
 SMART ARM-based Microcontrollers

 AT07685: CPU Usage Demonstration using DMAC
Application

 APPLICATION NOTE

Description
Direct Memory Access Controller (DMAC) in Atmel® | SMART SAM D11
enables transfer between memories and peripherals and thus off-loads these
tasks from the CPU. It enables high data transfer rates (using AHB clock)
with minimum CPU intervention and frees up the CPU time.

This application note demonstrates the CPU usage when an application is
designed with and without DMA. The analog data from light sensor is
sampled using ADC and data is sent to USART. In this application note, the
CPU usage is calculated with and without DMA for the data transfer.

Features
This application covers the following peripheral features:

• DMA data transfer between
– Peripheral to peripheral
– Peripheral to memory
– Memory to memory
– Memory to peripheral

• Transfer trigger sources
– Software
– Peripherals

• Multi buffer transfer modes by linking multiple descriptors
• Enabling three independent channels with automatic descriptor for

each channel
• Fixed priority scheme within each priority level
• 1K beats AHB data transfer in single block transfer
• Multiple addressing modes

– Static
– Programmable increment scheme

• Transaction complete interrupt generation
• DMA Event output
• Event system for direct peripheral-to-peripheral communication

signaling

Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

• Event triggered ADC conversion for accurate timing
• DMA transfer of conversion result
• CPU usage calculation using System Timer (SysTick)

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

2

Table of Contents

Description...1

Features.. 1

1. Abbreviations...5

2. Pre-requisites...6

3. Setup... 7
3.1. Hardware Setup..7

3.1.1. SAM D11 Xplained Pro.. 7
3.1.2. IO1 Xplained Pro Extension Board.. 7

3.2. Software Setup...8

4. Direct Memory Access Controller.. 11
4.1. Block Diagram.. 11
4.2. Functional Description.. 11

4.2.1. DMAC Basic Operation..11
4.2.2. DMAC Channels.. 11
4.2.3. DMAC Transfer Operation... 12
4.2.4. Other Features...12

5. Peripherals Overview...13
5.1. Event System (EVSYS)..13
5.2. Analog-to-Digital Converter (ADC)... 13
5.3. SERCOM – Serial Communication Interface..13
5.4. SERCOM – USART..14
5.5. The System Timer (SysTick).. 14

6. Example Implementation... 15
6.1. DMA Peripheral (ADC) – to – Peripheral (USART) Transfer..15

6.1.1. Application Configuration and Implementation.. 15
6.1.2. CPU Utilization Calculation..16

6.2. DMAC: Peripheral (ADC) – Memory (SRAM) – Memory (SRAM) – Peripheral (USART) Transfer
..17
6.2.1. Application Configuration and Implementation.. 17
6.2.2. CPU Utilization Calculation..20

6.3. ADC to SRAM to USART Transfer without DMAC... 20
6.3.1. Application Configuration and Implementation.. 21
6.3.2. CPU Utilization Calculation..22

6.4. ADC – SRAM – SRAM – USART Transfer without DMAC...22
6.4.1. Application Implementation and Configuration.. 22
6.4.2. CPU Utilization Calculation..23

6.5. CPU Utilization Calculation...23

7. Application Limitations...26

7.1. USART Baudrate and ADC Sampling Frequency.. 26
7.2. SRAM to SRAM Transfer Type...26

8. CPU Utilization Analysis Between Different Cases... 27
8.1. CPU Frequency Calculation... 27
8.2. CPU Idle Time Calculation from Result Observed... 27

9. Execution of Application.. 30

10. References.. 32
10.1. Device Datasheet... 32
10.2. ARM Documentation on Cortex-M0+ Core...32
10.3. Atmel Studio... 32
10.4. Hardware Tools User Guide... 32
10.5. Online Tools User Guide...32
10.6. Atmel Software Framework (ASF)..32

11. Revision History...33

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

4

1. Abbreviations
ADC Analog to Digital Converter

ASF Atmel Software Framework

Atmel Studio Integrated Development Environment (IDE) for Atmel applications

CDC USB Communication Device Class

DMAC Direct Memory Access Controller

DRE Data Register Empty

EDBG Embedded Debugger

EVSYS Event System

IDE Integrated Development Environment

Ksps Kilo samples per second

SERCOM Serial Communication Interface

SysTick System Timer Tick

USART Universal Synchronous and Asynchronous Receiver and Transmitter

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

5

2. Pre-requisites
The solutions discussed in this document require familiarity with the following tools.

• Atmel Studio 6.2 or later
• SAM D11 Xplained Pro
• ASF 3.27 or later

This application note covers an overview of the following peripheral. For better understanding of each
peripheral, refer to the specific product datasheet.

• DMAC
• SERCOM – USART
• EVSYS
• ADC
• SysTick

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

6

3. Setup
The application is developed for SAM D11 Xplained Pro board in Atmel Studio 6.2 or later. This chapter
covers hardware and software setup required to test this application.

