
TB3162
Vectored Interrupt Controller on 8-Bit PIC® Microcontrollers
INTRODUCTION

An interrupt is a request that temporarily stops a
microcontroller from running the main routine to
execute another task that needs to be handled
immediately. The task to be handled is called the
Interrupt Service Routine (ISR).

An interrupt can be generated by a multitude of
hardware or software sources. Most of the peripherals
in the microcontroller can generate an interrupt signal
when a certain event happens. For instance, the UART
module can generate an interrupt request when the
receive buffer is full, or the timer module can generate
an interrupt request when the timer counter overflows.
Interrupts can also be generated by external signals
through a GPIO pin, or generated through the software
execution. Refer to the device data sheet to find out the
different ways an interrupt can be generated.

Every interrupt source sets an interrupt flag as a signal,
which is then sent to the interrupt controller module.
The interrupt controller module analyzes the different
interrupt requests, resolves the priorities of the interrupt
sources, and then sends appropriate signals and
addresses to the CPU to suspend the execution of the
main routine and jump to the location of the
corresponding ISR.

The purpose of this technical brief is to demonstrate the
configuration and functionality of the vectored interrupt
controller module in implementing and handling
interrupt routines.

OVERVIEW

The vectored interrupt controller module reduces the
numerous peripheral interrupt request signals to a
single interrupt request signal to the CPU. This module
includes the following major features:

• Interrupt Vector Table (IVT) with a unique vector
for each interrupt source

• Fixed and ensured interrupt latency

• Programmable base address for Interrupt Vector
Table (IVT) with lock

• Two user-selectable priority levels - High priority
and Low priority

• Two levels of context saving

• Interrupt state Status bits to indicate the current
execution status of the CPU

The Vectored Interrupt Controller module assembles all
the interrupt request signals and resolves the interrupts
based on both a fixed natural order priority (i.e.,
determined by the Interrupt Vector Table), and a user-
assigned priority (i.e., determined by the IPRx registers),
thereby eliminating scanning of interrupt sources.

Author: June Anthony Asistio
Microchip Technology Inc.
Mayank Prasad
Microchip Technology Inc.

Note: The contents of the Interrupt Vector Table
and the locations of individual bits in the
PIRx/PIEx/IPRx registers are device
dependent. Refer to the device data sheet
for the contents of IVT and other interrupt
related registers.
 2017-2019 Microchip Technology Inc. DS90003162C-page 1

TB3162
MODULE CONFIGURATION

To configure the vectored interrupt controller module,
perform the following steps:

1. Enable the MVECEN Configuration bit in the
corresponding CONFIG register. This enables
the interrupt module to vector directly to ISR by
using the IVT. Leaving the MVECEN Configura-
tion bit disabled will make the interrupt controller
operate in Legacy mode.

2. Enable the IVT1WAY Configuration bit in the
corresponding CONFIG register (if applicable).
This is required if the IVTLOCK bit needs to be
cleared/set only once. Refer to the device data
sheet for more information.

3. Set base address of IVT using the IVTBASE
register (or leave it as default to 0x000008). This
is required if the user application requires the
use of multiple IVTs (bootloader applications for
instance).

4. Enable user-assigned priority in interrupts by
setting the IPEN bit (if applicable).

5. Enable the desired interrupt sources by setting
the appropriate bits in the PIEx registers.

6. Clear the desired interrupt flags in the appropri-
ate PIRx registers. This is to ensure that all the
interrupt flags are in the Reset state before the
interrupts are enabled globally.

7. Set user-assigned priorities to interrupts by set-
ting/clearing appropriate bits in the IPRx regis-
ters (if applicable).

8. Enable interrupts globally by setting the GIEH/
GIEL bits. Setting just the GIEH bit and leaving
the GIEL bit cleared will enable only user-
assigned high priority interrupts.

EXAMPLE 1: INITIALIZING VECTORED
INTERRUPT MODULE IN
PIC18(L)FxxK42

void INTERRUPT_Initialize (void)
{
//MVECEN/IVT1WAY config bits need to be
//set separately. Refer to datasheet for
//more information

// Enable priority in interrupts- OPTIONAL
 INTCON0bits.IPEN = 1;

// Set IVTBASE - OPTIONAL
// Do this only if changing IVTBASE to
// value other than the default value of
// 0x000008
IVTBASEU = 0x00;
IVTBASEH = 0x40;
IVTBASEL = 0xF0;

//Enable interrupts
PIE3bits.TMR0IE = 1;
PIE4bits.TMR1IE = 1;

//Clear interrupt flags
PIR3bits.TMR0IF = 0;
PIR4bits.TMR1IF = 0;

//Make one interrupt low priority -
//OPTIONAL
IPR4bits.TMR1IP = 0;

// Enable interrupts
INTCON0bits.GIEH = 1;
INTCON0bits.GIEL = 1;

}

 2017-2019 Microchip Technology Inc. DS90003162C-page 2

TB3162
INTERRUPT SERVICE ROUTINE (ISR)
SYNTAX

The following is the syntax to write an ISR.

