
 TB2669
 I²C Slave Mode

Introduction

Author: Christopher Best, Microchip Technology Inc.

Inter-Integrated Circuit, more commonly referred to as I2C, is a synchronous, two-wire, bidirectional serial
communications bus. The I2C module can be used to communicate with other I2C compatible EEPROMs,
display drivers, sensors, or other microcontroller devices. This technical brief discusses the features and
functions of the stand-alone I2C module in Slave mode. The stand-alone I2C module should not be
confused with the traditional Master Synchronous Serial Port (MSSP), which contained both I2C and
Serial Peripheral Interface (SPI) functions.

I2C Module Modes and Features
The I2C module provides the following operational modes and features:

• Master Mode
• Slave Mode with Byte NACKing
• Multi-Master Mode
• Dedicated Receive and Transmit Buffers
• Up to Four Dedicated Slave Address Registers(1)

• 7-Bit and 10-Bit Addressing with Masking
• General Call Addressing
• Interrupts
• Bus Collision Detection
• Bus Time-Out Detection with Programmable Sources
• SDA Hold Time Selection
• Programmable Bus-Free Time Selection
• I2C, SMBus 2.0, and SMBus 3.0 Input Level Selection
• Direct Memory Access (DMA) Support(2)

Note: 
1. Support for four dedicated slave registers is only available when in 7-bit Addressing mode. When in

10-bit Addressing mode, only two dedicated Address registers are available.
2. Direct Memory Access (DMA) is not available on all devices. Refer to the device data sheet to

determine if the DMA is available.

© 2019 Microchip Technology Inc. DS00002669B-page 1

Table of Contents

Introduction..1

1. I2C Specification.. 4

2. I2C Module Overview...6
2.1. Dedicated Transmit/Receive Buffers..6
2.2. Address Buffers and Registers...8
2.3. Start Condition..10
2.4. Repeated Start/Restart Condition.. 10
2.5. Acknowledge (ACK)/Not Acknowledge (NACK) Sequence..11
2.6. Stop Condition..13
2.7. SDA and SCL Pins...13
2.8. Bus Time-Out... 14
2.9. Data Byte Count...15
2.10. Clock Stretching... 16

3. Interrupts... 18

4. I2C Slave Mode Operation...20

5. Slave Mode Configuration and Operation... 22
5.1. Initialization...22

6. Slave Mode Transmission... 26
6.1. Slave Mode Transmission (7-Bit Addressing).. 26
6.2. Slave Mode Transmission (10-Bit Addressing).. 27

7. Slave Mode Reception.. 29
7.1. Slave Mode Reception (7-Bit Addressing)... 29
7.2. Slave Mode Reception (10-Bit Addressing)... 30

8. External Pull-up Resistor Selection... 33

9. Conclusion...34

The Microchip Web Site.. 35

Customer Change Notification Service..35

Customer Support... 35

Microchip Devices Code Protection Feature... 35

Legal Notice...36

Trademarks... 36

 TB2669

© 2019 Microchip Technology Inc. DS00002669B-page 2

Quality Management System Certified by DNV...37

Worldwide Sales and Service..38

 TB2669

© 2019 Microchip Technology Inc. DS00002669B-page 3

1. I2C Specification
The I2C specification was developed by Phillips Semiconductors to communicate between devices
connected to a two-wire bus. Phillips recognized that there were many similarities between consumer
electronics, industrial electronics, and telecommunications designs. Since the various designs often
contained similar components, such as Analog-to-Digital Converters (ADCs), LCDs, or EEPROMs,
Phillips determined that they could simplify system design and maximize hardware efficiency by creating
a communication bus that could be used to transfer data between any device connected to the bus. This
allowed designers to use devices from multiple manufacturers, or use one device in several designs. The
specification also solved interfacing problems by creating a scheme that is now held as an industry
standard, meaning any I2C device could communicate with any other I2C device without having to change
the hardware or firmware of either device.

The I2C specification defines the bus as a two-wire, bidirectional communications scheme. One line
carries the Serial Data (SDA), and one line carries the Serial Clock (SCL). Each I2C device has its unique
address, either 7-bits or 10-bits in length. An I2C device can operate as either a bus master, bus slave, or
both, depending on the device and application. The specification defines the data transfer rates as
follows:

• Standard mode – transfer rates up to 100 Kbits/s
• Fast mode – transfer rates up to 400 Kbits/s
• Fast mode Plus – transfer rates up to 1 Mbit/s
• High-Speed mode – transfer rates up to 3.4 Mbits/s

Microchip’s I2C module implements master and slave hardware that supports Standard mode, Fast mode,
and Fast mode Plus. Throughout this technical brief, the I2C Specification will be referred to so that the
reader gains an understanding of both the I2C module and the I2C Specification.

I2C Protocol Terminology
To properly understand the language used in the specification, the following is a list of terms commonly
used by the specification and found throughout this technical brief:

Table 1-1. I²C Bus Terminology

Term Description

Transmitter The device that shifts data out onto the bus

Receiver The device that shifts data in from the bus

Master The device that initiates data transfer, generates the clock signal, and terminates
transmission

Slave The device addressed by the master

Multi-master A bus with more than one device that can initiate data transfers

Arbitration Procedure that ensures that only one master at a time controls the bus

Synchronization Procedure to synchronize the clocks of two or more devices on the bus

Idle Both the SDA and SCK lines are in a logic high state; no activity on the bus

Active Any time in which one or more master devices are controlling the bus

 TB2669
I2C Specification

© 2019 Microchip Technology Inc. DS00002669B-page 4

...........continued
Term Description

Address Slave Slave device that has received a matching address and is actively being clocked by
a master

Matching Address Address byte clocked into a slave that matches the value stored in one of the
I2CxADR registers

Write Request Master sends an address byte with the R/W bit cleared; master intends to write data
to the slave

Read Request Master sends an address byte with the R/W bit set; master intends to receive data
from a slave

Clock Stretching When a device holds the clock line low to pause communications

Bus Collision Condition in which the expected data on SDA is a logic high, but is sampled as a
logic low

Bus Time-Out Condition in which a device on the bus is holding the bus for longer than a specified
period

 TB2669
I2C Specification

© 2019 Microchip Technology Inc. DS00002669B-page 5

2. I2C Module Overview
The I2C module provides a synchronous serial interface between the microcontroller and other I2C
compatible devices using the two-wire bus. The two signal connections, Serial Clock (SCL) and Serial
Data (SDA), are bidirectional open-drain lines, each requiring pull-up resistors to the supply voltage.
Pulling the line to ground is considered a logic ‘0’, while allowing the line to float is considered a logic ‘1’.

Important:  The voltage levels of the logic ‘0’ (low) and logic ‘1’ (high) are not fixed and are
dependent on the bus supply voltage.

According to the I2C specification, a logic input low level is up to 30% of VDD (VIL ≤ 0.3 VDD), while a logic
input high level is 70% to 100% of VDD (VIH ≥ 0.7 VDD). Some legacy devices may use the previously
defined fixed levels of VIL = 1.5V and VIH = 3.0V, but all new I2C compatible devices require the use of the
30/70% specification.

All I2C communication is performed using an 8-bit data word and a 1-bit Acknowledge sequence. All
transactions on the bus are initiated and terminated by the master device. Depending on the direction of
the data being transferred, there are four main operations performed by the I2C module:

• Master Transmit – master is transmitting data to a slave
• Master Receive – master is receiving data from a slave
• Slave Transmit – slave is transmitting data to a master
• Slave Receive – slave is receiving data from a master

The I2C interface allows for a multi-master bus, meaning that there can be several master devices
present on one bus. A master can select a slave device by transmitting a unique address on the bus.
When the address matches a slave’s address, the slave responds with an Acknowledge sequence (ACK),
and communication between the master and that slave can commence. All other devices connected to
the bus must ignore any transactions not intended for them.

2.1 Dedicated Transmit/Receive Buffers
The I2C module has two dedicated data buffers, one for transmission (I2CxTXB) and one for reception
(I2CxRXB) (see Figure 2-1).

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 6

Figure 2-1. I2C Transmit (I2CxTXB) and Receive (I2CxRXB) Buffers

I2CxRXB

Shift Register(1)

I2CxTXB

I2CxRXB

Shift Register(1)

I2CxTXB

SDA

SCL

I2C Master I2C Slave

Note: 
1. The Shift register is not accessible to the user.

The transmit buffer, I2CxTXB, is loaded from the software or from the Direct Memory Access (DMA)
module (see Figure 2-2). When transmission begins, data loaded into the I2CxTXB is shifted into the
transmit Shift register and out onto the bus. The I2CxTXB can be loaded when the Transmit Buffer Empty
Status (TXBE) bit is set (TXBE = 1), indicating that the buffer is empty. When the buffer is empty and the
I2CxCNT register is not equal to ‘0’, the I2C Transmit Interrupt Flag (I2CxTXIF) bit is set, and the generic
I2C Interrupt Flag (I2CxIF) will also be set if the I2C Transmit Interrupt Enable (I2CxTXIE) bit is set.
Loading a new byte of data into the I2CxTXB clears the I2CxTXIF flag bit. If user software attempts to
load the I2CxTXB while it is full, the Transmit Write Error Status (TXWE) bit is set, a NACK is generated,
and the new data is ignored. If the TXWE bit is set, the software must clear this bit before attempting to
load the buffer again.

The receive buffer, I2CxRXB, holds one byte of data that is shifted in from the receive Shift register. User
software or the DMA can read the byte through the I2CxRXB register (see Figure 2-2). When a new byte
is received, the Receive Buffer Full Status (RXBF) bit and the I2C Receive Interrupt Flag (I2CxRXIF) bit
are set, and the generic I2CxIF will also be set if the I2C Receive Interrupt Enable (I2CxRXIE) bit is set.
Reading I2CxRXB clears both RXBF and I2CxRXIF. If the buffer is read while empty (RXBF = 0), the
Receive Read Error Status (RXRE) bit is set, and the module generates a NACK. User software must
clear the RXRE bit to resume normal operation.