3.1. Hardware Setup

3.1.1. SAM D11 Xplained Pro
The Atmel SAM D11 Xplained Pro evaluation kit is a hardware platform for evaluating the
ATSAMD11D14AM microcontroller. The SAM D11 Xplained Pro kit will be used to run the example
application. This is an evaluation kit that allows connecting multiple external components using a wing
connector. A wing is a self contained board that can be connected to the Xplained Pro using a wing
connector. The SAM D11 Xplained Pro has one such wing connector marked as EXT1.

Figure 3-1 SAM D11 Xplained Pro

3.1.2. IO1 Xplained Pro Extension Board
Atmel IO1 Xplained Pro extension board is a generic extension board for the Xplained Pro platform. It
connects to any Xplained Pro standard extension header on any Xplained Pro MCU board. The extension
board utilizes all functions on the standard Xplained Pro extension header to further enhance the feature
set of Xplained Pro MCU boards.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

7

Figure 3-2 IO1 Xplained Pro Extension Board

Atmel IO1 Xplained Pro has been designed to be connected to the Xplained Pro header marked EXT1.
However it is compatible with all Xplained Pro EXT headers available on an Xplained Pro board. The pin-
out of the respective Xplained Pro evaluation kit is needed to find out which Xplained Pro EXT headers
can be used. In SAM D11 Xplained Pro kit, only one header is available and its pin out can be referred
from the board schematic file.

IO1 Xplained Pro features a ‘TEMT6000’ light sensor from Vishay Intertechnology. Pin3 of extension
board is utilized for this purpose. The sensor data can be read by an ADC pin on Xplained Pro MCU
board. In SAM D11 Xplained Pro kit, it is connected to EXT1 header as shown in the following figure. This
application utilizes Light sensor on IO1 Xplained pro board as an analog input to the ADC.
Figure 3-3 SAM D11 + IO1 Xplained Pro Board Connection

3.2. Software Setup
There are two USB ports on the SAM D11 Xplained Pro board - DEBUG USB and TARGET USB. For
debugging Embedded debugger EDBG, DEBUG USB port has to be connected. Once the SAM D11
Xplained Pro kit is connected to the PC, the Windows® Task bar will pop-up a message as follows.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

8

Figure 3-4 SAM D11 Xplained Pro Driver Installation

If the driver installation is successful, EDBG will be listed in the Device Manager as follows.
Figure 3-5 Successful EDBG Driver Installation

To ensure that the EDBG tool is getting detected in Atmel Studio:

Open Atmel Studio, Go to View > Available Atmel Tools. The EDBG should get listed in the tools and
the tool status should display as Connected as shown in the following figure. It indicates that the tool is
communicating properly with Atmel Studio.
Figure 3-6 EDBG under Available Atmel Tools

If the tool does not get displayed in Available Atmel Tools, disconnect the tool and reconnect again.

Right click on the tool in the Available Tools list, click on Upgrade. This will check whether the firmware
in the tool is up to date. Click on upgrade to upgrade the firmware of the tool to latest version.

After software is successfully installed, open terminal window with the COM port (EDBG Virtual COM
port) number detected in Device Manager. The terminal window can be downloaded and installed either
from Atmel Gallery or through Tools > Extension Manager.

The terminal window can be opened from View > Terminal Window. The COM port should be opened
with baudrate of 460800 with the display type as hex. This is because ADC result is directly written to
USART DATA register in this application for demonstration purpose.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

9

Figure 3-7 Terminal Window in Atmel Studio

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

10

4. Direct Memory Access Controller
This chapter covers the DMAC features and its working relevant to this application note. Refer the
product datasheet for detailed description about its operation and configuration.

4.1. Block Diagram
Figure 4-1 DMAC Block Diagram

4.2. Functional Description

4.2.1. DMAC Basic Operation
The Direct Memory Access Controller (DMAC) can transfer data between memories and peripherals, and
thus off-load these tasks from the CPU. It enables high data transfer rates (using AHB clock) with
minimum CPU intervention and frees up CPU time. This will allow the CPU to sleep for longer time and
thus reduce the power consumption.

A complete DMA read and write operation between memories and/or peripherals is called a DMA
transaction. DMA reads data from the source address before writing to the destination address. A new
data is read when the previous write operation is completed.

The transaction is initiated by a trigger and uses a DMA channel. The DMA trigger source can be
application software, peripheral or events from Event System (EVSYS).

Each read and write operations are done in blocks. The size of transfer is controlled by block transfer size
and is configured in software. The size of the block can be from 1 to 64K beats. The beat can be byte,
half-word or word.

4.2.2. DMAC Channels
The DMA implements six channels, enabling six independent transfers. Each DMA channel has an
individual Transfer control descriptor setting that is stored in SRAM.

The transfer control descriptor defines the source and destination address, source and destination
address increment settings, block transfer count, and optional event output condition selection. Source
and destination addressing can be static or incremental.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

11

Dedicated I/O registers for each channel is available that controls the trigger mode (peripheral/software),
peripheral trigger source type, event input actions and channel priority level settings.

Dedicated write-back memory section is available for each active channel, to maintain the current transfer
settings and status.

