
 SMART ARM-based Microcontrollers

 AT03229: SAM D/R/L/C Peripheral Access
Controller (PAC) Driver

 APPLICATION NOTE

Introduction

This driver for Atmel® | SMART ARM®-based microcontroller provides an
interface for the locking and unlocking of peripheral registers within the
device. When a peripheral is locked, accidental writes to the peripheral will
be blocked and a CPU exception will be raised.

The following peripherals are used by this module:
• PAC (Peripheral Access Controller)

The following devices can use this module:
• Atmel | SMART SAM D20/D21
• Atmel | SMART SAM R21
• Atmel | SMART SAM D09/D10/D11
• Atmel | SMART SAM L21/L22
• Atmel | SMART SAM DA1
• Atmel | SMART SAM C20/C21

The outline of this documentation is as follows:
• Prerequisites
• Module Overview
• Special Considerations
• Extra Information
• Examples
• API Overview

Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

Table of Contents

Introduction..1

1. Software License... 3

2. Prerequisites..4

3. Module Overview...5
3.1. Locking Scheme...5
3.2. Recommended Implementation..5
3.3. Why Disable Interrupts... 7
3.4. Run-away Code..8

3.4.1. Key-Argument..10
3.5. Faulty Module Pointer...11
3.6. Use of __no_inline..11
3.7. Physical Connection... 11

4. Special Considerations..12
4.1. Non-Writable Registers.. 12
4.2. Reading Lock State.. 12

5. Extra Information... 13

6. Examples...14

7. API Overview...15
7.1. Macro Definitions..15

7.1.1. Macro SYSTEM_PERIPHERAL_ID...15
7.2. Function Definitions..15

7.2.1. Peripheral Lock and Unlock...15
7.2.2. APIs available for SAM L21/L22/C20/C21...16

8. Extra Information for PAC Driver... 18
8.1. Acronyms..18
8.2. Dependencies...18
8.3. Errata..18
8.4. Module History..18

9. Examples for PAC Driver... 20
9.1. Quick Start Guide for PAC - Basic..20

9.1.1. Setup... 20
9.1.2. Use Case... 20

10. List of Non-Write Protected Registers... 23

11. Document Revision History... 25

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

2

1. Software License
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived from this software without
specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

3

2. Prerequisites
There are no prerequisites for this module.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

4

3. Module Overview
The SAM devices are fitted with a Peripheral Access Controller (PAC) that can be used to lock and unlock
write access to a peripheral's registers (see Non-Writable Registers). Locking a peripheral minimizes the
risk of unintended configuration changes to a peripheral as a consequence of Run-away Code or use of a
Faulty Module Pointer.

Physically, the PAC restricts write access through the AHB bus to registers used by the peripheral,
making the register non-writable. PAC locking of modules should be implemented in configuration critical
applications where avoiding unintended peripheral configuration changes are to be regarded in the
highest of priorities.

All interrupt must be disabled while a peripheral is unlocked to make sure correct lock/unlock scheme is
upheld.

3.1. Locking Scheme
The module has a built in safety feature requiring that an already locked peripheral is not relocked, and
that already unlocked peripherals are not unlocked again. Attempting to unlock and already unlocked
peripheral, or attempting to lock a peripheral that is currently locked will generate a CPU exception. This
implies that the implementer must keep strict control over the peripheral's lock-state before modifying
them. With this added safety, the probability of stopping runaway code increases as the program pointer
can be caught inside the exception handler, and necessary countermeasures can be initiated. The
implementer should also consider using sanity checks after an unlock has been performed to further
increase the security.

3.2. Recommended Implementation
A recommended implementation of the PAC can be seen in Figure 3-1 Recommended Implementation
on page 6.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

5

Figure 3-1. Recommended Implementation

Initialization and code

Peripheral Modification

Initialize Peripheral

Lock peripheral

Disable global interrupts

Other initialization
and enable interrupts if applicable

Unlock peripheral

Sanity Check

Modify peripheral

Lock peripheral

Enable global interrupts

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

6

3.3. Why Disable Interrupts
Global interrupts must be disabled while a peripheral is unlocked as an interrupt handler would not know
the current state of the peripheral lock. If the interrupt tries to alter the lock state, it can cause an
exception as it potentially tries to unlock an already unlocked peripheral. Reading current lock state is to
be avoided as it removes the security provided by the PAC (Reading Lock State).

Note:  Global interrupts should also be disabled when a peripheral is unlocked inside an interrupt
handler.