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 7

Figure 2-2. I2C Transmit/Receive Buffers with DMA

I2CxRXB

Shift Register(1)

I2CxTXB

I2CxRXB

Shift Register(1)

I2CxTXB

SDA

SCL

I2
C

 M
as

te
r

I2
C

 S
la

ve

Memory Buffer Memory Buffer

Memory BufferMemory Buffer

FROM I2CRXB
DMA READ

DMA WRITE
TO I2CxTXB

Note: 
1. The Shift register is not accessible to the user.

Both transmit and receive buffers can be cleared by setting the Clear Buffer (CLRBF) bit of the
I2CxSTAT1 register, which also clears both the I2CxTXIF and I2CxRXIF Interrupt Flags.

2.2 Address Buffers and Registers
The I2C module has two Address Buffer registers, I2CxADB0 and I2CxADB1, that can be used as receive
buffers in Slave mode (see Table 2-2). This differs from the MSSP module in that the MSSP module only
used the SSPBUF to receive or transmit an address (or data). The address buffers are enabled via the
Address Buffer Disable (ABD) bit. When ABD is cleared, the address buffers are enabled; when the ABD
is set, the address buffers are disabled.

When the ABD bit is cleared and in 7-bit Addressing mode, I2CxADB0 is loaded with the matching
received slave address and the R/W bit, and I2CxADB1 is unused. In 10-bit Addressing mode, I2CxADB0
is loaded with the lower eight bits of the matching received address, and I2CxADB1 is loaded with the
upper eight bits of the matching address, including the R/W bit.

When the ABD bit is set and in 7-bit Addressing mode, I2CxRXB is loaded with the matching received
slave address and R/W bit, and neither I2CxADB0/1 are used. In 10-bit Addressing mode, I2CxRXB is
loaded with both the high and low matching address bytes. In this case, user software must read
I2CxRXB before the receive Shift register will load I2CxRXB with the matching lower address byte.
I2CxADB0/1 are also unused in 10-bit Addressing mode.

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 8

Table 2-1. Address Buffer Direction for Slave Modes

Modes MODE[2:0] I2CADB0 I2CADB1

Slave (7-bit)
000

RX Unused
001

Slave (10-bit)
010

RX RX
011

The I2C module has four additional Slave mode Address registers, I2CxADR0/1/2/3. These registers can
hold up to four 7-bit slave addresses or up to two 10-bit slave addresses. The I2CxADR0/1/2/3 registers
can also be used to form mask registers (see Table 2-2).

In 7-bit Addressing mode, all four registers can be used to store individual slave addresses. The first byte
received in a transmission (address byte) is independently compared to each of the values in the
I2CxADR registers. The LSb of the received address byte (R/W bit) is not used in determining a match. If
address masking is desired, I2CxADR1 holds the value that is used to mask the address loaded in
I2CxADR0, and I2CxADR3 holds the value used to mask I2CxADR2.
Table 2-2. Slave Mode Address Registers

Modes MODE[2:0] I2CADR0 I2CADR1 I2CADR2 I2CADR3

7-bit 000 7-bit address 7-bit address 7-bit address 7-bit address

7-bit w/
masking

001 7-bit address 7-bit mask for
I2CxADR0 7-bit address 7-bit mask for

I2CxADR2

10-bit 010 Lower address
byte

Upper address
byte

Lower address
byte

Upper address
byte

10-bit w/
masking

011 Lower address
byte

Upper address
byte

Lower address
mask

Upper address
mask

In 10-bit Addressing mode, I2CxADR0 and I2CxADR1 are combined to hold the 10-bit slave address, and
I2CxADR2 and I2CxADR3 are combined to hold a second 10-bit slave address. I2CxADR0 and
I2CxADR2 hold the lower eight bits of the 10-bit addresses, while I2CxADR1 and I2CxADR3 hold the
upper two bits of the 10-bit addresses, the R/W bits, and the five digit ‘11110’ code assigned to the five
Most Significant bits of the address high bytes. If address masking is desired, I2CxADR0 and I2CxADR1
are combined to form the 10-bit slave address, and I2CxADR2 and I2CxADR3 are combined to form the
10-bit address mask. Address masking may be used to ignore the five-bit address code loaded into the
Most Significant bits of the upper address byte.

Important:  The ‘11110’ code is specified by the I2C Specification, but is not strictly enforced
by Microchip. The user must ensure that the correct bit values are loaded into the 10-bit high
address byte. If a master device has included that specific code in the address it intends to
transmit, the slave must also include those bits in the slave address.

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 9

2.3 Start Condition
The I2C Specification defines a Start condition as the transition of the SDA line from an Idle state (logic
high level) to an Active state (logic low level) while the SCL line is idle (see Figure 2-3). The Start
condition is always initiated by the master and signifies the beginning of a transmission.

Figure 2-3. Start Condition

Filename: Start (slave version).vsdx
Title:
Last Edit: 1/21/2019
First Used:
Notes:

Rev. Start (s la
1/21/2019

SDA

SCL

Master writes to
Start (S) bit

Start condition
asserted by master,
slave sets SCIF = 1

Completion of Start

tHD:STA
(1)

Change of data allowed

tHD:DAT
(2)

Note: 
1. See device data sheet for Start condition hold time parameters.
2. SDA hold time are configured via the SDAHT[1:0] bits.

According to the I2C Specification, a bus collision cannot occur on a Start condition. The Bus Free
(BFRE) bit is used by the module hardware to indicate the status of the bus. The Bus Free Time Selection
(BFRET[1:0]) bits define the amount of I2C clock cycles that the master hardware must detect while the
bus is idle before the BFRE bit is asserted. When the BFRE bit is set (BFRE = 1), the bus is considered
in an Idle state, and a master device may issue a Start condition. If there is more than one master on the
bus (Multi-Master mode), and both attempt to issue a Start condition simultaneously, a bus collision will
occur during the addressing phase of communication.

When the master asserts a Start condition, the slave hardware sets the Start Condition Interrupt Flag
(SCIF), and if the Start Condition Interrupt Enable (SCIE) bit is set, the generic I2C Interrupt Flag (I2CxIF)
bit is also set. The slave software must clear SCIF in order to clear I2CxIF and continue normal operation.

2.4 Repeated Start/Restart Condition
A Repeated Start or Restart condition is identical to a Start condition. A master device can issue a
Restart condition instead of a Stop condition if it intends to hold the bus after completing the current data
transfer. A Restart condition has the same effect on the slave as a Start condition would, resetting all
slave logic and preparing it to receive an address. The Restart condition is always initiated by the master.

A Restart condition occurs when the Restart Enable (RSEN) bit is set, I2CxCNT is ‘0’, and either the
master hardware or the user software sets the Start bit.

When the Start bit is set, the master hardware releases SDA (SDA floats high) for TSCL/2. Then, the
hardware releases SCL for TSCL/2, and samples SDA. If SDA is sampled low (while SCL is high), as bus
collision has occurred, setting the Bus Collision Detect Interrupt Flag (BCLIF) bit and placing the master
hardware in the Idle state. If SDA is sampled high (while SCL is also high), the master hardware issues a

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 10

Start condition. Once a Restart condition is detected on the bus, the slave hardware will set the Restart
Condition Interrupt Flag (RSCIF) bit. See Figure 2-4 for more details.

Figure 2-4. Restart Condition

Filename: Restart (slave).vsdx
Title:
Last Edit: 1/21/2019
First Used:
Notes:

Rev. Restart (s
1/21/2019

Master writes to
Start (S) bit

Master releases
SCL

Master
hardware

samples SDA

Restart condition
detected,
RSCIF = 1

Completion of
Restart

tSU:STA
(1)

SDA

SCL

Note: 
1. See device data sheet for Restart condition setup times.

2.5 Acknowledge (ACK)/Not Acknowledge (NACK) Sequence
The I2C Specification defines the Acknowledge sequence (ACK) as a logic low state of the SDA line
during the 9th SCL pulse for any successfully transferred byte. During this time, the transmitter must
relinquish control of the SDA line to the receiver. The receiver must then pull the SDA line low and keep it
low during the high period of the 9th SCL pulse.

When the receiver has successfully received a matching address byte or a valid data byte, it will pull the
SDA line low during the 9th SCL pulse, which indicates to the transmitter that is has successfully received
the information and is ready for the next byte.

An Acknowledge sequence is enabled automatically by hardware following an address/data byte
reception. On the 8th falling edge of SCL, the content of either the Acknowledge Data (ACKDT) bit or the
Acknowledge End of Count (ACKCNT) bit is copied to the SDA output. When I2CxCNT is not ‘0’, the
value of the ACKDT bit is copied to SDA. When I2CxCNT is ‘0’, the value of the ACKCNT bit is copied to
SDA. In most applications, the value of ACKDT should be ‘0’, which represents an ACK (see Figure 2-5).

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 11

Figure 2-5. Slave ACK (I2CxCNT != 0)

Filename: ACK (slave).vsdx
Title:
Last Edit: 1/21/2019
First Used:
Notes:

Rev. ACK (slave
1/21/2019

D1 D0

7 8 9

ACK

Begin ACK
sequence

ACK Complete
RXBF I2CxRXIF = 1

Software/DMA
reads

I2CxRXB,
clearing
I2CxRXIF

ACKDT copied to SDA

I2CxCNT - 1

SDA

SCL

If the SDA line remains at a high logic level during the 9th SCL pulse, this is defined as a Not
Acknowledge (NACK) sequence (see Figure 2-6).

