

SY87701AL

3.3V 28 Mbps to 1.3 Gbps AnyRate[®] Clock and Data Recovery

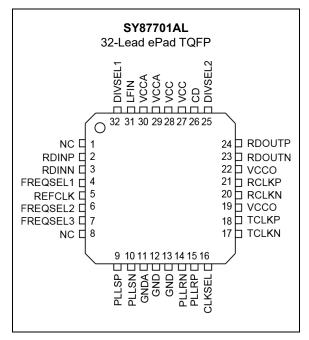
Features

- Industrial temperature range (–40°C to +85°C)
- 3.3V power supply
- Clock and data recovery from 28Mbps up to 1.3Gbps
- NRZ data stream, clock generation from 28Mbps to 1.3Gbps
- Complies with Bellcore, ITU/CCITT and ANSI specifications for applications such as OC-1, OC-3, OC-12, ATM, FDDI, Fibre Channel and Gigabit Ethernet as well as proprietary applications
- Two on-chip PLLs: one for clock generation and another for clock recovery
- · Selectable reference frequencies
- Differential PECL high-speed serial I/O
- · Line receiver input: no external buffering needed
- · Link fault indication
- 100k ECL compatible I/O
- 32-lead 7.0 mm × 7.0 mm ePAD TQFP package

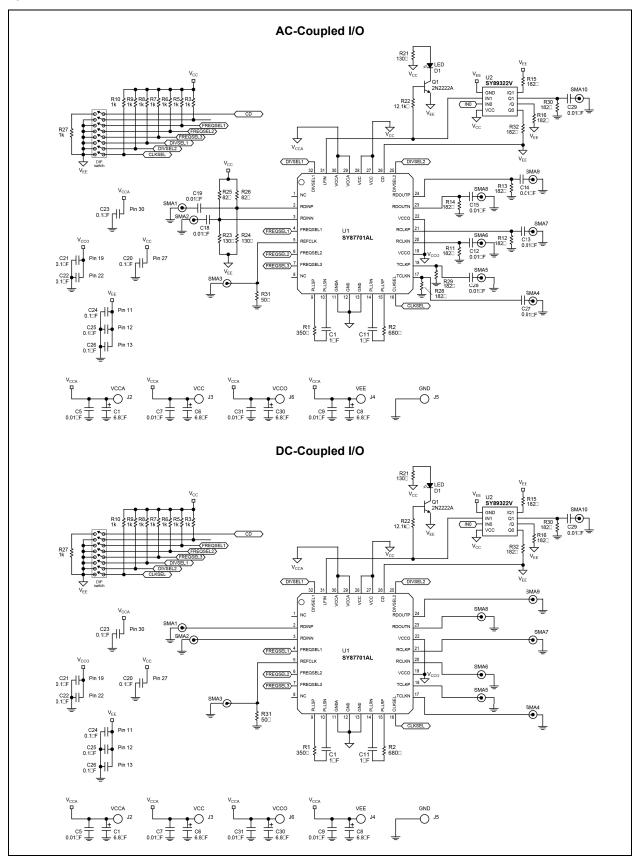
Applications

- SONET/SDH/ATM OC-1, OC-3, OC-12, OC-24
- Fibre Channel, Escon, SMPTE 259
- · Gigabit Ethernet/Fast Ethernet
- · Proprietary architecture up to 1.3 Gbps

