responding. In the case of an EPROM it could indicate that a programming cycle
is in progress. Obviously, these situations have quite different implications and should be han-
dled differently.

9.1 Populating the Bus
Having defined the rudiments of the 1°C bus and now being in possession of a set of generic
drivers, it's time to look at a typical peripheral set suitable for inclusion in a small embedded sys-
tem. For all intents and purposes, the 1°C bus can be viewed as a scaled down version of a
parallel bus such as used with a conventional microprocessor. As such, it provides a vehicle for
the very same types of activities you’d perform using a standard bus structure.

Figure 9.4 shows how an AT89LP2052 based system could populate its 2-wire bus with some
standard peripheral functions. Included are 8 bi-directional I/O points (PCF8574), 4 channels of
8-bit analog inputs and a single channel 8-bit analog output (PCF8591), a real time clock/calen-
dar/timer with 256 bytes of nonvolatile RAM (PCF8583), 512 bytes of EEPROM (AT24C04), and
128 bytes of RAM (PCF8570). This represents a respectable function set applicable for many
embedded applications.

A reliance on the previously defined I2C drivers serves to conceal the protocol details from the
calling functions and allows the application program to conceptually deal with the peripherals
strictly as basic I/0O devices. Access to these peripherals is considerably slower than with a stan-
dard parallel bus but, since the electrical interface consumes only two I/O pins, the controller
retains most of its fast on-chip bit-addressable I/O for general use.

8 Two-Wire Peripheral Expansion m—

0593B-MICRO-6/11

Eeee———————————— | WO-\Wire Peripheral Expansion

Expanded AT89LP2052 System

Figure 9-1.

an = 4nok H
on DLOMDL 97 QVdAIN =
—s
QVAAIN XY 3
L P SSA 51
2 a1 € HSVI 5
1 , or] @ 950 |5 = 24 NN |
g e T o
§ VA |5 o] 5 08 [
v o1 30\ g 5 v vas
¢ et 7 e _
4 ks ad 57 7 Sk av —
3 T -] 2a T 7 S id W Z .
8a | 31 0od ov Tt ANk
q aan va 7T
= aaa
o 2260vL D
v29840d 1
anp = y3zzng o
s+ P = 8V WOHd33 =
" : — SsA
aa 14
ovoia = vas
T 108
o/l vLBIa 3
ssh g w
ot €
N 2d ANN = ant 7MWz
(13 €l
8 L o ov
8
z o & 108 7 o+
¢ 5" vas 5y o Y00vELY
s ksl —
v 5% o 51
e S td v 2 = 3V NvH =
n
¢ 5104 ov ant
' — ssh
_ Q0N 57 + vas
51108
s +25840d w
o+ . B
e = 7]4s3aL Wi
ov T
52~ 58eN i &1 aan &
025840
PIENL
_ OvVHINLOE =
1NOBOWNY T = 06 OvQ/OQY =
SSA
€ G+ v
. = 51 ssn 108 57 S vas oV
[H 57| ONOY vas o 108
L Mo 2080 [
€ NI DOWNY : ——
] 434A 3 [ya EL | -
€ 980 {1 - B 1080 [s
z T env —g 9aA 2 ze
b —9 T 2NV o 7
! £89840d —
2 NI DOTYNY 2 NIV W E] 4n any
A T ONIV oY 5 lﬁ 3d8k VIBNL e +
¢] Lnov Q0 (57— =
: [VIENE
L NI DOTYNY 165840d '« N
€ 4o = =t
; H
'
0 NI 9OWNY b L
€
2

'

an
o
¢
o a7
480 = 2r a0 =
98a oF
S80 {57 SSA 5
80 [
€8a ﬂ B Ld AN e
28a m[A T 9d
180 51 554 08 57
080 -—1 5 vd vas
35 7ed
we m[A 6] 2d oY OIA
s 3 g td 4 z =
ON g 02 v v
aan
.
SSA |7 QoA 51 b
¥X02 01 g+ +.£5840d P!
=t
aND 5
T LN
| V.ru\rz_i) L'ed e
|2k Sed/bL o
| e VEd/OL [5—
o vid E'Ed/LLINI z—
7| € ZE/OINI [—5—
H T m.rn_
e]
VEIaXL [—
0'E/aXY [—
e e c
Jdee -
FIVLX
. g ZHNZ650'H . =
ant 21X
o+ v
5] 9N 188
4dzz
o+
2502d1681Y =
VIeNE S0k
4nok

