MICROCHIP TB3257

How to Use the 12-Bit Differential ADC with PGA in Series
Accumulation Mode

Features

* 12-Bit Resolution
+ Sample Accumulation up to 1024 Samples
» Differential and Single-Ended Conversion

— Up to 15 analog inputs

» 15 positive and seven negative inputs

* 4 Internal Inputs

- GND

- Vpp/10

— Temperature Sensor

— DACREF from Analog Comparator
» Built-in Internal Reference and External Reference Options
* Programmable Gain Amplifier from 1x to 16x
« Left or Right Adjusted Result
» Optional: Event-Triggered Conversion
» Configurable Window Comparator

Introduction

Authors: Amund Aune, Egil Rotevatn, and Rupali Honrao, Microchip Technology Inc.

This technical brief explains how to use the Series mode with the 12-bit Analog-to-Digital Converter (ADC) featured in
the tinyAVR® 2 family.
The code examples below are given using the Series mode:

* Interrupt using Window Comparator

« Event-triggered series conversion

» ADC oversampling to increase resolution

» Series Accumulation with Scaling to increase ADC resolution

In Series mode, one conversion is performed per ADC trigger and a selectable number of samples are automatically
accumulated into a single ADC result. A maximum of 1024 samples can be accumulated.

The ADC operation modes can be split into three groups:

» Single mode — Single conversion per trigger, with 8- or 12-bit conversion output
» Series Accumulation mode — One conversion per trigger, with accumulation of n samples
» Burst Accumulation mode — A burst with n samples accumulated as fast as possible after a single trigger

Refer to Section 1. Relevant Documents for details on the other ADC modes.

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 1

TB3257

Table of Contents

=T (0 = TSRS PTURRR 1
[a1 0o [8 o3 1] o PP PPPRP 1
1. RElEVANT DOCUMENES.ttt ettt e e e ettt e e e e e et e e e e e e e e nsbeeeaeeaansneeaaeeaannsaeaaeeeannnneeas 3
B 7T) 7o [0 = (o o TSR 4
2.1, Series Mode CoNfIQUratioN..........cuii ittt e e 4
D (= = (= o Tt SR 4
2.3. Single-Ended and Differential MOAES..........cccuiiiiiiieiiie e e e eee e 4
2.4, Programmable Gain AMPlIfier..........ociei i 5
b T 11 (] 4 U o] €T TSP PU SRR 5
b T4 14 o [o 1V A 7] 4] o F= = (o] Ju PSR TSPR 6
D R =13 1 - SRR 7
R T oo 101 o @31 o1 F {1 (/PSPPSRI 11
R Tt I [T o 10 1 [y 0 o T=To £= g Uo7 YRS PRPRPRN 1"
3.2, SAMPIE DUFBLION. ..ottt ettt b e et sn e nnn e e b e 12
S oY VLo I I 1 41 oo RPN 13
e O 1 oo USRS 13
4.2. PGA Bias and Output Sample DUration..............ccueiieiiiiiiiie et 13
I T O7o] 1Y/=1 £ (o] T T =P S 13
LT O 10 o1 o (oot =YX o o [PSP UPPRRPN 15
5.1, RESUILRANGE. ...ttt e et nnn e e e et 15
IV ot o10 {4910 =1 (o] o SRRSO PPRRNE 15
5.3, Left AJUST. .t 17
5.4. Signed and UnSignNed OULPUL.........cccueiiiiiiiiiiie et e e e e e st eeeneeeesnneeean 18
6. Get Code Examples from GitHUD...........cooiiiiiiiii e 20
N S YT (o) I 1) o] PR ER 21
The MiICrOChID WEDSITE. ...t e ettt e e e e e e aeeaaaaaaeeeaeaesesaaanannnssnenennnnnes 22
Product Change NoOtIfiCation SEIVICE.iiiiiiiiii e 22
(OIS} (o] 0 LY AR U o] o o]« SU S OO PR 22
Microchip Devices Code Protection Feature.............ooiiiiiiiiiiiiii e 22
[I=To P 1 N o) i o7 TSR PRRRRN 22
L= (o =T 4= SRR 23
Quality Management SYSIEML........cooiiiie et 23
Worldwide Sales @nd SEIVICE.......ccoiiiie ettt e et e e st e e e snt e e e s et e e s neeeeanteeeeneeeennenean 24

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 2

TB3257

Relevant Documents

1. Relevant Documents

The following documents are relevant to this technical brief:

» Datasheet: tinyAVR 2 Data Sheet (.pdf) on Product Pages:
— www.microchip.com/wwwproducts/en/ATtiny1624
— www.microchip.com/wwwproducts/en/ATtiny1626
— www.microchip.com/wwwproducts/en/ATtiny1627
* How to use the 12-Bit Differential ADC with PGA in Single Mode: www.microchip.com/DS90003256
* How to use the 12-Bit Differential ADC with PGA in Burst Accumulation Mode: www.microchip.com/DS90003254

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 3

https://www.microchip.com/wwwproducts/en/ATtiny1624
https://www.microchip.com/wwwproducts/en/ATtiny1626
https://www.microchip.com/wwwproducts/en/ATtiny1627
https://www.microchip.com/DS90003256
https://www.microchip.com/DS90003254

21

2.2

2.3

TB3257

Configuration

Configuration

Series Mode Configuration

There are two available Series modes: Series Accumulation and Series Accumulation with Scaling. In both modes,
the ADC requires one trigger per conversion, where the Sample (ADCn.SAMPLE) register is updated with each
conversion result. The samples are automatically accumulated and placed in the Result (ADCn.RESULT) register
when the last conversion in the series is finished. In Series Accumulation mode, the accumulated result is presented
as-is, while in Series Accumulation with Scaling, the result is scaled to ease output processing as shown in Section
5.2.2 Series Accumulation with Scaling.