EXAMPLE 2: INTERRUPT SERVICE ROUTINE (ISR) SYNTAX

Inside the __interrupt(...) handler, the following
arguments need to be provided:

• irq(...) argument lists the vector number of all
the interrupt requests handled by the ISR. Refer
to the device data sheet for a list of available inter-
rupt requests and their vector numbers.

• base(...) argument specifies the base address
of IVT. This is optional and needs to be included if
the IVTBASE is changed from its default value or
if there are multiple IVTs in the program memory.

• priority argument specifies the priority of the ISR
and takes the values as either high_priority or
low_priority. If nothing is specified,
high_priority is assigned by default. This
argument is relevant only when MVECEN = OFF
and IPEN = 1.

EXAMPLE 3: ISR Examples with MVECEN = ON for PIC18(L)F24/25K42

Refer to the examples section of MPLAB® Xpress IDE
for a working demonstration and application of
vectored interrupts.

// ISR Syntax

void __interrupt(irq(...), base(...), priority) ISR_NAME(void)
{
 // Clear appropriate interrupt flag(s)
 // Interrupt handler code follows
}

// ISRs with MVECEN=ON
// base(...) argument must be used when IVTBASE is changed from default

// ISR for TMR0 interrupt with IVTBASE=default (0x0008)
void __interrupt(irq(IRQ_TMR0)) TMR0_ISR(void)
{
 PIR3bits.TMR0IF = 0; // Clear TMR0 interrupt flag
 // Interrupt handler code goes here
}

// Common ISR for TMR1 and CCP1 interrupts with IVTBASE=0x40F0
void __interrupt(irq(IRQ_TMR1, IRQ_CCP1), base(0x40F0)) TMR1_ISR(void)
{
 PIR4bits.TMR1IF = 0; // Clear TMR1 interrupt flag
 PIR4bits.CCP1IF = 0; // Clear CCP1 interrupt flag
 // Interrupt handler code goes here
}

// Default ISR for all unhandled interrupts with IVTBASE=default (0x0008)
void __interrupt(irq(default)) DEFAULT_ISR(void)
{
 // Unhandled interrupt code
}

 2017-2019 Microchip Technology Inc. DS90003162C-page 3

TB3162
BACKWARD COMPATIBILITY

The vectored interrupt controller module is fully back-
ward compatible with the legacy interrupt controllers
available in earlier PIC16 and PIC18 devices. The
backward compatibility can be established in multiple
ways.

Method 1: Using Legacy ISR

Legacy ISRs using interrupt handler are still
functional with the vectored interrupt controller module.
The following code example is a demonstration.

EXAMPLE 4: ISR Examples with MVECEN = OFF for PIC18(L)F24/25K42
// Legacy ISR with MVECEN=OFF and IPEN=1

void interrupt INTERRUPT_InterruptManagerHigh (void)
{
 // Check for the appropriate interrupt flag
 if(INTCON0bits.GIE == 1 && PIE3bits.TMR0IE == 1 && PIR3bits.TMR0IF == 1)
 {
 PIR3bits.TMR0IF = 0; // Clear TMR0 interrupt flag
 TMR0_ISR(); // TMR0 interrupt handler
 }
 else
 {
 //Unhandled Interrupts
 }
}

void interrupt low_priority INTERRUPT_InterruptManagerLow (void)
{
 // Check for the appropriate interrupt flag
 if(INTCON0bits.GIE == 1 && PIE4bits.TMR1IE == 1 && PIR4bits.TMR1IF == 1)
 {
 PIR4bits.TMR1IF = 0; // Clear TMR1 interrupt flag
 TMR1_ISR(); // TMR1 interrupt handler
 }
 else
 {
 //Unhandled Interrupts
 }
}

 2017-2019 Microchip Technology Inc. DS90003162C-page 4

TB3162
Method 2: Using __interrupt Handler

Another way to implement the ISR and use the
vectored interrupt controller in Legacy mode is to use
the __interrupt(...) handler. The following
example is an illustration.