An example to illustrate the potential hazard of not disabling interrupts is shown in Figure 3-2 Why
Disable Interrupts on page 8.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

7

Figure 3-2. Why Disable Interrupts

Main routine

Interrupt handler

Initialize and lock peripherals

Unlock peripheral

User code

Modify peripheral

Lock peripheral Unlock peripheral

Interrupt

Modify peripheral Exception

Lock peripheral

3.4. Run-away Code
Run-away code can be caused by the MCU being operated outside its specification, faulty code, or EMI
issues. If a runaway code occurs, it is favorable to catch the issue as soon as possible. With a correct
implementation of the PAC, the runaway code can potentially be stopped.

A graphical example showing how a PAC implementation will behave for different circumstances of
runaway code in shown in Figure 3-3 Run-away Code on page 9 and Figure 3-4 Run-away Code on
page 10.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

8

Figure 3-3. Run-away Code

1. Run-away code is caught in sanity check.
A CPU exception is executed.

2. Run-away code is caught when modifying
locked peripheral. A CPU exception is executed.

Run-away code

PC# Code

0x0020 initialize peripheral

0x0025 lock peripheral

... ...

0x0080 set sanity argument

... ...

0x0115 disable interrupts

0x0120 unlock peripheral

0x0125 check sanity argument

0x0130 modify peripheral

0x0140 lock peripheral

0x0145 disable interrupts

Run-away code

PC# Code

0x0020 initialize peripheral

0x0025 lock peripheral

... ...

0x0080 set sanity argument

... ...

0x0115 disable interrupts

0x0120 unlock peripheral

0x0125 check sanity argument

0x0130 modify peripheral

0x0140 lock peripheral

0x0145 disable interrupts

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

9

Figure 3-4. Run-away Code

3. Run-away code is caught when locking
locked peripheral. A CPU exception is executed.

4. Run-away code is not caught.

Run-away code

PC# Code

0x0020 initialize peripheral

0x0025 lock peripheral

... ...

0x0080 set sanity argument

... ...

0x0115 disable interrupts

0x0120 unlock peripheral

0x0125 check sanity argument

0x0130 modify peripheral

0x0140 lock peripheral

0x0145 disable interrupts

Run-away code

PC# Code

0x0020 initialize peripheral

0x0025 lock peripheral

... ...

0x0080 set sanity argument

... ...

0x0115 disable interrupts

0x0120 unlock peripheral

0x0125 check sanity argument

0x0130 modify peripheral

0x0140 lock peripheral

0x0145 disable interrupts

In the example, green indicates that the command is allowed, red indicates where the runaway code will
be caught, and the arrow where the runaway code enters the application. In special circumstances, like
example 4 above, the runaway code will not be caught. However, the protection scheme will greatly
enhance peripheral configuration security from being affected by runaway code.

3.4.1. Key-Argument

To protect the module functions against runaway code themselves, a key is required as one of the input
arguments. The key-argument will make sure that runaway code entering the function without a function
call will be rejected before inflicting any damage. The argument is simply set to be the bitwise inverse of
the module flag, i.e.

system_peripheral_<lock_state>(SYSTEM_PERIPHERAL_<module>,
 ~SYSTEM_PERIPHERAL_<module>);

Where the lock state can be either lock or unlock, and module refer to the peripheral that is to be locked/
unlocked.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

10

3.5. Faulty Module Pointer
The PAC also protects the application from user errors such as the use of incorrect module pointers in
function arguments, given that the module is locked. It is therefore recommended that any unused
peripheral is locked during application initialization.

3.6. Use of __no_inline
Using the function attribute __no_inline will ensure that there will only be one copy of each functions in
the PAC driver API in the application. This will lower the likelihood that runaway code will hit any of these
functions.

3.7. Physical Connection
Figure 3-5 Physical Connection on page 11 shows how this module is interconnected within the device.

Figure 3-5. Physical Connection

Peripheral bus

PAC

Lock

Open

Open

Read/Write

Read/Write

Read/Write

Peripheral1Read

Peripheral2Read/Write

Peripheral3Read/Write

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

11

4. Special Considerations

4.1. Non-Writable Registers
Not all registers in a given peripheral can be set non-writable. Which registers this applies to is showed in
List of Non-Write Protected Registers and the peripheral's subsection "Register Access Protection" in the
device datasheet.

4.2. Reading Lock State
Reading the state of the peripheral lock is to be avoided as it greatly compromises the protection initially
provided by the PAC. If a lock/unlock is implemented conditionally, there is a risk that eventual errors are
not caught in the protection scheme. Examples indicating the issue are shown in Figure 4-1 Reading
Lock State on page 12.