The two modes can be selected by writing the MODE bits in the ADCn.COMMAND register. Below are code
examples showing the configuration of the Series modes.

/* Series Accumulation mode */

ADCO.COMMAND = ADC_MODE_SERIES gc;

/* Series Accumulation with Scaling mode */
ADCO.COMMAND = ADC MODE SERIES SCALING gc;

References
» External Reference
» Internal Reference
— 1.024V
— 2.048V
- 2.500V
— 4.096V
- Vop
The reference voltage for the ADC (Vgrgg) controls the conversion range of the ADC. External reference and five
internal references are available.

ADCO.CTRLC = ADC REFSEL 1024MV_gc; /* Reference selection 1.024V */
Except for Vpp, the internal reference voltages are generated from an internal band gap reference. Vpp must be at
least 0.5V higher than the selected band gap reference voltage.

Changing the reference while a conversion is ongoing will corrupt the output.

Single-Ended and Differential Modes

In Single-Ended mode, the ADC reads the voltage of a single selectable input source, while in Differential mode, the
ADC reads the voltage difference between two input sources.

The Differential mode is configured by writing ‘1’ to the DIFF bit as shown below.

/* Differential Mode Configuration */
ADCO.COMMAND |= ADC DIFF bm;

The Single-Ended mode is configured by writing ‘0’ to DIFF bit as shown below.

/* Single-Ended Mode Configuration */
ADCO.COMMAND &= ~ADC DIFF bm;

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 4

2.4

2.5

TB3257

Configuration

Programmable Gain Amplifier

The Programmable Gain Amplifier (PGA) can be used to amplify the input signal to the ADC. The available range is
from 1x to 16x gain. The PGA is enabled by writing a ‘1’ to the PGA Enable (PGAEN) bit and configuring the GAIN bit
field in the PGA Control (ADCn.PGACTRL) register.

ADCO.PGACTRL |= ADC_GAIN 16X gc | ADC_PGAEN bm; /* Enable the PGA with 16x gain */
Note: PGA Control is one of few AVR registers with a nonzero reset value. This must be taken into account if only
configuring parts of the register.

When PGA is enabled, the configuration of the VIA bit fields in the Positive and Negative Multiplexer
(ADCn.MUXPOS and ADCn.MUXNEG) registers is required. The VIA bits are shared, so a value written to the VIA
bit field in MUXPOS or MUXNEG is updated in both registers. It is, therefore, not possible to have one input using the
PGA and the other not using the PGA.

ADCO.MUXPOS |= ADC_VIA gm; /* Enable VIA */

Interrupts

The ADC features three separate interrupt vectors. When one of the interrupt conditions occurs, an interrupt flag is
set, and the CPU is notified and pointed to the corresponding Interrupt Service Routine (ISR). The following table
shows the available interrupt vectors for the ADC.

Table 2-1. Available Interrupt Vectors and Sources

TRIGOVR | A new conversion is triggered while one is ongoing

A new conversion overwrites an unread sample in
ERROR Error interrupt SO ADCn.SAMPLE

A new conversion or accumulation overwrites an unread
result in ADCn.RESULT

RESOVR
SAMPRDY | The sample is available in ADCn.SAMPLE
WCMP As defined by WINSRC and WINCM in ADCn.CTRLD
RESRDY The result is available in ADCn.RESULT

WCMP As defined by WINSRC and WINCM in ADCn.CTRLD

SAMPRDY | Sample Ready interrupt

RESRDY | Result Ready interrupt

An interrupt source is enabled or disabled by writing to the corresponding bit in the Interrupt Control
(ADCn.INTCTRL) register as shown in the code snippet below.

ADCO.INTCTRL = ADC_RESRDY bm; /* Enable Result Ready interrupt */

The interrupt flag is cleared by writing a '1' to the bit position in the Interrupt Flags (ADCn.INTFLAGS) register as
shown in the code snippet below.

ADCO.INTFLAGS = ADC_RESRDY bm; /* Clear Result Ready interrupt flag */

Interrupt flags SAMPRDY and RESRDY can also be cleared by reading respectively the ADCn.SAMPLE and
ADCn.RESULT registers.

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 5

2.6

2.6.1

TB3257

Configuration

Window Comparator

The ADC can raise the Window Comparator Interrupt (WCMP) flag in the Interrupt Flags (ADCn.INTFLAGS) register
and request an interrupt (WCMP) when the output of a conversion or accumulation is above and/or below certain
thresholds. The available modes are:

* ABOVE - The value is above a threshold

* BELOW - The value is below a threshold

* INSIDE - The value is inside a window (above the lower threshold and below the upper threshold)

* OUTSIDE - The value is outside a window (below the lower threshold or above the upper threshold)
The thresholds are set by writing to the Window Comparator Low and High Threshold (ADCn.WINLT and

ADCn.WINHT) registers. The Window mode to use is selected by the Window Comparator Mode (WINCM) bit field in
the Control D (ADCn.CTRLD) register.

The Window Mode Source (WINSRC) bit in the Control D (ADCn.CTRLD) register selects if the comparison is done
on the 16 LSb of the Result (ADCn.RESULT) register or the Sample (ADCn.SAMPLE) register. If an interrupt request
is enabled for the WCMP flag, WINSRC selects which interrupt vector to request, RESRDY or SAMPRDY.

When accumulating multiple samples, if the Window Comparator source is the Result register, the comparison
between the result and the threshold(s) will happen after the last conversion is complete. If the source is the Sample
register, the comparison will happen after every conversion.

The following code shows how to configure the thresholds of the window comparator, and how to configure the
INSIDE mode comparing against the Result register.

