
 AN2451
Getting Started with Core Independent Peripherals on 

AVR® Microcontrollers

Introduction

Core Independent Peripherals (CIPs) is a category of peripherals available on many AVR® devices. This
application note focuses on the tinyAVR® 1-Series, but the general principles apply across all devices
equipped with CIPs, even though the specific peripheral features and design may vary.

A CIP is designed to handle its tasks among one or multiple peripherals with no code or supervision from
the CPU to maintain the operation. This brings up many advantages, such as providing short and
predictable response times between peripherals, reducing the complexity and execution time of the
software, as well as the possibility of reduced power consumption.

There is a number of CIPs available on devices in the tinyAVR® 1-Series. Examples are: Event System
(EVSYS), Configurable Custom Logic (CCL), Timer/Counter A and B (TCA/TCB), Real Timer Counter
(RTC), Analog-to-Digital Converter (ADC), and CRCSCAN.

This application note will first introduce the two most powerful building blocks in a core independent
application: the CCL and the Event System. Then an application example is presented that combines the
CCL, Event System, RTC, and ADC to filter the signal from a button and initiate an ADC conversion core
independently. This may help users start building their own projects using CIPs.

Features

• Introduction to Configurable Custom Logic (CCL)
• Introduction to Event System (EVSYS)
• Core Independent Application Example

– Connecting peripherals through the Event System
– Filtering button signal using the CCL and alternative clock signal
– Triggering ADC conversion from filtered button signal

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 1



Table of Contents

Introduction......................................................................................................................1

Features.......................................................................................................................... 1

1. Relevant Devices.......................................................................................................3
1.1. tinyAVR 0-series...........................................................................................................................3
1.2. tinyAVR 1-series...........................................................................................................................3
1.3. megaAVR® 0-series......................................................................................................................4

2. Introduction to CCL....................................................................................................5
2.1. Truth Table....................................................................................................................................5
2.2. Two-stage Synchronizer, Filter, and Edge Detector................................................................... 15
2.3. Sequential Logic.........................................................................................................................18

3. Introduction to Event System...................................................................................23
3.1. Overview of Event Features for Peripherals in the tinyAVR® 1-Series....................................... 24

4. Application Example - Filtering Button Signal and Initiating ADC Conversion........ 26
4.1. Event System (EVSYS) Setup................................................................................................... 26
4.2. Real Time Counter (RTC) Setup................................................................................................ 27
4.3. Configurable Custom Logic (CCL) Setup...................................................................................27
4.4. Analog-to-Digital Converter (ADC) Setup...................................................................................28
4.5. Universal Synchronous and Asynchronous Receiver and Transmitter (USART) Setup............ 28
4.6. CPU Details................................................................................................................................28

5. Get Source Code from Atmel | START.................................................................... 29

6. Other Relevant Resources...................................................................................... 30

7. Revision History.......................................................................................................32

The Microchip Web Site................................................................................................ 33

Customer Change Notification Service..........................................................................33

Customer Support......................................................................................................... 33

Microchip Devices Code Protection Feature................................................................. 33

Legal Notice...................................................................................................................34

Trademarks................................................................................................................... 34

Quality Management System Certified by DNV.............................................................35

Worldwide Sales and Service........................................................................................36

 AN2451

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 2



1. Relevant Devices
This chapter lists the relevant devices for this document.

1.1 tinyAVR 0-series
The figure below shows the tinyAVR 0-series, laying out pin count variants and memory sizes:

• Vertical migration is possible without code modification, as these devices are fully pin- and feature
compatible.

• Horizontal migration to the left reduces the pin count and, therefore, the available features.

Figure 1-1. tinyAVR® 0-series Overview

8 14 20 24
Pins

Flash

ATtiny1607

ATtiny807

ATtiny1606

ATtiny806

ATtiny1604

ATtiny804

ATtiny402

ATtiny202

ATtiny404

ATtiny204

ATtiny406

32 KB

16 KB

8 KB

4 KB

2 KB

devices ATtiny~~

ATtiny~~Legend:

common data sheet

Devices with different Flash memory size typically also have different SRAM and EEPROM.

1.2 tinyAVR 1-series
The following figure shows the tinyAVR 1-series devices, laying out pin count variants and memory sizes:

• Vertical migration upwards is possible without code modification, as these devices are pin
compatible and provide the same or more features. Downward migration may require code
modification due to fewer available instances of some peripherals.

• Horizontal migration to the left reduces the pin count and, therefore, the available features.

 AN2451
Relevant Devices

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 3



Figure 1-2. tinyAVR® 1-series Overview

48 KB
 
 

32 KB
 
 

16 KB
 
 

8 KB
 
 

4 KB
 
 

2 KB

8 14 20 24
Pins

Flash

ATtiny816 ATtiny817ATtiny814

ATtiny417

ATtiny1616 ATtiny1617

ATtiny414 ATtiny416ATtiny412

ATtiny214ATtiny212

ATtiny1614

ATtiny3216 ATtiny3217

devices
ATtiny~~

ATtiny~~
Legend:

common data sheet

Devices with different Flash memory size typically also have different SRAM and EEPROM.

1.3 megaAVR® 0-series
The figure below shows the megaAVR 0-series devices, laying out pin count variants and memory sizes:

• Vertical migration is possible without code modification, as these devices are fully pin and feature
compatible.

• Horizontal migration to the left reduces the pin count and, therefore, the available features.

Figure 1-3. megaAVR® 0-series Overview

48 KB
 
 

32 KB
 
 

16 KB
 
 

8 KB
 
 

28/32 48
Pins

Flash

ATmega3208

ATmega4808

ATmega3209

ATmega4809

ATmega808

ATmega1608 ATmega1609

ATmega809

Devices with different Flash memory size typically also have different SRAM and EEPROM.

 AN2451
Relevant Devices

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 4



2. Introduction to CCL
The Configurable Custom Logic (CCL) is a programmable logic peripheral, which can be connected to a
wide range of internal and external inputs such as device pins, events, or other internal peripherals. The
CCL can serve as "glue logic" between the device peripherals and external devices.

The CCL peripheral has one pair of LookUp Tables (LUT). Each LUT consists of three inputs, a truth
table, a synchronizer, a filter, and an edge detector. Each LUT can generate an output as a user
programmable logic expression with three inputs, and any device that has CCL will have a minimum of
two LUTs available. Inputs can be individually masked. The output can be generated from the inputs
combinatorially, and filtered to remove spikes. An optional sequential logic module can be enabled. The
inputs to the sequential module are individually controlled by two independent, adjacent LUT (LUT0/
LUT1) outputs, enabling complex waveform generation.