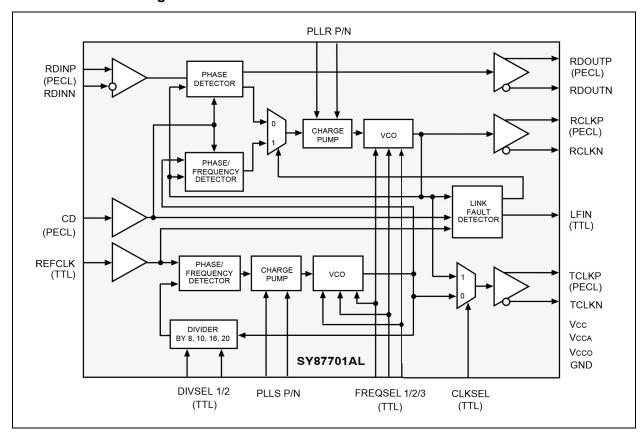
General Description

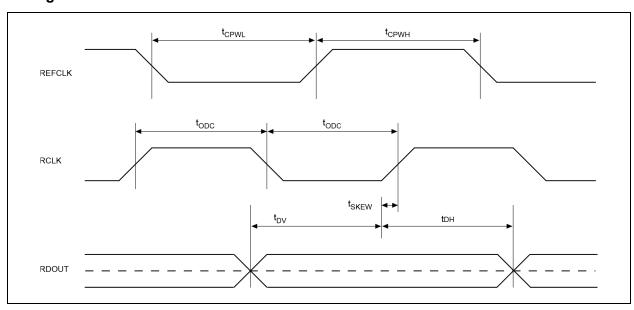

The SY87701AL is a complete clock recovery and data retiming integrated circuit for data rates from 28 Mbps up to 1.3 Gbps NRZ. The device is ideally suited for SONET/SDH/ATM and Fibre Channel applications and other high-speed data transmission systems.

Clock recovery and data retiming is performed by synchronizing the on-chip VCO directly to the incoming data stream. The VCO center frequency is controlled by the reference clock frequency and the selected divide ratio. On-chip clock generation is performed through the use of a frequency multiplier PLL with a byte rate source as reference.


The SY87701AL also includes a link fault detection circuit.

All support documentation can be found on Microchip's website: www.microchip.com


Package Type


Typical Application

Functional Block Diagram

Timing Waveforms

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings[†]

Supply Voltage (V _{CC})	
Input Voltage (VIN)	
Output Current (I _{OUT}) Continuous	50 mA
Output Current (I _{OUT}) Surge	100 mA

Operating Ratings^{††}

Supply Voltage (V_{CC})+3.15V to +3.45V

TABLE 1-1: DC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Power Supply Voltage	V _{CC}	3.15	3.3	3.45	V	_
Power Supply Current	ICC	_	120	160	mA	_

TABLE 1-2: PECL 100K DC ELECTRICAL CHARACTERISTICS

$V_{CC} = V_{CCO} = V_{CCA} = 3.3V \pm 5\%$; $T_A = -40$ °C to +85°C, unless otherwise noted.						
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Input HIGH Voltage	V _{IH}	V _{CC} – 1.165	_	V _{CC} - 0.880	V	_
Input LOW Voltage	V _{IL}	V _{CC} – 1.810	_	V _{CC} – 1.475	V	_
Output HIGH Voltage	V _{OH}	V _{CC} – 1.075	_	V _{CC} – 0.830	V	50Ω to V_{CC} – $2V$
Output LOW Voltage	V _{OL}	V _{CC} – 1.860	_	V _{CC} – 1.570	V	50Ω to V_{CC} – $2V$
Input LOW Current	I _{IL}	0.5	_	_	μA	$V_{IN} = V_{IL(MIN)}$

TABLE 1-3: TTL DC ELECTRICAL CHARACTERISTICS

$V_{CC} = V_{CCO} = V_{CCA} = 3.3V \pm 5\%$; $T_A = -40$ °C to +85°C, unless otherwise noted.						
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Input HIGH Voltage	V _{IH}	2.0	_	V_{CC}	V	_
Input LOW Voltage	V_{IL}	_	_	0.8	V	_
Output HIGH Voltage	V _{OH}	2.0	_	_	V	I _{OH} = -0.4 mA
Output LOW Voltage	V _{OL}	_	_	0.5	V	I _{OL} = 4 mA
Input HICH Current	I _{IH}	-175	_	_	μA	V _{IN} = 2.7V, V _{CC} = max.
Input HIGH Current				+100	μΑ	$V_{IN} = V_{CC}, V_{CC} = max.$
Input LOW Current	I _{IL}	-300	_	_	μA	V_{IN} = 0.5V, V_{CC} = max.
Output Short Circuit Current	I _{OS}	-15	_	-100	mA	V _{OUT} = 0V (maximum 1 sec.)

[†] **Notice:** Permanent device damage may occur if "Absolute Maximum Ratings" are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to "Absolute Maximum Ratings" conditions for extended periods may affect device reliability.