ADCO.WINHT = 200; /* Window High Threshold */
ADCO.WINLT = 100; /* Window Low Threshold */
ADCO.CTRLD |= ADC_WINCM INSIDE gc | ADC_WINSRC RESULT gc; /* Result as Window Comparator

source*/

Code Example

The code example below shows an application example where an ADC reading of below 2000 or above 3000 is
considered an invalid signal spike. The window comparator is used to filter these out by restarting the sample
accumulation in the SAMPRDY interrupt when the signal is outside of the thresholds. The voltage of the signal is
calculated in the RESRDY Interrupt Service Routine (ISR) when all samples are accumulated.

#define F_CPU 3333333ul

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <math.h>

#define TIMEBASE VALUE ((uint8 t) ceil (F_CPU*0.000001)
#define ADC MAX VALUE ((1 << 12) - 1) /* In single-ended mode, the max value is 4095 */

/* Defines to easily configure ADC accumulation */

#define ADC SAMPNUM CONFIG ADC SAMPNUM ACC256 gc

/* Left shifting (1 << SAMPNUM) results in the number of accumulated samples */
#define ADC_SAMPLES (1 << ADC_SAMPNUM CONFIG)

/* Volatile variables to improve debug experience */
static volatile uint32 t adc_reading;
static volatile float voltage;

VARE AR R EEEEEEEEEE St EEEEE Rt E R et EEEE R E Rk

ADC initialization
**/
void adc init ()

{

ADCO.CTRLA = ADC_ENABLE bm;

ADCO.CTRLB = ADC_PRESC DIV2 gc; /* fCLK ADC = 3.333333/2 MHz */

ADCO.CTRLC = ADC REFSEL VDD gc | (TIMEBASE VALUE << ADC TIMEBASE gp):;
ADCO.CTRLE = 17; /* (SAMPDUR + 0.5) * fCLK ADC = 10.5 ps sample duration */
ADCO.CTRLF = ADC_SAMPNUM CONFIG;

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 6

2.7

TB3257

Configuration

ADCO.MUXPOS = ADC MUXPOS AIN6 gc; /* ADC channel AIN6 -> PA6 */

ADCO.WINHT = 3000; /* Window High Threshold */

ADCO.WINLT = 2000; /* Window Low Threshold */

/* Window Comparator mode: Outside. Use SAMPLE register as Window Comparator source */
ADCO.CTRLD = ADC_WINCM OUTSIDE gc | ADC_WINSRC_SAMPLE gc;

/* Enable Window Compare and Result Ready interrupt */

ADCO.INTCTRL = ADC WCMP bm | ADC RESRDY bm;

ADCO.COMMAND = ADC_MODE_SERIES gc; /* Series Accumulation mode */
}

/************‘k**‘k**‘k**‘k**‘k**‘k***************************‘k**‘k************************
Window Compare interrupt:

In this example, when a sample is outside a certain window, this is considered an
invalid signal spike. When such a spike is detected, the accumulated ADC result is
disregarded by restarting the series conversion.
~k************************/
ISR(ADCOisAMPRDYivect)

{
ADCO.INTFLAGS = ADC_WCMP bm; /* Clear WCMP flag */

/* Clear the accumulator by resetting the Mode bit field */
ADCO.COMMAND = ADC_START STOP_gc;
/* Reconfigure Series Accumulation mode */
ADCO.COMMAND = ADC MODE SERIES gc;
}

/***
Result Ready interrupt:
If no spike was detected, the result is read and the corresponding

voltage is calculated
~k**********************/

ISR (ADCO_RESRDY vect)

{
ADCO.INTFLAGS = ADC_RESRDY bm; /* Clear RESRDY flag */

/* Check if the last sample was inside the window */

if (! (ADCO.INTFLAGS & ADC_WCMP bm))

{
adc_reading = ADCO.RESULT; /* Read ADC result */
/* Calculate voltage on ADC pin, VDD = 3.3V, 12-bit resolution, 256 samples */
voltage = (float) (((adc_reading * 3.3) / ADC_MAX VALUE) / ADC_ SAMPLES);

}

int main (void)
{ adc_init ();
sei(); /* Enable global interrupts */
while (1)
{ /* Start a conversion once every 1 ms */

ADCO.COMMAND |= ADC START IMMEDIATE gc;
_delay ms(1);

Events

The ADC can be connected to the event system. The event system lets peripherals communicate without CPU
intervention, enabling the CPU to perform other tasks or stay in a sleep mode. The ADC can be connected either as
an event generator, providing signals to another peripheral, or an event user, performing tasks based on the signals
from another peripheral.

The following table shows the different available event generators from the ADC.

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 7

2.71

TB3257

Configuration

Table 2-2. ADC Event Generators

Event Type Generating Length of Event

Clock Domain

ADCn RESRDY Result ready Pulse CLK_PER One CLK_PER
period

ADCn SAMPRDY Sample ready Pulse CLK_PER One CLK_PER
period

ADCn WCMP Window compare | Pulse CLK_PER One CLK_PER
match period

Below is a code snippet showing the configuration of event generator ADCO_RESRDY connected through event
channel 1 to the EVOUT event user, which in this case outputs the event to PB2.

* Event Generator: ADCO RESRDY
+ Event USER: EVOUT (PB2)

EVSYS.CHANNEL1 = EVSYS CHANNEL1l ADCO RES gc; /* ADC Result Ready */
EVSYS.USEREVSYSEVOUTB = EVSYS USER _CHANNEL1 gc; /* Asynchronous Event Channel 1 */

The ADC has one event user for detecting and acting upon input events. The table below describes the event user
and the associated functionality.

Table 2-3. ADC Event Users and Available Event Actions

m Description Input Detection Async/Sync

ADCn START ADC start on event Edge Async

The START event action can be triggered if the EVENT_TRIGGER setting is written to the START bit field in the
Command (ADCn.COMMAND) register as shown in the code snippet below.

ADCO.COMMAND = ADC_START EVENT TRIGGER gc;

Below is a code snippet showing the configuration of ADCO_START as an event user, reacting to RTC overflow.