Using the CCL can eliminate the need for additional external logic components and provide the core with
support to handle time-critical parts of the application.

Figure 2-1. CCL Overview
LUT0

LUT1

Internal
Events

I/O
Peripherals

TRUTH

clkCCL

Filter/
Synch

Edge 
Detector

SequentialLUT0-IN[2]

Internal
Events

I/O
Peripherals

TRUTH

clkCCL

Filter/
Synch

Edge 
Detector

LUT1-IN[2]

LUT0-OUT

LUT1-OUT

ENABLE

INSEL

CLKSRC

FILTSEL EDGEDET

CLKSRC

ENABLE

FILTSEL

INSEL

EDGEDET

SEQSEL

CLK_MUX_OUT

CLK_MUX_OUT

2.1 Truth Table
By using the lookup table in the LUT, it is possible to generate any logical expression with up to three
inputs. The inputs can be individually:

• Masked
• Connected to I/Os
• Driven by peripherals:

– Analog comparator output (AC)
– Timer/Counters waveform outputs (TC)
– USART
– SPI

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 5



• Driven by internal events from the Event System
• Driven by other CCL sub-modules

Understanding how to use the truth table to generate the logical expression needed is the key to make
the CCL work as intended.

Each TRUTH[x] line in the table will create one 3-input gate, and by choosing more than one TRUTH in
the table it is possible to create complex logical expressions. Each combination of the input bits (IN[2:0])
corresponds to one bit in the TRUTHn register.

Table 2-1. LUT Truth Table

IN[2] IN[1] IN[0] OUT

0 0 0 TRUTH[0]

0 0 1 TRUTH[1]

0 1 0 TRUTH[2]

0 1 1 TRUTH[3]

1 0 0 TRUTH[4]

1 0 1 TRUTH[5]

1 1 0 TRUTH[6]

1 1 1 TRUTH[7]

Table 2-2. Possible Logic Blocks

IN[] TRUTH AND NAND OR NOR XOR XNOR NOT

000 TRUTH[0] 0 1 0 1 0 1 1

001 TRUTH[1] 0 1 1 0 1 0 x

010 TRUTH[2] 0 1 1 0 1 0 x

011 TRUTH[3] 0 1 1 0 0 1 x

100 TRUTH[4] 0 1 1 0 1 0 x

101 TRUTH[5] 0 1 1 0 0 1 x

110 TRUTH[6] 0 1 1 0 0 1 x

111 TRUTH[7] 1 0 1 0 1 0 0

0x80 0x7F 0xFE 0x01 0x96 0x69 0x01

Each TRUTH[x] chosen will be OR-ed together creating the final logical expression.

Figure 2-2. 
TRUTH[0]
TRUTH[1]
TRUTH[2]
TRUTH[3]
TRUTH[4]
TRUTH[5]
TRUTH[6]
TRUTH[7]

OUT

IN[2:0]

LUTCTRL 
(ENABLE)

LUT

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 6



2.1.1 Creating Simple Logic Blocks
On each of the LUTs, it is possible to create simple logical blocks such as AND, OR, NAND, NOR, and
XOR, using the truth table with up to three inputs.

Below are some examples on how to create the most common logical gates using three inputs.

2.1.1.1 AND Gate
To get a HIGH(1) output from an AND gate, all inputs must be HIGH(1). Looking at the truth table, only
TRUTH[7] fulfills this requirement if all three inputs are used. This means that TRUTH[7] must be HIGH(1)
and the rest must be LOW(0), giving the hex value 0x80 to put into the TRUTHn register.

Figure 2-3. AND Gate

AND

LUTn outLUTn IN[1]

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
0
1

0x80

LUTn IN[2]

LUTn OUT

2.1.1.2 NAND Gate
To get a HIGH(1) output from a NAND gate, one or more of the inputs must be LOW(0). If all inputs are
HIGH(1), the output will be LOW(0). Looking at the truth table, all except TRUTH[7] fulfill this requirement.
This means that TRUTH[0] to TRUTH[6] must be HIGH(1) and TRUTH[7] must be LOW(0), giving the hex
value 0x7F to put into the TRUTHn register.

Figure 2-4. NAND Gate

NAND

LUTn outLUTn IN[1]

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
1
1
1
1
1
0

0x7F

LUTn IN[2]

LUTn OUT

2.1.1.3 OR Gate
To get a HIGH(1) output from an OR gate, one or more of the inputs must be HIGH(1). If all inputs are
LOW(0), the output will be LOW(0). Looking at the truth table, all except TRUTH[0] fulfill this requirement.
This means that TRUTH[1] to TRUTH[7] must be HIGH(1) and TRUTH[0] must be LOW(0), giving the hex
value 0xFE to put into the TRUTHn register.

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 7



Figure 2-5. OR Gate

OR

LUTn outLUTn IN[1]

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
1
1
1
1
1

0xFE

LUTn IN[2]

LUTn OUT

2.1.1.4 NOR Gate
To get a HIGH(1) output from a NOR gate, all the inputs must be LOW(0). If any of the inputs are
HIGH(1), the output will be LOW(0). Looking at the truth table, only TRUTH[0] fulfill this requirement. This
means that TRUTH[1] to TRUTH[7] must be LOW(0) and TRUTH[0] must be HIGH(1), giving the hex
value 0x01 to put into the TRUTHn register.

Figure 2-6. NOR Gate

NOR

LUTn outLUTn IN[1]

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
0
0
0
0
0
0
0

0x01

LUTn IN[2]

LUTn OUT

2.1.1.5 XOR Gate
To get a HIGH(1) output from an XOR gate, the number of HIGH(1) inputs must be odd. Looking at the
truth table, TRUTH[1], TRUTH[2], TRUTH[4], and TRUTH[7] fulfill this requirement. This means that these
must be HIGH(1) and the rest must be LOW(0), giving the hex value 0x96 to put into the TRUTHn
register.

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 8



Figure 2-7. XOR Gate

XOR

LUTn outLUTn IN[1]

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

0x96

LUTn IN[2]

LUTn OUT

2.1.1.6 XNOR Gate
To get a HIGH(1) output from an XNOR gate, the number of LOW(0) inputs must be odd. Looking at the
truth table, TRUTH[0], TRUTH[3], TRUTH[5], and TRUTH[6] fulfill this requirement. This means that these
must be HIGH(1) and the rest must be LOW(0), giving the hex value 0x69 to put into the TRUTHn
register.