When enabling multiple channels, 4-level channel priority is supported, and fixed or round-robin scheme
is available within each priority level.

4.2.3. DMAC Transfer Operation
Single transaction can be executed (using only one descriptor) or multiple transactions can be executed
(using linked descriptor). Single or multiple block transfers can be enabled using the same DMA channel.

When DMA peripheral and respective channel are enabled, the transfer will happen upon receiving the
trigger request. The transfer type can be beat, block (group of beats together forms block) or transaction
(group of blocks forms transaction).

The channel is automatically disabled when DMA transfer is completed. If a single descriptor is defines
for a channel the channel will be disabled when a block transfer is completed. In case of linked
descriptors, the channel is disabled once the last descriptor is executed.

4.2.4. Other Features
Channel Suspend and Resume

The channel operation can be suspended or resumed at any time by software, or can be suspended
when a selectable block transfer is complete.

Interrupt Request

Interrupt requests can be generated when:

• A transaction is complete
• Selectable block transfer is complete
• DMA controller detects a bus error
• A channel operation is suspended

Event Input

One event input is available for each channel with event input support. The event can be programmed to
trigger:

• Transfers
• Periodic transfers
• Conditional transfers
• To suspend or resume a channel operation

Event Output

One event output is available for each channel with event output support. Events can be generated when:

• Each AHB data transfer is complete
• Selectable block transfer is complete
• The entire transaction is complete

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

12

5. Peripherals Overview
This covers the overview of other peripherals relevant to this application note. Refer to respective
sections in the product datasheet for more detailed description about their working and configuration.

5.1. Event System (EVSYS)
The Event System (EVSYS) allows autonomous, low-latency, and configurable communication between
peripherals. Several peripherals can be configured to emit and/or respond to signals known as events.

The exact condition to generate an event, or the action taken upon receiving an event, is specific to each
module. Peripherals that respond to events are called event users. Peripherals that emit events are called
event generators. A peripheral can have one or more event generators and can have one or more event
users.

Communication is made without CPU intervention and without consuming system resources such as bus
or RAM bandwidth. This reduces the load on the CPU and other system resources, compared to a
traditional interrupt-based system.

In this application note, EVSYS is configured to use ‘DMA channel 0 transfer complete’ (DMAC CH0) as
event generator and ADC start conversion (ADC START) as event user.

5.2. Analog-to-Digital Converter (ADC)
The Analog-to-Digital Converter (ADC) converts analog signals to digital values. The ADC has up to 12-
bit resolution, and is capable of converting up to 350ksps. The input selection is flexible, and both
differential and single-ended measurements can be performed. An optional gain stage is available to
increase the dynamic range. In addition, several internal signal inputs are available.

ADC measurements can be started by either application software or an incoming event from another
peripheral in the device. Both internal and external reference voltages can be used.

The ADC may be configured for 8-, 10-, or 12-bit results, reducing the conversion time. ADC conversion
results are provided left- or right-adjusted, which eases calculation when the result is represented as a
signed value. It is possible to use DMA to move ADC results directly to memory or peripherals when
conversions are done.

In this application note, ADC is configured for 8-bit resolution and uses DMA to transfer ADC result to
destination address configured (can be peripheral or memory). Event input from DMA is used to trigger
next ADC conversion. Software trigger is used for the case that is implemented without using DMA.

5.3. SERCOM – Serial Communication Interface
The SERCOM serial engine consists of a transmitter and receiver, baud-rate generator and address
matching functionality. The transmitter consists of a single write buffer and a shift register. The receiver
consists of a two-levels receive buffer and a shift register. The baud-rate generator is capable of running
on the GCLK_SERCOMx_CORE clock or an external clock.

The serial communication interface (SERCOM) can be configured to support a number of modes; I2C,
SPI, and USART. Configured and enabled, all SERCOM resources are dedicated to the selected mode.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

13

5.4. SERCOM – USART
The universal synchronous and asynchronous receiver and transmitter (USART) is one of the available
modes in the Serial Communication Interface (SERCOM).

A data transmission is initiated by loading the DATA register with the data to be sent. The data in TxDATA
is moved to the shift register when the shift register is empty and ready to send a new frame. When the
shift register is loaded with data, one complete frame will be transmitted.

The Transmit Complete interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.TXC) is
set, and the optional interrupt is generated, when the entire frame plus stop bit(s) have been shifted out
and there is no new data written to the DATA register.

The DATA register should only be written when the Data Register Empty flag in the Interrupt Flag Status
and Clear register (INTFLAG.DRE) is set, which indicates that the register is empty and ready for new
data.

USART can generate DMA request when the transmit buffer (TX DATA) is empty. The request is cleared
when DATA is written.

In this application, EDGB CDC (SERCOM2) is utilized to transfer ADC result data to terminal.

5.5. The System Timer (SysTick)
The System Timer is a 24-bit timer that extends the functionality of both the processor and the NVIC.
Refer to the Cortex®-M0+ Technical Reference Manual for details (www.arm.com).