EVSYS.CHANNELO = EVSYS_CHANNELO_RTC_OVF_gc; /* Real Time Counter overflow */
EVSYS.USERADCOSTART = EVSYS USER _CHANNELO gc; /* Asynchronous Event Channel 0 */

Code Example

Below is a code example showing the configuration of the ADC as an event generator and an event user:
» Event user: ADC conversion triggered by RTC overflow event

— RTC is configured to generate an RTC overflow event at the desired ADC sampling rate. The sampling rate
in the example is 100 Hz.

— ADC conversion is triggered at a rate of 100 Hz, and the result is read when the Result Ready (RESRDY)
bit in the Interrupt Flags (ADCn.INTFLAGS) register is set.

+ Event generator: Pin PB2 outputs an event (Pulse) when the ADC result is ready

#define F_CPU 3333333ul

#include <avr/io.h>
#include <math.h>

#define TIMEBASE VALUE ((uint8_t) Ceil(F_CPU*0.00000l))
#define ADC_MAX VALUE (((1 << 12) / 2) - 1) /* In differential mode, the max value is
2047 */

/* Defines to easily configure ADC accumulation */

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 8

TB3257

Configuration

#define ADC_ SAMPNUM CONFIG ADC SAMPNUM ACC8 gc
/* Left shifting (1 << SAMPNUM) results in the number of accumulated samples */
#define ADC_SAMPLES (1 << ADC_SAMPNUM CONFIG)

/*Defines to easily configure RTC event frequency */

#define ADC_SAMPLING FREQ 100 /% Bz %)
#define RTC CLOCK 32768 /% Eaz
#define RTC PERIOD (RTC_CLOCK / ADC_ SAMPLING FREQ)

/* Volatile variables to improve debug experience */
static volatile int32 t adc_reading;
static volatile float voltage;

/**
EVSYS initialization:
Channel O0:
Event system generator: RTC Overflow
Event system user: ADCO
Channel 1:
Event system generator: ADCO Result Ready
Event system user: EVOUTB (PIN PB2)
****************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k**********************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k***************/
void event system init (void)
{
PORTB.DIRSET = PINZ_bm; /* Configure EVOUTB to output */

EVSYS.CHANNELO = EVSYS CHANNELO RTC OVF gc; /* RIC Overflow -> Channel 0 */
EVSYS.USERADCOSTART = EVSYS USER CHANNELO gc; /* Channel 0 -> ADCO Start */
EVSYS.CHANNEL1 = EVSYS CHANNEL1 ADCO RES gc; /* ADC RESRDY -> Channel 1 */
EVSYS.USEREVSYSEVOUTB = EVSYS USER CHANNELl gc; /* Channel 1 -> EVOUTB (PB2) */

}

[Kk ok ok ok ok ok kK A K K K K Kk ko ok ok ok ok ok ok kKK K K K K K Kk ko ok ok ok ok ok ok kK K K K K K Kk ks ko ok ok ok ok kR A R K K K K Kk ko ok ok ok ok ok ok

RTC initialization
*********************~k~k~k~k~k~k~k~k~k************************~k~k~k~k~k~k~k~k********************/
void rtc_init (void)
{
while (RTC.STATUS > 0); /* Wait for all registers to be synchronized */
RTC.CTRLA = RTC_PRESCALER DIVl gc | RTC_RTCEN bm; /* Enable RTC, no prescaler */
RTC.CLKSEL = RTC_CLKSEL INT32K gc; /* Select 32.768 kHz internal RC oscillator */
RTC.PER = RTC_PERIOD;
while (RTC.STATUS > 0); /* Wait for all registers to be synchronized */
}

VARE AR AR EEEE R RS SRR R R Rttt EEE RSt EEEE Rttt EE Rt

ADC initialization
******************~k~k~k~k~k~k~k~k~k~k~k~k***********************~k~k~k~k~k~k***********************/
void adc_init ()
{
ADCO.CTRLA = ADC_ENABLE bm;
ADCO.CTRLB = ADC PRESC DIV2 gc; /* £CLK ADC = 3.333333/2 MHz */
ADCO.CTRLC = ADC_REFSEL VDD _gc | (TIMEBASE_VALUE << ADC_TIMEBASE_gp);
ADCO.CTRLE = 17; /* (SAMPDUR + 0.5) * fCLK ADC = 10.5 ps sample duration */
ADCO.CTRLF = ADC_SAMPNUM CONFIG;

ADCO .MUXPOS ADC_MUXPOS_AIN6 gc; /* ADC channel AIN6 -> PA6 */

ADCO .MUXNEG ADC_MUXNEG AIN7 gc; /* ADC channel AIN7 -> PA7 */

/* Start ADC Series conversion on event trigger */

ADCO.COMMAND = ADC_DIFF bm | ADC_MODE SERIES gc | ADC_START EVENT TRIGGER gc;

int main (void)

event system init();
rtc_init();
adc_init();

while (1)
{
if (ADCO.INTFLAGS & ADC_RESRDY bm) /* Check if ADC sample is ready */
{
/* Read accumulated ADC result, clears the interrupt flag */
adc_reading = ADCO.RESULT;
/* Calculate voltage on ADC pin, VDD = 3.3V, 8 samples in 12-bit resolution */
voltage = (float) (((adc_reading * 3.3) / ADC_MAX VALUE) / ADC_SAMPLES) ;

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 9

TB3257

Configuration

Tip: When using Vpp as reference and taking an average of accumulated samples, the ADC can
effectively be used as a power supply noise filter.

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 10

31

TB3257
Input Circuitry

Input Circuitry

Input Impedance

When a voltage level imposed on a pin is sampled, it is first captured by the Sample-and-Hold capacitor (C,y). This
ensures that the voltage does not change while the ADC samples the signal.