Figure 2-8. XNOR Gate

XNOR

LUTn outLUTn IN[1]

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
0
0
1
0
1
1
0

0x69

LUTn IN[2]

LUTn OUT

2.1.2 Masking Inputs
Each LUT has three inputs that can be used. When not all the three inputs are needed, the unused input
can be masked (tied low). Only the TRUTH bits where the masked input is '0' can be used when looking
at the truth table to determine how the bits may be set to get the wanted logic.

When masking one input, the truth table can be simplified to have only two inputs and when masking two
inputs it can be reduced to have only one input.

The table below shows an example of the truth table when masking IN[0].

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 9



Table 2-3. LUT Truth Table when IN[0] is Masked

IN[2] IN[1] OUT

0 0 TRUTH[0]

0 1 TRUTH[2]

1 0 TRUTH[4]

1 1 TRUTH[6]

The table below shows an example of the truth table when masking IN[1].

Table 2-4. LUT Truth Table when IN[1] is Masked

IN[2] IN[0] OUT

0 0 TRUTH[0]

0 1 TRUTH[1]

1 0 TRUTH[4]

1 1 TRUTH[5]

The table below shows an example of the truth table when masking IN[2].

Table 2-5. LUT Truth Table when IN[2] is Masked

IN[1] IN[0] OUT

0 0 TRUTH[0]

0 1 TRUTH[1]

1 0 TRUTH[2]

1 1 TRUTH[3]

The table below shows an example of the truth table when masking IN[0] and IN[1].

Table 2-6. LUT Truth Table when IN[0] and IN[1] are Masked

IN[2] OUT

0 TRUTH[0]

1 TRUTH[4]

The table below shows an example of the truth table when masking IN[0] and IN[2].

Table 2-7. LUT Truth Table when IN[0] and IN[2] are Masked

IN[1] OUT

0 TRUTH[0]

1 TRUTH[2]

The table below shows an example of the truth table when masking IN[1] and IN[2].

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 10



Table 2-8. LUT Truth Table when IN[1] and IN[2] are Masked

IN[0] OUT

0 TRUTH[0]

1 TRUTH[1]

Below are some examples of where various inputs are masked.

Figure 2-9. Two Input AND Gates, IN[0] Masked

AND

LUTn out

LUTn IN[1]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
1
0

0x40

LUTn IN[2]

LUTn OUT

Figure 2-10. Two Input OR Gates, IN[1] Masked

OR

LUTn out

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
0
0
1
1
0
0

0x32

LUTn IN[2]

LUTn OUT

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 11



Figure 2-11. Two Input XOR Gates, IN[2] Masked

XOR

LUTn out

LUTn IN[1]

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
0
0
0
0

0x06

LUTn OUT

2.1.3 Linking LUTs
Linking LUTs means taking the output of one LUT and using it as an input on another LUT. By doing this,
it is possible to solve logical expressions with up to five inputs using two LUTs. LUTn can only LINK to
LUTn+1 and the last LUT can LINK to the first LUT. The LUT output of LUTn can be linked to any of the
inputs of the other LUTn+1. When creating the truth table to determine what needs to be written in the
TRUTH register for each LUT, the truth tables for both LUTs may be done as if the LUTs were not linked.

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 12



Figure 2-12. Linking LUTs

CTRL
(ENABLE)

LUT0 SEQ 0

LUT1

CTRL
(ENABLE)

LUT2 SEQ 1

LUT3

CTRL
(ENABLE)

LUT(2n – 2) SEQ n

LUT(2n-1)

In Atmel Start it is possible to find application notes and code examples using CCL and linked LUTs.

• Quadrature Decoding using CCL with TCA and TCB

2.1.4 How to Realize Logical Expressions
Using the truth table to create simple logical gates can solve a lot of tasks, but often a more complex and
specific logical function is needed. Below are some examples on how logical expressions can be realized
based on logical expressions with up to three inputs and how these can be solved by using one LUT, and
also example on how linking two LUTs together can solve logical expression using up to five inputs.

2.1.4.1 Realize Logical Expression using One LUT
Imagine the following logical expression: � • � ⊕ � • � .

This gives the following truth table:
Table 2-9. LUT Truth Table

C B A OUT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 13

http://start.atmel.com/#examples/


...........continued
C B A OUT

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Looking at the truth table above, the value needed to be written to the TRUTH register will be 0x72.

2.1.4.2 Realize Logical Expression using Linked LUTs
Below is an example on linking LUT0 to LUT1 and how to fill out the truth tables for both LUTs.

Imagine the following logical expression: � • �⊕ � + � • �− .

The truth table for LUT0 may be created. LUT0 will take care of the first part of the logical expression� • �⊕ � .

This will give the following truth table:
Table 2-10. LUT0 Truth Table

C B A OUT

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

From the above truth table, 0x60 may go into LUT0 TRUTH register to realize the first part of the logical
expression.

Now, the truth table for LUT1 must be created. Before this can be done, it must be decided what input to
use on LUT1. All inputs can be used, and in this example LUT0 out is linked to LUT1 input 1. This will be
equal to the second column of the truth table. If input 0 was used, it would have been the first column that
may be used and the third if input 2 was used.

To make the development of the truth table for LUT1 easier, the expression could be simplified since
LUT0 already has handled the first part. The expression can be viewed like this when creating the truth
table for LUT1: � + � • �− , where X = � • �⊕ �
Table 2-11. LUT1 Truth Table

E X D OUT

0 0 0 0

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 14



...........continued
E X D OUT

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

From the above truth table, 0xCE may go into LUT1 TRUTH register to realize the second part of the
logical expression.

2.2 Two-stage Synchronizer, Filter, and Edge Detector
The truth table output is a combinatorial function of the inputs. This may cause some short glitches when
the inputs change value. These glitches may not cause any problems, but if the LUT output is set to
trigger an event, used as input on a timer or similar, an unwanted glitch may trigger unwanted events and
peripheral action. Removing these glitches by clocking through filters, the user will only get the intended
output.

2.2.1 Two-stage Synchronizer
In the synchronizer option, the output signal from the truth table is clocked through a two-stage
synchronizer, and the signal will be delayed up to two clock cycles when using this option. A glitch from
the LUT shorter than one clock cycle will be filtered out using the synchronizer as long as the glitch is not
present on the rising edge of the clock. Although useful in many situations, the two-stage synchronizer
has limitations. If the glitch is present on the rising edge on the first stage of the synchronizer, it will latch
and the glitch will become one clock cycle long when exiting the synchronizer.

