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Vectored Interrupt Controller on 8-Bit PIC® Microcontrollers
INTRODUCTION

An interrupt is a request that temporarily stops a
microcontroller from running the main routine to
execute another task that needs to be handled
immediately. The task to be handled is called the
Interrupt Service Routine (ISR).

An interrupt can be generated by a multitude of
hardware or software sources. Most of the peripherals
in the microcontroller can generate an interrupt signal
when a certain event happens. For instance, the UART
module can generate an interrupt request when the
receive buffer is full, or the timer module can generate
an interrupt request when the timer counter overflows.
Interrupts can also be generated by external signals
through a GPIO pin, or generated through the software
execution. Refer to the device data sheet to find out the
different ways an interrupt can be generated.

Every interrupt source sets an interrupt flag as a signal,
which is then sent to the interrupt controller module.
The interrupt controller module analyzes the different
interrupt requests, resolves the priorities of the interrupt
sources, and then sends appropriate signals and
addresses to the CPU to suspend the execution of the
main routine and jump to the location of the
corresponding ISR.

The purpose of this technical brief is to demonstrate the
configuration and functionality of the vectored interrupt
controller module in implementing and handling
interrupt routines.

OVERVIEW

The vectored interrupt controller module reduces the
numerous peripheral interrupt request signals to a
single interrupt request signal to the CPU. This module
includes the following major features:

• Interrupt Vector Table (IVT) with a unique vector 
for each interrupt source

• Fixed and ensured interrupt latency

• Programmable base address for Interrupt Vector 
Table (IVT) with lock

• Two user-selectable priority levels - High priority 
and Low priority

• Two levels of context saving

• Interrupt state Status bits to indicate the current 
execution status of the CPU

The Vectored Interrupt Controller module assembles all
the interrupt request signals and resolves the interrupts
based on both a fixed natural order priority (i.e.,
determined by the Interrupt Vector Table), and a user-
assigned priority (i.e., determined by the IPRx registers),
thereby eliminating scanning of interrupt sources.
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Note: The contents of the Interrupt Vector Table
and the locations of individual bits in the
PIRx/PIEx/IPRx registers are device
dependent. Refer to the device data sheet
for the contents of IVT and other interrupt
related registers.
 2017-2019 Microchip Technology Inc. DS90003162C-page 1



TB3162
MODULE CONFIGURATION

To configure the vectored interrupt controller module,
perform the following steps:

1. Enable the MVECEN Configuration bit in the
corresponding CONFIG register. This enables
the interrupt module to vector directly to ISR by
using the IVT. Leaving the MVECEN Configura-
tion bit disabled will make the interrupt controller
operate in Legacy mode.

2. Enable the IVT1WAY Configuration bit in the
corresponding CONFIG register (if applicable).
This is required if the IVTLOCK bit needs to be
cleared/set only once. Refer to the device data
sheet for more information.

3. Set base address of IVT using the IVTBASE
register (or leave it as default to 0x000008). This
is required if the user application requires the
use of multiple IVTs (bootloader applications for
instance).

4. Enable user-assigned priority in interrupts by
setting the IPEN bit (if applicable).

5. Enable the desired interrupt sources by setting
the appropriate bits in the PIEx registers.

6. Clear the desired interrupt flags in the appropri-
ate PIRx registers. This is to ensure that all the
interrupt flags are in the Reset state before the
interrupts are enabled globally.

7. Set user-assigned priorities to interrupts by set-
ting/clearing appropriate bits in the IPRx regis-
ters (if applicable).

8. Enable interrupts globally by setting the GIEH/
GIEL bits. Setting just the GIEH bit and leaving
the GIEL bit cleared will enable only user-
assigned high priority interrupts.

