
Serial Peripheral Interface (SPI) with Audio Codec Support
HIGHLIGHTS
This section of the manual contains the following major topics:

1.0 Introduction ... 2
2.0 Status and Control Registers .. 6
3.0 Modes of Operation .. 21
4.0 Audio Protocol Interface Mode.. 36
5.0 Interrupts... 56
6.0 Operation in Power-Saving and Debug Modes... 58
7.0 Effects of Various Resets .. 59
8.0 Peripherals Using SPI Modules .. 59
9.0 Related Application Notes... 60
10.0 Revision History .. 61
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 1

dsPIC33/PIC24 Family Reference Manual
1.0 INTRODUCTION
The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for
communicating with external peripherals and other microcontroller devices. These peripheral
devices may be a serial EEPROM, shift register, display driver, Analog-to-Digital Converter
(ADC) or an audio codec. The dsPIC33/PIC24 family SPI module is compatible with Motorola®

SPI and SIOP interfaces. Figure 1-1 shows a block diagram of the SPI module.
Some of the key features of this module are:
• Host and Client modes support
• Four different clock formats
• Framed SPI protocol support
• Standard and Enhanced Buffering modes (Enhanced Buffering mode is not available on all

devices)
• User-configurable 8-bit, 16-bit and 32-bit data width
• Two separate shift registers for transmission and reception
• SPIx receive and transmit buffers are FIFO buffers in Enhanced Buffering mode
• User-configurable variable data width, from 2 to 32-bit
• Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
• Audio Protocol Interface mode
Some dsPIC33/PIC24 devices support audio codec serial protocols, such as Inter-IC Sound
(I2S), Left Justified, Right Justified and PCM/DSP modes for 16, 24 and 32-bit audio data. Refer
to the specific device data sheet for availability of these features.
The SPI serial interface consists of four pins:
• SDIx: Serial Data Input
• SDOx: Serial Data Output
• SCKx: Shift Clock Input or Output
• SSx: Active-Low Client Select or Frame Synchronization I/O Pulse

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all dsPIC33/PIC24 devices.
Please consult the note at the beginning of the “Serial Peripheral Interface
(SPI)” chapter in the current device data sheet to check whether this document
supports the device you are using.
Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Website at: http://www.microchip.com
DS70005136B-page 2  2013-2022 Microchip Technology Inc. and its subsidiaries

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

 Serial Peripheral Interface (SPI) with Audio Codec Support
Figure 1-1: SPIx Module Block Diagram

Internal
Data Bus

SDIx

SDOx

SSx

SCKx

SPIxRXSR(2)

Shift
Control

Enable Host Clock

Transmit

SPIxRXB(1)

Receive

Note 1: The SPIx Receive Buffer (SPIxRXB) and SPIx Transmit Buffer (SPIxTXB) registers are accessed through the
SPIxBUF register and are multi-element FIFO buffers in Enhanced Buffer mode (pointer arithmetic is circular
for these buffers). Enhanced Buffer mode is not available on all devices. Refer to the specific device data
sheet for availability.

2: The SPIx Shift register is not directly accessible by application software.
3: When the CPU Read Pointer (CRPTR) is less than or equal to the SPI Write Pointer (SWPTR), the CRPTR is

incremented when the application reads a data element from the SPIxRXB register and the SWPTR is
incremented when a data element is moved from the SPIxRXSR register to the SPIxRXB register.

4: The SPI Read Pointer (SRPTR) is less than or equal to the CPU Write Pointer (CWPTR). The CWPTR is
incremented when the application writes a new data element to the SPIxBUF register and the SRPTR is
incremented when data are moved from the SPIxTXB register to the SPIxTXSR register.

SPIxBUF

Read

PBCLK

MCLK

MCLKSEL

CWPTR(4)

SRPTR
SWPTR(3)

CRPTR

SPIxBUF

MSB

Edge
Select

TXELM[5:0]
URDTEN

MSB

SPIxTXSR(2)

SPIxTXB(1)

Write

Client Select

Sync Control
and Frame Clock

Control

Clock
Control

SPIxURDT

Generator
Baud Rate

Edge
Select
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 3

dsPIC33/PIC24 Family Reference Manual
1.1 Normal Mode SPI Operation
In Normal mode operation, the SPI Host controls the generation of the serial clock. The number of
output clock pulses corresponds to the transfer data width: 8, 16 or 32 bits, or depending upon vari-
able data width configuration, from 2 to 32-bit. Figure 1-2 and Figure 1-3 illustrate SPI host-to-client
and client-to-host device connections.