Figure 2-6. Slave NACK (I2CxCNT = 0)

Filename: NACK (slave).vsdx
Title:
Last Edit: 1/21/2019
First Used:
Notes:

Rev. NACK (slav
1/21/2019

D1 D0

7 8 9

NACK

Begin NACK
sequence

NACK
Complete

RXBF I2CxRXIF = 1
Software/DMA

reads
I2CxRXB,
clearing
I2CxRXIF

ACKCNT copied to SDA

I2CxCNT = 0

SDA

SCL

CNTIF = 1

A NACK is generated when any of the following conditions occurs:

• No slave device is present on the bus that owns the transmitted address
• The receiver is busy and is not ready for communication
• The receiver gets data or commands that it cannot understand
• The receiver cannot receive any more data
• A master-receiver has received the requested data and is ready to terminate transmission
• An I2C error condition has occurred
• The I2CxCNT register has reached a ‘0’ value and ACKCNT is set (ACKNT = 1).

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 12

The master device can then decide to either generate a Stop condition to terminate the transfer, or issue
a Restart condition to hold the bus and begin a new transfer.

2.6 Stop Condition
The I2C Specification defines a Stop condition as the transition of the SDA line from an Active state to an
Idle state while the SCL line is idle. The master will issue a Stop condition once the transactions have
been completed and it is ready to release the control of the bus, or if a bus time-out occurs. If the SDA
line transitions low and then high again while the SCL line is high, the Stop condition is ignored and a
Start/Restart condition will be detected by the receiver (see Figure 2-7).

Important:  At least one SCL low period must appear before a Stop condition is valid.

Figure 2-7. Stop Condition

Filename: Stop (slave).vsdx
Title:
Last Edit: 1/21/2019
First Used:
Notes:

Rev. Stop (s lav
1/21/2019

98

NACKD0

NACK
Sequence

Stop condition
begins

TSU:STO
(2)

TSCL/2(1)

Stop detected
PCIF = 1

THD:STO
(3)

SDA

SCL

Note: 
1. At least one SCL low time must appear before a Stop is valid.
2. See device data sheet for Stop condition setup times.
3. See device data sheet for Stop condition hold times.

After the ACK/NACK sequence of the final byte of the transmitted/received I2C packet, hardware pulls the
SCL line low for TSCL/2, and then releases SCL. Hardware samples SCL to ensure a logic high level.
SDA is then released, and the transition of SDA from low to high while SCL is high causes the Stop
Condition Interrupt Flag (PCIF) bit to be set.

2.7 SDA and SCL Pins
The Serial Data (SDA) and Serial Clock (SCL) pins are used by the I2C module to control the I2C bus
lines. Unlike previous versions of the MSSP, the SCL and SDA pins must be configured in open-drain
operation by setting the appropriate bits in that port’s Open-Drain Control register (ODCONx). Also, unlike
previous versions of the MSSP, the port’s Direction Control register (TRISx) must have the SDA and SCL
pins configured as outputs by clearing the appropriate TRIS bits. Finally, slew rate control, internal pull-up
resistor selection, and input threshold levels for each pin can be configured using the I2C Pad Control
(RxyI2C) register.

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 13

Important:  Previous MSSP modules have recommended using external pull-up resistors
rather than the internal weak pull-ups. However, the internal weak pull-ups may now be used,
depending on the bus transmission frequency and capacitance. The internal pull-ups can be
configured in the RxyI2C register.

The SDA and SCL pins are typically assigned to two I/O port pins, and must be enabled using the
Peripheral Pin Select (PPS) module. The PPS module has two dedicated I2C input registers:
I2CxSCLPPS, which defines the SCL input pin, and I2CxDATPPS, which defines the SDA input pin. SDA
and SCL outputs are also defined via the PPS module. The outputs use the RxyPPS registers to define
the signal the pin will output.

Important:  Both the SDA and SCL inputs and outputs must be defined, and must be assigned
to the same pins. For example, if the SDA pin is assigned to pin RC4, both the I2CxDATPPS
and the RC4PPS registers must be mapped to pin RC4. If both input and output signals are not
mapped to the same pin, or if one of the signals are not mapped at all, no communication will
take place.

The PPS module also allows for alternate pins to be used instead of the default pin locations. If an
alternate pin location is desired, simply load the appropriate PPS registers with the new location.

Important:  Some devices allow the digital peripherals to be relocated to any pin, while other
devices only allow the digital peripherals to be moved to pins within two I/O ports. Refer to the
device data sheet PPS chapter for more details. Also, if the desired I2C pin locations are moved
from the default pins, the new location may not be configured for I2C levels, and would require
the Open-Drain (ODCONx), Slew Rate (SLRCONx), and Input Threshold Control (INLVLx)
registers to be configured for I2C.

2.8 Bus Time-Out
SMBus and PMBus protocols require a bus watchdog to prevent a stalled device from hanging the bus
indefinitely. The I2C module provides a bus time-out feature that can be used to reset the module if one of
the bus devices is taking too long to respond. The I2C Bus Time-Out (I2CxBTO) register is used to select
the time-out source for the module. When the time-out source expires, the I2CxBTO register notifies the
module hardware and resets the module.

If the module is configured as a slave and a bus time-out event occurs while the slave is active (Slave
Mode Active bit (SMA) = 1), the SMA and Slave Clock Stretching (CSTR) bits are cleared, the module is
reset, and the Bus Time-Out Interrupt Flag (BTOIF) bit is set (see Figure 2-8). If the Bus Time-Out
Interrupt Enable (BTOIE) bit is set when the BTOIF bit becomes set, the generic I2C Error Interrupt Flag
(I2CxEIF) is also set.

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 14

Figure 2-8. Slave Receive Bus Time-Out Event Example

Filename: BTO slave example.vsdx
Title:
Last Edit: 1/21/2019
First Used:
Notes:

Rev. BTO slave
1/21/2019

D0

8
I2CxRXIF = 1

RXBF = 1

Enable Timer2
T2_Postscaled_out

T2TMR_T2PR_Match TMR2IF = 1

Master waits
for ACK/NACK

BTOIF = 1

SMA

Slave hardware is
reset

Software
clears BTOIF,

TMR2IF

Hardware clears SMA

SDA

SCL

Hardware clears CSTR
CSTR

2.9 Data Byte Count
The data byte count is the number of bytes in a complete I2C packet. The I2CxCNT register is used to
specify the length, in bytes, of the complete transaction. The value loaded into I2CxCNT will decrement
each time a data byte is transmitted or received by the module.

When a byte transfer causes the I2CxCNT register to decrement to ‘0’, the Byte Count Interrupt Flag
(CNTIF) bit of the I2CxPIR register is set, and if the Byte Count Interrupt Enable (CNTIE) bit is also set,
the general purpose I2C Interrupt Flag (I2CxIF) bit is set. The I2CxIF is a read-only bit and can only be
cleared by clearing all Enabled Interrupt Flag bits in the I2CxPIR register.

The I2CxCNT register can be read at any time, but it is recommended that a double read is performed to
ensure a valid read.

The I2CxCNT register can be written to, but care is required to prevent register corruption. If the I2CxCNT
register is written to during the 8th falling SCL edge during reception, or during the 9th falling SCL edge
during transmission, the register value may be corrupted. In Slave mode, I2CxCNT can be safely written
to any time the slave is stretching the clock (CSTR = 1), or after a Stop condition has been received. If
the I2C packet is longer than 255 bytes, the I2CxCNT value can be updated mid-message to prevent the
count from reaching ‘0’; however, the preventative measures listed above must be followed.

The I2CxCNT value can be automatically loaded when the Auto-Load I2C Count Register Enable (ACNT)
bit of the I2CxCON2 register is set. When ACNT is set, the data byte following the address byte is loaded
into I2CxCNT, and the value of the Acknowledge Data (ACKDT) bit is used for the ACK response.

When in either Slave-Read or Master-Write mode and the I2CxCNT value is not ‘0’, the value of the
ACKDT bit is used for the ACK response. When I2CCNT = 0, the value of the Acknowledge End of Count
(ACKCNT) bit is used for the ACK response.

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 15

2.10 Clock Stretching
Clock stretching occurs when a slave device holds the SCL line low to pause bus communication. The
slave may stretch the clock to allow more time to handle data or prepare a response for the master
device. Clock stretching can be enabled by clearing the Clock Stretching Disable (CSD) bit of the
I2CxCON1 register, and is only available in Multi-Master and Slave modes.

When clock stretching is enabled, the Slave Clock Stretching (CSTR) bit can be used to determine if the
clock is currently being stretched, and to release the SCL line when the slave is ready to continue
communication. This bit cannot be set by software, but can be cleared by software after the byte has
been processed.

Clock Stretching for Buffer Operations
When enabled, clock stretching is forced during buffer read/write operations. This allows the slave time to
either load the I2CxTXB with transmit data, or read from the I2CxRXB to clear the buffer.

In Slave Receive mode, clock stretching helps prevent receive data overflows. When the first seven bits
of the new byte are received into the receive Shift register while there is still data in I2CxRXB (RXBF = 1),
slave hardware automatically stretches the clock and sets CSTR. When the slave has read the byte, the
slave software must clear the CSTR bit to release the clock and continue communication (see Figure
2-9).
Figure 2-9. Receive Buffer Clock Stretching

Filename: Receive Buffer Clock Stretching.vsdx
Title:
Last Edit: 1/8/2019
First Used:
Notes:

Rev. Receive Bu
1/8/2019

1 2 3 4 5 6 7

D7 D6 D5 D4 D3 D2 D1

RXBF

SDA

SCL

Hardware reads
RXBF = 1

CSTR
Hardware sets

CSTR = 1

Software reads
I2CxRXB Hardware

clears RXBF

Software
clears CSTR

8

D0

Slave releases
SCL

Clock
stretched

In Slave Transmit mode, clock stretching helps prevent transmit underflows. When the Transmit Buffer
Empty Status (TXBE) bit is set and the I2CxCNT register is not equal to ‘0’, the slave hardware stretches
the clock and sets CSTR upon the eighth falling SCL edge. This allows the slave software time to load
the I2CxTXB with new data. Once the I2CxTXB is loaded, the slave software releases the clock by
clearing CSTR (see Figure 2-10).