EXAMPLE 1: INITIALIZING VECTORED 
INTERRUPT MODULE IN 
PIC18(L)FxxK42

void INTERRUPT_Initialize (void)
{
//MVECEN/IVT1WAY config bits need to be 
//set separately. Refer to datasheet for 
//more information

// Enable priority in interrupts- OPTIONAL
  INTCON0bits.IPEN = 1;

// Set IVTBASE - OPTIONAL
// Do this only if changing IVTBASE to 
// value other than the default value of
// 0x000008
IVTBASEU = 0x00;
IVTBASEH = 0x40;
IVTBASEL = 0xF0;

//Enable interrupts
PIE3bits.TMR0IE = 1;
PIE4bits.TMR1IE = 1;

  
//Clear interrupt flags
PIR3bits.TMR0IF = 0;
PIR4bits.TMR1IF = 0;

//Make one interrupt low priority -
//OPTIONAL
IPR4bits.TMR1IP = 0;

// Enable interrupts
INTCON0bits.GIEH = 1;
INTCON0bits.GIEL = 1;

}
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INTERRUPT SERVICE ROUTINE (ISR) 
SYNTAX

The following is the syntax to write an ISR.

EXAMPLE 2: INTERRUPT SERVICE ROUTINE (ISR) SYNTAX

Inside the __interrupt(...) handler, the following
arguments need to be provided:

• irq(...) argument lists the vector number of all 
the interrupt requests handled by the ISR. Refer 
to the device data sheet for a list of available inter-
rupt requests and their vector numbers.

• base(...) argument specifies the base address 
of IVT. This is optional and needs to be included if 
the IVTBASE is changed from its default value or 
if there are multiple IVTs in the program memory.

• priority argument specifies the priority of the ISR 
and takes the values as either high_priority or 
low_priority. If nothing is specified, 
high_priority is assigned by default. This 
argument is relevant only when MVECEN = OFF 
and IPEN = 1.

EXAMPLE 3: ISR Examples with MVECEN = ON for PIC18(L)F24/25K42

Refer to the examples section of MPLAB® Xpress IDE
for a working demonstration and application of
vectored interrupts.

// ISR Syntax

void __interrupt(irq(...), base(...), priority) ISR_NAME(void)
{
    // Clear appropriate interrupt flag(s)
    // Interrupt handler code follows
}

// ISRs with MVECEN=ON
// base(...) argument must be used when IVTBASE is changed from default

// ISR for TMR0 interrupt with IVTBASE=default (0x0008)
void __interrupt(irq(IRQ_TMR0)) TMR0_ISR(void)
{
    PIR3bits.TMR0IF = 0;    // Clear TMR0 interrupt flag
    // Interrupt handler code goes here
}

// Common ISR for TMR1 and CCP1 interrupts with IVTBASE=0x40F0
void __interrupt(irq(IRQ_TMR1, IRQ_CCP1), base(0x40F0)) TMR1_ISR(void)
{
    PIR4bits.TMR1IF = 0;    // Clear TMR1 interrupt flag
    PIR4bits.CCP1IF = 0;    // Clear CCP1 interrupt flag
    // Interrupt handler code goes here
}

// Default ISR for all unhandled interrupts with IVTBASE=default (0x0008)
void __interrupt(irq(default)) DEFAULT_ISR(void)
{
    // Unhandled interrupt code
}
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BACKWARD COMPATIBILITY

The vectored interrupt controller module is fully back-
ward compatible with the legacy interrupt controllers
available in earlier PIC16 and PIC18 devices. The
backward compatibility can be established in multiple
ways.

Method 1: Using Legacy ISR

Legacy ISRs using interrupt handler are still
functional with the vectored interrupt controller module.
The following code example is a demonstration.

EXAMPLE 4: ISR Examples with MVECEN = OFF for PIC18(L)F24/25K42
// Legacy ISR with MVECEN=OFF and IPEN=1

void interrupt INTERRUPT_InterruptManagerHigh (void)
{
    // Check for the appropriate interrupt flag
    if(INTCON0bits.GIE == 1 && PIE3bits.TMR0IE == 1 && PIR3bits.TMR0IF == 1)
    {
        PIR3bits.TMR0IF = 0;    // Clear TMR0 interrupt flag 
        TMR0_ISR();             // TMR0 interrupt handler
    }
    else
    {
        //Unhandled Interrupts
    }
}

void interrupt low_priority INTERRUPT_InterruptManagerLow (void)
{
    // Check for the appropriate interrupt flag
    if(INTCON0bits.GIE == 1 && PIE4bits.TMR1IE == 1 && PIR4bits.TMR1IF == 1)
    {
        PIR4bits.TMR1IF = 0;    // Clear TMR1 interrupt flag 
        TMR1_ISR();             // TMR1 interrupt handler
    }
    else
    {
        //Unhandled Interrupts
    }
}
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Method 2: Using __interrupt Handler

