AtmeL APPLICATION NOTE

AT6493: SAM C21/CAN BUS/Firmware

SMART ARM-Based Microcontroller

Introduction

CAN bus is a message based protocol designed specifically for automotive
applications, but is also used in areas such as aerospace, maritime, railway
vehicles, industrial automation, and medical equipment.

This application note will cover the firmware required to initialize and start the SAM
C21 CAN controller and send/receive message in both standard and extended
formats. Firmware within this document was created using Atmel® Software
Framework (ASF), which is an extension to Atmel Studio.

Features

e +5V operation
e Dual independent CAN controllers
e Supports CAN 2.0, which is the latest specification consisting of two parts
— Part A (CAN 2.0A)
e Standard format with an 11-bit identifier
o Data rates up to 256kbit/sec
— Part B (CAN 2.0B)
o Extended format with a 29-bit identifier
e Data rates up to 1Mbit/sec
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1 CAN Hardware

1.1 Connecting the SAM C21 to the CAN bus

CAN is a multi-master serial bus used for connected nodes called Electronic Control Units (ECUs) — these are
usually referred to as Nodes; all nodes are connected to each other over a two-wire bus. In order to connect the
SAM C21 to the CAN bus, an external CAN transceiver is required. The bus should be terminated at both ends
with 120Q resistors. Figure 1-1 shows a typical CAN bus layout.

Figure 1-1. Typical CAN bus Layout

SAMC21 SAMC21 SAMC21

CAN BUS CAN BUS CAN BUS
TRANSCEIVER TRANSCEIVER TRANSCEIVER
CANTX CANH CANTX CANH CANTX CANH
CANRX CANL | CANRX CANL | CANRX CANL | _
CANH S L
R1 R2
120 120
CANL AA
//

CAN bus transceivers are readily available from a number of semiconductor manufacturers, however, we would
prefer that you use the Atmel ATA6560 or ATA6561 CAN bus transceivers.
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2 CAN Setup

2.1 CAN bus Bitrate

The nominal and databit rates, among other basic CAN settings, can be found in the header file “conf_can.h”.
Assuming the use of a 48MHz generic clock (GLCK) and a desired CAN bus speed of 500kHz the following
defines are used to set the nominal bitrate:
o Nominal Bitrate Prescaler
—  #define CONF_CAN_NBTP_NBRP_VALUE 5
e Nominal bit (Re)Synchronization Jump Width
—  #define CONF_CAN_NBTP_NSJW_VALUE 3
e Nominal bit Time segment before sample point
—  #define CONF_CAN_NBTP_NTSEG1_VALUE 10
e Nominal bit Time segment after sample point
—  #define CONF_CAN_NBTP_NTSEG2_VALUE 3

Given the above #defines the time quanta is 48MHz / (5 + 1) = 8MHz, and each bitis (3 + 10 + 3) or 16 time
quanta which is 8MHz / 16 = 500kHz.

In a similar manner, the following defines are used to set the databit rate:

o Databit Baud Rate Prescaler

— #define CONF_CAN_DBTP_DBRP_VALUE 5
e Databit (Re)Synchronization Jump Width

—  #define CONF_CAN_DBTP_DSJW_VALUE 3
o Databit Time segment before sample point

— #define CONF_CAN_DBTP_DTSEG1_VALUE 10
o Databit Time segment after sample point

— #define CONF_CAN_DBTP_DTSEG2_VALUE 3

Given the above #defines the time quanta is 48MHz / (5 + 1) = 8MHz, and each bitis (3 + 10 + 3) or 16 time
quanta which is 8MHz / 16 = 500kHz.

2.2 Message IDs

2.2.1 Transmit Message ID

The CAN message ID not only provides identification for the type of message being sent or received, it also
determines the priority of the message. For example a message with an ID of 10 is of higher priority than a
message with an ID of 15. In addition message IDs must be unique on a single CAN bus — no two nodes should
send a message with the same ID.

The transmit message ID should be based on the type of data being sent and its priority.