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 16

Figure 2-10. Transmit Buffer Clock Stretching

Filename: Transmit Buffer Clock Stretching.vsdx
Title:
Last Edit: 1/8/2019
First Used:
Notes:

Rev. Transmit B
1/8/2019

1 2 3 4 5 6 7

D7 D6 D5 D4 D3 D2 D1

TXBE

SDA

SCL

Hardware reads
TXBE = 1

CSTR
Hardware sets

CSTR = 1

Software loads
I2CxTXB Hardware

clears TXBE

Software
clears CSTR

8

D0

Slave releases
SCL

9

Master releases SDA to
allow ACK

Slave copies
ACKDT onto SDA

(ACKDT = 0)

Clock
Stretched

Clock Stretching for Other Slave Operations
In addition to the clock stretching features listed above, the module provides three Interrupt and Hold
Enable features. When clock stretching is enabled (CSD = 0), the Interrupt and Hold Enable feature
provides an interrupt and stretches the clock to allow time for address recognition, data processing, or
ACK/NACK response.

The Address Interrupt and Hold Enable feature will generate and interrupt and stretch the SCL signal
when an incoming address match occurs. The feature is enabled via the Address Interrupt and Hold
Enable (ADRIE) bit of the I2CxPIE register. When enabled, the Slave Clock Stretching (CSTR) bit and the
Address Interrupt Flag (ADRIF) bit are set by hardware and the SCL line is stretched following the 8th
falling SCL edge of a received matching address. Once the slave has completed processing the address,
the software determines whether to send an ACK or a NACK back to the master. Slave software must
clear both the ADRIF and CSTR bits to continue communication.

The Data Write Interrupt and Hold Enable feature provides an interrupt and stretches the SCL input after
a received data byte. This feature is enabled by setting the Data Write Interrupt and Hold Enable (WRIE)
bit of the I2CxPIE register. When enabled, hardware sets both the CSTR and the Data Write Interrupt
Flag (WRIF) bits and stretches the SCL line after the 8th falling edge of SCL. Once completed, the slave
software must clear both the CSTR and WRIF bits to resume communication.

The Acknowledge Status Time Interrupt and Hold Enable feature generates an interrupt and stretches the
SCL signal after the Acknowledge phase of a transmission. The feature is enabled by setting the
Acknowledge Status Time Interrupt and Hold Enable (ACKTIE) bit. When enabled, the module hardware
sets both the CSTR and Acknowledge Status Time Interrupt Flag (ACKTIF) bit and stretches the clock
after the 9th falling edge of SCL. This feature enables clock stretching for all address, read, or write
transactions. Once completed, slave software must clear both the CSTR and ACKTIF bits to continue
communication.

 TB2669
I2C Module Overview

© 2019 Microchip Technology Inc. DS00002669B-page 17

3. Interrupts
The stand-alone I2C module contains additional interrupt features designed to assist with communication
functions. In addition to the MSSP module’s Start/Restart Condition (SCIF), Stop Condition (PCIF), Bus
Collision (BCLIF), and transmit, receive, and acknowledge (SSPIF) interrupts, the stand-alone I2C module
adds an Address Match (ADRIF), Transmit Buffer Empty (TXBE), Receive Buffer Full (RXBF), Bus Time-
Out (BTOIF), Data Byte Count (CNTIF), Acknowledge Status Time (ACKTIF), and Not Acknowledge
Detect (NACKIF).

The stand-alone I2C module incorporates a new register, the I2C Interrupt Flag register (I2CxPIR), which
handles several I2C related interrupts. Additionally, when any of the Flag bits in I2CxPIR becomes set and
the associated Interrupt Enable bits in the I2CxPIE register are set, the generic I2C Interrupt Flag
(I2CxIF) is also set. If the matching Interrupt Enable bit is set, an interrupt is generated whenever the
Interrupt Flag bit is set. If the appropriate Interrupt Enable bit is cleared, the Interrupt flag will still be set
when the Interrupt condition occurs, however, no interrupt will be triggered.

Important:  The generic I2CxIF bit is read-only and is only cleared by hardware when all the
bits in the I2CxPIR register are cleared.

The I2CxPIR contains the following Interrupt Flag bits:

• CNTIF: Byte Count Interrupt Flag
• ACKTIF: Acknowledge Status Time Interrupt Flag
• WRIF: Data Write Interrupt Flag
• ADRIF: Address Interrupt Flag
• PCIF: Stop Condition Interrupt Flag
• RSCIF: Restart Condition Interrupt Flag
• SCIF: Start Condition Interrupt Flag

The CNTIF becomes set (CNTIF = 1) when the I2CxCNT register value reaches ‘0’, indicating that all
bytes in the data frame have been transmitted or received. CNTIF is set after the 9th falling edge of SCL
when the I2CxCNT = 0.

The ACKTIF becomes set (ACKTIF = 1) after the 9th falling edge of SCL for any byte when the device is
addressed as a slave in any I2C Slave mode or I2C Multi-Master mode whenever an ACK is detected.

The WRIF becomes set (WRIF = 1) after the 8th falling edge of SCL when the module receives a data
byte. This bit is only active in any I2C Slave mode or I2C Multi-Master mode. Once the data byte is
received, the WRIF is set, as is the Receive Buffer Full (RXBF) Status bit, the I2C Receive Interrupt Flag
(I2CxRXIF) bit, and if the Data Write Interrupt and Hold Enable (WRIE) bit is set, the generic I2CxIF bit is
also set. The WRIF bit is read/write and must be cleared by the user software, while the RXBF, I2CxRXIF,
and I2CxIF are read-only, and are cleared by reading the I2CxRXB.

The ADRIF becomes set on the 8th falling edge of SCL after the module has received either a matching
7-bit address byte or the matching upper or lower bytes of a 10-bit address. This bit is only active in Slave
mode or Multi-Master mode. Upon receiving a matching address byte, the ADRIF bit is set, and if the
Address Interrupt and Hold Enable (ADRIE) bit is set, the generic I2CxIF bit is set.

The PCIF is set whenever a Stop condition is detected on the bus.

The RSCIF is set upon the detection of a Restart condition.

 TB2669
Interrupts

© 2019 Microchip Technology Inc. DS00002669B-page 18

The SCIF is set upon the detection of a Start condition.

In addition to the I2CxPIR register, the stand-alone module incorporates the I2C Error register
(I2CxERR). The I2CxERR register contains three Interrupt Flag bits that are used to detect bus errors.
These bits are read/write and must be cleared by the user software. The I2CxERR register also includes
the Enable bits for these three functions.

The I2CxERR register contains the following Interrupt Flag bits:

• BTOIF: Bus Time-Out Interrupt Flag
• BCLIF: Bus Collision Detect Interrupt Flag
• NACKIF: NACK Detect Interrupt Flag

The BTOIF is set when a bus time-out event occurs. The bus time-out time frame is controlled by the I2C
Bus Time-Out (I2CxBTO) register. If a bus time-out event occurs and the module is configured as a slave
and is active (SMA = 1), BTOIF is set, the SMA and CSTR bits are cleared, and the module is reset.
When the BTOIF becomes set and the Bus Time-Out Interrupt Enable (BTOIE) bit is set, the generic I2C
Error Interrupt Flag (I2CxEIF) bit is also set.

Important:  The I2CxEIF bit is read-only, and is cleared by hardware when all Error Interrupt
Flag bits in the I2CxERR register are cleared.

The BCLIF is set whenever a bus collision is detected. A bus collision occurs any time the SDA input is
sampled low while both the SDA and SCL outputs are high. When a bus collision event occurs, the BCLIF
becomes set, and if the Bus Collision Detect Interrupt Enable (BCLIE) bit is set, the generic I2CxEIF bit is
also set.

The NACKIF is set when either the master or slave is active (SMA = 1 || MMA = 1) and a NACK is
detected on the bus. A NACK response occurs on the 9th SCL pulse when the SDA line is released high.
When the module is in Master mode, a NACK can be issued when the master has finished receiving data
from the slave, or in the event it did not receive a byte. In Slave mode, the slave issues a NACK when it
does not receive a matching address, or did not receive the last data byte. A NACK can also be
automatically sent if any of the following bits are set, which will set the NACKIF, and if the NACK Detect
Interrupt Enable (NACKIE) bit is set, the generic I2CxEIF is also set:

• TXWE: Transmit Write Error Status bit
• RXRE: Receive Read Error Status bit
• TXU: Transmit Underflow Status bit
• RXO: Receive Overflow Status bit

 TB2669
Interrupts

© 2019 Microchip Technology Inc. DS00002669B-page 19

4. I2C Slave Mode Operation
To begin any I2C communication, the master hardware checks to ensure that the bus is in an Idle state,
which means both the SCL and SDA lines are floating high. The master hardware monitors the Bus Free
(BFRE) bit to be set, indicating the bus is idle. The master then transmits a Start condition, followed by
the address of the slave it intends to communicate with. The slave address can be either 7-bit or 10-bit,
depending on the application design.

In 7-bit Addressing mode, the Least Significant bit (LSb) acts as the Read/Write (R/W) bit, while in 10-bit
Addressing mode, the LSb of the address high byte is considered the R/W bit. When the R/W bit is set,
the master intends to read from the slave. If the R/W bit is cleared, the master intends to write to the
slave. If the addressed slave device exists on the bus, it must respond with an Acknowledge (ACK)
sequence.

The master then continues to either receive data from the slave, write data to the slave, or a combination
of both. Data is always transmitted starting with the Most Significant bit (MSb) first. When the master
intends to halt further transmission, it transmits a Stop condition, signaling to the slave that
communication is to be terminated, or a Restart condition, signaling the bus that the current master
wishes to hold the bus to communicate with the same or other slaves.