Figure 4-1. Reading Lock State

1. Wrong implementation. 2. Correct implementation.

Run-away code
with peripheral unlocked

PC# Code

... ...

0x0100 check if locked

0x0102 disable interrupts

0x0105 unlock if locked

0x0110 check sanity

0x0115 modify peripheral

0x0120 lock if previously locked

0x0125 enable interrupts

Run-away code
with peripheral unlocked

PC# Code

... ...

0x0100 disable interrupts

0x0120 unlock peripheral

0x0125 check sanity argument

0x0130 modify peripheral

0x0140 lock peripheral

0x0145 disable interrupts

In the left figure above, one can see the runaway code continues as all illegal operations are conditional.
On the right side figure, the runaway code is caught as it tries to unlock the peripheral.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

12

5. Extra Information
For extra information, see Extra Information for PAC Driver. This includes:

• Acronyms
• Dependencies
• Errata
• Module History

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

13

6. Examples
For a list of examples related to this driver, see Examples for PAC Driver.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

14

7. API Overview

7.1. Macro Definitions

7.1.1. Macro SYSTEM_PERIPHERAL_ID

#define SYSTEM_PERIPHERAL_ID(peripheral)

Retrieves the ID of a specified peripheral name, giving its peripheral bus location.

Table 7-1. Parameters

Data direction Parameter name Description

[in] peripheral Name of the peripheral instance

7.2. Function Definitions

7.2.1. Peripheral Lock and Unlock

7.2.1.1. Function system_peripheral_lock()

Lock a given peripheral's control registers.

__no_inline enum status_code system_peripheral_lock(
 const uint32_t peripheral_id,
 const uint32_t key)

Locks a given peripheral's control registers, to deny write access to the peripheral to prevent accidental
changes to the module's configuration.

Warning Locking an already locked peripheral will cause a CPU exception, and terminate program
execution.

Table 7-2. Parameters

Data direction Parameter name Description

[in] peripheral_id ID for the peripheral to be locked, sourced via the
SYSTEM_PERIPHERAL_ID macro

[in] key Bitwise inverse of peripheral ID, used as key to reduce the chance
of accidental locking. See Key-Argument

Returns
Status of the peripheral lock procedure.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

15

Table 7-3. Return Values

Return value Description

STATUS_OK If the peripheral was successfully locked

STATUS_ERR_INVALID_ARG If invalid argument(s) were supplied

7.2.1.2. Function system_peripheral_unlock()

Unlock a given peripheral's control registers.

__no_inline enum status_code system_peripheral_unlock(
 const uint32_t peripheral_id,
 const uint32_t key)

Unlocks a given peripheral's control registers, allowing write access to the peripheral so that changes can
be made to the module's configuration.

Warning Unlocking an already locked peripheral will cause a CUP exception, and terminate program
execution.

Table 7-4. Parameters

Data direction Parameter name Description

[in] peripheral_id ID for the peripheral to be unlocked, sourced via the
SYSTEM_PERIPHERAL_ID macro

[in] key Bitwise inverse of peripheral ID, used as key to reduce the chance
of accidental unlocking. See Key-Argument

Returns
Status of the peripheral unlock procedure.

Table 7-5. Return Values

Return value Description

STATUS_OK If the peripheral was successfully locked

STATUS_ERR_INVALID_ARG If invalid argument(s) were supplied

7.2.2. APIs available for SAM L21/L22/C20/C21.

7.2.2.1. Function system_peripheral_lock_always()

Lock a given peripheral's control registers until hardware reset.

__no_inline enum status_code system_peripheral_lock_always(
 const uint32_t peripheral_id,
 const uint32_t key)

Locks a given peripheral's control registers, to deny write access to the peripheral to prevent accidental
changes to the module's configuration. After lock, the only way to unlock is hardware reset.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

16

Warning Locking an already locked peripheral will cause a CPU exception, and terminate program
execution.

Table 7-6. Parameters

Data direction Parameter name Description

[in] peripheral_id ID for the peripheral to be locked, sourced via the
SYSTEM_PERIPHERAL_ID macro

[in] key Bitwise inverse of peripheral ID, used as key to reduce the chance
of accidental locking. See Key-Argument

Returns
Status of the peripheral lock procedure.