The timer consists of:

• A control and status register (SYST_CSR). This configures the SysTick clock, enables the counter,
enables the SysTick interrupt, and indicates the counter status.

• A counter reload value register (SYST_RVR). This provides the wrap value for the counter.
• A counter current value register (SYST_CVR)

When enabled, the timer counts down from the value in SYST_CVR. When the counter reaches zero, it
reloads the value in SYST_RVR on the next clock edge. It then decrements on subsequent clocks. This
reloading when the counter reaches zero is called wrapping. Interrupt can be enabled which triggers for
each time counter wrap around.

In this application, counter is loaded with maximum count value and is used to take time stamp while
calculating the CPU utilization. SysTick runs at processor clock as source.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

14

http://www.arm.com

6. Example Implementation
This chapter explains the application implementation in detail.

The objective of this application note is to demonstrate the features listed in this document and its
configuration. In addition to that, CPU utilization is calculated, when application is implemented with and
without DMA. This highlights the DMAC usage in reducing the CPU load.

In the example implementation, ADC converts input analog signal to digital value and the result is
transferred to USART. Light sensor in IO1 Xplained Pro is given as an input to ADC via EXT1 header.

This application is implemented in four different scenarios to cover the objective (i.e. with and without
DMAC) and user will need to select the case accordingly. Separate source files have been implemented
for each case. Based on the compiler option selected in conf_dma.h file, the main application will get
compiled for each case accordingly. The following lines explains about each case in detail.

6.1. DMA Peripheral (ADC) – to – Peripheral (USART) Transfer
The compiler option to enable this transfer type is ADC_DMAC_USART. In this case, ADC result is directly
written to USART DATA register to illustrate the peripheral to peripheral DMA transfer type.
Note:  File to be referred adc_dmac_usart.c.

6.1.1. Application Configuration and Implementation
DMAC is configured to trigger a data transfer to the destination address configured when ADC RESULT is
ready (peripheral trigger source). The destination address configured here is USART DATA register
address and source is ADC RESULT register address. DMA source and destination address is static in
this case, as both the register addresses are fixed. The descriptor is configured in
setup_transfer_descriptor() as follows:

For each trigger, a byte will get transferred as Beat size is configured as byte. Event output from DMA is
enabled which will get generated up on each DMA transfer complete. DMAC Channel 0 is used for this
case and the configuration is done in configure_dma_resource() as follows:

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

15

ADC is configured as event user which will start conversion upon receiving event signal from DMAC via
Event System (EVSYS). The first ADC conversion is triggered by software trigger. When input is sampled
and result is ready, it triggers DMA transfer from ADC RESULT to USART DATA register. The next ADC
conversion is triggered by the event signal from DMA upon completing the transfer to USART DATA
register and the cycle continues. Overall, the operation is performed as shown in DMA Peripheral to
Peripheral Transfer.
Figure 6-1 DMA Peripheral to Peripheral Transfer

The whole operation is done using DMAC and EVSYS without interrupting CPU. DMAC block transfer
size is configured as 1024bytes (BLOCK_COUNT) and an interrupt is configured to flag when block transfer
is complete. When block transfer is completed, DMAC channel gets disabled automatically.

6.1.2. CPU Utilization Calculation
As explained in CPU Utilization Calculation on page 23, time stamp from SysTick is taken before
starting first ADC conversion in main().

On completing 1024 byte transfer from ADC to USART, DMAC channel 0 block transfer complete
interrupt call back is called. A flag is set and time stamp is taken to indicate transfer complete (as follows):

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

16

From the time stamp, the number of cycles taken to complete the transfer is calculated. During the DMA
transfer, the idle_loop_count is incremented in main loop. This will give the count of CPU idle time
during the data transfer from peripheral to peripheral. After completion of the DMA transfer, the code
enters an infinite loop and no other tasks including idle task is executed.
Note:  Refer Chapter 8 for detailed description about the CPU utilization calculation from the results
observed.

6.2. DMAC: Peripheral (ADC) – Memory (SRAM) – Memory (SRAM) – Peripheral
(USART) Transfer
The compiler option to enable this case is ADC_DMAC_MEM_MEM_USART. In this case, three DMAC
channels have been used to demonstrate each transfer type. As explained in Section 7.2, the purpose of
having Memory to Memory type DMA transfer is for demonstration purpose and the application does not
need this for its proper working.
Note:  File to be referred for this case is adc_dmac_mem_mem_usart.c

6.2.1. Application Configuration and Implementation
Channel 0 is used to transfer BLOCK_COUNT (i.e. 1024 bytes in this example) number of beats from
ADC RESULT register (peripheral) to SRAM buffer (Memory).