Slave mode is selected by configuring the MODE[2:0] bits of the I2CxCON0 register. There are four Slave
mode configurations and two Multi-Master modes:

• I2C Slave mode with 7-bit address
• I2C Slave mode with 7-bit addresses with masking
• I2C Slave mode with two 10-bit Address registers
• I2C Slave mode with one 10-bit address with masking
• I2C Multi-Master – Master mode with 7-bit address and Slave mode with two 7-bit addresses with

masking
• I2C Multi-Master – Master mode with 7-bit address and Slave mode with four 7-bit addresses.

The master device generates the SCL pulses, as well as the Start, Restart, and Stop conditions.
Transmission always begins with a Start condition, and can end with either a Stop condition or a Restart
condition. When the master has completed all transactions, and is ready to release the bus, it will
generate a Stop condition. If the master wishes to stop communicating with one slave, but wants to hold
the bus to address another slave, it issues a Restart condition. Control of the bus can only be asserted
when the Bus Free (BFRE) bit of the I2CxSTAT0 register is set.

The slave waits until hardware detects a Start condition on the bus. Once a Start condition is detected,
the slave waits for the incoming address information to be loaded into the receive Shift register. The
address is then compared to the addresses loaded into the I2CxADR registers. If an address match is
detected, the slave hardware transfers the address into either the I2CxADB0/1 register or the I2CxRXB
register, depending on the state of the ABD bit. If there are no address matches, there is no response
from the slave.

When the ABD bit is cleared, the Address Buffer registers, I2CxADB0 and I2CxADB1, are active and
used to hold the incoming matching address.

In 7-bit Addressing mode, the incoming address is compared to the addresses stored in the I2CxADR
registers. If an address matches, the matching address is loaded into the I2CxADB0 register. In 7-bit
Address mode, I2CxADB1 is unused. In 10-bit Addressing mode, the first incoming address byte is the
high byte of the 10-bit address, and is compared to the values in the I2CxADR1 and I2CxADR3 registers,

 TB2669
I2C Slave Mode Operation

© 2019 Microchip Technology Inc. DS00002669B-page 20

and the matching upper address byte is loaded into I2CxADB1. If no match is detected, the module
becomes idle. The second incoming byte is the lower byte of the 10-bit address, and is compared to the
values in I2CxADR0 and I2CxADR2 registers, and the matching lower address byte is loaded into
I2CxADB0.

When the ABD bit is set, the address buffers are inactive. In this case, the matching address is loaded
into I2CxRXB. The slave software must read I2CxRXB to continue communication.

Once an address match occurs, the slave either continues to receive data from or transmits data to the
master device.

 TB2669
I2C Slave Mode Operation

© 2019 Microchip Technology Inc. DS00002669B-page 21

5. Slave Mode Configuration and Operation
The steps listed below can be used to configure the I2C module for Slave mode operation.

5.1 Initialization
To begin I2C Slave mode communication, the following registers must be properly configured during
initialization (see code example below).

I2C Initialization Example
void I2C1_Initialize(void)
{
 I2C1ADR0 = 0x30; // Load address registers with slave addresses
 I2C1ADR1 = 0x80;
 I2C1ADR2 = 0x50;
 I2C1ADR3 = 0xC0;
 I2C1CON0 = 0x00; // CSTR Enable clocking; MODE four 7-bit address;
 I2C1CON1 = 0x80; // CSD Clock Stretching enabled;
 // ACKDT Acknowledge; ACKCNT Not Acknowledge;
 I2C1CON2 = 0x00; // ABD enabled; ACNT disabled;
 // SDAHT 300 ns hold time;
 I2C1CNT = 0x00; // Clear count register
 PIR2bits.I2C1RXIF=0; // Clear all I2C interrupt flags
 PIR3bits.I2C1TXIF=0;
 PIR3bits.I2C1EIF=0;
 I2C1ERRbits.NACKIF=0;
 PIR3bits.I2C1IF=0;
 I2C1PIRbits.PCIF=0;
 I2C1PIRbits.ADRIF=0;
 PIE2bits.I2C1RXIE=1; // Enable I2C RX interrupt
 PIE3bits.I2C1TXIE=1; // Enable I2C TX interrupt
 PIE3bits.I2C1EIE=1; // Enable I2C error interrupt
 I2C1ERRbits.NACKIE=1; // Enable I2C error interrupt for NACK
 PIE3bits.I2C1IE=1; // Enable I2C interrupt
 I2C1PIEbits.PCIE=1; // Enable I2C interrupt for stop condition
 I2C1PIEbits.ADRIE=1; // Enable I2C interrupt for I2C address match
 // condition
 I2C1PIR = 0; // Clear all the error flags
 I2C1ERR = 0;
 I2C1CON0bits.EN = 1; // Enable I2C module
}
void PIN_MANAGER_Initialize(void)
{
 LATC = 0x00;
 TRISC = 0xE7; // RC3, RC4 outputs
 ANSELC = 0xE7; // Disable analog input buffers
 WPUC = 0x00; // RxyI2C value used instead
 ODCONC = 0x18; // RC3, RC4 open-drain
 RC3PPS = 0x21; // RC3->I2C1:SCL1;
 RC4PPS = 0x22; // RC4->I2C1:SDA1;
 I2C1SCLPPS = 0x13; // RC3->I2C1:SCL1;
 I2C1SDAPPS = 0x14; // RC4->I2C1:SDA1;
}

I2CxCON0: The I2CxCON0 register contains the Module Enable (EN) bit and the Mode Select
(MODE[2:0]) bits. The MODE[2:0] bits are used to select the communications mode, and the EN bit
enables the Slave state machine hardware. MODE[2:0] bit settings should not be changed while the EN
bit is set (module is enabled).

I2CxCON1: The I2CxCON1 register contains the Acknowledge End of Count (ACKCNT), Acknowledge
Data (ACKDT), and Clock Stretching Disable (CSD) bits.

The ACKCNT bit reflects the value transmitted after the I2CxCNT register has reached ‘0’, signaling the
end of the packet. When ACKCNT is cleared, the module will issue an ACK; when set, the module issues

 TB2669
Slave Mode Configuration and Operation

© 2019 Microchip Technology Inc. DS00002669B-page 22

a NACK. ACKCNT can be modified during run time, but should only be changed before the I2CxCNT
reaches ‘0’ and before an Acknowledge sequence is issued. If there are errors in either the I2CxERR or
I2CxSTAT registers, the slave hardware automatically overrides this bit setting and generates a NACK.

The ACKDT bit reflects the value transmitted after a matching address is received, or after a byte is
received while I2CxCNT is not ‘0’. When ACKDT is cleared, an ACK is issued; when ACKDT is set, a
NACK is issued. The ACKDT bit value can be modified during run time, but should only be changed
before an Acknowledge sequence is issued. If there are errors in either the I2CxERR or I2CxSTAT
registers, the slave hardware automatically overrides this bit setting and generates a NACK.

The CSD bit enables/disables the slave’s ability to stretch the SCL signal.

I2CxCON2: The I2CxCON2 register holds the Auto-Load I2C Count Register Enable (ACNT), General
Call Address Enable (GCEN), Address Buffer Disable (ABD), and SDA Hold Time Selection
(SDAHT[1:0]).

The ACNT bit enables/disables the auto-loading of the I2CxCNT register. Auto-loading of I2CxCNT can
be useful when a slave device does not know the size of the data packet, or when the master needs to
change the size of the packet to transmit.

When ACNT is set, the first byte following the matching address is used as the value that is loaded into
the I2CxCNT register. For example, if the master device intends to transmit three data bytes to a slave,
the byte following the address would have a value of ‘3’, and would be loaded into the master device’s
I2CxCNT register during transmission.

When the byte is received by the slave device, it is loaded into the slave’s I2CxCNT register. Of course,
this assumes that both the master and the slave have the I2CxCNT register feature available, and both
devices have ACNT set.

The ABD bit enables/disables the use of the dedicated Address Buffer registers. In Slave mode, a
matching address received by the slave can be loaded into the I2CxADB0/1 registers. When ABD = 1,
the I2CxADB0/1 registers are ignored, and the matching slave address is loaded into the I2CxRXB
receive buffer by hardware. User software must read I2CxRXB to continue communication.

When ABD = 0, the matching received address data stored in I2CxADB0/1.

The SDAHT[1:0] bits are used to configure the amount of time the SDA line is held valid after the falling
edge of SCL. The SDAHT[1:0] bits should be configured based on the bus capacitance; buses with larger
capacitance may need longer hold times to ensure valid data.

I2CxBTO: The I2CxBTO register selects the timing source used for the Bus Time-Out feature. The
current time-out sources are either a CLC or a Timer, and those modules must also be configured during
initialization. The time-out source should be configured such that a device does not stall the bus for too
long, but does not interfere with timely data processing or clock stretching.

I2CxERR: The I2CxERR register contains the Bus Time-Out Interrupt Enable (BTOIE), the Bus Collision
Detect Interrupt Enable (BCLIE), and NACK Detect Interrupt Enable (NACKIE) bits. If these interrupts are
not needed by the application, this register does not need to be explicitly initialized.

I2CxCNT: The I2CxCNT register is loaded with the number of data bytes present in a I2C packet. The
I2CxCNT can be loaded during initialization or run time directly, but it is recommended to write to this
register only if the module is idle or during clock stretching. Writing at any other time may corrupt the
register. I2CxCNT can also be automatically loaded during run time when the ACNT bit of I2CxCON2 is
set. In this case, the first byte following the address byte(s) is loaded into I2CxCNT by module hardware.
The I2CxCNT value should only include the number of data bytes in the packet, and not any address
bytes.