Table 7-7. Return Values

Return value Description

STATUS_OK If the peripheral was successfully locked

STATUS_ERR_INVALID_ARG If invalid argument(s) were supplied

7.2.2.2. Function system_pac_enable_interrupt()

Enable PAC interrupt.

void system_pac_enable_interrupt(void)

Enable PAC interrupt so can trigger execution on peripheral access error, see SYSTEM_Handler().

7.2.2.3. Function system_pac_disable_interrupt()

Disable PAC interrupt.

void system_pac_disable_interrupt(void)

Disable PAC interrupt on peripheral access error.

7.2.2.4. Function system_pac_enable_event()

Enable PAC event output.

void system_pac_enable_event(void)

Enable PAC event output on peripheral access error.

7.2.2.5. Function system_pac_disable_event()

Disable PAC event output.

void system_pac_disable_event(void)

Disable PAC event output on peripheral access error.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

17

8. Extra Information for PAC Driver

8.1. Acronyms
Below is a table listing the acronyms used in this module, along with their intended meanings.

Acronym Description

AC Analog Comparator

ADC Analog-to-Digital Converter

EVSYS Event System

NMI Non-Maskable Interrupt

NVMCTRL Non-Volatile Memory Controller

PAC Peripheral Access Controller

PM Power Manager

RTC Real-Time Counter

SERCOM Serial Communication Interface

SYSCTRL System Controller

TC Timer/Counter

WDT Watch Dog Timer

8.2. Dependencies
This driver has the following dependencies:

• None

8.3. Errata
There are no errata related to this driver.

8.4. Module History
An overview of the module history is presented in the table below, with details on the enhancements and
fixes made to the module since its first release. The current version of this corresponds to the newest
version in the table.

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

18

Changelog

Initial Release

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

19

9. Examples for PAC Driver
This is a list of the available Quick Start guides (QSGs) and example applications for SAM Peripheral
Access Controller (PAC) Driver. QSGs are simple examples with step-by-step instructions to configure
and use this driver in a selection of use cases. Note that a QSG can be compiled as a standalone
application or be added to the user application.

• Quick Start Guide for PAC - Basic

9.1. Quick Start Guide for PAC - Basic

In this use case, the peripheral-lock will be used to lock and unlock the PORT peripheral access, and
show how to implement the PAC module when the PORT registers needs to be altered. The PORT will be
set up as follows:

• One pin in input mode, with pull-up and falling edge-detect
• One pin in output mode

9.1.1. Setup

9.1.1.1. Prerequisites

There are no special setup requirements for this use-case.

9.1.1.2. Code

Copy-paste the following setup code to your user application:
void config_port_pins(void)
{
 struct port_config pin_conf;

 port_get_config_defaults(&pin_conf);

 pin_conf.direction = PORT_PIN_DIR_INPUT;
 pin_conf.input_pull = PORT_PIN_PULL_UP;
 port_pin_set_config(BUTTON_0_PIN, &pin_conf);

 pin_conf.direction = PORT_PIN_DIR_OUTPUT;
 port_pin_set_config(LED_0_PIN, &pin_conf);
}

Add to user application initialization (typically the start of main()):

config_port_pins();

9.1.2. Use Case

9.1.2.1. Code

Copy-paste the following code to your user application:
system_init();

config_port_pins();
system_peripheral_lock(SYSTEM_PERIPHERAL_ID(PORT),
 ~SYSTEM_PERIPHERAL_ID(PORT));

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

20

#if(SAML21)|| (SAML22) || (SAMC21) || defined(__DOXYGEN__)
 system_pac_enable_interrupt();
#endif
 system_interrupt_enable_global();
while (port_pin_get_input_level(BUTTON_0_PIN)) {
 /* Wait for button press */
}
system_interrupt_enter_critical_section();
system_peripheral_unlock(SYSTEM_PERIPHERAL_ID(PORT),
 ~SYSTEM_PERIPHERAL_ID(PORT));
port_pin_toggle_output_level(LED_0_PIN);
system_peripheral_lock(SYSTEM_PERIPHERAL_ID(PORT),
 ~SYSTEM_PERIPHERAL_ID(PORT));
system_interrupt_leave_critical_section();
while (1) {
 /* Do nothing */
}

9.1.2.2. Workflow

1. Configure some GPIO port pins for input and output.
config_port_pins();

2. Lock peripheral access for the PORT module; attempting to update the module while it is in a
protected state will cause a CPU exception. For SAM D20/D21/D10/D11/R21/DA0/DA1, it is Hard
Fault exception; For SAM L21/C21, it is system exception, see SYSTEM_Handler().
system_peripheral_lock(SYSTEM_PERIPHERAL_ID(PORT),
 ~SYSTEM_PERIPHERAL_ID(PORT));