^{††} **Notice:** The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

TABLE 1-4: AC ELECTRICAL CHARACTERISTICS

$V_{CC} = V_{CCO} = V_{CCA} = 3.3V \pm 5\%$; $T_A = -40$ °C to +85°C, unless otherwise noted.						
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
VCO Center Frequency	f _{VCO}	625	_	1300	MHz	f _{REFCLK} × Byte Rate
VCO Center Frequency Tolerance	Δf_{VCO}	_	5	_	%	Nominal
Acquisition Lock Time	t _{ACQ}	_	_	15	μs	_
REFCLK Pulse Width HIGH	t _{CPWH}	3	_	_	ns	_
REFCLK Pulse Width LOW	t _{CPWL}	3	_	_	ns	_
REFCLK Input Rise Time	t _{ir}	_	0.5	2	ns	_
Output Duty Cycle (RCLK/TCLK)	t _{ODC}	45	_	55	% of UI	_
ECL Output Rise/Fall Time (20% to 80%)	t _r , t _f	100	_	500	ps	50Ω to V _{CC} – 2V
Recovered Clock Skew	t _{SKEW}	-200	_	+200	ps	_
Data Valid	t _{DV}	1/(2 × f _{RCLK}) – 200	_	_	ps	_
Data Hold	t _{DH}	1/(2 × f _{RCLK}) – 200		_	ps	_

TABLE 1-5: TEMPERATURE SPECIFICATIONS

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Temperature Range						
Operating Temperature	T _A	-40	_	+85	°C	_
Lead Temperature	T _{LEAD}	_	+260	_	°C	Soldering, 20 sec.
Storage Temperature	T _S	-65	_	+150	°C	_
Package Thermal Resistance (Note 1)						
ePad TQFP, 0 Ifpm Airflow	θ_{JA}	_	+27.6	_	°C/W	_
ePad TQFP, 200 Ifpm Airflow	θ_{JA}	_	+22.6	_	°C/W	_
ePad TQFP, 500 Ifpm Airflow	θ_{JA}	_	+20.7	_	°C/W	_

Note 1: Using JEDEC standard test boards with die attach pad soldered to PCB. See www.amkor.com for additional package details.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN DESCRIPTIONS

TABLE 2-1:	PIN DESCRIPT	IUNS	
Pin Number	Pin Name	Description	
2	RDINP	Serial Data Input (Differential PECL): These built-in line receiver inputs are	
3	RDINN	connected to the differential receive serial data stream. An internal receive PLL recovers the embedded clock (RCLK) and data (RDOUT) information. The incoming data rate can be within one of eight frequency ranges depending on the state of the FREQSEL pins. See "Frequency Selection" table.	
5	REFCLK	Reference Clock (TTL Inputs): This input is used as the reference for the internal frequency synthesizer and the "training" frequency for the receiver PLL to keep it centered in the absence of data coming in on the RDIN inputs.	
26	CD	Carrier Detect (PECL Input): This input controls the recovery function of the Receive PLL and can be driven by the carrier detect output of optical modules or from external transition detection circuitry. When this input is HIGH the input data stream (RDIN) is recovered normally by the Receive PLL. When this input is LOW the data on the inputs RDIN will be internally forced to a constant LOW, the data outputs RDOUT will remain LOW, the Link Fault Indicator output LFIN forced LOW and the clock recovery PLL forced to look onto the clock frequency generated from REFCLK.	
4	FREQSEL1		
6	FREQSEL2	Frequency Select (TTL Inputs): These inputs select the output clock frequency	
7	FREQSEL3	range as shown in the "Frequency Selection" table.	
32	DIVSEL1	Divider Select (TTL Inputs): These inputs select the ratio between the output	
25	DIVSEL2	clock frequency (RCLK/TCLK) and the REFCLK input frequency as shown in the "Reference Frequency Selection" table.	
16	CLKSEL	Clock Select (TTL Inputs): This input is used to select either the recovered clock of the receiver PLL (CLKSEL = HIGH) or the clock of the frequency synthesizer (CLKSEL = LOW) to the TCLK outputs.	
31	LFIN	Link Fault Indicator (TTL Output): This output indicates the status of the input data stream RDIN. Active HIGH signal is indicating when the internal clock recovery PLL has locked onto the incoming data stream. LFIN will go HIGH if CD is HIGH and RDIN is within the frequency range of the Receive PLL (1000 ppm).	
24	RDOUTP	Receive Data Output (Differential PECL): These ECL 100k outputs represent	
23	RDOUTN	the recovered data from the input data stream (RDIN). This recovered data is specified against the rising edge of RCLK. These outputs must be terminated with 50Ω to V_{CC} – 2 or equivalent. This applies even if these outputs are not used.	
21	RCLKP	Clock Output (Differential PECL): These ECL 100k outputs represent the	
20	RCLKN	recovered clock used to sample the recovered data (RDOUT).	
18	TCLKP	Clock Output (Differential PECL): These ECL 100k outputs represent either	
17	TCLKN	the recovered clock (CLKSEL = HIGH) used to sample the recovered data (RDOUT) or the transmit clock of the frequency synthesizer (CLKSEL = LOW). These outputs must be terminated with 50Ω to V_{CC} – 2 or equivalent. This applies even if these outputs are not used.	
9	PLLSP	Clock Synthesis PLL Loop Filter. External loop filter pins for the clock synthe-	
10	PLLSN	sis PLL.	
15	PLLRP	Clock Recovery PLL Loop Filter. External loop filter pins for the receiver Pl	
14	PLLRN	- Clock Recovery PLL Loop Filter. External loop lilter pins for the receiver PLL.	
27, 28	VCC	Supply Voltage. (Note 1)	
Note 1: Pins	VCC, VCCA, and \	CCO must be the same value.	
-			