Figure 2-13. Two-stage Synchronizer

D Q

R

D Q

R

D Q

R

D Q

R

FILTSEL

OUT

Input

CLK_MUX_OUT

A
B

CLR

G

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 15



Figure 2-14. Two-stage Synchronizer Timing

CLK_MUX_OUT

INPUT

A

B

OUT

2.2.2 Filter
To be sure to remove all glitches, the filter options may be selected if the user wants to avoid spikes and
glitches that affect the system. The filter will first run the signal through the two-stage synchronizer and
then further through the filter.

The XNOR acts as a majority vote and as long as the inputs to the XNOR are different from each other,
the output will be ‘0’.

• If the two XNOR inputs are equal, its output is ‘1’
• If the XNOR output is ‘1’, the gate input on the last D flip-flop is high
• If the XNOR output is ‘0’, the gate input on the last D flip-flop is low

When a filter is enabled, the output will be delayed up to four CLK cycles. Using these options, any output
from the LUT shorter than two synchronized clock cycles will be filtered out.

Sometimes, based on the logic values used as inputs to the LUT, a valid output signal can be high for a
few clock cycles. If the filter option is chosen in such cases, it will break the function of the system by
filtering out valid signals. The filter may only be used when it does not matter if the signal is delayed or
shortened by the filter. Before implementing any of the filter options, it would be recommended to analyze
what is the shortest valid signal out of the LUT in the current configuration. If the shortest signal is shorter
than two cycles, a filter must not be used.

Figure 2-15. Filter

D Q

R

D Q

R

D Q

R

D Q

R

FILTSEL

OUT

Input

CLK_MUX_OUT

A
B

C

D

CLR

G

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 16



Figure 2-16. Filter timing

CLK_MUX_OUT

INPUT

A

B

OUT

C
D

2.2.3 Edge Detector
The edge detector can be enabled to generate a pulse when a rising edge on the input is detected. To
detect a falling edge, the truth table may be programmed to provide the opposite level. An example is to
send a pulse with the Event System to trigger another peripheral, e.g. a timer, every time the truth table
has output HIGH(1).

Figure 2-17. Edge Detector

CLK_MUX_OUT

Q/

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 17



Figure 2-18. Edge Detector Timing

CLK_MUX_OUT

INPUT

OUT

Q/

2.3 Sequential Logic
Each LUT pair can be connected to an internal sequential logic. The sequential selection bits, SEQSEL in
the Sequential Control register, select between the different blocks available. Sequential logic can be
used to achieve more complex functionality in the CCL.

The CCL has the following sequential logic blocks:

• Gated D Flip-Flop (DFF)
• JK Flip-Flop (JK)
• Gated D-Latch (DLATCH)
• RS Latch (RS)

In addition, a T Flip-Flop can be created using the JK Flip-Flop.

In Atmel Start it is possible to find application notes and code examples that use CCL and sequential
logic. For example:

• AVR42779 Ultrasonic Distance Measurement

2.3.1 Gated D Flip-Flop
The D flip-flop (DFF) is a widely used and is often called "data" or "delay" flip-flop. When G input is high,
the flip-flop captures the value of the D-input and the captured value becomes the Q output. If the G input
is low, the D input is ignored and the Q output is unchanged from its last state. The DFF can be seen as a
memory cell, a zero-order hold, or a delay line.

The D-input is driven by the even LUT output (LUT0), and the G-input is driven by the odd LUT output
(LUT1).

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 18

http://start.atmel.com/#examples/
https://en.wikipedia.org/wiki/Zero-order_hold
https://en.wikipedia.org/wiki/Analog_delay_line


Figure 2-19. Gated D Flip-Flop

CLK_MUX_OUT

even LUT

odd LUT
Table 2-12. DFF Behavior

R G D OUT

1 X X Clear

0 1 1 Set

0 Clear

0 X Hold state (no change)

2.3.2 JK Flip-Flop
The JK flip-flop is the most widely used of all the flip-flops and can be viewed as a universal flip-flop,
since it can be configured to behave as an SR flip-flop, a D flip-flop, or a T flip-flop. It is basically a gated
SR flip-flop without the illegal output states when J and K are equal or logic ‘1’.

The J-input is driven by the even LUT output (LUT0), and the K-input is driven by the odd LUT output
(LUT1).

Figure 2-20. JK Flip-Flop

CLK_MUX_OUT

even LUT

odd LUT

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 19



Table 2-13. JK Behavior

R J K OUT

1 X X Clear

0 0 0 Hold state (no change)

0 0 1 Clear

0 1 0 Set

0 1 1 Toggle

2.3.3 Gated D-Latch
The D-latch is a multivibrator latch circuit without the illegal input state that the SR latch has when both
inputs are high. The D-latch is known as a transparent latch. This means that as long as the gated signal
G is high, the signal on D is propagated through the latch to the output.

The D-input is driven by the even LUT output (LUT0), and the G-input is driven by the odd LUT output
(LUT1).

Figure 2-21. Gated D-Latch

D Q

G

OUTeven LUT

odd LUT
Table 2-14. D-Latch Behavior

G D OUT

0 X Hold state (no change)

1 0 Clear

1 1 Set

2.3.4 RS Latch
The RS latch has basically the same functions as an SR latch, except in the Forbidden state where both
S and R equal ‘1’. In this state, an SR latch output will become ‘1’, but on the RS the output will be ‘0’.

The S-input is driven by the even LUT output (LUT0), and the R-input is driven by the odd LUT output
(LUT1).

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 20



Figure 2-22. RS Latch

S Q

R

OUTeven LUT

odd LUT
Table 2-15. RS Latch Behavior

S R OUT

0 0 Hold state (no change)

0 1 Clear

1 0 Set

1 1 Forbidden

2.3.5 T Flip-Flop
The T flip-flop, or toggle flip-flop, can be created by connecting both inputs on a JK flip-flop to the same
source. This type of flip-flop can be used as a frequency divider. The T flip-flop will toggle the output on
each clock cycle when both J and K inputs are high, so the output frequency will be half of the input
frequency.

The filter and edge detector can be used to filter out any spikes that would cause the JK to toggle
unintentionally.

2.3.6 Feedback
By feeding the output from the sequential logic back into the input of the LUT, a new type of device is
created: the Finite State Machine (FSM).

In some systems it might be necessary to use feedback to achieve the desired functionality. Knowing the
output state of the system can be very useful, so internal feedback from the sequential logic output is
possible to any of the inputs on both LUTs, making the feedback system very flexible.