Figure 1-2: Typical SPIx Host-to-Client Device Connection Diagram

Figure 1-3: Typical SPIx Client-to-Host Device Connection Diagram

SDOx

SDIx

dsPIC33/PIC24

Serial Clock

Note 1: In Normal mode, the usage of the Client Select pin (SSx) is optional.
2: Control of the SDOx pin can be disabled for Receive Only modes.

GPIO/SSx

SCKx

Client Select(1)

SDIx

SDOx(2)

PROCESSOR 2

SSx

SCKx

[SPI Host] [Client]

SDOx(2)

SDIx

dsPIC33/PIC24

Serial Clock

Note 1: In Normal mode, the usage of the Client Select pin (SSx) is optional.
2: The control of the SDOx pin can be disabled for Receive Only modes.

SSx

SCKx

Client Select(1)

SDIx

SDOx

PROCESSOR 2

SSx/GPIO

SCKx

[SPI Client] [Host]
DS70005136B-page 4  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
1.2 Framed Mode SPI Operation
In Framed mode operation, the frame Host controls the generation of the Frame Synchronization
pulse. The SPI clock is still generated by the SPI Host and is continuously running. Figure 1-4
and Figure 1-5 illustrate SPI frame Host and frame Client device connections.

Figure 1-4: Typical SPIx Host, Frame Host Connection Diagram

Figure 1-5: Typical SPIx Host, Frame Client Connection Diagram

SDOx

SDIx

dsPIC33/PIC24

Serial Clock

Note 1: In Framed SPI mode, the SSx pin is used to transmit/receive the frame
synchronization pulse.

2: Framed SPI mode requires the use of all four pins (i.e., using the SSx pin is
not optional).

SSx

SCKx
Frame Sync
Pulse(1,2)

SDIx

SDOx

PROCESSOR 2

SSx

SCKx

[SPI Host, Frame Host] [SPI Client, Frame Client]

SDOx

SDIx

Serial Clock

SSx

SCKx
Frame Sync

SDIx

SDOx

SSx

SCKx

dsPIC33/PIC24
[SPI Host, Frame Client]

PROCESSOR 2
[SPI Client, Frame Host]

Pulse(1,2)

Note 1: In Framed SPI mode, the SSx pin is used to transmit/receive the frame
synchronization pulse.

2: Framed SPI mode requires the use of all four pins (i.e., using the SSx pin is
not optional).
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 5

dsPIC33/PIC24 Family Reference Manual
1.3 Audio Protocol Interface Mode

1.3.1 SPI IN AUDIO HOST MODE CONNECTED TO A CODEC CLIENT
Figure 1-6 shows the Bit Clock (BCLK) and Left/Right Channel Clock (LRCK) as generated by
the dsPIC33/PIC24 SPI module.

Figure 1-6: Host Generating its Own Clock – Output BCLK and LRCK

1.3.2 SPI IN AUDIO CLIENT MODE CONNECTED TO A CODEC HOST
Figure 1-7 shows the BCLK and LRCK as generated by the codec Host.

Figure 1-7: Codec Device as Host Generates Required Clock via External Crystal

2.0 STATUS AND CONTROL REGISTERS

The SPI module consists of the following Special Function Registers (SFRs):
• SPIxCON1L, SPIxCON1H and SPIxCON2L: SPIx Control Registers
• SPIxSTAT1L and SPIxSTAT1H: SPIx Status Registers
• SPIxBUFL and SPIxBUFH: SPIx Buffer Registers
• SPIxBRGL and SPIxBRGH: SPIx Baud Rate Registers
• SPIxIMSKL and SPIxIMSKH: SPIx Interrupt Mask Registers
• SPIxURDTL and SPIxURDTH: SPIx Underrun Data Registers

SCKx (BCLK)

SSx (LRCK)

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

dsPIC33/PIC24
[SPI Host]

Codec
[Client]

Internal
Clock

SCKx (BCLK)

SSx (LRCK)

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

dsPIC33/PIC24
[SPI Client]

Codec
[Host]

Note: Each dsPIC33/PIC24 family device variant may have one or more SPI modules. An
‘x’ used in the names of pins, control/status bits and registers denotes the particular
module. Refer to the specific device data sheets for more details.
DS70005136B-page 6  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
Register 2-1: SPIxCON1L: SPIx Control Register 1 Low

R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SPIEN(3) — SPISIDL DISSDO MODE32(1,4) MODE16(1,4) SMP CKE(1)