2 —f—

EL

0593B-MICRO-6/11

9.2

9.3

9.4

10

Console I/O

ATMEL

The 2-wire peripheral set also provides the functions of a user I/O interface panel. This includes
20 x 4 LCD, 4 x 4 matrix keypad, an audible beeper, and several indicator LEDs. This subsec-
tion is supported by two PCF8574 I2C port expanders along with some additional support ICs.
The LCD interfaces use one of the PCF8574s and operates in 4-bit mode as an output-only
device. Although the PCF8574 can be operated bidirectionally, this would offer little advantage
here and would unnecessarily complicate the code. The LCD interface requires only 6 I/O lines:
a 4-bit data bus, a register select line (RS), and an enable line (E). The LCD’s read/write line
(RW) is hardwired to ground to permanently enable the write function.

The keyboard circuit is a simple but effective implementation based on a 74C922 4 X 4 matrix
self-scan IC and a flip-flop. Again, a PCF8574 serves as the interface port. Briefly, the 74C922
continuously scans the keyboard looking for a key closure. When a closure is detected, it is
debounced and, if valid, the 74C922 places the corresponding binary key code on its data lines
while asserting data available (DAV). Since DAV is only driven while a key is actually being
depressed, the associated flip-flop records the event. This scheme works because, although the
74C922 may stop asserting DAV, its data lines continue to emit the key code until a new key
stroke is detected and validated.

Second Level Drivers

Armed with a considerable set of peripheral devices and a set of low level I°C drivers, a set of
device-specific driver modules is now required to fully utilize the peripheral set. For clarity, these
functions are written in C and are presented in the code file located on the Atmel Web Site or
BBS.

Basically, two levels of support are provided that include basic drivers for the peripheral chips
themselves and higher level functions that offer system-level services. Basic functions include
rudimentary support for the PCF8574 parallel /0 port, PCF8591 analog converter, PCF8583
real time clock/calendar/timer with RAM, 24C04 EEPROM, and PCF8570 RAM. These are lim-
ited in scope and should be self explanatory.

LCD Gyrations and Library Hooks

When using a compiled language, it can be advantageous to implement user I/O as extensions
to the standard library functions. Doing so, immediately presents a set of built-in capabilities that
include character 1/O, stream I/O, formatted I/O, and number conversion functions. The most
effective way to hook into the libraries is to replace the device specific input/output function that
falls at the end of the call chain. To this end, replacements are provided for PutChar and GetKey
that furnish the low-level device interface to the 20 X 4 LCD and 4 X 4 keypad while retaining the
familiar C language interface. With these in place, all standard library functions that utilize con-
sole 1/0 will operate using the local user 1/0 devices.

Most character mode LCDs are based on the HD44780 LSI. This LSI contains two internal regis-
ters defined as the command register and the data register. The command register receives
initialization and set up information as well as functional commands to clear the LCD, set the
cursor, select the cursor appearance, etc. The data register is the destination of all displayable
data.

The Putchar function begins by first checking the input argument for a newline character. If the
character is a newline, the cursor is advanced to the first position of the next line. If the cursor is

Two-Wire Peripheral Expansion m———

0593B-MICRO-6/11

Eeee———————————— | WO-\Wire Peripheral Expansion

on the last line it wraps back to the first. The cursor location is mirrored using a global variable
that is updated by any operation that modifies the location of the cursor. If the input argument is
any character other than a newline it is written directly to the LCD.

Special support functions are provided for writing to the LCD’s data and command registers.
Both DataWr and CommandWr dismember their input argument prior to dispatching it to the
LCD in nibble mode. The DataWr function additionally interrogates the global variable Cursor in
order to determine if it must take corrective action to maintain the visual output in a sequential
fashion. That is, it determines if logical-to-physical cursor translation is required at points where
discontinuity would occur.

Additional functions are furnished for direct cursor positioning with cursor fixup (PositionCursor),
selecting an invisible; underline; or blinking cursor (SelectCursor), and clearing the LCD and
homing the cursor (ClearLcd). An initialization function places the LCD into 4-bit mode and sets
various operational parameters to their default values (InitLcd).

Whereas Putchar handles console output, Getkey is responsible for console input. While Getkey
will wait indefinitely for a key to be pressed, few embedded designs will tolerate the suspension
of all processing while waiting for a key stroke. The CheckKey function handles this situation
more reasonably. Here, the function will return null if no data is available, otherwise the corre-
sponding ASCII code is returned.