TABLE 2-1: PIN DESCRIPTIONS (CONTINUED)

Pin Number	Pin Name	Description
29, 30	VCCA	Analog Supply Voltage. (Note 1)
19, 22	VCCO	Output Supply Voltage. (Note 1)
12, 13	GND	Ground.
1, 8	NC	No Connect.
11	GNDA	Analog Ground.
Note 1: Pins \	/CC, VCCA, and	VCCO must be the same value.

3.0 TYPICAL CHARACTERISTICS

3.1 Performance

Microchip's SY87701AL PLL complies with the jitter specifications proposed for SONET/SDH equipment defined by the Bellcore Specifications (please refer to GR-253-CORE, Issue 2, December 1995 and ITU-T Recommendations: G.958 document), when used with differential inputs and outputs.

3.2 Input Jitter Tolerance

Input jitter tolerance is defined as the peak-to-peak amplitude of sinusoidal jitter applied on the input signal that causes an equivalent 1 dB optical/electrical power penalty. SONET input jitter tolerance requirement condition is the input jitter amplitude which causes an equivalent of 1 dB power penalty.

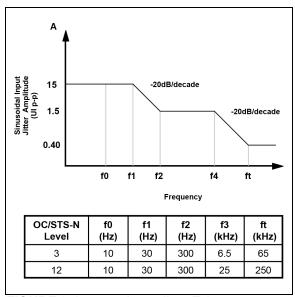


FIGURE 3-1: Input Jitter Tolerance.

3.3 Jitter Transfer

Jitter transfer function is defined as the ratio of jitter on the output OC-N/STS-N signal to the jitter applied on the input OC-N/STS-N signal versus frequency. Jitter transfer requirements are shown in Figure 3-2.

3.4 Jitter Generation

The jitter of the serial clock and serial data outputs shall not exceed 0.01 U.I. RMS when a serial data input with no jitter is presented to the serial data inputs.

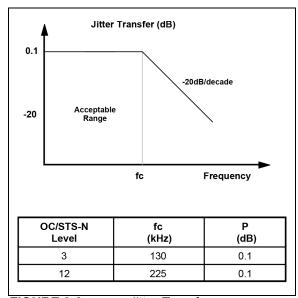


FIGURE 3-2: Jitter Transfer.

4.0 FUNCTIONAL DESCRIPTION

4.1 Clock Recovery

Clock Recovery, as shown in the block diagram, generates a clock that is at the same frequency as the incoming data bit rate at the Serial Data input. The clock is phase aligned by a PLL so that it samples the data in the center of the data eye pattern.

The phase relationship between the edge transitions of the data and those of the generated clock are compared by a phase/frequency detector. Output pulses from the detector indicate the required direction of phase correction. These pulses are smoothed by an integral loop filter. The output of the loop filter controls the frequency of the Voltage Controlled Oscillator (VCO), which generates the recovered clock.

Frequency stability without incoming data is guaranteed by an alternate reference input (REFCLK) that the PLL locks onto when data is lost. If the Frequency of the incoming signal varies by greater than approximately 1000 ppm with respect to the synthesizer frequency, then PLL will be declared out of lock, and the PLL will lock to the reference clock.

The loop filter transfer function is optimized to enable the PLL to track the jitter, yet tolerate the minimum transition density expected in a received SONET data signal. This transfer function yields a 30 µs data stream of continuous 1's or 0's for random incoming NRZ data.

The total loop dynamics of the clock recovery PLL provides jitter tolerance which is better than the specified tolerance in GR-253-CORE.