Figure 3-1. Model of Internal Analog Input Circuit

I

AINR & AN
RIN
ClN
I
— Vpp/2

The time it takes to charge or discharge C)y to a certain voltage level is limited by the input resistance (Ry). The
following equation shows the proportional relation between the time constant T and the input impedance.

=Ry X CIy
Refer to the Electrical Characteristics section in the data sheet for details on the input characteristics of the ADC.

The 12-bit resolution of the ADC (and optional gain) requires the impulse response of the input circuit settled to more
than 99.9% of the final voltage to be certain the measurement will be correct. The following example calculations
without gain and with 16x gain show how settled a signal needs to be for the ADC to sample correctly at 12-bit
resolution.

VREF
VMsb = VREF ~ 2096 x Gain

1
% =[(1-—un- 0
Visp % (1 4096 x Gain) *100%

VMsb %without gain = (1 - Wlxl) X 100% = 99.975%

1
VMSb %16X gain = (1 - m) X 100% = 99.998 %

The impulse response for the input circuit is given by the following equation.

V(t) = Vin X (1 - e_t/T)

Solving the two examples for Vg, where Vg is 100%, the following settling times are obtained.
twithout gain = 8297

t16x gain = 10.817

The impedance of the external signal should also be taken into consideration when calculating the settling time,
expanding the circuit into a more complex system as shown in the figure below.

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 11

3.1.1

3.2

TB3257
Input Circuitry

Figure 3-2. Model of Analog Input Circuit with External Signal

Simplified External Input

|
I I
|
| Vexr |
jES—YY | A
[Rexr | Rin
I Cexr | Cin
l I |)
I 1 : 1 Voo/2

The characteristics of the external impedance determine how complex the settling time calculation will be. However,
this is not covered by this technical brief.

PGA

The PGA is connected between the analog input pin and the ADC, with an input impedance depending on the
selected gain setting. Refer to the Electrical Characteristics section for details on the input characteristics of the PGA.
The equations above are the same for calculating the appropriate sample duration when using the PGA impedance
values.

When the PGA is used, it is continuously sampling and will only be in the Hold state when the ADC is sampling the
PGA. If the time between conversions is longer than the needed sampling time, this can be utilized to get a shorter
total conversion time by setting the SAMPDUR to the minimum supported value.

Sample Duration

A suitable ADC sample duration can either be calculated based on the impulse response of the circuit, as shown in
Section 3.1 Input Impedance, or found by tuning the sample duration in firmware until a stable output from the ADC
conversion is achieved.

The sample duration for this ADC can be a maximum of 256 ADC clock (CLK_ADC) cycles, and is configured using
the Sample Duration (SAMPDUR) bit field in the Control E (ADCn.CTRLE) register. The sample duration is
SAMPDUR + 0.5 (CLK_ADC) cycles when the PGA is disabled, and SAMPDUR + 1 (CLK_ADC) when the PGA is
enabled. If the input impedance is very high, increasing the ADC prescaler can also be used to further increase the
sample duration.

Minimum sample duration is configured as shown in the following code snippet. The calculations are based on the
CPU clock running at 16 MHz, with PGA disabled.

ADCO.CTRLB
ADCO.CTRLE

ADC_PRESC_DIV2 gc; /* ADC clock: 8 MHz */
0; /* Sample Duration: (0 + 0.5) / 8 MHz = 0.06 pusS */

Maximum sample duration is configured as shown in the following code snippet. The calculations are based on the
CPU clock running at 16 MHz, with PGA disabled.

ADCO.CTRLB
ADCO.CTRLE

ADC_PRESC DIV40 gc; /* ADC clock: 400 kHz */
255; /* Sample Duration: (255 + 0.5) / 400 kHz = 639 us */

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 12

41

4.2

4.3

TB3257

Power and Timing

Power and Timing

Clock

The ADC clock (CLK_ADC) is scaled down from the peripheral clock (CLK_PER). This can be configured by the
Prescaler (PRESC) bit field in the CTRLB (ADCn.CTRLB) register.

ADCO.CTRLB = ADC_PRESC DIV20 gc; /* CLK ADC = CLK PER/20 */

Some of the internal timings in the ADC and the PGA are independent of CLK_ADC. To ensure correct internal timing
regardless of the ADC clock frequency, a 1 us timebase (given in CLK_PER cycles) must be written to the
TIMEBASE bit field in the Control C (ADCn.CTRLC) register. The timebase must be rounded up to the closest
integer. The following code snippet shows how this can be done using the ceil function.

#include <math.h>
#define F CPU 3333333ul
#define TIMEBASE VALUE ((uint87t) Ceil(F7CPU*O.000001)

ADCO.CTRLC = (TIMEBASE VALUE << ADC TIMEBASE gp);

PGA Bias and Output Sample Duration

The PGA Bias Select (PGABIASSEL) bit field in the ADC PGA Control (ADCn.PGACTRL) register can be configured
to reduce the power consumption depending on the ADC clock frequency. The ADC PGA Sample Duration
(ADCPGASAMPDURY) bit field can be configured to reduce the number of CLK_ADC cycles the ADC is sampling the
output of the PGA. This is also dependent of the ADC clock frequency.

See the register description for these bit fields in the data sheet for recommended combinations of fcik_apc and
PGABIASSEL and ADCPGASAMPDUR.

An example configuration is shown below.

ADCO.PGACTRL = ADC_GAIN 16X gc | /* 16x gain */
ADC_PGABIASSEL 100PCT gc | /* 100% bias current */
ADC_ADCPGASAMPDUR 32CLK gc | /* 32 cycles sampling of the PGA */
ADC_PGAEN bm; /* Enable the PGA */

Note: PGA Control is one of few AVR registers with a nonzero reset value. This must be taken into account if only
configuring parts of the register.