2.2.2 Receive Message ID

The CAN offers the possibility to configure two sets of acceptance filters; one for standard identifiers and one for
extended identifiers. These filters can be assigned to an RX Buffer or to RX FIFO 0 or 1. For acceptance filtering
each list of filters is executed from element #0 until the first matching element. Acceptance filtering stops at the
first matching element. The following filter elements are not evaluated for this message.
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The main features of the acceptance filters are:

e Each filter element can be configured as

— Range filter (from - to)

— Filter for one or two dedicated IDs

— Classic bit mask filter
e Each filter element is configurable for acceptance or rejection filtering
e Each filter element can be enabled / disabled individually
o Filters are checked sequentially, execution stops with the first matching filter element

The type of filtering is based on the settings of register bits SF1ID/SF2ID for standard frames and EF1ID/EF2ID
for extended frames.

e Range Filtering

— The filter matches for all received frames with Message IDs in the range defined by SF1I1D/SF2ID for

standard frames or EF1ID/EF2ID for extended frames
— There are two possibilities when range filtering is used with extended frames:
e EFT="00":
— The Message ID of received frames is AND’ed with the Extended ID AND Mask
(XIDAM) before the range filter is applied
o EFT="11"
— The Extended ID AND Mask (XIDAM) is not used for range filtering

e  Filter for Specific IDs

— Afilter element can be configured to filter for one or two specific Message IDs. To filter for one

specific Message ID, the filter element has to be configured with SF1ID = SF2ID for standard
message format and EF1ID = EF2ID for extended format.

e Classic Bit Mask Filter

— Classic bit mask filtering is intended to filter groups of Message IDs by masking single bits of a
received Message ID. With classic bit mask filtering SF1ID/EF1ID is used as Message ID filter, while
SF2ID/EF2ID is used as filter mask.

— A zero bit at the filter mask will mask out the corresponding bit position of the configured ID filter, e.g.
the value of the received Message ID at that bit position is not relevant for acceptance filtering. Only
those bits of the received Message ID where the corresponding mask bits are one are relevant for
acceptance filtering.

— In case all mask bits are one, a match occurs only when the received Message ID and the Message
ID filter are identical. If all mask bits are zero, all Message IDs match.

Settings of acceptance filtering will be done during initialization of the SAM C21’s CAN module as shown later in
this application note.
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3.1

3.2

CAN Configuration

CAN TX/RX Pins

In order to connect the CAN controllers TX and RX pins to the 1/O pins of the processor, the pin MUX and correct
I/O pins need to be set.

There are two discrete CAN controllers on the SAM C21, referred to as CANO and CAN1, each can be connected
to one of two I/O pairs (refer to the I/O Multiplexing section of the SAM C21 datasheet for more details). The pin
MUX and /O pin settings are handled by the following code:

#define CAN_TX_MUX_SETTING MUX_PA24G_CANO_TX
#define CAN_TX_PIN PIN_PA24G_CANO_TX
#define CAN_RX_MUX_SETTING MUX_PA25G_CANO_RX
#define CAN_RX_PIN PIN_PA25G_CANO_RX

struct system_pinmux_config pin_config;
system_pinmux_get_config_defaults(&pin_config);
pin_config.mux_position = CAN_TX_MUX_SETTING;
system_pinmux_pin_set_config(CAN_TX_PIN, &pin_config);
pin_config.mux_position = CAN_RX_MUX_SETTING;
system_pinmux_pin_set_config(CAN_RX_PIN, &pin_config);

The CAN_TX_PIN and CAN_RX_PIN pin constants can be modified to select either one of the two 1/O pin pairs
supported by the pin MUX.

CAN Module Initialization

Once the CAN TX and RX pins have been defined the CAN module can be initialized. Sample initialization code
for the CAN module running in normal mode is shown below:

#define CAN_MODULE CANO
struct can_config config_can;
can_get_config_defaults(&config_can);

can_init(&can_instance, CAN_MODULE, &config_can);

can_switch_operation_mode(&can_instance, CAN_OPERATION_MODE_NORMAL_OPERATION);
system_interrupt_enable(SYSTEM_INTERRUPT_MODULE_CANOQ);

The code initializes the CANO module, similar code can be placed for the CAN1 module for SAM C21 parts
supporting its I/O pins.
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3.3 Standard RX Filtering (11-bit Message ID)

The following function will enable standard message filtering:
#define CAN_RX_STANDARD_FILTER_INDEX 0

static void can_set_standard_filter(uint32_t filter_value)

{
struct can_standard_message_filter_element sd_filter;
can_get_standard_message_filter_element_default(&sd_filter);
sd_filter.S0.bit.SFID1 = filter_value;
can_set_rx_standand_filter(&can_instance, &sd_filter, CAN_RX_ STANDARD_FILTER_INDEX);
can_enable_interrupt(&can_instance, CAN_RX_FIFO_0_NEW_MESSAGE);