Channel 0 configuration (Peripheral to Memory):

As explained in DMAC: Peripheral (ADC) – Memory (SRAM) – Memory (SRAM) – Peripheral (USART)
Transfer on page 17, DMAC channel 0 is configured for peripheral trigger from ADC RESULT ready. The
next ADC conversion is triggered by event output from DMA channel 0 up on completing each beat
transfer as below:

DMAC block transfer complete interrupt is enabled which gets generated up on completing 1024 bytes
from ADC to SRAM buffer. As the SRAM buffer will need to store 1024 bytes samples from ADC, the
destination address is incremented (which is the default configuration in ASF). The source address is
static as it is ADC RESULT register and the descriptor is linked to the channel 1 descriptor
dma_adc_descriptor2 for next channel operation as done below:

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

17

Once 1024 bytes samples get transferred from ADC to SRAM buffer (adc_result[]),
dmac_channel0_callback() is called where the channel 1 transfer is triggered.

Channel 1 configuration (Memory to Memory):

Channel 1 is configured with software trigger and transfer type is transaction. I.e. when software triggers
the transfer, complete ADC result stored in one SRAM buffer adc_result is transferred to another
adc_result_copy buffer stored in SRAM. This retains the default configuration done in ASF. So there
is no change needed at the application code.

The descriptor contains the source and destination address of two different SRAM buffers and both
addresses are incremental (default configuration in ASF). The channel 2 descriptor
dmac_adc_descriptor3 is linked to this descriptor which would point to channel 3 at the end of
channel 2 block transfer complete.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

18

Channel 1 transfer is triggered at the channel 0 transfer complete callback as explained already. When
Channel 1 transfer is done, channel 2 is enabled to start the next conversion (as below) which is
explained in next section.

Channel 2 configuration (Memory to Peripheral):

Channel 2 is configured to have peripheral trigger and beat transfer type. A byte from SRAM buffer
(adc_result_copy) should be written to the USART DATA register whenever it is empty. I.e. Whenever
USART DATA register is empty (DRE) and is ready for new data to be written, it triggers a DMA transfer
from source to destination over the channel 2.

The destination address in the descriptor is incremental (default configuration in ASF) and destination
address is static as it is USART DATA register. It does not point to any next descriptor as there is not any
transfer going to occur.

Unlike other channels, this channel should be enabled at the end of channel 1 transfer complete. The
reason is the USART DRE is always set as there is not any previous communication occurs. So if this
channel is enabled during the initialization, as USART DRE is already set, the DMA transfer will start
immediately on channel 2 which results in wrong operation.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

19

When Channel 2 is enabled in the channel 1 callback, the data is sent from SRAM to USART for each
DRE from USART. After it completes the transfer, a flag is set to indicate end of complete transfer and the
time stamp is taken for CPU utilization calculation.

Overall the application works as illustrated in the figure below.
Figure 6-2 DMAC Peripheral – Memory – Memory – Peripheral Transfer

6.2.2. CPU Utilization Calculation
The time stamp is taken at the DMAC channel 2 call back and the idle_loop_count is noted. This
would add some more overhead as it is interrupted by three different callbacks for each block transfer
complete of a channel.
Note:  Refer CPU Utilization Analysis Between Different Cases on page 27 for detailed description
about the CPU utilization calculation from the results observed.

6.3. ADC to SRAM to USART Transfer without DMAC
This option is enabled by defining ADC_NO_DMAC_USART. In this case, the above mentioned scenarios
are implemented through interrupt handling without using DMA. This is done to demonstrate the DMAC
usage in reducing the CPU load.
Note:  File to be referred for this case is adc_no_dmac_usart.c.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

20

6.3.1. Application Configuration and Implementation
ADC interrupt is triggered for RESULT ready and the software trigger mode is chosen to start the
conversion in configure_adc() function as follows:

The first conversion is done in the main and the time stamp1 is taken. When result is ready, ADC interrupt
handler is called. In the handler, the number of ADC samples is counted through a count variable
adc_sample_count. Until adc_sample_count value reaches the BLOCK_COUNT (i.e.1024 bytes), the
data is stored in a buffer adc_result, and the next ADC conversion is triggered from software. When it
reaches the BLOCK_COUNT, ADC is disabled and further conversion is stopped. A flag is also set to
indicate transfer is done and the data is sent to USART data register. Time stamp is also taken at this
time to find CPU utilization.

Overall application flow would works as follows.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

21

Figure 6-3 ADC to USART without DMAC

6.3.2. CPU Utilization Calculation
Note:  Refer CPU Utilization Analysis Between Different Cases on page 27 for detailed description
about the CPU utilization calculation from the results observed.

The same logic is used to calculate the CPU utilization except that in this case, interrupt is enabled and
does not use DMA. The ADC result from adc_result buffer transfer to USART DATA register is
managed by the SERCOM2 Handler.

The number of transfer is counted by the adc_sample_count. Once it reaches BLOCK_COUNT, time
stamp and idle_loop_count is noted to calculate CPU utilization as in CPU Utilization Calculation on
page 23.

6.4. ADC – SRAM – SRAM – USART Transfer without DMAC
This option is enabled through ADC_NO_DMAC_MEM_MEM_USART. As mentioned in ADC to SRAM to
USART Transfer without DMAC on page 20, this is the counterpart implementation of
ADC_DMAC_MEM_MEM_USART which is done to demonstrate the DMAC usage in reducing the CPU load.
Note:  File to be referred for this case is adc_no_dmac_mem_mem_usart.c.