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SSEN(2) CKP MSTEN DISSDI DISSCK MCLKEN(3) SPIFE ENHBUF(5)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 SPIEN: SPIx On bit(3)

1 = Enables module
0 = Turns off and resets module, disables clocks, disables interrupt event generation and allows SFR

modifications
bit 14 Unimplemented: Read as ‘0’
bit 13 SPISIDL: SPIx Stop in Idle Mode bit

1 = Halts in CPU Idle mode
0 = Continues to operate in CPU Idle mode

bit 12 DISSDO: Disable SDOx Output Port bit
1 = SDOx pin is not used by the module; pin is controlled by the port function
0 = SDOx pin is controlled by the module

bit 11-10 MODE[32,16]: Serial Word Length bits(1,4)

AUDEN = 0:

AUDEN = 1:

bit 9 SMP: SPIx Data Input Sample Phase bit
Host Mode:
1 = Input data are sampled at the end of data output time
0 = Input data are sampled at the middle of data output time
Client Mode:
Input data are always sampled at the middle of data output time, regardless of the SMP setting.

Note 1: When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
2: When FRMEN = 1, SSEN is not used.
3: MCLKEN can only be written when the SPIEN bit = 0.
4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.
5: SPI operates with DMA in Standard Buffer mode only, ENHBUF = 0.

MODE32 MODE16 COMMUNICATION
1 x 32-bit
0 1 16-bit
0 0 8-bit

MODE32 MODE16 COMMUNICATION
1 1 24-bit data, 32-bit FIFO, 32-bit channel/64-bit frame
1 0 32-bit data, 32-bit FIFO, 32-bit channel/64-bit frame
0 1 16-bit data, 16-bit FIFO, 32-bit channel/64-bit frame
0 0 16-bit data, 16-bit FIFO, 16-bit channel/32-bit frame
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 7

dsPIC33/PIC24 Family Reference Manual
bit 8 CKE: SPIx Clock Edge Select bit(1)

1 = Transmit happens on transition from Active Clock state to Idle Clock state
0 = Transmit happens on transition from Idle Clock state to Active Clock state

bit 7 SSEN: Client Select Enable bit (Client mode)(2)

1 = SSx pin is used by the macro in Client mode; SSx pin is used as the Client Select input
0 = SSx pin is not used by the macro (SSx pin will be controlled by the port I/O)

bit 6 CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level; Active state is a low level
0 = Idle state for clock is a low level; Active state is a high level

bit 5 MSTEN: Host Mode Enable bit
1 = Host mode
0 = Client mode

bit 4 DISSDI: Disable SDIx input port
1 = SDIx pin is not used by the module; pin is controlled by the port function
0 = SDIx pin is controlled by the module

bit 3 DISSCK: Disable SCKx output port
1 = SCKx pin is not used by the module; pin is controlled by the port function
0 = SCKx pin is controlled by the module

bit 2 MCLKEN: Host Clock Enable bit(3)

1 = MCLK is used by the BRG
0 = PBCLK is used by the BRG

bit 1 SPIFE: Frame Sync Pulse Edge Select bit
1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock
0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock

bit 0 ENHBUF: Enhanced Buffer Enable bit(5)

1 = Enhanced Buffer mode is enabled
0 = Enhanced Buffer mode is disabled

Register 2-1: SPIxCON1L: SPIx Control Register 1 Low (Continued)

Note 1: When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
2: When FRMEN = 1, SSEN is not used.
3: MCLKEN can only be written when the SPIEN bit = 0.
4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.
5: SPI operates with DMA in Standard Buffer mode only, ENHBUF = 0.
DS70005136B-page 8  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
Register 2-2: SPIxCON1H: SPIx Control Register 1 High

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
AUDEN(1) SPISGNEXT IGNROV IGNTUR AUDMONO URDTEN AUDMOD1(3) AUDMOD0(3)

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FRMEN(2) FRMSYNC FRMPOL MSSEN FRMSYPW FRMCNT2 FRMCNT1 FRMCNT0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 AUDEN: Audio Codec Support Enable bit(1)

1 = Audio protocol is enabled; MSTEN controls the direction of both SCKx and frame (a.k.a. LRC), and
this module functions as if FRMEN = 1, FRMSYNC = MSTEN, FRMCNT[2:0] = 001 and SMP = 0,
regardless of their actual values

0 = Audio protocol is disabled
bit 14 SPISGNEXT: SPIx Sign-Extend RX FIFO Read Data Enable bit