 TB2669
Slave Mode Configuration and Operation

© 2019 Microchip Technology Inc. DS00002669B-page 23

I2CxPIE: The I2CxPIE register contains several I2C specific Interrupt Enable bits. Initialization is only
required if one or more of the following interrupts are necessary:

• Data Byte Count Interrupts
• Acknowledge Interrupt and Hold Enable
• Data Write Interrupt and Hold Enable
• Address Interrupt and Hold Enable
• Stop Condition Interrupts
• Restart Condition Interrupts
• Start Condition Interrupts

RxyI2C: The RxyI2C register controls the I2C specific I/O pads. Most PIC® devices dedicate one or two
pairs of I/O pins to the I2C module. The RxyI2C register is used to configure the pin slew rate, input
threshold level, and internal pull-up configurations.

The SLEW bit controls the slew rate. When SLEW is set, I2C specific slew rate is enabled, which
overrides the standard pin slew rate limiting, and the SLRCONx bit associated with the pin is ignored.
When SLEW is cleared, the module uses the standard pad slew rate, which is enabled/disabled via the
SLRCONx bit associated with the pin. Lower bus speeds may not need any slew rate limiting, while
buses with higher speeds may need slew rate limiting.

The TH bits control the I2C input threshold level. These bits can be configured to SMBus 3.0, SMBus 2.0,
I2C specific, or standard I/O input threshold levels to meet the specific protocol requirements. When either
the SMBus 3.0, SMBus 2.0, or I2C specific levels are selected, the INLVLx bit associated with the pin is
ignored. If standard I/O threshold levels are selected, the INLVLx bit associated with the pin can be
configured for either ST or TTL logic levels.

The PU bits are used to select the internal pull-up drive strength. The PU bits can be configured to
increase the current drive of the pull-up, making the internal pull-ups strong enough to be used instead of
external pull-up resistors. If external pull-ups are to be used in the application, the PU bits can be
configured for standard weak pull-ups, which can be enabled/disabled via the WPUx bit associated with
the pin.

TRISx Registers: The TRISx registers provide I/O direction support to PORT pins. When using the I2C
module, the TRISx bits associated with the SDA and SCL pins must be initialized clear (TRISxy = 0). All
previous I2C module designs required the TRISx bits to be set. During run time, direction control is
handled by the module hardware.

ODCONx: The I2C module uses an open-drain circuit configuration. The ODCONx bits associated with
the SCL and SDA pins must be configured for open-drain (ODCONxy = 1).

I2C PPS Registers: The Peripheral Pin Select (PPS) feature allows digital signals to be moved from their
default pin location to another location. To enable a digital peripheral’s input and/or output signals, the
appropriate PPS registers must be configured. When using the I2C module, both the input PPS and
output PPS registers must be configured due to the bidirectional nature of the I2C bus. Both the input and
output PPS registers for each I2C signal must be routed to the same pin. In other words, if the
I2CxSCLPPS input register is mapped to pin RC3, the RC3PPS register must also be mapped to pin
RC3.

Input configuration is handled by the I2CxSCLPPS and I2CxSDAPPS registers. These registers must be
mapped to the desired pins to enable the pin input drivers. Output configuration is handled by the
RxyPPS registers. The ‘xy’ in the register name is a placeholder for the actual port and pin number. For

 TB2669
Slave Mode Configuration and Operation

© 2019 Microchip Technology Inc. DS00002669B-page 24

example, if the SDA line is mapped to port pin RC4, the correct register name is RC4PPS. The PPS
output registers must also be mapped to the desired pins to enable the pin output driver.

The PPS feature allows the I2C pins to be moved from their default locations, but additional steps must be
considered. The default I2C pins use the RxyI2C register to define the slew rate, pull-up configuration,
and input threshold levels. If the default pin locations are not used, additional registers, such as INLVLx,
WPUx, and SLRCONx must also be configured.

 TB2669
Slave Mode Configuration and Operation

© 2019 Microchip Technology Inc. DS00002669B-page 25

6. Slave Mode Transmission

6.1 Slave Mode Transmission (7-Bit Addressing)
The following section describes the sequence of events when using the I2C in Slave mode transmission.

1. Master device issues a Start condition. Once the Start is detected, the slave hardware sets the
Start Condition Interrupt Flag (SCIF).

2. Master transmits the 7-bit slave address with R/W set.
3. The received address is compared to the values in the I2CxADR registers.

If the slave is configured in 7-bit Addressing mode (no masking), the received address is
independently compared to each of the I2CxADR0/1/2/3 registers. In 7-bit Addressing mode with
masking, the received address is masked with the value in the I2CxADR1 and I2CxADR3 and
compared to the value of I2CxADR0 and I2CxADR2.

If a match occurs, the Slave Mode Active (SMA) bit is set, the R/W bit information (bit ‘0’ of the
matching address) is transferred to the Read Information (R) bit of the I2CxSTAT0 register, the Data
(D) bit of the I2CxSTAT0 register is cleared, and the Address Interrupt Flag (ADRIF) bit is set. If the
ABD is cleared, the matching address is copied into the I2CxADB0 register. If ABD is set, the
matching address is copied into the receive buffer, I2CxRXB, setting the Receive Buffer Full
(RXBF) and I2C Receive Interrupt Flag (I2CxRXIF) bits. I2CRXIF is a read-only bit, and must be
cleared by setting the Clear Buffer (CLRBF) bit or reading I2CxRXB.

If there is not an address match, the module goes idle.
4. When ADRIF is set, if the Address Interrupt and Hold Enable (ADRIE) bit is set and the Clock

Stretching Disable (CSD) bit is cleared, slave hardware sets the Slave Clock Stretching (CSTR) bit,
and the generic I2CxIF Flag bit. This allows time for the slave to read either I2CxADB0 or I2CxRXB
and selectively ACK/NACK based on the received address. When the slave has finished
processing the address, the software clears CSTR and ADRIF, which releases the clock and clears
the I2CxIF Flag bit.

5. If TXBE = 1, I2CxCNT has a non-zero value, and I2CxTXIF = 1, the slave hardware sets CSTR,
and waits for the software to load I2CxTXB. I2CxTXB must be loaded to clear I2CxTXIF and
release SCL. I2CxCNT is decremented after the byte is transferred to the Shift register.

6. Master transmits the 9th clock pulse, and the slave hardware transfers the value of the ACKDT bit
onto the SDA line. If there are pending errors, such as a receive overflow, the slave hardware
automatically generates a NACK sequence, NACKIF is set, and the module goes idle. The slave
hardware checks I2CxCNT. If I2CxCNT = 0, the Byte Count Interrupt Flag (CNTIF) is set.

7. If the slave issued an ACK and the I2CxCNT is non-zero, the master transmits eight clock pulses,
and the slave begins to shift out the data byte Most Significant Bit (MSb) first. If I2CxCNT = 0,
CNTIF is set.

8. Master receives data byte from slave, then transmits an ACK/NACK sequence. The slave hardware
copies the ACK value into the Acknowledge Status (ACKSTAT) bit, and sets ACKTIF. If the
Acknowledge Time Interrupt and Hold Enable (ACKTIE) bit is set, the slave hardware sets the
CSTR and I2CxIF bits. When the slave is ready, the software clears the CSTR and ACKTIF bits,
which releases SCL and clears I2CxIF.

9. Steps 13-16 continue until the master has received all the requested data. Once all data is
received, the master transmits a NACK condition followed by either a Stop condition or Restart
condition. The slave hardware sets NACKIF and PCIF, and clears SMA.

 TB2669
Slave Mode Transmission

© 2019 Microchip Technology Inc. DS00002669B-page 26

6.2 Slave Mode Transmission (10-Bit Addressing)
The following section describes the sequence of events when using the I2C in Slave mode transmission.

1. Master device issues a Start condition. Once the Start is detected, the slave hardware sets the
Start Condition Interrupt Flag (SCIF).

2. Master transmits the 10-bit high address byte with R/W cleared.
3. The received address is compared to the values in the I2CxADR registers.

If the slave is configured in 10-bit Addressing mode (no masking), the received high address byte is
compared to the values in the I2CxADR1 and I2CxADR3 registers. In 10-bit Addressing mode with
masking, the received address is masked with the value of I2CxADR3, and then compared to the
value of I2CxADR1. If a match occurs, the R/W bit information (bit ‘0’ of the matching address) is
transferred to the Read Information (R) bit of the I2CxSTAT0 register, the Data (D) bit of the
I2CxSTAT0 register is cleared, and the Address Interrupt Flag (ADRIF) bit is set. If ABD is cleared,
the matching address is copied into the I2CxADB1 register. If ABD is set, the matching address is
copied into the receive buffer, I2CxRXB, setting the Receive Buffer Full (RXBF) and I2C Receive
Interrupt Flag (I2CxRXIF) bits. I2CxRXIF is a read-only bit, and must be cleared by setting the
Clear Buffer (CLRBF) bit or reading I2CxRXB. If there is not an address match, the module goes
idle.

4. When ADRIF is set, if the Address Interrupt and Hold Enable (ADRIE) bit is set and the Clock
Stretching Disable (CSD) bit is cleared, the slave hardware sets the Slave Clock Stretching (CSTR)
bit and the generic I2CxIF Flag bit. This allows time for the slave to read either I2CxADB1 or
I2CxRXB and selectively ACK/NACK based on the received address. When the slave has finished
processing the address, the software clears CSTR and ADRIF, which releases the clock and clears
the I2CxIF bit.

5. Master transmits the 9th clock pulse, and the slave hardware transfers the value of the ACKDT bit
onto the SDA line. If there are pending errors, such as a receive overflow, the slave hardware
automatically generates a NACK sequence and the module goes idle.

6. The master transmits the lower address byte.
If the slave is configured in 10-bit Addressing mode (no masking), the received low address byte is
compared to the values in the I2CxADR0 and I2CxADR2 registers. In 10-bit Addressing mode with
masking, the received address is masked with the value of I2CxADR2, and then compared to the
value of I2CxADR0. If a match occurs, the Slave Mode Active (SMA) bit is set, the R/W bit
information is transferred to the R bit of the I2CxSTAT0 register, the D bit of the I2CxSTAT0 register
is cleared, and the ADRIF bit is set. If ABD is cleared, the matching address is copied into the
I2CxADB0 register. If ABD is set, the matching address is copied into the receive buffer, I2CxRXB,
setting the RXBF and I2CxRXIF bits. I2CxRXIF is a read-only bit, and must be cleared by setting
the CLRBF bit or reading I2CxRXB.