4.2 Lock Detect

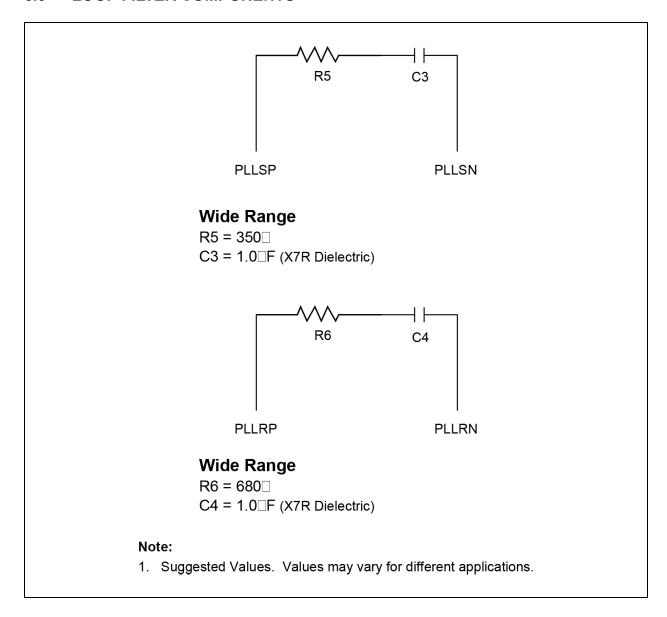
The SY87701AL contains a link fault indication circuit that monitors the integrity of the serial data input. If the recovered serial data from RDIN is at the correct data rate (within 1000 ppm of the synthesizer frequency), the Link Fault Indicator (LFIN) output will be asserted HIGH indicating an in-lock condition and will remain HIGH as long as this condition is met.

In the event that the recovered serial data is not at the correct data rate (greater than 1000 ppm difference from the synthesizer frequency), then LFIN output will go LOW indicating an out-of-lock condition. This condition will force the Clock and Data Recovery PLL (CDR) to lock onto the synthesizer frequency until it is within the correct frequency range (less than 1000 ppm difference from the synthesizer frequency). Once the CDR is within the correct frequency range it will again lock onto the RDIN input.

During the interval when the CDR is not locked onto the RDIN input, the LFIN output will not be a static LOW, but will be changing.

SY87701AL

5.0 FREQUENCY SELECTION


TABLE 5-1: FREQUENCY SELECTION TABLE

FREQSEL1	FREQSEL2	FREQSEL3	f _{VCO} /f _{RCLK}	f _{RCLK} Data Rates (Mbps)
0	0	0	1	650–1300
0	0	1	2	325–650
0	1	0	4	163–325
0	1	1	6	109–216
1	0	0	8	82–162
1	0	1	12	55–108
1	1	0	16	41–81
1	1	1	24	28–54