Conversion Time
The conversion time for a single sample is calculated by:

SAMPDUR+15.5

Sample Conversion Time = Initialization +
feLx Apc

For example, given initialization = 60 us, SAMPDUR = 2 an fc x_apc = 1 MHz, the conversion time for each sample is
given by:

2+15.5
1 MHz
With the Low Latency (LOWLAT) bit written to ‘1’ in the Control A (ADCn.CTRLE) register, the initialization time is
only needed once upon enabling the ADC. After that, the example above will give a sample conversion time of 17.5
us.

Sample Conversion Time = 60 ps + =77.5ups

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 13

TB3257

Power and Timing

The sampling period of the ADC is configured through the Sample Duration (SAMPDUR) bit field in the Control E
(ADCn.CTRLE) register as (SAMPDUR + %2) CLK_ADC cycles.

ADCO.CTRLE = 2; /* Sample duration configured to 2 */
If PGA is used, the input sample duration is (SAMPDUR + 1) CLK_ADC cycles, while the ADC PGA Sample Duration

(ADCPGASAMPDUR) bit field in the PGA Control (ADCn.PGACTRL) register controls how long the ADC samples
the PGA.

ADCO.PGACTRL = ADC_ ADCPGASAMPDUR 15CLK gc; /* 15 CLK ADC cycles */

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 14

5.1

5.2

5.21

5.21.1

TB3257

Output Processing

Output Processing

Result Range

The output from an ADC conversion is given by the following equations:

Vinp X Gain

x 4096 € [0,4095]
VREF

Single-Ended conversion =

Vinp =V X Gain
Differential conversion = ('inp V;I\];I:) X 2048 € [—2048,2047]

V\np @nd Vinn are the positive and negative inputs to the ADC and Vggr is the selected voltage reference. The gain is
between 1x and 16x as configured in the PGA, and 1x if the PGA is not in use.

The ADC has two output registers, the Sample (ADCn.SAMPLE) and Result (ADCn.RESULT) registers. The 16-bit
Sample register will always be updated with the latest ADC conversion output (one sample). In Series Accumulation
mode, after the SAMPNUM number of conversions are finished, the Result register will be updated with the
accumulated result.

With a Single-Ended conversion, the average voltage applied to the analog pin is calculated by:

ADCn.RESULT X VRgp
VINP = 2096 x Gain x SAMPNUM

Accumulation

The ADC supports sampling in series where a configurable number of conversion results are automatically
accumulated into a single ADC result. A maximum of 1024 samples can be accumulated. Sample accumulation is
configured by writing the Sample Accumulation Number Select (SAMPNUM) bit field in the Control F (ADCn.CTRLF)
register.

The 16-bit Sample (SAMPLE) register will always be updated with the latest ADC conversion output (one sample).
The samples are accumulated in an internal sample accumulator which is sufficiently wide to avoid overflow for all
supported accumulation configurations. The accumulated result is transferred to the 32-bit Result (ADCn.RESULT)
register when the selected number of samples are finished, and the Result Ready (RESRDY) bit in the Interrupt
Flags (ADCn.INTFLAGS) register is set.

The code snippet below shows the configuration to accumulate 1024 samples:

ADCO.CTRLF = ADC SAMPNUM ACC1024 gc;

Oversampling
The Series Accumulation mode can be used to achieve higher ADC resolution. For example, by using 1024 12-bit
samples, a 17-bit result could be achieved.

To increase the resolution, for each additional bit of ADC resolution, n, the signal must be oversampled 4" samples.
To achieve 17-bit ADC, an additional 5-bit resolution is needed. Hence, the signal has to be sampled 4° = 1024 times.
To scale the result down to the desired resolution, it must be right-shifted by n which is equivalent to dividing the
result by 2",

Code Example

The following code example shows how to increase the ADC resolution from 12-bit to 17-bit by using oversampling,
and how to calculate the voltage applied to ADC channel AING.

#define F CPU 3333333ul

#include <avr/io.h>
#include <math.h>

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 15

TB3257

Output Processing

#include <util/delay.h>

#define TIMEBASE VALUE ((uint8 t) ceil (F_CPU*0.000001)

/* Defines to configure ADC accumulation */

#define OVERSAMPLING BITS 5 /* 5 bits extra */

#define OVERSAMPLING MAX VALUE ((uint327t) ((1 << 12) - 1) << OVERSAMPLINGiBITS) /* 12 + 5
bits = 17 bits */

#define ADC_SAMPNUM CONFIG (OVERSAMPLING BITS << 1) /* The SAMPNUM bit field setting
match this formula */

#define ADC SAMPLES (1 << ADC SAMPNUM CONFIG) /* 5 bits = 1024 samples */

/* Volatile variables to improve debug experience */
static volatile uint32 t adc_reading;
static volatile float voltage;

[KKKk K K ok ok ok ok K K ok ok ok ok K K ok ok ok ok K K ok ok ok ok K K ok ok ok ok K K ok ok ok ok K K ok ok ok ok o K ok ok ok ok K K ok ok ok ok R K ok ok Rk R R Kk kb

ADC initialization
‘k************************‘k‘k‘k‘k‘k‘k‘k‘k‘k/
void adc_init ()
{
ADCO.CTRLA = ADCiENABLEibm;
ADCO.CTRLB = ADC_PRESC DIV2 gc; /* £CLK ADC = 3.333333/2 MHz */
ADCO.CTRLC = ADC_REFSEL VDD gc | (TIMEBASE VALUE << ADC TIMEBASE gp);
ADCO.CTRLE = 17; /* (SAMPDUR + 0.5) * fCLK ADC = 10.5 ps sample duration */
ADCO.CTRLF = ADC SAMPNUM CONFIG;