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 21



Figure 2-23. Internal Feedback

 AN2451
Introduction to CCL

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 22



3. Introduction to Event System
The Event System (EVSYS) is a typical CIP, which allows a change in one peripheral (the event
generator) to trigger actions in other peripherals (the event users) through event channels. It is a simple
but powerful system as it allows for autonomous control of peripherals without any use of interrupts, CPU,
or DMA resources. It provides short and predictable response times between peripherals, and can reduce
the complexity, size, and execution time of the software, and save power.

AVR usually supports several parallel event channels, and one event channel can be divided into three
distinct parts:

• Event generators, with one or more event sources
• The event routing network
• Event users

An event is an indication that a change of state within a peripheral has occurred. A peripheral capable of
generating events is called an event generator. One event generator may be able to generate events on
several changes within the peripheral. Each of these is an individual event source. A channel can be
either asynchronous or synchronous to the main clock, based on the requirements of the application. For
the tinyAVR® 1-Series, there are four asynchronous and two synchronous event channels. Register
ASYNCH0, ASYNCH1, ASYNCH2, ASYNCH3, SYCNCH0, and SYNCH1 are used to configure event
sources for these channels accordingly. Only one trigger from an event generator peripheral can be
routed on each event channel, but multiple channels can use the same generator source. Multiple
peripherals can use events from the same channel.

The event routing network handles the routing of events from the event generator to the event user. Every
event source from every event generator is connected to the inputs of each of the event channels. An
event user is a peripheral module that can make use of an event to trigger an action, referred to as an
event action. An event user selects the event source to react to by selecting an event channel. The actual
event source is determined by the multiplier setting in the selected event channel.

The Event System can directly connect analog and digital converters, analog comparators, I/O port pins,
real-time counters, timer/counters, and the configurable custom logic peripherals. Events can also be
generated from software and the peripheral clock.

The following figure shows a simplified version with one timer/counter as event generator and one ADC
as an event user. The event channel MUX's can select one of three available sources to be routed
through the corresponding event channel.

 AN2451
Introduction to Event System

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 23



Figure 3-1. Example of Event Source, Generator, User, and Action

|
Event

Routing
Network Single

Conversion

Channel Sweep
Compare Match

Over-/Underflow

Error

Event Generator Event User

Event Source Event Action

Event Action Selection

Timer/Counter ADC

The Event System uses the peripheral clock for I/O registers and strobes. Also, it can be used in Sleep
modes without any clock. An event usually lasts for one clock cycle.

Manual Event Generation: It is possible to generate events either from software or by using the on-chip
debugging system. The generated events are injected directly in the event channels. The event channel
does not need to have an event source associated with it to use the manual event generation
possibilities. If an event source is associated with the event channel, the manually generated event has
priority and will override the peripheral event. Two registers are used for manual event generation:
STROBE and DATA. The event generation is triggered by a write to the STROBE register. When
generating signaling events, only the STROBE register is needed. When generating data events, both
STROBE and DATA must be used and STROBE must be written after DATA.

Events and Sleep modes: The Event System is operative in Active mode and Standby Sleep mode. In
all other Sleep modes, peripheral modules will not be able to communicate using the Event System.

3.1 Overview of Event Features for Peripherals in the tinyAVR® 1-Series
Below is an overview of event related features for peripherals in the tinyAVR® 1-Series, which are useful
for developing core independent applications. Refer to the specific device data sheet for detailed
information.

• PORT - I/O Pin Controller
– Generate events from all GPIO pins

• TCA - 16-bit Timer/Counter Type A
– Count positive edges of event signal
– Count both edges of event signal
– Count prescaled clock cycles as long as the event signal is high
– Count prescaled clock cycles. Event signal controls the count direction.
– Output events can be generated based on counter overflow, underflow, and compare match

• TCB - 16-bit Timer/Counter Type B
– Initialization, counting, and capture can be controlled by event signal

 AN2451
Introduction to Event System

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 24



– For modes that generate output, the output can be distributed as an event signal
• TCD - 12-bit Timer/Counter Type D

– Output events can be generated based on counter compare match
– Output events can be delayed by a configurable number of TCD delay clock cycles. The TCD

delay clock is a prescaled version of the TCD clock.
– Counter operation can be controlled in a number of different ways by two individual event

input signals
– Possibility of masking and filtering input events

• USART - Universal Synchronous and Asynchronous Receiver and Transmitter
– Input event signal can be used as receiver input instead of the corresponding RX pin

• RTC - Real Time Counter
– Output events can be generated on counter overflow and compare match
– Output events can be generated periodically corresponding to each nth RTC clock period,

where n is selectable from a predefined set of values
• CCL - Configurable Custom Logic

– Each Lookup table (LUT) can take two individual events as inputs for its corresponding truth
table

– The output from each LUT can be distributed as event signals
• AC - Analog Comparator

– Comparator output can be distributed as an event signal
• ADC - Analog-to-Digital Converter

– Input event can trigger an ADC conversion
• UPDI - Unified Program and Debug Interface

– Generates an output event that can be used to measure the system clock frequency

 AN2451
Introduction to Event System

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 25



4. Application Example - Filtering Button Signal and Initiating ADC
Conversion
Using the signal from a mechanical button directly into an application without any form of filtering will in
many cases lead to unpredictable behavior, since the signal often transitions several times between high
and low each time the button is pushed or released. This is often referred to as bounce. If an application
is required to act once each time a mechanical button is pressed, some form of filtering needs to be
implemented either in hardware or software, also referred to as debouncing.

This chapter describes an application example that consistently initiates a single ADC conversion when a
mechanical button is pressed, without involving the AVR core or adding external filtering. Debouncing the
button signal is accomplished by filtering it with the CCL and using the filtered signal to trigger an ADC
conversion. The signals are routed via the Event System, and when the conversion result is ready, the
result is transmitted via the USART module for verification.

The figure below shows an overview of how the utilized device modules, the CPU, and the connections
between them are configured. For details on how the application is implemented on a specific device or
evaluation kit, open and inspect the example application in Atmel START. How to find the application in
Atmel START is described in chapter 5.  Get Source Code from Atmel | START.