6.4.1. Application Implementation and Configuration
This scenario is same as ADC to SRAM to USART Transfer without DMAC on page 20 except that
memory copy to another buffer adc_result_copy is done which will add some over overhead to the
application.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

22

The application block diagram is as follows.
Figure 6-4 ADC – SRAM – SRAM – USART Transfer without DMAC

6.4.2. CPU Utilization Calculation
The CPU utilization is similar as done in CPU Utilization Calculation on page 22.
Note:  Refer CPU Utilization Analysis Between Different Cases on page 27 for detailed description
about the CPU utilization calculation from the results observed.

6.5. CPU Utilization Calculation
This section covers the logic implemented in this application to calculate the CPU utilization.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

23

For calculating the CPU utilization, we need to measure total time taken for executing the data transfer
routine. This is measured using the SysTick timer.

We also need to measure how much time CPU is idle task when executing the above said routine. This is
measured by incrementing a variable idle_loop_count whenever the CPU is idle. The idle counter
value is converted to time scale by multiplying the count value with the time taken to increment once.

Both the total time taken by the data transfer routine and idle counter is measured for fixed number of
data transfer as shown in the following figure. In this test, it is 1024 byte transfer.

Figure 6-5 CPU Utilization Calculation

The number of cycles taken cycles_taken to complete the transaction can be calculated from the time
stamp taken using SysTick. As SysTick runs at processor clock, the time taken for total transaction can
be calculated from the cycles taken and the CPU clock frequency of the application as below.

Time taken to complete transaction = (cycles_taken/CPU clock frequency)

The idle_loop_count represents the number of times the code enters idle task. This can be used to
derive the time that CPU is idle during complete transaction. To convert this count value to time scale, the
time taken for each count increment should be known.

For this purpose, in the application code, two separate port pins are toggled in the idle loop and in the
interrupt handler. Whenever the code enters interrupt handler, the idle loop count stops and pin toggled
inside idle loop stays at same level. When the code comes out of handler, the pin toggled inside handler
stays at same level and the idle loop pin starts toggle. The time taken for single toggling is calculated
after removing the time taken for handler execution. This is illustrated in the following figure.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

24

Figure 6-6 Calculation of Time Taken for a Single idle_loop_count Increment

From oscilloscope, the time taken for each count increment is calculated to be ~3.391µs, as shown in the
following figure. The count value when multiplied with the pulse width (i.e. 3.391µs) will give the time CPU
spends inside idle task.
Note:  The width of idle_loop_count pulse is the time taken to increment one idle count value when
there is no interrupt triggered.

Figure 6-7 Oscilloscope Shot of Idle Task

The CPU utilization analysis for each case has been done in CPU Utilization Analysis Between Different
Cases on page 27.
Note:  The ideal expectation is that the idle loop count should be more when using DMA than when not
using it. Because, when using DMA, the CPU is not interrupted and idle task can be executed in parallel.
But in practical, this cannot be the case. The reason is that, DMA will take lesser time to complete the
transfer. In case of using interrupt method; it takes more time to complete the transaction. So sometimes,
the time that code can spend for ideal task would be lesser for DMAC case and the idle_loop_count
value can be lesser than when not using DMA. To avoid such confusion, the time taken for completing the
transfer is also taken using system timer and the ratio of both is used to calculate the CPU utilization.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

25

7. Application Limitations

7.1. USART Baudrate and ADC Sampling Frequency
In DMAC usage case, as explained already, ADC RESULT is directly written to USART DATA register.
The DMA triggers ADC next conversion immediately once data is written to USART. This causes data
loss on terminal window if the usart baud rate is lesser than the ADC conversion time. To avoid this, ADC
is configured with lowest possible frequency and USART is configured with maximum possible baudrate.

For ADC:

The rate of conversion of ADC clock depends on the GCLK_ADC (i.e. 8MHz) and it’s prescalar which is
64 in this case. Default sampling time is CLK_ADC/2.

So ADC clock frequency = 8MHz/64 = 125kHz ~= 8µs

Sampling time = 16µs

Conversion time = 6 cycles = 6 * 8µs = 48µs

Total conversion time = sampling time + conversion time = ~(48 + 16)µs = ~64µs

For USART:

As per section ‘Baud Rate Equations’ in the product datasheet: fbaud should be ≤ fref/S

For Asynchronous Arithmetic mode number of samples per bit (S) = 16

fref = 8MHz

So, maximum possible baudrate = 8MHz/16 = 500000

Baud rate configured = 460800 (i.e. 460800 bits sent in = 1s)

For 10 bit, it takes = (10/460800) ~= 21.7µs

So, setting 460800 baudrate is advisable. Because once ADC sample is ready for every 64µs. USART
would have sent the previous data in 21.7µs and waits for next ADC result without any data loss.
Note:  The 10 bits comes from USART data frame namely 1 start bit + 8 data bit + 1 stop bit.