1 = Data from RX FIFO are sign-extended (upper unused bits should replicate MSb of the received data)
0 = Data from RX FIFO are not sign-extended (upper unused bits are always 1’b0)

bit 13 IGNROV: Ignore Receive Overflow bit
1 = A Receive Overflow (ROV) is NOT a critical error; during ROV, data in the FIFO are not overwritten

by the receive data
0 = A ROV is a critical error that stops SPI operation

bit 12 IGNTUR: Ignore Transmit Underrun bit
1 = A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN are transmitted

until the SPIxTXB is not empty
0 = A TUR is a critical error that stops SPI operation

bit 11 AUDMONO: Audio Data Format Transmit bit
1 = Audio data are mono (i.e., each data word is transmitted on both left and right channels)
0 = Audio data are stereo

bit 10 URDTEN: Transmit Underrun Data Enable bit
1 = Transmits data out of the SPIxURDT register during Transmit Underrun conditions
0 = Transmits the last received data during Transmit Underrun conditions

bit 9-8 AUDMOD[1:0]: Audio Protocol Mode Selection bits(3)

11 = PCM/DSP mode
10 = Right Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
01 = Left Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
00 = I2S mode: This module functions as if SPIFE = 0, regardless of its actual value

bit 7 FRMEN: Framed SPIx Support bit(2)

1 = Framed SPIx support is enabled (SSx pin is used as FSYNC input/output)
0 = Framed SPIx support is disabled

bit 6 FRMSYNC: Frame Sync Pulse Direction Control bit
1 = Frame Sync pulse input (Client)
0 = Frame Sync pulse output (Host)

Note 1: When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
2: When FRMEN = 1, SSEN is not used.
3: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 9

dsPIC33/PIC24 Family Reference Manual
bit 5 FRMPOL: Frame Sync/Client Select Polarity bit
1 = Frame Sync pulse/Client Select is active-high
0 = Frame Sync pulse/Client Select is active-low

bit 4 MSSEN: Host Mode Client Select Enable bit
1 = SPIx Client Select support is enabled with polarity determined by FRMPOL (SSx pin is automatically

driven during transmission in Host mode)
0 = SPIx Client Select support is disabled (SSx pin will be controlled by port IO)

bit 3 FRMSYPW: Frame Sync Pulse-Width bit
1 = Frame Sync pulse is one serial word length wide (as defined by MODE[32,16]/WLENGTH[4:0]).
0 = Frame Sync pulse is one clock (SCKx) wide.

bit 2-0 FRMCNT[2:0]: Frame Sync Pulse Counter bits
Configure the number of serial words per Sync pulse.
111 = Reserved
110 = Reserved
101 = Generate/Receive Frame Sync pulse on every 32 serial words
100 = Generate/Receive Frame Sync pulse on every 16 serial words
011 = Generate/Receive Frame Sync pulse on every 8 serial words
010 = Generate/Receive Frame Sync pulse on every 4 serial words
001 = Generate/Receive Frame Sync pulse on every 2 serial words (value used by audio protocols)
000 = Generate/Receive Frame Sync pulse on each serial word

Register 2-2: SPIxCON1H: SPIx Control Register 1 High (Continued)

Note 1: When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
2: When FRMEN = 1, SSEN is not used.
3: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.
DS70005136B-page 10  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
Register 2-3: SPIxCON2L: SPIx Control Register 2 Low

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — WLENGTH[4:0](1,2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-5 Unimplemented: Read as ‘0’
bit 4-0 WLENGTH[4:0]: Variable Word Length bits(1,2)

11111 = 32-bit data
11110 = 31-bit data
11101 = 30-bit data
11100 = 29-bit data
11011 = 28-bit data
11010 = 27-bit data
11001 = 26-bit data
11000 = 25-bit data
10111 = 24-bit data
10110 = 23-bit data
10101 = 22-bit data
10100 = 21-bit data
10011 = 20-bit data
10010 = 19-bit data
10001 = 18-bit data
10000 = 17-bit data
01111 = 16-bit data
01110 = 15-bit data
01101 = 14-bit data
01100 = 13-bit data
01011 = 12-bit data
01010 = 11-bit data
01001 = 10-bit data
01000 = 9-bit data
00111 = 8-bit data
00110 = 7-bit data
00101 = 6-bit data
00100 = 5-bit data
00011 = 4-bit data
00010 = 3-bit data
00001 = 2-bit data
00000 = See MODE[32,16] bits (SPIxCON1L[11:10])