7. When ADRIF is set, if the ADRIE bit is set and the CSD bit is cleared, the slave hardware sets the
CSTR bit and the generic I2CxIF bit. This allows time for the slave to read either I2CxADB0 or
I2CxRXB and selectively ACK/NACK based on the received address. When the slave has finished
processing the address, the software clears CSTR and ADRIF, which releases the clock and clears
the I2CxIF bit.

8. The master transmits the 9th clock pulse, and the slave hardware transfers the value of the ACKDT
bit onto the SDA line. If there are pending errors, such as a receive overflow, the slave hardware
automatically generates a NACK condition and the module goes idle.

9. After the 9th falling edge of the clock, the Acknowledge Status Time Interrupt and Hold (ACKTIF) bit
is set. If the Acknowledge Time Interrupt and Hold Enable (ACKTIE) bit is set, the slave hardware

 TB2669
Slave Mode Transmission

© 2019 Microchip Technology Inc. DS00002669B-page 27

sets the CSTR and I2CxIF bits. When the slave is ready, the software clears the CSTR and
ACKTIF bits, which releases SCL and clears I2CxIF.

10. The master issues a Restart condition, and once the slave detects the Restart, the hardware sets
the Restart Condition Interrupt Flag (RSCIF), and if the Restart Condition Interrupt Enable (RSCIE)
bit is set, I2CxIF is also set.

11. The master then transmits the high address byte again, but with the R/W bit set. If SMA = 1 and the
high address matches, the R/W bit is copied into the R bit of I2CxSTAT0, and the D bit of
I2CxSTAT0 is cleared. If ABD is cleared, the matching address is stored in I2CxADB1. If ABD is
set, the matching address is copied into I2CxRXB, setting the RXBF and I2CxRXIF bits. I2CxRXIF
is a read-only bit, and must be cleared by setting the CLRBF bit or reading I2CxRXB.

12. When ADRIF is set, if the ADRIE bit is set and the CSD bit is cleared, the slave hardware sets the
CSTR bit and the generic I2CxIF bit. This allows time for the slave to read either I2CxADB1 or
I2CxRXB and selectively ACK/NACK based on the received address. When the slave has finished
processing the address, the software clears CSTR and ADRIF, which releases the clock and clears
the I2CxIF bit.

13. If TXBE = 1, I2CxCNT has a non-zero value, and I2CxTXIF = 1, the slave hardware sets CSTR,
and waits for software to load I2CxTXB. I2CxTXB must be loaded to clear I2CxTXIF and release
SCL. I2CxCNT is decremented after the byte is transferred to the Shift register.

14. Master transmits the 9th clock pulse, and the slave hardware copies the value of ACKDT onto SDA.
15. If the slave issued a NACK, the slave hardware sets the NACK Detect Interrupt Flag (NACKIF) and

goes idle. If the slave issued an ACK and the I2CxCNT is non-zero, the master transmits eight
clock pulses, and the slave begins to shift out the data byte Most Significant Bit (MSb) first. If
I2CxCNT = 0, CNTIF is set.

16. Master receives data byte from slave, then transmits an ACK/NACK sequence. The slave hardware
copies the ACK value into the Acknowledge Status (ACKSTAT) bit, and sets ACKTIF. If the ACKTIE
bit is set, the slave hardware sets the CSTR and I2CxIF bits. When the slave is ready, the software
clears the CSTR and ACKTIF bits, which releases SCL and clears I2CxIF.

17. Steps 13-16 continue until the master has received all the requested data. Once all data is
received, the master transmits a NACK condition followed by either a Stop condition or Restart
condition. The slave hardware sets NACKIF and PCIF, and clears SMA.

 TB2669
Slave Mode Transmission

© 2019 Microchip Technology Inc. DS00002669B-page 28

7. Slave Mode Reception

7.1 Slave Mode Reception (7-Bit Addressing)
The following section describes the sequence of events when using the I2C in Slave mode reception.

1. Master device issues a Start condition. Once the Start is detected, the slave hardware sets the
Start Condition Interrupt Flag (SCIF).

2. Master transmits the 7-bit slave address with R/W cleared.
3. The received address is compared to the values in the I2CxADR registers.

If the slave is configured in 7-bit Addressing mode (no masking), the received address is
independently compared to each of the I2CxADR0/1/2/3 registers. In 7-bit Addressing mode with
masking, the received address is masked with the value of I2CxADR1 and I2CxADR3, and then
compared to the value of I2CxADR0 and I2CxADR2.

If a match occurs, the Slave Mode Active (SMA) bit is set, the R/W bit information (bit ‘0’ of the
matching address) is transferred to the Read Information (R) bit of the I2CxSTAT0 register, the Data
(D) bit of the I2CxSTAT0 register is cleared, and the Address Interrupt Flag (ADRIF) bit is set. If the
ABD is cleared, the matching address is copied into the I2CxADB0 register. If ABD is set, the
matching address is copied into the receive buffer, I2CxRXB, setting the Receive Buffer Full
(RXBF) and I2C Receive Interrupt Flag (I2CxRXIF) bits. I2CRXIF is a read-only bit, and must be
cleared by setting the Clear Buffer (CLRBF) bit or reading I2CxRXB.

If no address match occurs, the module stays idle.
4. When ADRIF is set, if the Address Interrupt and Hold Enable (ADRIE) bit is set and the Clock

Stretching Disable (CSD) bit is cleared, slave hardware sets the Slave Clock Stretching (CSTR) bit
and the generic I2CxIF Flag bit. This allows time for the slave to read either I2CxADB0 or I2CxRXB
and selectively ACK/NACK based on the received address. When the slave has finished
processing the address, the software clears CSTR and ADRIF, which releases the clock and clears
the I2CxIF bit.

5. Master transmits the 9th clock pulse, and the slave hardware transfers the value of the ACKDT bit
onto the SDA line. If there are pending errors, such as a receive overflow, the slave hardware
automatically generates a NACK condition, NACKIF is set, and the module goes idle. The slave
hardware checks I2CxCNT. If I2CCNT = 0, the Byte Count Interrupt Flag (CNTIF) is set.

6. Upon the falling edge of the 9th clock pulse, the Acknowledge Time Interrupt Flag (ACKTIF) bit is
set, and if CSD = 0, the slave hardware sets CSTR. This allows time for the slave to read the
address from either I2CxADB0 or I2CxRXB. Once complete, the slave software clears CSTR to
release the clock, and clears ACKTIF to continue communication.

7. If the slave transmits a NACK, the master hardware generates a Stop condition. The Stop
Condition Interrupt Flag (PCIF) is set when the Stop condition is detected, and the slave goes idle.
If the slave issued an ACK, the master transmits the first 7 bits of the 8-bit data byte.

8. If previous data is still in the I2CxRXB register (RXBF = 1 and I2CRXIF = 1) when the first seven
bits of the new byte are received into the Shift register, the CSTR bit is set, and the clock is
stretched after the 7th falling edge of SCL. This allows the slave software to read I2CxRXB, which
clears the RXBF and I2CxRXIF bits, and prevents a receive buffer overflow. Once the RXBF bit is
cleared, the software clears CSTR, which releases SCL.

9. Master hardware transmits the 8th bit of the current data byte into the slave’s receive Shift register,
then the slave hardware transfers the complete byte into I2CxRXB, sets the I2CxRXIF, the Data

 TB2669
Slave Mode Reception

© 2019 Microchip Technology Inc. DS00002669B-page 29

Write Interrupt and Hold Flag (WRIF), the Data (D), and the RXBF bits. I2CxCNT is decremented
by one. If the Data Write Interrupt and Hold is enabled (WRIE = 1), the hardware sets CSTR,
allowing time for slave software to read I2CxRXB and decide the state of the ACKDT bit before
clearing CSTR.

10. Master transmits the 9th clock pulse. If there are pending errors, such as a receive overflow, the
slave hardware automatically generates a NACK sequence, NACKIF is set, and the module goes
idle.
If I2CxCNT is not ‘0’, the hardware transmits the value of the ACKDT bit as the ACK value to the
master. It is up to the user to configure the ACKDT bit appropriately. In most cases, the ACKDT bit
should be cleared, so that the master receives an ACK (logic low level on SDA during the 9th SCL
pulse).

If I2CxCNT = 0, the hardware transmits the value of the Acknowledge End of Count (ACKCNT) bit
as the ACK value to the slave. It is up to the user to properly define the ACKCNT bit. In most cases,
this bit should be set, indicating a NACK condition. When the master hardware detects the NACK
on the bus, the master hardware will also generate a Stop condition. If the ACKCNT bit is cleared,
an ACK will be issued, and the master hardware will not automatically generate the Stop condition.

11. Upon the falling edge of the 9th clock pulse, the ACKTIF bit is set, and if ACKTIE is also set, the
generic I2CxIF bit is set, and if CSD is cleared, the slave hardware sets CSTR. This allows time for
the slave to read the data from I2CxRXB. Once complete, the slave software clears CSTR to
release the clock, and clears ACKTIF to continue communication.

12. Go to step 7 and continue until I2CxCNT = 0, or until the master issues a Stop condition.

7.2 Slave Mode Reception (10-Bit Addressing)
1. Master device issues a Start condition. Once the Start is detected, the slave hardware sets the

Start Condition Interrupt Flag (SCIF).
2. Master transmits the 10-bit high address byte with R/W cleared.
3. The received address is compared to the values in the I2CxADR registers.