7.2. SRAM to SRAM Transfer Type
For the cases ADC_DMAC_MEM_MEM_USART and ADC_NO_DMAC_MEM_MEM_USART, the transfer type
Memory to Memory. Copy of adc result from one SRAM buffer adc_result to another SRAM buffer
adc_result_copy is done for demonstration purpose. This application does not demand this need to
make it work properly.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

26

8. CPU Utilization Analysis Between Different Cases
After programming the firmware successfully, the results can be seen in the terminal window. The result
contains the ADC result data, number of cycles taken and idle loop count in hex format. This chapter
explains how to derive CPU usage for each case from the results observed. The calculation is done as
explained in CPU Utilization Analysis Between Different Cases on page 27.
Note:  The results shown in this application note taken are with the following conditions. The resulting
idle_loop_count and cycles_taken will vary with the optimizations, frequency, or any change in the
application code.

• Optimization set to zero (-O0)
• Port toggling function ENABLE_PORT_TOGGLE is enabled in the conf_dma.h
• CPU runs at internal RC8M as source

8.1. CPU Frequency Calculation
To find the time taken, CPU frequency needs to be known. This application runs at internal 8MHz RC
(OSC8M) which accuracy can vary from 7.94MHz to 8.06MHz (refer to ‘Electrical Characteristics’ section
of the product datasheet). The accuracy of RC is calculated to be 7.94MHz on the board tested. This is
done by giving the main clock i.e. GCLK0 (which runs at ODC8M) output to I/O pin for the device tested
using the snippet below.

Note: 
1. The I/O pin used here is PA08.
2. In src/config/conf_clock.h, option CONF_CLOCK_GCLK_0_OUTPUT_ENABLE should be

enabled true to enable GCLK out output to I/O pin.

8.2. CPU Idle Time Calculation from Result Observed
The following snap shots shows the results of various cases used in the application.
Figure 8-1 ADC_NO_DMAC_USART Terminal Output

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

27

Figure 8-2 ADC_DMAC_MEM_MEM_USART

Figure 8-3 ADC_NO_DMAC_MEM_MEM_USART

For instance, take case ‘ADC_DMAC_USART’:

The last eight bytes of data represent the idle_loop_count and cycles_taken in big endian format
as shown in the following figure. The last four bytes of result is the idle_loop_count and the next four
bytes is the cycles_taken.

So idle_loop_taken = 0x000038e4 = 14564d

And cycles_taken = 0x00060160 = 393568d
Figure 8-4 ADC_DMAC_USART Terminal Output

Time taken to complete transaction = (cycles_taken/CPU clock frequency)

Time taken to complete transaction = (393568/7.94)µs = 49567µs = 49.567ms

The time taken for each idle count is calculated to be 3.391µs as in Section 6.1.

Total CPU idle time = idle_loop_count * 3.391µs = 14564 * 3.391µs = 49.386ms

Therefore, in 49.567ms transfer period, CPU is idle for about 49.386ms for ADC_DMAC_USART case. In
similar way, the calculation is done for other cases and listed in the following table.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

28

Table 8-1 The idle_loop_count and cycles_taken for Different Applications

Case idle_loop_count cycles_taken Total
Transfer
Time
[ms]

CPU
Idle
Time
[ms]

CPU
Idle
Time
[%]

ADC_DMAC_USART 0x000038e4 0x000060160 49.567 49.386 96.63

ADC_DMAC_MEM_MEM_USART 0x00005579 0x000905c2 74.682 74.198 99.35

ADC_NO_DMAC_USART 0x000034a0 0x000bb7b5 96.715 45.683 47.23

ADC_NO_DMAC_MEM_MEM_USART 0x000034a0 0x000bbd2f 96.892 45.683 47.14

From the above table, it can be seen that when using DMAC, CPU is idle most of the time during the data
transfer. But without DMAC, the CPU is in idle mode only for some portion of data transfer and overall
transfer time is also high.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

29

9. Execution of Application
The firmware corresponding to this application note comes with the Atmel Software Framework and it can
be imported from Atmel Studio as well. The steps below explain the execution of this application.
Note:  This chapter assumes that the setup is ready as per Setup on page 7.

• Import the example in Atmel Studio from File > New > Example Project > DMAC CPU Usage
Demo – SAM D11 Xplained Pro

• Choose the compiler option in src\config\conf_dma.h based on the execution mode needed
• Go to Build > Build Solution to compile the project
• Once it is compiled successfully, go to Tools > Device Programming Window
• Select appropriate tool, device and interface type and click Apply to connect to the kit. Check

Device Signature and Target Voltage to ensure proper connection.
• Go to Memories Tab. Browse the *.hex/elf file location and click program to flash the device as

shown in the following figure
Figure 9-1 Device Programming Window in Atmel Studio

• To debug the code, right click on the project in the Solution Explorer Window > Go to Project
Properties

• Go to Tools > Debugger/programmer as EDBG and SWD as Interface

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

30

Figure 9-2 Debug Settings in Atmel Studio

• Ensure optimization is None to utilize maximum debugging in Toolchain > ARM®/GNU C
Compiler > Optimization > Optimization Level > None(-O0)
Figure 9-3 Set Optimization Level

• Go to Debug > Start Debugging and Break to debug the code and click Start without
debugging to continue programming without debugging

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

31

10. References

10.1. Device Datasheet
The device datasheet contains the block diagrams of the peripherals and details about implementing
firmware for the device. It also contains the electrical specifications and expected characteristics of the
device.