TABLE 5-2: REFERENCE FREQUENCY SELECTION

DIVSEL1	DIVSEL2	f _{RCLK} /f _{REFCLK}
0	0	8
0	1	10
1	0	16
1	1	20

6.0 LOOP FILTER COMPONENTS

7.0 BILL OF MATERIALS

TABLE 7-1: AC-COUPLED BILL OF MATERIALS

Item	Part Number	Manufacturer	Description	Qty.
C6	293D685X0025B2T	Vishay (Note 1)	6.8μF, 25V, Tantalum Capacitor, Size B	1
C7	VJ1206Y103JXJAT	Vishay (Note 1)	0.01μF, X7R, Ceramic Capacitor, Size 1206	1
C10, C11	VJ0603Y105JXJAT	Vishay (Note 1)	1.0µF, X7R, Ceramic Capacitor, Size 0603	2
C12, C13, C14, C15, C18, C19, C27, C28	VJ0402Y104JXJAT	Vishay (Note 1)	0.1µF, X7R, Ceramic Capacitor, Size 0402	8
C20, C21, C22, C23, C24, C25, C26	VJ0402Y104JXJAT	Vishay (Note 1)	0.01µF, X7R, Ceramic Capacitor, Size 0603	7
D1	P301-ND	Panasonic (Note 2)	LED, T-1 3/4, Red Clear	1
D2	P300-ND/P301-ND	Vishay (Note 1)	T-1 3/4 Red LED	1
J2, J3, J4, J6	111-0702-001	Johnson Components (Note 3)	Red, Insulated Thumb Nut Binding Post (Jumped together)	4
J5	111-0703-001	Johnson Components (Note 3)	Black, Insulated Thumb Nut Binding Post, GND (Jumped to V _{EE})	1
Q1	459-2598-5-ND		2N2222A Transistor	1
R1	CRCW04023500F	Vishay (Note 1)	350Ω Resistor, 2%, Size 0402	1
R2	CRCW04026800F	Vishay (Note 1)	680Ω Resistor, 2%, Size 0402	1
R3, R4, R5, R6, R7, R8, R9, R10	CRCW04021001F	Vishay (Note 1)	1 kΩ Pull-up Resistors, 2%, Size 1206	8
R11, R12, R13, R14, R15, R16, R28, R29, R30, R32	CRCW04021820F	Vishay (Note 1)	182Ω Resistor, 2%, Size 0402	10
R21	CRCW06031300F	Vishay (Note 1)	130Ω Resistor, 2%, Size 0603	1
R22	CRCW04021820F	Vishay (Note 1)	12.1kΩ Resistor, 2%, Size 1206	1
R23, R24	CRCW04022825F	Vishay (Note 1)	82Ω Resistor, 2%, Size 0402	2
R25, R26	CRCW04021300F	Vishay (Note 1)	130Ω Resistor, 2%, Size 0402	2
R27	CRCW040200R0F	Vishay (Note 1)	0Ω Resistor, 2%, Size 0402	1
R31	CRCW04025000F	Vishay (Note 1)	50Ω Resistor, 2%, Size 0402	1
SMA1-SMA10	142-0701-851	Johnson Components (Note 3)	End Launch SMA Jack	10
SP1-SP6	_	_	Solder Jumper Option	6
SW1	CT2068-ND	_	8-Position, Top Actuated Slide Dip Switch	1
U1	SY87700/01	Microchip (Note 4)	3.3V 28 Mbps to 1.3 Gbps Any- Rate® Clock and Data Recovery	1
U2	SY89322V	Microchip (Note 4)	3.3/5V Dual LVTTL/LVCMOS- to-Differential LVPECL Translator	1

Note 1: Vishay: www.vishay.com

2: Panasonic: www.panasonic.com

3: Johnson Components: www.johnson-components.com

4: Microchip Technology Inc.: www.microchip.com

TABLE 7-2: DC-COUPLED BILL OF MATERIALS

Item	Part Number	Manufacturer	Description	Qty.
C6	293D685X0025B2T	Vishay (Note 1)	6.8 μF, 25V, Tantalum Capacitor, Size B	1
C7	VJ1206Y103JXJAT	Vishay (Note 1)	0.01μF, X7R, Ceramic Capacitor, Size 1206	1
C10, C11	VJ0603Y105JXJAT	Vishay (Note 1)	1.0µF, X7R, Ceramic Capacitor, Size 0603	2
C12, C13, C14, C15, C18, C19, C27, C28	VJ0402Y104JXJAT	Vishay (Note 1)	0.1µF, X7R, Ceramic Capacitor, Size 0402	8
C20, C21, C22, C23, C24, C25, C26	VJ0402Y104JXJAT	Vishay (Note 1)	0.01µF, X7R, Ceramic Capacitor, Size 0603	7
D1	P301-ND	Panasonic (Note 2)	LED, T-1 3/4, Red Clear	1
D2	P300-ND/P301-ND	Vishay (Note 1)	T-1 3/4 Red LED	1
J2, J3, J4, J6	111-0702-001	Johnson Components (Note 3)	Red, Insulated Thumb Nut Binding Post (Jumped together)	4
J5	111-0703-001	Johnson Components (Note 3)	Black, Insulated Thumb Nut Binding Post, GND (Jumped to V _{EE})	1
Q1	459-2598-5-ND		2N2222A Transistor	1
R1	CRCW04023500F	Vishay (Note 1)	350Ω Resistor, 2%, Size 0402	1
R2	CRCW04026800F	Vishay (Note 1)	680Ω Resistor, 2%, Size 0402	1
R3, R4, R5, R6, R7, R8, R9, R10	CRCW04021001F	Vishay (Note 1)	1 kΩ Pull-up Resistors, 2%, Size 1206	8
R11, R12, R13, R14, R15, R16, R28, R29, R30, R32	CRCW04021820F	Vishay (Note 1)	182Ω Resistor, 2%, Size 0402	4
R21	CRCW06031300F	Vishay (Note 1)	130Ω Resistor, 2%, Size 0603	1
R22	CRCW04021820F	Vishay (Note 1)	12.1kΩ Resistor, 2%, Size 1206	1
R27	CRCW040200R0F	Vishay (Note 1)	0Ω Resistor, 2%, Size 0402	1
R31	CRCW04025000F	Vishay (Note 1)	50Ω Resistor, 2%, Size 0402	1
SMA1-SMA10	142-0701-851	Johnson Components (Note 3)	End Launch SMA Jack	10
SP1-SP6	_	_	Solder Jumper Option	6
SW1	CT2068-ND	_	8-Position, Top Actuated Slide Dip Switch	1
U1	SY87700/01	Microchip (Note 4)	3.3V 28 Mbps to 1.3 Gbps Any- Rate® Clock and Data Recovery	1
U2	SY89322V	Microchip (Note 4)	3.3/5V Dual LVTTL/LVCMOS- to-Differential LVPECL Translator	1