ADCO.MUXPOS = ADC MUXPOS AIN6 gc; /* ADC channel AIN6 -> PA6 */
ADCO.COMMAND = ADC_MODE_SERIES gc; /* Series Accumulation mode */

int main (void)

adc_init ();
while (1)
{
ADCO.COMMAND |= ADC START IMMEDIATE gc;
while (! (ADCO.INTFLAGS & ADC_SAMPRDY bm)); /* Wait until conversion is done */

ADCO.INTFLAGS = ADC_SAMPRDY bm; /* Clear Sample Ready interrupt flag */

if (ADCO.INTFLAGS & ADC_RESRDY bm) /* If result is ready */
{
/* Oversampling compensation as explained in the tech brief */
adc_reading = ADCO.RESULT >> OVERSAMPLING BITS; /* Scale accumulated result by
right shifting the number of extra bits */
voltage = (float) ((adc_reading * 3.3) / OVERSAMPLING MAX VALUE); /* Calculate
voltage using 17-bit resolution, VDD = 3.3V */
}

_delay ms(1);

5.2.2 Series Accumulation with Scaling

Like in the Series Accumulation mode, a SAMPNUM number of samples are in this mode automatically accumulated
into a single result. The difference is that in Series Accumulation with Scaling, the result is automatically scaled to a
16-bit value. Scaling is always applied after accumulating the last sample and is carried out by right shifting the
accumulated result by SAMPNUM-4 bits.

This mode can simply be used to accumulate and automatically get an averaged result, or it may be used in
combination with the oversampling technique as described in Section 5.2.1 Oversampling to achieve a 16-bit
resolution by accumulating at least 44 = 256 samples and automatically scaling down to 16 bits.

5.2.21 Code Example

The following code example shows how to measure Vpp using the Series Accumulation with Scaling mode and
oversampling to achieve 16-bit resolution.

#define F_CPU 3333333ul

#include <avr/io.h>
#include <math.h>

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 16

TB3257

Output Processing

#include <util/delay.h>

#define TIMEBASE VALUE ((uint8 t) ceil (F_CPU*0.000001)

#define ADC MAX VALUE ((1 << 12) - 1) /* In single-ended mode, the
max value is 4095 */

#define ADC_MAX VALUE_ 16BIT ((uint32_t) ADC_MAX VALUE << 4) /* Left shift 12-bit max

value up to 16 bits */

/* Defines to easily configure ADC accumulation */

#define ADC_SAMPNUM CONFIG ADC SAMPNUM ACC256 gc

/* Left shifting (1 << SAMPNUM) results in the number of accumulated samples */
#define ADC_SAMPLES (1 << ADC_SAMPNUM CONFIG)

/* Volatile variables to improve debug experience */
static volatile uintl6é t adc reading;
static volatile float voltage;

/*~k************************
ADC initialization
**/
void adc_init ()
{
ADCO.CTRLA = ADC ENABLE bm;
ADCO.CTRLB = ADC_PRESC_DIV2_gc; /* fCLK_ADC = 3.333333/2 MHz */
ADCO.CTRLC = ADC REFSEL 1024MV_gc | (TIMEBASE VALUE << ADC TIMEBASE gp);
ADCO.CTRLE = 17; /* (SAMPDUR + 0.5) * fCLK ADC = 10.5 ps sample duration */
ADCO.CTRLF = ADC LEFTADJ bm | ADC_ SAMPNUM CONFIG; /* Enable left adjust if accumulating <
16 samples */

ADCO.MUXPOS = ADC_MUXPOS VDDDIV10 gc; /* ADC channel VDD/10 */
ADCO.COMMAND = ADC_MODE_SERIES_SCALING gc; /* Series Accumulation with Scaling */

int main (void)

adc_init();
while (1)
{
ADCO.COMMAND |= ADC START IMMEDIATE gc;
while (! (ADCO.INTFLAGS & ADC_SAMPRDY bm)); /* Wait until conversion is done */

ADCO.INTFLAGS = ADC_SAMPRDY bm; /* Clear Sample Ready interrupt flag */

if (ADCO.INTFLAGS & ADC RESRDY bm) /* If result is ready */
{
adc_reading = ADCO.RESULT; /* Read 16 bit scaled or left adjusted result */
/* Calculate VDD, VREF = 1.024V, 16-bit resolution.
Multiplied by 10 because the input channel is VDD/10. */
voltage = (float) (adc_reading * 1.024 * 10) / ADC_MAX VALUE_16BIT;
}

_delay ms(10);

Left Adjust

The Left Adjust (LEFTADJ) bit in the Control F (ADCn.CTRLF) register enables left-shift of the output data in the
modes where this is supported. If enabled, this will left-shift the output from both the Result and the Sample registers.
It is configured as shown in the following code snippet:

ADCO.CTRLF = ADC_LEFTADJ bm; /* Enable Left Adjust bit */

Left adjust is available in ADC mode 3, Series Accumulation with Scaling.

The following tables show how the left adjust feature affects the Result register output format in Single-Ended and
Differential modes.

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 17

5.4

TB3257

Output Processing

Table 5-1. RESULT Register — Single-Ended Mode — ADC Mode 3

0x00 Scaled accumulation[15:0]

1 0x00 Scaled accumulation[15:0]("

Table 5-2. RESULT Register — Differential Mode — ADC Mode 3

Sign Extension Signed Scaled accumulation[15:0]

1 Sign Extension Signed Scaled accumulation[15:0](")

If SAMPNUM < 4, the result is left-shifted 4 - SAMPNUM bits such that bit 15 is the MSb. If SAMPNUM > 4, the
scaling feature of the ADC mode right-shifts the result by SAMPNUM - 4 bits.

Example 1: SAMPNUM = 3 (Accumulation with 8 samples)

When the Left Adjust bit is 0, ADCn.SAMPLE = 0xFFF for all samples, and 8 samples are accumulated, the
accumulated value in ADCn.RESULT is 8 x 4095 = 0x7FF8.