Datasheet is available on www.atmel.com in the Documents section of Atmel SAM D09/D10/D11 product
page.

10.2. ARM Documentation on Cortex-M0+ Core
• Cortex-M0+ Devices Generic User Guide revision r0p1
• Cortex-M0+ Technical Reference Manual revision r0p1

10.3. Atmel Studio
The latest version of Atmel Studio can be downloaded from http://www.atmel.com/tools/atmelstudio.aspx.

10.4. Hardware Tools User Guide
• For SAM D11 Xplained Pro User Guide and Schematics: http://www.atmel.com/devices/

ATSAMD11D14A.aspx?tab=tools
• For IO1 Xplained Pro User Guide and Schematics: http://www.atmel.com/tools/ATIO1-XPRO.aspx?

tab=documents

10.5. Online Tools User Guide
Online help for each tool is available at the link http://www.atmel.com/webdoc/.

10.6. Atmel Software Framework (ASF)
Web page:

http://www.atmel.com/tools/avrsoftwareframework.aspx

Document/file:

• ASF update for Atmel Studio (.vsix) from ASF web page
• ASF update through Atmel Gallery https://gallery.atmel.com/
• ASF update through Tools > Extension Manager from Atmel Studio
• ASF standalone package for GCC makefile and IAR users
• Atmel AVR4029: Atmel Software Framework - User Guide
• Atmel AVR4030: Atmel Software Framework - Reference Manual

The ASF online documentation for the API and example usage are available at http://asf.atmel.com.

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

32

http://www.atmel.com
http://www.atmel.com/tools/atmelstudio.aspx
http://www.atmel.com/devices/ATSAMD11D14A.aspx?tab=tools
http://www.atmel.com/devices/ATSAMD11D14A.aspx?tab=tools
http://www.atmel.com/tools/ATIO1-XPRO.aspx?tab=documents
http://www.atmel.com/tools/ATIO1-XPRO.aspx?tab=documents
http://www.atmel.com/webdoc/
http://www.atmel.com/products/microcontrollers/arm/sam-d.aspx?tab=tools
https://gallery.atmel.com/
http://asf.atmel.com

11. Revision History
Doc Rev. Date Comments

42371B 12/2015 Updated for SAM D09 device

42371A 09/2014 Initial document release

Atmel AT07685: CPU Usage Demonstration using DMAC Application [APPLICATION NOTE]
Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

33

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42371B-CPU-Usage-Demonstration-using-DMAC-Application_AT07685_Application Note-12/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Windows® is a registered trademark of Microsoft
Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Description
	Features
	Table of Contents
	1. Abbreviations
	2. Pre-requisites
	3. Setup
	3.1. Hardware Setup
	3.1.1. SAM D11 Xplained Pro
	3.1.2. IO1 Xplained Pro Extension Board

	3.2. Software Setup

	4. Direct Memory Access Controller
	4.1. Block Diagram
	4.2. Functional Description
	4.2.1. DMAC Basic Operation
	4.2.2. DMAC Channels
	4.2.3. DMAC Transfer Operation
	4.2.4. Other Features

	5. Peripherals Overview
	5.1. Event System (EVSYS)
	5.2. Analog-to-Digital Converter (ADC)
	5.3. SERCOM – Serial Communication Interface
	5.4. SERCOM – USART
	5.5. The System Timer (SysTick)

	6. Example Implementation
	6.1. DMA Peripheral (ADC) – to – Peripheral (USART) Transfer
	6.1.1. Application Configuration and Implementation
	6.1.2. CPU Utilization Calculation

	6.2. DMAC: Peripheral (ADC) – Memory (SRAM) – Memory (SRAM) – Peripheral (USART) Transfer
	6.2.1. Application Configuration and Implementation
	6.2.2. CPU Utilization Calculation

	6.3. ADC to SRAM to USART Transfer without DMAC
	6.3.1. Application Configuration and Implementation
	6.3.2. CPU Utilization Calculation

	6.4. ADC – SRAM – SRAM – USART Transfer without DMAC
	6.4.1. Application Implementation and Configuration
	6.4.2. CPU Utilization Calculation

	6.5. CPU Utilization Calculation

	7. Application Limitations
	7.1. USART Baudrate and ADC Sampling Frequency
	7.2. SRAM to SRAM Transfer Type

	8. CPU Utilization Analysis Between Different Cases
	8.1. CPU Frequency Calculation
	8.2. CPU Idle Time Calculation from Result Observed

	9. Execution of Application
	10. References
	10.1. Device Datasheet
	10.2. ARM Documentation on Cortex-M0+ Core
	10.3. Atmel Studio
	10.4. Hardware Tools User Guide
	10.5. Online Tools User Guide
	10.6. Atmel Software Framework (ASF)

	11. Revision History