Note 1: Vishay: www.vishay.com

2: Panasonic: www.panasonic.com

3: Johnson Components: www.johnson-components.com

4: Microchip Technology Inc.: www.microchip.com

SY87701AL

8.0 LAYOUT AND GENERAL SUGGESTIONS

- Establish controlled impedance stripline, microstrip, or co-planar construction techniques.
- 2. Signal paths should have, approximately, the same width as the device pads.
- All differential paths are critical timing paths, where skew should be matched to within ±10 ps.
- Signal trace impedance should not vary more than ±5%. If in doubt, perform TDR analysis of all high-speed signal traces.
- Maintain compact filter networks as close to filter pins as possible. Provide ground plane relief under filter path to reduce stray capacitance. Be careful of crosstalk coupling into the filter network.
- Maintain low jitter on the REFCLK input. Isolate
 the XTAL oscillator from power supply noise by
 adequately decoupling. Keep XTAL oscillator
 close to device, and minimize capacitive coupling from adjacent signals.
- Higher speed operation may require use of fundamental-tone (third-overtone typically have more jitter) crystal based oscillator for optimum performance. Evaluate and compare candidates by measuring TXCLK jitter.
- 8. All unused outputs must be terminated. To conserve power, unused PECL outputs can be terminated with a 1 $k\Omega$ resistor to V_{EE} .

9.0 PACKAGING INFORMATION

9.1 Package Marking Information

32-Lead TQFP*

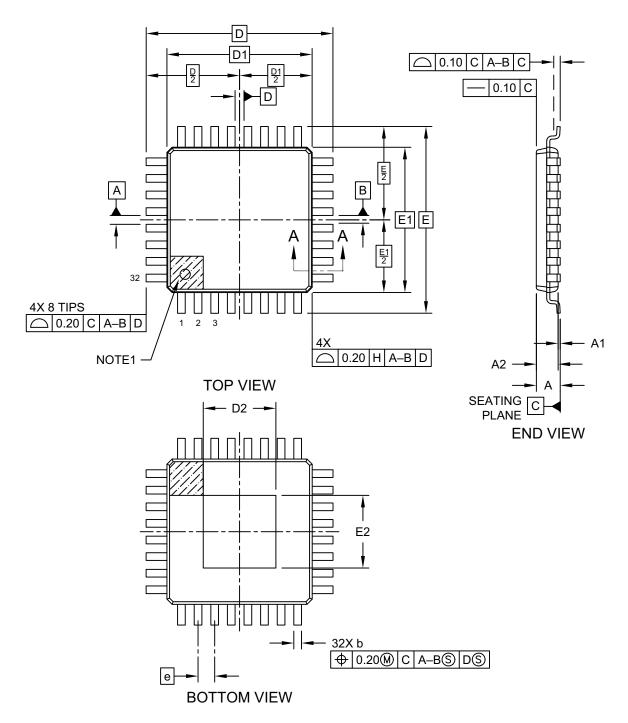
Example*

Legend: XX...X Product code or customer-specific information

W Week code

NNN Alphanumeric traceability code (week)

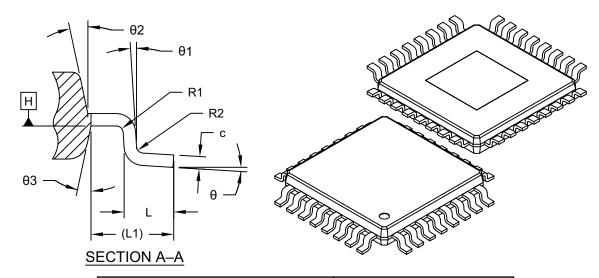
* This package is Pb-free. The Pb-free JEDEC designator can be found on the outer packaging for this package.