After enabling the Left Adjust bit, the result will be left-shifted by 4 - SAMPNUM = 1 bit (SAMPNUM is 3 to
accumulate 8 samples). So by left-shifting 0x7FF8 by 1 bit, ADCn.RESULT = 0xFFFO.

Example 2: SAMPNUM = 5 (Accumulation with 32 samples)

When the Left Adjust bit is 0, ADCn.SAMPLE = 0xFFF for all samples, and 32 samples are accumulated, the
accumulated value is 32 x 4095 = O0x1FFEO.

In Scaling mode, the result will be right-shifted by SAMPNUM - 4 = 1 bit (SAMPNUM is 5 to accumulate 32 samples).
So by right-shifting 0x1FFEO by 1 bit, ADCn.RESULT = 0xFFFO.

The following table show how the left adjust feature affects the Sample register output format in Single-Ended and
Differential modes.

Table 5-3. SAMPLE Register — Single-Ended/Differential Mode — ADC Mode 3

LEFTADJ DIFF SAMPLE[15:12] SAMPLE[11:8] SAMPLE[7:0]

0x00 Conversion[11:0]
0 1 Sign extension Signed conversion[11:0]
0 Conversion[11:0] << 4
1 1 Signed conversion[11:0] << 4

For example, if the Left Adjust feature is disabled and the ADCn.SAMPLE value is 0x0FFF, the corresponding
ADCn.SAMPLE value when Left Adjust is enabled is 0xFFFO.

Signed and Unsigned Output

The data format for a sample in Single-Ended mode is unsigned one’s complement, where 0x0000 represents zero
and 0xOFFF represents the largest number. If the analog input is higher than the reference level of the ADC, the 12-
bit ADC output will be equal to the maximum value of 0x0FFF. Likewise, if the input is below 0V, the ADC output will
be 0x0000.

For Differential mode, the data format is two's complement with sign extension.

Sample Register Output
The data type of the sample variable should be uint16 t when using Single-Ended mode.

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 18

TB3257

Output Processing

The data type of the sample variable should be int16 t when using Differential mode.

For example, when using Single-Ended mode in 12-bit mode, the voltage of a single sample may be interpreted as
shown in the code snippet below.

uintlé t sample variable = ADCn.SAMPLE;
float sample voltage = (sample variable * VREF) / 4095;

When using Differential mode in 12-bit mode, the voltage of a single sample may be interpreted as shown in the code
shippet below.

intl6_t sample variable = ADCn.SAMPLE;
float sample voltage = (sample variable * VREF) / 2047;

Result Register Output
The data type of the result variable should be uint32_t when using Single-Ended mode.

The data type of the result variable should be int32_t when using Differential mode.

For example, when using Single-Ended mode in 12-bit mode, the voltage of SAMPNUM accumulated samples may
be interpreted as shown in the code snippet below.

uint32 t result variable = ADCn.SAMPLE;
float result voltage = ((result variable * VREF) / SAMPNUM) / 4095;

When using Differential mode in 12-bit mode, the voltage of SAMPNUM accumulated samples may be interpreted as
shown in the code snippet below.

int32 t result variable = ADCn.SAMPLE;
float result voltage = ((result variable * VREF) / SAMPNUM) / 2047;

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 19

TB3257
Get Code Examples from GitHub

Get Code Examples from GitHub

The code examples are available through GitHub, which is a web-based server that provides the application codes
through a Graphical User Interface (GUI). The code examples can be opened in both Atmel Studio and MPLAB X. To
open the Atmel Studio project in MPLAB X, select from the menu in MPLAB X, File > Import > Atmel Studio Project
and navigate to . cprof file.

The GitHub webpage: GitHub.

Code Examples

Finding example code for devices in the tinyAVR 2 family can be done by searching for the device name, e.g.
ATtiny1627, in the GitHub example browser.

View Code Examples on GitHub

Click to browse repositories

Download the code as a . zip file from the example page on GitHub by clicking the Clone or download button.

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 20

https://github.com/
https://github.com/search?q=attiny1627+user:microchiptech+user:microchip-pic-avr-examples&type=Repositories

7.

TB3257

Revision History

Revision History

L S T

A 07/2020 Initial document release

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 21

TB3257

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

* Microchip products meet the specification contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is one of the most secure families of its kind on the market today,
when used in the intended manner and under normal conditions.

» There are dishonest and possibly illegal methods used to breach the code protection feature. All of these
methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

» Microchip is willing to work with the customer who is concerned about the integrity of their code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code
protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 22

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

TB3257

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeelLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
1/0, SMART-1.S., SQI, SuperSwitcher, SuperSwitcher Il, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany || GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-6464-8

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2020 Microchip Technology Inc. Technical Brief DS90003257A-page 23

http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC B

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

www.microchip.com/support

Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

© 2020 Microchip Technology Inc.

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Technical Brief

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS90003257A-page 24

http://www.microchip.com/support
http://www.microchip.com

	Features
	Introduction
	Table of Contents
	1. Relevant Documents
	2. Configuration
	2.1. Series Mode Configuration
	2.2. References
	2.3. Single-Ended and Differential Modes
	2.4. Programmable Gain Amplifier
	2.5. Interrupts
	2.6. Window Comparator
	2.6.1. Code Example

	2.7. Events
	2.7.1. Code Example

	3. Input Circuitry
	3.1. Input Impedance
	3.1.1. PGA

	3.2. Sample Duration

	4. Power and Timing
	4.1. Clock
	4.2. PGA Bias and Output Sample Duration
	4.3. Conversion Time

	5. Output Processing
	5.1. Result Range
	5.2. Accumulation
	5.2.1. Oversampling
	5.2.1.1. Code Example

	5.2.2. Series Accumulation with Scaling
	5.2.2.1. Code Example

	5.3. Left Adjust
	5.4. Signed and Unsigned Output

	6. Get Code Examples from GitHub
	7. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