If the slave is configured in 10-bit Addressing mode (no masking), the received high address byte is
compared to the values in the I2CADR1 and I2CADR3 registers. In 10-bit Addressing mode with
masking, the received address is masked with the value of I2CxADR3, and then compared to the
value of I2CxADR1. If a match occurs, the R/W bit information (bit ‘0’ of the matching address) is
transferred to the Read Information (R) bit of the I2CxSTAT0 register, the Data (D) bit of the
I2CxSTAT0 register is cleared, and the Address Interrupt Flag (ADRIF) bit is set. If ABD is cleared,
the matching address is copied into the I2CxADB1 register. If ABD is set, the matching address is
copied into the receive buffer, I2CxRXB, setting the Receive Buffer Full (RXBF) and I2C Receive
Interrupt Flag (I2CxRXIF) bits. I2CRXIF is a read-only bit, and must be cleared by setting the Clear
Buffer (CLRBF) bit or reading I2CxRXB.

If there is not an address match, the module goes idle.
4. When ADRIF is set, if the Address Interrupt and Hold Enable (ADRIE) bit is set and the Clock

Stretching Disable (CSD) bit is cleared, the slave hardware sets the Slave Clock Stretching (CSTR)
bit and the generic I2CxIF Flag bit. This allows time for the slave to read either I2CxADB1 or
I2CxRXB and selectively ACK/NACK based on the received address. When the slave has finished
processing the address, the software clears CSTR and ADRIF, which releases the clock and clears
the I2CxIF bit.

 TB2669
Slave Mode Reception

© 2019 Microchip Technology Inc. DS00002669B-page 30

5. Master transmits the 9th clock pulse, and the slave hardware transfers the value of the ACKDT bit
onto the SDA line. If there are pending errors, such as a receive overflow, the slave hardware
automatically generates a NACK condition and the module goes idle.

6. The master transmits the lower address byte.
If the slave is configured in 10-bit Addressing mode (no masking), the received low address byte is
compared to the values in the I2CxADR0 and I2CxADR2 registers. In 10-bit Addressing mode with
masking, the received address is masked with the value of I2CxADR1, and then compared to the
value of I2CxADR0. If a match occurs, the Slave Mode Active (SMA) bit is set, the R/W bit
information is transferred to the R bit of the I2CxSTAT0 register, the D bit of the I2CxSTAT0 register
is cleared, and the ADRIF bit is set. If ABD is cleared, the matching address is copied into the
I2CxADB0 register. If ABD is set, the matching address is copied into the receive buffer, I2CxRXB,
setting the RXBF and I2CxRXIF bits. I2CxRXIF is a read-only bit, and must be cleared by setting
the Clear Buffer (CLRBF) bit or reading I2CxRXB.

7. When ADRIF is set, if the ADRIE bit is set and the CSD bit is cleared, the slave hardware sets the
CSTR bit and the generic I2CxIF Flag bit. This allows time for the slave to read either I2CxADB0 or
I2CxRXB and selectively ACK/NACK based on the received address. When the slave has finished
processing the address, the software clears CSTR and ADRIF, which releases the clock and clears
the I2CxIF bit.

8. The master transmits the 9th clock pulse, and the slave hardware transfers the value of the ACKDT
bit onto the SDA line. If there are pending errors, such as a receive overflow, the slave hardware
automatically generates a NACK condition and the module goes idle.

9. After the 9th falling edge of the clock, the Acknowledge Status Time Interrupt and Hold (ACKTIF) bit
is set. If the Acknowledge Time Interrupt and Hold Enable (ACKTIE) bit is set, the slave hardware
sets the CSTR and I2CxIF bits. When the slave is ready, the software clears the CSTR and
ACKTIF bits, which releases SCL and clears I2CxIF.

10. If the slave transmits a NACK, the master hardware generates a Stop condition. The Stop
Condition Interrupt Flag (PCIF) is set when the Stop condition is detected, and the slave goes idle.
If the slave issued an ACK, the master transmits the first 7 bits of the 8-bit data byte.

11. If previous data is still in the I2CxRXB register (RXBF = 1 and I2CxRXIF = 1) when the first seven
bits of the new byte are received into the Shift register, the CSTR bit is set, and the clock is
stretched after the 7th falling edge of SCL. This allows the slave software to read I2CxRXB, which
clears the RXBF and I2CxRXIF bits, and prevents a receive buffer overflow. Once the RXBF bit is
cleared, the software releases SCL by clearing CSTR.

12. Master hardware transmits the 8th bit of the current data byte into the slave’s receive Shift register,
then the slave hardware transfers the complete byte into I2CxRXB, sets the I2CxRXIF, the Data
Write Interrupt Flag (WRIF), the Data (D), and the RXBF bits. I2CxCNT is decremented by one. If
the Data Write Interrupt and Hold is enabled (WRIE = 1), the hardware sets CSTR, allowing time
for the slave software to read I2CxRXB and decide the state of the ACKDT bit before clearing
CSTR.

13. Master transmits the 9th clock pulse. If there are pending errors, such as a receive overflow, the
slave hardware automatically generates a NACK condition, NACKIF is set, and the module goes
idle.
If I2CxCNT is not ‘0’, the hardware transmits the value of the ACKDT bit as the ACK value to the
master. It is up to the user to configure the ACKDT bit appropriately. In most cases, the ACKDT bit
should be cleared, so that the master receives an ACK (logic low level on SDA during the 9th SCL
pulse).

 TB2669
Slave Mode Reception

© 2019 Microchip Technology Inc. DS00002669B-page 31

If I2CxCNT is ‘0’, the hardware transmits the value of the Acknowledge End of Count (ACKCNT) bit
as the ACK value to the slave. It is up to the user to properly define the ACKCNT bit. In most cases,
this bit should be set, indicating a NACK condition. When the master hardware detects the NACK
on the bus, the master hardware will also generate a Stop condition. If the ACKCNT bit is cleared,
an ACK will be issued, and the master hardware will not automatically generate the Stop condition.

14. Upon the falling edge of the 9th clock pulse, the ACKTIF bit is set, and if ACKTIE is set, the generic
I2CxIF bit is also set. If CSD = ‘0’, the slave hardware sets CSTR. This allows time for the slave to
read the data from I2CxRXB. Once complete, the slave software clears CSTR to release the clock,
and clears ACKTIF to continue communication.

15. Go to step 10 and continue until I2CCNT = ‘0’, or until the master issues a Stop condition.

 TB2669
Slave Mode Reception

© 2019 Microchip Technology Inc. DS00002669B-page 32

8. External Pull-up Resistor Selection
The I2C specification proposes two methods to determine the correct pull-up resistor size.

The first method calculates the maximum pull-up resistor size as a function of bus capacitance and rise
time (see Equation 8-1). Bus capacitance is the total capacitance of the bus wires/traces, bus connection
points, and bus pins, all of which must be considered when calculating the total bus capacitance. Rise
time is the period in which the signal transitions from VIL(MAX) (0.3*VDD) to VIH(MIN)(0.7*VDD). Rise time
values are typically located in the device’s data sheet.

Bus capacitance should be measured to achieve the most accurate pull-up values, but an estimated
value, or the maximum allowable capacitance as defined by the I2C specification, may also be used. The
maximum allowable bus capacitance is specified to limit rise time decreases and allow operation at the
rated frequency. The bus may operate at higher than allowable bus capacitance levels but at a lower
frequency.

Equation 8-1. Maximum Pull-up Resistor Size�� max = �����0.8473 * ����
Rp(max) = Maximum pull-up value

trise = Maximum rise time

Cbus = Total bus capacitance

The second method calculates the minimum pull-up resistor size as a function of VDD (see Equation 8-2).
The supply voltage limits the minimum resistor value due to the specified minimum sink current of 3 mA
for Standard mode (100 kHz) or Fast mode (400 kHz), or 20 mA for Fast mode Plus (1 MHz).

Equation 8-2. Minimum Pull-up Resistor Size�� min = ���− ��� max���
Rp(min) = Minimum pull-up value

VDD = Supply voltage

VOL(max) = Maximum output low voltage

IOL = Minimum sink current

 TB2669
External Pull-up Resistor Selection

© 2019 Microchip Technology Inc. DS00002669B-page 33

9. Conclusion
This technical brief has covered the stand-alone I2C module in Slave mode configuration. For more
information, please visit www.microchip.com. For code examples, please visit www.microchip.com/mplab/
mplab-xpress.

 TB2669
Conclusion

© 2019 Microchip Technology Inc. DS00002669B-page 34

http://www.microchip.com
http://www.microchip.com/mplab/mplab-xpress
http://www.microchip.com/mplab/mplab-xpress

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online
discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 TB2669

© 2019 Microchip Technology Inc. DS00002669B-page 35

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 TB2669

© 2019 Microchip Technology Inc. DS00002669B-page 36

© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-4227-1

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 TB2669

© 2019 Microchip Technology Inc. DS00002669B-page 37

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2019 Microchip Technology Inc. DS00002669B-page 38

	Introduction
	Table of Contents
	1. I2C Specification
	2. I2C Module Overview
	2.1. Dedicated Transmit/Receive Buffers
	2.2. Address Buffers and Registers
	2.3. Start Condition
	2.4. Repeated Start/Restart Condition
	2.5. Acknowledge (ACK)/Not Acknowledge (NACK) Sequence
	2.6. Stop Condition
	2.7. SDA and SCL Pins
	2.8. Bus Time-Out
	2.9. Data Byte Count
	2.10. Clock Stretching

	3. Interrupts
	4. I2C Slave Mode Operation
	5. Slave Mode Configuration and Operation
	5.1. Initialization

	6. Slave Mode Transmission
	6.1. Slave Mode Transmission (7-Bit Addressing)
	6.2. Slave Mode Transmission (10-Bit Addressing)

	7. Slave Mode Reception
	7.1. Slave Mode Reception (7-Bit Addressing)
	7.2. Slave Mode Reception (10-Bit Addressing)

	8. External Pull-up Resistor Selection
	9. Conclusion
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