EXAMPLE 5: ISR Examples with MVECEN = OFF for PIC18(L)F24/25K42
// Legacy ISR with MVECEN=OFF and IPEN=1

void __interrupt INTERRUPT_InterruptManagerHigh (void)
{
 // Check for the appropriate interrupt flag
 if(INTCON0bits.GIE == 1 && PIE3bits.TMR0IE == 1 && PIR3bits.TMR0IF == 1)
 {
 PIR3bits.TMR0IF = 0; // Clear TMR0 interrupt flag
 TMR0_ISR(); // TMR0 interrupt handler
 }
 else
 {
 //Unhandled Interrupts
 }
}

void __interrupt(low_priority) INTERRUPT_InterruptManagerLow (void)
{
 // Check for the appropriate interrupt flag
 if(INTCON0bits.GIE == 1 && PIE4bits.TMR1IE == 1 && PIR4bits.TMR1IF == 1)
 {
 PIR4bits.TMR1IF = 0; // Clear TMR1 interrupt flag
 TMR1_ISR(); // TMR1 interrupt handler
 }
 else
 {
 //Unhandled Interrupts
 }
}

 2017-2019 Microchip Technology Inc. DS90003162C-page 5

TB3162
Method 3: Using Vector Number

The most efficient way to implement the ISR in Legacy
mode is to use the __interrupt(...) handler and
use the vector number stored in the WREG to switch to
the appropriate interrupt handler. The following
example is an illustration.

EXAMPLE 6: ISR Example using Vector Number with MVECEN = OFF for PIC18(L)F24/25K42

// ISR with MVECEN=OFF and IPEN=1

void __interrupt() INTERRUPT_InterruptManagerHigh (void)
{
 uint8_t vectorID_High = WREG;

 // Switch using the appropriate vector number
 switch(vectorID_High)
 {
 case IRQ_TMR0:
 PIR3bits.TMR0IF = 0; // Clear TMR0 interrupt flag
 TMR0_ISR(); // TMR0 interrupt handler
 break;
 case IRQ_CCP1:
 PIR4bits.CCP1IF = 0; // Clear CCP1 interrupt flag
 CCP1_ISR(); // CCP1 interrupt handler
 break;
 default:
 //Unhandled Interrupts
 break;
 }
}

void __interrupt(low_priority) INTERRUPT_InterruptManagerLow (void)
{
 uint8_t vectorID_Low = WREG;

 // Switch using the appropriate vector number
 switch(vectorID_Low)
 {
 case IRQ_TMR1:
 PIR4bits.TMR1IF = 0; // Clear TMR1 interrupt flag
 TMR1_ISR(); // TMR1 interrupt handler
 break;
 case IRQ_TMR3:
 PIR6bits.TMR3IF = 0; // Clear TMR3 interrupt flag
 TMR3_ISR(); // TMR3 interrupt handler
 break;
 default:
 //Unhandled Interrupts
 break;
 }
}

 2017-2019 Microchip Technology Inc. DS90003162C-page 6

TB3162
CONCLUSION

The vectored interrupt controller module uses the Inter-
rupt Vector Table (IVT) to uniquely determine the inter-
rupt source and execute the appropriate ISR directly,
thereby eliminating scanning of interrupt sources in the
software. It assembles all the interrupt request signals
and resolves the interrupts based on both a fixed natu-
ral order priority and a user-assigned priority. The oper-
ation of the vectored interrupt controller is fully
backward compatible with the legacy interrupt control-
ler module available in earlier PIC® Microcontrollers.
 2017-2019 Microchip Technology Inc. DS90003162C-page 7

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2017-2019 Microchip Technology Inc.

For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.
Trademarks
The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA
are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company,
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.
All other trademarks mentioned herein are property of their
respective companies.

© 2017-2019, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-4844-0
DS90003162C-page 8

www.microchip.com/quality
www.microchip.com/quality

 2017-2019 Microchip Technology Inc. DS90003162C-page 9

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

05/14/19

http://support.microchip.com
http://www.microchip.com

	Introduction
	Overview
	Module Configuration
	EXAMPLE 1: INITIALIZING VECTORED INTERRUPT MODULE IN PIC18(L)FxxK42

	Interrupt Service Routine (ISR) Syntax
	EXAMPLE 2: INTERRUPT SERVICE ROUTINE (ISR) SYNTAX
	EXAMPLE 3: ISR Examples with MVECEN = ON for PIC18(L)F24/25K42

	Backward Compatibility
	Method 1: Using Legacy ISR
	EXAMPLE 4: ISR Examples with MVECEN = OFF for PIC18(L)F24/25K42

	Method 2: Using __interrupt Handler
	EXAMPLE 5: ISR Examples with MVECEN = OFF for PIC18(L)F24/25K42

	Method 3: Using Vector Number
	EXAMPLE 6: ISR Example using Vector Number with MVECEN = OFF for PIC18(L)F24/25K42

	Conclusion
	Trademarks
	Worldwide Sales