Figure 4-1. Example Overview

I/O Pin 
Controller 

(PORT)

Mechanical
Button

External 
Hardware

AVR® Module

Event System (EVSYS)

Real Time 
Counter 
(RTC)

Analog-to-Digital
Converter

(ADC)

Event System (EVSYS)

Configurable Custom 
Logic (CCL)

LUT

Filter

Event Channel

Event Channel

Event Channel

Filter Input

Clock Input

Button State

PIT Output

Filtered Button State

AVR® CPU
Universal 

Synchronous and 
Asynchronous 
Receiver and 
Transmitter 
(USART)

Interrupt Service 
Routine

-Store ADC result

Main Loop

Write result to USART      
transmit buffer

ADC Result Ready
 Interrupt

4.1 Event System (EVSYS) Setup
The application example uses the Event System to route the signals to and from the CCL for maximum
flexibility. The button signal and a suitable clock signal must be routed to the event inputs of a LUT, while
the output from this LUT must be routed to the ADC event input. Therefore, in this application the CCL
will be both an event generator and an event user.

 AN2451
Application Example - Filtering Button Signal ...

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 26



The event output from the Periodic Interrupt Timer (PIT) unit in the Real-Time Counter (RTC) is suitable
as a clock signal, and by using it, other timer/counters on the device are kept available for other
purposes. If the RTC clock is set to 32 kHz, a good starting point would be to select the PIT output event
corresponding to dividing the RTC clock by 1024 as the source for one event channel. This might need to
be modified depending on the characteristics of the button signal. The input event selected as IN[2] for
the LUT may then be configured to be a user of this channel.

The I/O pin connected to the button may be configured as the event generator for a second event
channel. The remaining available LUT input event may then be configured as a user of this channel. The
I/O pin may also be configured as an input with its associated pull-up resistor enabled if there is no
external pull-up resistor connected.

To trigger an ADC conversion from the filtered button signal, the LUT output may be configured as the
generator for a third event channel, while the ADC may be configured as a user.

4.2 Real Time Counter (RTC) Setup
The RTC module includes a function called PIT. The PIT uses the same clock source as the rest of the
RTC, and when enabled, provides a set of output events in the form of clock signals with periods
corresponding to n times the RTC clock period. The different PIT output events are selectable in the
Event System in the form of a set of predefined event generators, each with a different period relative to
the RTC clock.

In order to use the PIT, output events the PIT must be enabled in the RTC module.

4.3 Configurable Custom Logic (CCL) Setup
Each Lookup Table (LUT) in the CCL includes a filter that can be used to synchronize or filter the LUT
output. The filter is by default clocked by the peripheral clock signal, but an alternative clock signal
provided to the LUT on IN[2] can be used. By providing a suitable clock signal on IN[2] and the signal
from a mechanical button on either IN[0] or IN[1], a single LUT can be used to filter glitches on the button
signal that would otherwise cause unwanted behavior.

To configure a LUT for this purpose, its filter and alternative clock source features must be enabled.

The LUT inputs can be selected from a large number of different signals, among them two different event
signals. For maximum flexibility in terms of sources for the button and clock signal, the two event signals
may be selected as inputs. One of the event inputs must be assigned to IN[2] to be used as an alternative
clock signal. The other event signal may be assigned to one of the two remaining inputs, while the
unused input may be configured as Masked.

Since IN[2] will be masked as well when the alternative clock feature is enabled, only the input selected
for the button signal needs to be considered when configuring the TRUTH register of the LUT. The LUT
output may be high as long as the button is pressed. For instance, if the button signal is active-high and
available on IN[1], the TRUTH register may be set to 4. If the button signal is active-low, which is the case
for many evaluation kits, the TRUTH register may be set to 1.

Complete the CCL setup by enabling the LUT and the CCL.

Signals from I/O pins and/or other peripherals can be selected as LUT inputs instead of event signals, if
required by the application.

 AN2451
Application Example - Filtering Button Signal ...

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 27



4.4 Analog-to-Digital Converter (ADC) Setup
For the application to be able to initiate ADC conversions from an event signal instead of using the core,
the Start Event Input - feature of the ADC - must be enabled. Then, to store and handle the conversion
result as soon as it is available, the result ready interrupt may be enabled as well.

One of the internal analog sources available to the ADC is the voltage from the on-board temperature
sensor. To configure the ADC to sample the temperature sensor, the ADC reference may be set to the
internal reference, and the sensor may be selected as the ADC input signal. Then, the ADC voltage
reference may be set to 1.1V and enabled in the Voltage Reference (VREF) module.

By setting the ADC up as described, a 10-bit converted voltage value will be available in the ADC Result
register when the result ready interrupt is requested. To convert the result to a temperature value, it must
be corrected by an offset and a gain factor included in the signature row of the device. For simplicity, this
correction is not included in the application example.

4.5 Universal Synchronous and Asynchronous Receiver and Transmitter (USART)
Setup
For verification and testing purposes, it can be helpful to transmit data to a serial terminal for
visualization. To configure the USART to send data over its TX (transmit) pin, it is required to only enable
the transmitter, set the baud rate, and configure the USART TX pin as an output. By using the USART
driver provided by Atmel START, the baud rate is calculated and configured by the driver.

4.6 CPU Details
Since the result ready interrupt is enabled in the ADC and the application example may store and
transmit ADC results via the USART, the correct Interrupt Service Routine (ISR) may be implemented
along with a mechanism to forward data to the USART.

The result ready interrupt routine could be implemented similarly to the snippet below, given that the
variables ADC_result and send_flag have been defined.
ISR(ADC0_RESRDY_vect)
{
    /* Store the ADC result and notify the main loop to send the result */
    ADC_result = ADC0.RESL;
    send_flag  = 1;

    /* The Interrupt flag has to be cleared manually */
    ADC0.INTFLAGS = ADC_RESRDY_bm;
}

For simplicity, the example only stores and transmits the eight Least Significant bits of the ADC result.

Transmission of the stored value using a USART driver function generated by Atmel START can then be
implemented in the main loop in a similar way as in the snippet below.
/* ADC result has been stored and is ready to be sent */
if (send_flag) {
    USART_0_putc(ADC_result);
    send_flag = 0;
}

The ‘USART_0_putc()’ function simply writes the given eight bits to the USART transmit register.

To enable interrupts globally on the device, the I-bit in the CPU Status Register (SREG) must also be set.

 AN2451
Application Example - Filtering Button Signal ...

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 28



5. Get Source Code from Atmel | START
The example code is available through Atmel | START, which is a web-based tool that enables
configuration of application code through a Graphical User Interface (GUI). The code can be downloaded
for both Atmel Studio and IAR Embedded Workbench® via the direct example code-link below or the
Browse examples button on the Atmel | START front page.