Basically, if a keystroke is available, CheckKey falls through and issues an acknowledge to clear
the data-available flip-flop. While generating this pulse, the beeper is briefly enabled resulting in
an audible key click that offers feedback that is particularly useful when a membrane keypad is
used. InitKey is used to clear the keypad interface logic on power-on and can also be used to
flush unneeded keystrokes from the interface logic.

Console support is rounded out with the inclusion of a function that emits beep sounds of vari-
able length.

9.5 Driver Test Drive

0593B-MICRO-6/11

Having presented a formidable array of 2-wire peripherals, it would be enlightening to verify that
they behave as expected when accessed from a typical application program. Admittedly, most
real embedded systems wouldn’t use all these peripherals simultaneously in a given application.
I2C, however, is quite amenable to supporting a multiplicity of peripheral combinations without
burdening the processor’s I/O pin budget. A system requiring a single EEPROM is served
equally well as one that needs an array of analog data converters or a mix of functions.

Although obviously a contrived design, the program shown in the code file on the Atmel Web
Site or BBS, is intended to illustrate how the existing support code can be used to access the
peripherals. The main module takes control immediately following the low-level start up code
and first performs the requisite device and variable initialization. Following this, the program
enters into an infinite loop where the I2C peripherals are accessed in a continual manner.

The initial block implements a buffered keypad that scrolls data onto the keypad field of the LCD
panel. To make this somewhat mundane function a bit more attractive, keystrokes are scrolled in
from right to left. The enter key causes the program to evaluate the entry for a legal numeric
input in the range of 0 to 255. If it falls within these bounds it is dispatched to the analog output
channel and is emitted as a voltage.

Next, the digital data port is set to an incrementing pattern. Since the port is bi-directional, it can
be read as well. A read of this digital port is performed and the retrieved data is converted to
binary notation and displayed in the digital data field of the LCD. In a similar manner, the four

ATMEL Y

9.6

12

ATMEL

analog channels are read and converted to decimal ASCII and placed in the LCD’s analog data
field. Finally, the BCD date and time is read from the RTC and is translated to decimal ASCII
notation and is shown in the LCD’s RTC field.

This example not only shows that the peripherals are operating properly but also illustrates how
easily the LCD can be effectively manipulated now that the support services are encapsulated
with clearly defined input parameters. All of a sudden the tiny AT89LP2052 takes on some of the
attributes, and amenities, you would normally expect from a much larger computing engine.

The Adapting Controller

This application note has presented peripheral expansion techniques that, while using just two
I/O pins, can provide a wide array of useful functions. If your needs are specialized, it is possible
to support non I2C serial devices by utilizing the already defined SDA and SCL lines. Half duplex
Microwire peripherals will only require one additional pin whereas those that need independent
transmit and receive pins will require the addition of two more. In many cases, complex functions
such as multi-channel, high-resolution data converters can be picked up at the expense of just
one extra pin.

Using the techniques shown, the AT89LP2052 can be equipped with a peripheral set commen-
surate with its respectable computational capabilities. 1°C offers the inherent extensibility that
can be instrumental in allowing a basic design to take on new capabilities and new features as
additional requirements develop.

All the code for this application note can be found on the Atmel Web Site.

Two-Wire Peripheral Expansion m———

0593B-MICRO-6/11

AIMEL

Y (5

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: (+1) (408) 441-0311
Fax: (+1) (408) 487-2600
www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F

BEA Tower, Millennium City 5
418 Kwun Tong Road

Kwun Tong, Kowloon

HONG KONG

Tel: (+852) 2245-6100

Atmel Munich GmbH
Business Campus

Packring 4

D-85748 Garching b. Munich
GERMANY

Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
JAPAN

Tel: (+81) (3) 3523-3551
Fax: (+81)(3) 3523-7581

8051 @atmel.com Fax: (+852) 2722-1369

© 2011 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other
terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted
by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL,
PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING
OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with
respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel
does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

0593B-MICRO-6/11

	Features
	1. Introduction
	2. The Evolving Controller
	3. Serial Standards
	4. Two-Wire Protocol
	5. I2C Protocol Recap
	5.1 Special Conditions
	5.2 Data Transfer
	5.3 Device Addressing

	6. I2C Summary
	7. Simple and Registered Devices
	8. Soft I2C
	9. A Generic I2C Driver
	9.1 Populating the Bus
	9.2 Console I/O
	9.3 Second Level Drivers
	9.4 LCD Gyrations and Library Hooks
	9.5 Driver Test Drive
	9.6 The Adapting Controller