3. Enable global interrupts.
#if (SAML21) || (SAML22) || (SAMC21) || defined(__DOXYGEN__)
 system_pac_enable_interrupt();
#endif
 system_interrupt_enable_global();

4. Loop to wait for a button press before continuing.
while (port_pin_get_input_level(BUTTON_0_PIN)) {
 /* Wait for button press */
}

5. Enter a critical section, so that the PAC module can be unlocked safely and the peripheral
manipulated without the possibility of an interrupt modifying the protected module's state.
system_interrupt_enter_critical_section();

6. Unlock the PORT peripheral registers.
system_peripheral_unlock(SYSTEM_PERIPHERAL_ID(PORT),
 ~SYSTEM_PERIPHERAL_ID(PORT));

7. Toggle pin 11, and clear edge detect flag.
port_pin_toggle_output_level(LED_0_PIN);

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

21

8. Lock the PORT peripheral registers.
system_peripheral_lock(SYSTEM_PERIPHERAL_ID(PORT),
 ~SYSTEM_PERIPHERAL_ID(PORT));

9. Exit the critical section to allow interrupts to function normally again.
system_interrupt_leave_critical_section();

10. Enter an infinite while loop once the module state has been modified successfully.
while (1) {
 /* Do nothing */
}

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

22

10. List of Non-Write Protected Registers
Look in device datasheet peripheral's subsection "Register Access Protection" to see which is actually
available for your device.

Module Non-write protected register

AC INTFLAG

STATUSA

STATUSB

STATUSC

ADC INTFLAG

STATUS

RESULT

EVSYS INTFLAG

CHSTATUS

NVMCTRL INTFLAG

STATUS

PM INTFLAG

PORT N/A

RTC INTFLAG

READREQ

STATUS

SYSCTRL INTFLAG

SERCOM INTFALG

STATUS

DATA

TC INTFLAG

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

23

Module Non-write protected register

STATUS

WDT INTFLAG

STATUS

(CLEAR)

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

24

11. Document Revision History
Doc. Rev. Date Comments

42107F 12/2015 Added support for SAM L21/L22, SAM C20/C21, SAM D09, and SAM DA1

42107E 12/2014 Added support for SAM R21 and SAM D10/D11

42107D 01/2014 Added support for SAM D21

42107C 10/2013 Extended acronyms list

42107B 06/2013 Corrected documentation typos

42107A 06/2013 Initial document release

Atmel AT03229: SAM D/R/L/C Peripheral Access Controller (PAC) Driver [APPLICATION NOTE]
Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

25

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42107F-SAM-Peripheral-Access-Controller-PAC-Driver_AT03229_Application Note-12/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Software License
	2. Prerequisites
	3. Module Overview
	3.1. Locking Scheme
	3.2. Recommended Implementation
	3.3. Why Disable Interrupts
	3.4. Run-away Code
	3.4.1. Key-Argument

	3.5. Faulty Module Pointer
	3.6. Use of __no_inline
	3.7. Physical Connection

	4. Special Considerations
	4.1. Non-Writable Registers
	4.2. Reading Lock State

	5. Extra Information
	6. Examples
	7. API Overview
	7.1. Macro Definitions
	7.1.1. Macro SYSTEM_PERIPHERAL_ID

	7.2. Function Definitions
	7.2.1. Peripheral Lock and Unlock
	7.2.1.1. Function system_peripheral_lock()
	7.2.1.2. Function system_peripheral_unlock()

	7.2.2. APIs available for SAM L21/L22/C20/C21.
	7.2.2.1. Function system_peripheral_lock_always()
	7.2.2.2. Function system_pac_enable_interrupt()
	7.2.2.3. Function system_pac_disable_interrupt()
	7.2.2.4. Function system_pac_enable_event()
	7.2.2.5. Function system_pac_disable_event()

	8. Extra Information for PAC Driver
	8.1. Acronyms
	8.2. Dependencies
	8.3. Errata
	8.4. Module History

	9. Examples for PAC Driver
	9.1. Quick Start Guide for PAC - Basic
	9.1.1. Setup
	9.1.1.1. Prerequisites
	9.1.1.2. Code

	9.1.2. Use Case
	9.1.2.1. Code
	9.1.2.2. Workflow

	10. List of Non-Write Protected Registers
	11. Document Revision History