Another way to implement the ISR and use the
vectored interrupt controller in Legacy mode is to use
the __interrupt(...) handler. The following
example is an illustration.

EXAMPLE 5: ISR Examples with MVECEN = OFF for PIC18(L)F24/25K42
// Legacy ISR with MVECEN=OFF and IPEN=1

void __interrupt INTERRUPT_InterruptManagerHigh (void)
{
    // Check for the appropriate interrupt flag
    if(INTCON0bits.GIE == 1 && PIE3bits.TMR0IE == 1 && PIR3bits.TMR0IF == 1)
    {
        PIR3bits.TMR0IF = 0;    // Clear TMR0 interrupt flag 
        TMR0_ISR();             // TMR0 interrupt handler
    }
    else
    {
        //Unhandled Interrupts
    }
}

void __interrupt(low_priority) INTERRUPT_InterruptManagerLow (void)
{
    // Check for the appropriate interrupt flag
    if(INTCON0bits.GIE == 1 && PIE4bits.TMR1IE == 1 && PIR4bits.TMR1IF == 1)
    {
        PIR4bits.TMR1IF = 0;    // Clear TMR1 interrupt flag 
        TMR1_ISR();             // TMR1 interrupt handler
    }
    else
    {
        //Unhandled Interrupts
    }
}
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Method 3: Using Vector Number

The most efficient way to implement the ISR in Legacy
mode is to use the __interrupt(...) handler and
use the vector number stored in the WREG to switch to
the appropriate interrupt handler. The following
example is an illustration.

EXAMPLE 6: ISR Example using Vector Number with MVECEN = OFF for PIC18(L)F24/25K42

// ISR with MVECEN=OFF and IPEN=1

void __interrupt() INTERRUPT_InterruptManagerHigh (void)
{
    uint8_t vectorID_High = WREG;

    // Switch using the appropriate vector number
    switch(vectorID_High)
    {
        case IRQ_TMR0:
            PIR3bits.TMR0IF = 0;    // Clear TMR0 interrupt flag 
            TMR0_ISR();             // TMR0 interrupt handler
            break;
        case IRQ_CCP1:
            PIR4bits.CCP1IF = 0;    // Clear CCP1 interrupt flag 
            CCP1_ISR();             // CCP1 interrupt handler
            break;
        default:
            //Unhandled Interrupts
            break;
    }
}

void __interrupt(low_priority) INTERRUPT_InterruptManagerLow (void)
{
    uint8_t vectorID_Low = WREG;

    // Switch using the appropriate vector number
    switch(vectorID_Low)
    {
        case IRQ_TMR1:
            PIR4bits.TMR1IF = 0;    // Clear TMR1 interrupt flag 
            TMR1_ISR();             // TMR1 interrupt handler
            break;
        case IRQ_TMR3:
            PIR6bits.TMR3IF = 0;    // Clear TMR3 interrupt flag 
            TMR3_ISR();             // TMR3 interrupt handler
            break;
        default:
            //Unhandled Interrupts
            break;
    }
}
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CONCLUSION

The vectored interrupt controller module uses the Inter-
rupt Vector Table (IVT) to uniquely determine the inter-
rupt source and execute the appropriate ISR directly,
thereby eliminating scanning of interrupt sources in the
software. It assembles all the interrupt request signals
and resolves the interrupts based on both a fixed natu-
ral order priority and a user-assigned priority. The oper-
ation of the vectored interrupt controller is fully
backward compatible with the legacy interrupt control-
ler module available in earlier PIC® Microcontrollers.
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