}

3.4 Extended RX Filtering (29-bit Message ID)

The following function will enable extended message filtering:
#define CAN_RX_EXTENDED_FILTER_INDEX 0

static void can_set_extended_filter(uint32_t filter_value)

{
struct can_extended_message_filter_element et_filter;
can_get_extended_message_filter_element_default(&et_filter);
et filter.FO.bit.EFID1 = filter_value;
can_set_rx_extended_filter(&can_instance, &et_filter, CAN_RX_EXTENDED_FILTER_INDEX);
can_enable_interrupt(&can_instance, CAN_RX_FIFO_1 NEW_MESSAGE);

}

Atmel_ AT6493: SAM C21/CAN BUS/Firmware [APPLICATION NOTE] 7

Atmel-42464A-SAMC21-CAN-BUS-Firmware_ApplicationNote_AT6493_062015



3.5

3.6

8

Sending a Standard Message (11-bit Message ID)

The following function is used to send a standard message with 11-bit message identifier:

static void can_send_standard_message(uint32_t id_value, uint8_t *data)

{

}

uint32_ti;
struct can_tx_element tx_element;

can_get_tx_buffer_element_defaults(&tx_element);
tx_element. TO.reg |= CAN_TX_ELEMENT_TO_ID(id_value << 18);
for(i=0;i<8;i++)
{
tx_element.data[i] = *data;

data++;

can_set_tx_buffer_element(&can_instance, &tx_element, CAN_TX_ BUFFER_INDEX);
can_tx_transfer_request(&can_instance, 1 << CAN_TX_BUFFER_INDEX);

Sending an Extended Message (29-bit Message ID)

The following function is used to send an extended message with 29-bit message identifier:

static void can_send_extended_message(uint32_t id_value, uint8_t *data)

{
uint32_ti;
struct can_tx_element tx_element;
can_get _tx_buffer_element_defaults(&tx_element);
tx_element.TO.reg |= CAN_TX_ELEMENT_TO_ID(id_value) | CAN_TX_ELEMENT_TO_XTD;
for (i=0;i<8;i++)
{
tx_element.data[i] = *data;
data++;
}
can_set_tx_buffer_element(&can_instance, &tx_element, CAN_TX_BUFFER_INDEX);
can_tx_transfer_request(&can_instance, 1 << CAN_TX_ BUFFER_INDEX);
}
AT6493: SAM C21/CAN BUS/Firmware [APPLICATION NOTE] Atmel_
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3.7 Interrupt Handler (Received Messages)

Messages received by the CAN controller are placed in one or two FIFOs depending on the message type (these
were set using defines in the file “conf_can.h”). The files also contains defines for the TX data size, and the size
of the FIFOs and buffers used by the CAN controller. The example below uses data blocks of eight bytes for both
standard and extended messages.

In this example, data received in a message with a standard 11-bit identifier are placed in FIFO 0, and in FIFO 1
if the message received contains an extended 29-bit identifier.

void CANO_Handler(void)

{

Atmel

uint32_t status;
status = can_read_interrupt_status(&can_instance);

if (status & CAN_RX_FIFO_0_NEW_MESSAGE)

{
can_clear_interrupt_status(&can_instance, CAN_RX_FIFO_0 _NEW_MESSAGE);
can_get_rx_fifo_0_element(&can_instance, &rx_element_fifo_0, standard_receive_index);
can_rx_fifo_acknowledge(&can_instance, 0, standard_receive_index);
standard_receive_index++;
if (standard_receive_index == CONF_CANO_RX_FIFO_0_NUM)
{
standard_receive_index = 0;
}
/I Received data is in rx_element_fifo_0_data->data[x], where x is 0..7
}

if (status & CAN_RX_FIFO_1 _NEW_MESSAGE)

{
can_clear_interrupt_status(&can_instance, CAN_RX_FIFO_1 NEW_MESSAGE);
can_get_rx_fifo_1 element(&can_instance, &rx_element_fifo_1, extended_receive_index);
can_rx_fifo_acknowledge(&can_instance, 0, extended_receive_index);
extended_receive_index++;
if (extended_receive_index == CONF_CANO_RX_ FIFO_1 NUM)
{

extended_receive_index = 0;

}

/I Received data is in rx_element_fifo_1_data->data[x], where x is 0..7
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4 Summary

The firmware used as a basis for this application note is attached.
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5 Revision History

| 6493A | 06/2015 |Initia| document release. |
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