Atmel | START web page: http://microchip.com/start

Example Code

• Getting Started with Core Independent Peripherals:
– http://start.atmel.com/#example/Atmel:getting_started_with_core_independent_peripherals:

1.0.0::Application:Getting_Started_with_Core_Independent_Peripherals:

Click User guide in Atmel | START for details and information about example projects. The User guide
button can be found in the example browser, and by clicking the project name in the dashboard view
within the Atmel | START project configurator.

Atmel Studio

Download the code as an .atzip file for Atmel Studio from the example browser in Atmel | START, by
clicking Download selected example. To download the file from within Atmel | START, click Export project
followed by Download pack.

Double click the downloaded .atzip file and the project will be imported to Atmel Studio 7.0.

IAR Embedded Workbench

For information on how to import the project in IAR Embedded Workbench, open the Atmel | START User
Guide, select Using Atmel Start Output in External Tools, and IAR Embedded Workbench. A link to the
Atmel | START User Guide can be found by clicking Help from the Atmel | START front page or Help And
Support within the project configurator, both located in the upper right corner of the page.

 AN2451
Get Source Code from Atmel | START

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 29

https://www.microchip.com/start
http://start.atmel.com/#example/Atmel%3Agetting_started_with_core_independent_peripherals%3A1.0.0%3A%3AApplication%3AGetting_Started_with_Core_Independent_Peripherals%3A
http://start.atmel.com/#example/Atmel%3Agetting_started_with_core_independent_peripherals%3A1.0.0%3A%3AApplication%3AGetting_Started_with_Core_Independent_Peripherals%3A
http://atmel-studio-doc.s3-website-us-east-1.amazonaws.com/webhelp/GUID-4E095027-601A-4343-844F-2034603B4C9C-en-US-1/index.html?GUID-31CAFDCB-DD38-462B-893D-B5A7DC63B24A
http://atmel-studio-doc.s3-website-us-east-1.amazonaws.com/webhelp/GUID-4E095027-601A-4343-844F-2034603B4C9C-en-US-1/index.html?GUID-31CAFDCB-DD38-462B-893D-B5A7DC63B24A


6. Other Relevant Resources
Below is an overview of application notes and Atmel START example projects utilizing core independent
peripherals.

Table 6-1. Atmel START Example Projects

Application note Link

Core Independent Nightlight Using Configurable
Custom Logic on ATtiny1617

http://www.microchip.com/wwwappnotes/
appnotes.aspx?appnote=en595063

Core Independent Brushless DC Fan Control
Using Configurable Custom Logic on ATtiny817

http://www.microchip.com//wwwAppNotes/
AppNotes.aspx?appnote=en592093

Digital Sound Recorder using DAC with ATtiny817 http://www.microchip.com//wwwAppNotes/
AppNotes.aspx?appnote=en592092

Core Independent Ultrasonic Distance
Measurement with ATtiny817

http://www.microchip.com//wwwAppNotes/
AppNotes.aspx?appnote=en592094

Table 6-2. Atmel START Example Projects

Example Link

Getting STARTed AVR® Events http://start.atmel.com/#application/
Atmel:Application_AVR_Examples:
1.0.0::Application:Getting_STARTed_AVR_Events:

Digital Sound Recorder http://start.atmel.com/#application/
Atmel:voice_recorder_with_dac:
1.0.0::Application:AVR42777_Digital_Sound_Recor
der:

Parrot http://start.atmel.com/#application/
Atmel:parrot_feg:
1.0.0::Application:AVR42777_Parrot:

BLDC Fan Control http://start.atmel.com/#application/
Atmel:avr42778_bldc_fan_control:
1.0.0::Application:AVR42778_BLDC_Fan_Control:

Ultrasonic Distance Measurement http://start.atmel.com/#application/
Atmel:cip_ultrasonic_distance:
1.0.0::Application:AVR42779_Ultrasonic_Distance_
Measurement:

Using ATtiny817 Event System http://start.atmel.com/#application/
Atmel:avr42815_using_event_system_on_attiny81
7:0.0.1::Application:AVR42815_-
_Using_ATtiny817_Event_System:

 AN2451
Other Relevant Resources

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 30

http://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en595063
http://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en595063
http://www.microchip.com//wwwAppNotes/AppNotes.aspx?appnote=en592093
http://www.microchip.com//wwwAppNotes/AppNotes.aspx?appnote=en592093
http://www.microchip.com//wwwAppNotes/AppNotes.aspx?appnote=en592092
http://www.microchip.com//wwwAppNotes/AppNotes.aspx?appnote=en592092
http://www.microchip.com//wwwAppNotes/AppNotes.aspx?appnote=en592094
http://www.microchip.com//wwwAppNotes/AppNotes.aspx?appnote=en592094
http://start.atmel.com/#application/Atmel:Application_AVR_Examples:1.0.0::Application:Getting_STARTed_AVR_Events:
http://start.atmel.com/#application/Atmel:Application_AVR_Examples:1.0.0::Application:Getting_STARTed_AVR_Events:
http://start.atmel.com/#application/Atmel:Application_AVR_Examples:1.0.0::Application:Getting_STARTed_AVR_Events:
http://start.atmel.com/#application/Atmel:voice_recorder_with_dac:1.0.0::Application:AVR42777_Digital_Sound_Recorder:
http://start.atmel.com/#application/Atmel:voice_recorder_with_dac:1.0.0::Application:AVR42777_Digital_Sound_Recorder:
http://start.atmel.com/#application/Atmel:voice_recorder_with_dac:1.0.0::Application:AVR42777_Digital_Sound_Recorder:
http://start.atmel.com/#application/Atmel:voice_recorder_with_dac:1.0.0::Application:AVR42777_Digital_Sound_Recorder:
http://start.atmel.com/#application/Atmel:parrot_feg:1.0.0::Application:AVR42777_Parrot:
http://start.atmel.com/#application/Atmel:parrot_feg:1.0.0::Application:AVR42777_Parrot:
http://start.atmel.com/#application/Atmel:parrot_feg:1.0.0::Application:AVR42777_Parrot:
http://start.atmel.com/#application/Atmel:avr42778_bldc_fan_control:1.0.0::Application:AVR42778_BLDC_Fan_Control:
http://start.atmel.com/#application/Atmel:avr42778_bldc_fan_control:1.0.0::Application:AVR42778_BLDC_Fan_Control:
http://start.atmel.com/#application/Atmel:avr42778_bldc_fan_control:1.0.0::Application:AVR42778_BLDC_Fan_Control:
http://start.atmel.com/#application/Atmel:cip_ultrasonic_distance:1.0.0::Application:AVR42779_Ultrasonic_Distance_Measurement:
http://start.atmel.com/#application/Atmel:cip_ultrasonic_distance:1.0.0::Application:AVR42779_Ultrasonic_Distance_Measurement:
http://start.atmel.com/#application/Atmel:cip_ultrasonic_distance:1.0.0::Application:AVR42779_Ultrasonic_Distance_Measurement:
http://start.atmel.com/#application/Atmel:cip_ultrasonic_distance:1.0.0::Application:AVR42779_Ultrasonic_Distance_Measurement:
http://start.atmel.com/#application/Atmel:avr42815_using_event_system_on_attiny817:0.0.1::Application:AVR42815_-_Using_ATtiny817_Event_System:
http://start.atmel.com/#application/Atmel:avr42815_using_event_system_on_attiny817:0.0.1::Application:AVR42815_-_Using_ATtiny817_Event_System:
http://start.atmel.com/#application/Atmel:avr42815_using_event_system_on_attiny817:0.0.1::Application:AVR42815_-_Using_ATtiny817_Event_System:
http://start.atmel.com/#application/Atmel:avr42815_using_event_system_on_attiny817:0.0.1::Application:AVR42815_-_Using_ATtiny817_Event_System:


...........continued
Example Link

Core Independent Night Light Using CCL http://start.atmel.com/#application/
Atmel:core_independent_night_light_using_ccl:
1.0.0::Application:Core_Independent_Night_Light_
using_CCL:

Quadrature Decoding Using CCL with TCA and
TCB

http://start.atmel.com/#application/
Atmel:quadrature_decoding_using_ccl_with_tca_a
nd_tcb:
1.0.0::Application:Quadrature_Decoding_using_C
CL_with_TCA_and_TCB:

Realistic Heartbeat http://start.atmel.com/#application/
Atmel:cip_realistic_heartbeat:
1.0.0::Application:Realistic_Heartbeat:

 AN2451
Other Relevant Resources

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 31

http://start.atmel.com/#application/Atmel:core_independent_night_light_using_ccl:1.0.0::Application:Core_Independent_Night_Light_using_CCL:
http://start.atmel.com/#application/Atmel:core_independent_night_light_using_ccl:1.0.0::Application:Core_Independent_Night_Light_using_CCL:
http://start.atmel.com/#application/Atmel:core_independent_night_light_using_ccl:1.0.0::Application:Core_Independent_Night_Light_using_CCL:
http://start.atmel.com/#application/Atmel:core_independent_night_light_using_ccl:1.0.0::Application:Core_Independent_Night_Light_using_CCL:
http://start.atmel.com/#application/Atmel:quadrature_decoding_using_ccl_with_tca_and_tcb:1.0.0::Application:Quadrature_Decoding_using_CCL_with_TCA_and_TCB:
http://start.atmel.com/#application/Atmel:quadrature_decoding_using_ccl_with_tca_and_tcb:1.0.0::Application:Quadrature_Decoding_using_CCL_with_TCA_and_TCB:
http://start.atmel.com/#application/Atmel:quadrature_decoding_using_ccl_with_tca_and_tcb:1.0.0::Application:Quadrature_Decoding_using_CCL_with_TCA_and_TCB:
http://start.atmel.com/#application/Atmel:quadrature_decoding_using_ccl_with_tca_and_tcb:1.0.0::Application:Quadrature_Decoding_using_CCL_with_TCA_and_TCB:
http://start.atmel.com/#application/Atmel:quadrature_decoding_using_ccl_with_tca_and_tcb:1.0.0::Application:Quadrature_Decoding_using_CCL_with_TCA_and_TCB:
http://start.atmel.com/#application/Atmel:cip_realistic_heartbeat:1.0.0::Application:Realistic_Heartbeat:
http://start.atmel.com/#application/Atmel:cip_realistic_heartbeat:1.0.0::Application:Realistic_Heartbeat:
http://start.atmel.com/#application/Atmel:cip_realistic_heartbeat:1.0.0::Application:Realistic_Heartbeat:


7. Revision History
Doc Rev. Date Comments

C 10/2018 Updated figures 1-1, 1-2, 1-3 in chapter "Relevant Devices". Fixed grammar and
punctuation.

B 02/2018 Chapter “Relevant Devices” has been updated to include tinyAVR 0-series and
megaAVR 0-series.

A 04/2017 Initial document revision.

 AN2451
Revision History

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 32



The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 AN2451

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 33

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support


• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 AN2451

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 34



© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-3679-9

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 AN2451

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 35



AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2018 Microchip Technology Inc.  Application Note DS00002451C-page 36


	Introduction
	Features
	Table of Contents
	1. Relevant Devices
	1.1. tinyAVR 0-series
	1.2. tinyAVR 1-series
	1.3. megaAVR® 0-series

	2. Introduction to CCL
	2.1. Truth Table
	2.1.1. Creating Simple Logic Blocks
	2.1.1.1. AND Gate
	2.1.1.2. NAND Gate
	2.1.1.3. OR Gate
	2.1.1.4. NOR Gate
	2.1.1.5. XOR Gate
	2.1.1.6. XNOR Gate

	2.1.2. Masking Inputs
	2.1.3. Linking LUTs
	2.1.4. How to Realize Logical Expressions
	2.1.4.1. Realize Logical Expression using One LUT
	2.1.4.2. Realize Logical Expression using Linked LUTs


	2.2. Two-stage Synchronizer, Filter, and Edge Detector
	2.2.1. Two-stage Synchronizer
	2.2.2. Filter
	2.2.3. Edge Detector

	2.3. Sequential Logic
	2.3.1. Gated D Flip-Flop
	2.3.2. JK Flip-Flop
	2.3.3. Gated D-Latch
	2.3.4. RS Latch
	2.3.5. T Flip-Flop
	2.3.6. Feedback


	3. Introduction to Event System
	3.1. Overview of Event Features for Peripherals in the tinyAVR® 1-Series

	4. Application Example - Filtering Button Signal and Initiating ADC Conversion
	4.1. Event System (EVSYS) Setup
	4.2. Real Time Counter (RTC) Setup
	4.3. Configurable Custom Logic (CCL) Setup
	4.4. Analog-to-Digital Converter (ADC) Setup
	4.5. Universal Synchronous and Asynchronous Receiver and Transmitter (USART) Setup
	4.6. CPU Details

	5. Get Source Code from Atmel | START
	6. Other Relevant Resources
	7. Revision History
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service