Pin one index is identified by a dot

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (_) symbol may not be to scale.

32-lead 7.0 mm \times 7.0 mm ePad TQFP [CNA] Package Outline and Recommended Land Pattern


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1178-CNA Rev A Sheet 1 of 2

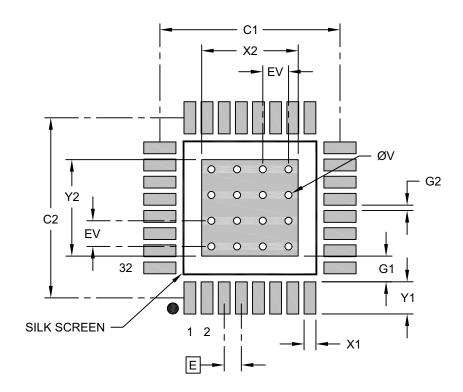
32-lead 7.0 mm \times 7.0 mm ePad TQFP [CNA] Package Outline and Recommended Land Pattern

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Terminals	N	32		
Pitch	е		0.80 BSC	
Overall Height	A	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Overall Length	D	9.00 BSC		
Molded Package Length	D1	7.00 BSC		
Exposed Pad Length	D2	3.20	3.50	3.80
Overall Width	E	9.00 BSC		
Molded Package Width	E1	7.00 BSC		
Exposed Pad Width	E2	3.20	3.50	3.80
Terminal Width	b	0.30	0.37	0.45
Terminal Thickness	С	0.09	-	0.20
Terminal Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Lead Bend Radius	R1	0.08	-	-
Lead Bend Radius	R2	0.08	-	0.20
Foot Angle	θ	0°	3.5°	7°
Lead Angle	θ1	0°	-	-
Mold Draft Angle	θ2	11°	12°	13°
Mold Draft Angle	θ3	11°	12°	13°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1178-CNA Rev A Sheet 2 of 2

32-lead 7.0 mm \times 7.0 mm ePad TQFP [CNA] Package Outline and Recommended Land Pattern

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.80 BSC		
Center Pad Width	X2			4.50
Center Pad Length	Y2			4.50
Contact Pad Spacing	C1		8.40	
Contact Pad Spacing	C2		8.40	
Contact Pad Width (X32)	X1			0.55
Contact Pad Length (X32)	Y1			1.50
Contact Pad to Center Pad (X32)	G1	1.20		
Contact Pad to Contact Pad (X28)	G2	0.25		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3178-CNA Rev A

APPENDIX A: REVISION HISTORY

Revision A (September 2024)

- Converted Micrel data sheet for SY87701AL to Microchip format as DS20006927A.
- Minor text changes throughout.

61	/8 7	77	N 4	ΙΛ	
J I	(O	, ,	U I	H	

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

Part No.	XX		X	X	-XX
Device	Power Supply Voltage	Package Type		Temperature Range	Media Type
Device:	SY87701	=		28 Mbps to 1.3 ate® Clock and ery	•
Power Supp Voltage:	ly AL	=	3.3V		
Package Typ	oe: H	=	= 32-lead 7.0 mm × 7.0 mm ePad TQFP) mm
Temperature Range:	G G	= -40°C to 85°C			
Media Type:	<blaue></blaue>	=		•	

Examples:

a) SY87701ALHG

3.3V 28 Mbps to 1.3 Gbps AnyRate® Clock and Data Recovery, 3.3V Power Supply Voltage, 32-lead 7.0 mm × 7.0 mm ePad TQFP, -40°C to 85°C, 250/Tray

b) SY87701ALHG-TR

3.3V 28 Mbps to 1.3 Gbps AnyRate® Clock and Data Recovery, 3.3V Power Supply Voltage, 32-lead 7.0 mm × 7.0 mm ePad TQFP, -40°C to 85°C, 1000/Reel

Note1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

SY87701AL

TABLE 0-1: ORDERING INFORMATION

Part Number	Package Type	Operating Range	Package Marking	Finish
SY87701ALHG	H32-1	Industrial	SY87701ALHG with Pb-Free bar-line indi- cator	Matte Tin

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPlC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink. maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2024, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-0194-4

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 **Technical Support:**

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX

Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Hod Hasharon Tel: 972-9-775-5100

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820