Note 1: These bits are effective when AUDEN = 0 only.
2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 11

dsPIC33/PIC24 Family Reference Manual
Register 2-4: SPIxCON2H: SPIx Control Register 2 High

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 Unimplemented: Read as ‘0’

Register 2-5: SPIxSTATL: SPIx Status Register Low

U-0 U-0 U-0 R/C/HS-0 R/HSC-0 U-0 U-0 R/HSC-0
— — — FRMERR SPIBUSY — — SPITUR(1)

bit 15 bit 8

R/HSC-0 R/C/HS-0 R/HSC-1 U-0 R/HSC-1 U-0 R/HSC-0 R/HSC-0
SRMT(2) SPIROV SPIRBE — SPITBE — SPITBF SPIRBF

bit 7 bit 0

Legend: C = Clearable bit HS = Hardware Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
HSC = Hardware Settable/Clearable bit

bit 15-13 Unimplemented: Read as ‘0’
bit 12 FRMERR: SPIx Frame Error Status bit

1 = Frame error is detected
0 = No frame error is detected

bit 11 SPIBUSY: SPIx Activity Status bit
1 = Module is currently busy with some transactions
0 = No ongoing transactions (at time of read)

bit 10-9 Unimplemented: Read as ‘0’
bit 8 SPITUR: SPIx Transmit Underrun Status bit(1)

1 = Transmit buffer has encountered a Transmit Underrun condition
0 = Transmit buffer does not have a Transmit Underrun condition

bit 7 SRMT: Shift Register Empty Status bit(2)

1 = No current or pending transactions (i.e., neither SPIxTXB or SPIxTXSR contains data to transmit)
0 = Current or pending transitions

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit
Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

2: SRMT status bit operates in both Standard and Enhanced modes.
DS70005136B-page 12  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
bit 6 SPIROV: SPIx Receive Overflow Status bit
1 = A new byte/half-word/word has been completely received when the SPIxRXB was full
0 = No overflow

bit 5 SPIRBE: SPIx RX Buffer Empty Status bit
1 = RX buffer is empty
0 = RX buffer is not empty
Standard Buffer Mode:
Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in
hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.
Enhanced Buffer Mode:
Indicates RX FIFO is empty.

bit 4 Unimplemented: Read as ‘0’
bit 3 SPITBE: SPIx Transmit Buffer Empty Status bit

1 = SPIxTXB is empty
0 = SPIxTXB is not empty
Standard Buffer Mode:
Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically
cleared in hardware when SPIxBUF is written, loading SPIxTXB.
Enhanced Buffer Mode:
Indicates TX FIFO is empty.

bit 2 Unimplemented: Read as ‘0’
bit 1 SPITBF: SPIx Transmit Buffer Full Status bit

1 = SPIxTXB is full
0 = SPIxTXB not full
Standard Buffer Mode:
Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in
hardware when SPIx transfers data from SPIxTXB to SPIxTXSR.
Enhanced Buffer Mode:
Indicates TX FIFO is full.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit
1 = SPIxRXB is full
0 = SPIxRXB is not full
Standard Buffer Mode:
Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically
cleared in hardware when SPIxBUF is read from, reading SPIxRXB.
Enhanced Buffer Mode:
Indicates RX FIFO is full.

Register 2-5: SPIxSTATL: SPIx Status Register Low (Continued)

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit
Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

2: SRMT status bit operates in both Standard and Enhanced modes.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 13

dsPIC33/PIC24 Family Reference Manual
Register 2-6: SPIxSTATH: SPIx Status Register High

U-0 U-0 R/HS-0 R/HS-0 R-0, HSC R/HS-0 R/HS-0 R/HSC-0
— — RXELM5(3) RXELM4(2) RXELM3(1) RXELM2 RXELM1 RXELM0(1)

bit 15 bit 8

U-0 U-0 R/HSC-0 R/HSC-0 R/HSC-0 R/HSC-0 R/HSC-0 R/HSC-0
— — TXELM5(3) TXELM4(2) TXELM3(1) TXELM2 TXELM1 TXELM0

bit 7 bit 0

Legend: HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as ‘0’
bit 13-8 RXELM[5:0]: Receive Buffer Element Count bits (valid in Enhanced Buffer mode)(1,2,3)

bit 7-6 Unimplemented: Read as ‘0’
bit 5-0 TXELM[5:0]: Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.
2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.
3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.
DS70005136B-page 14  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
Register 2-7: SPIxBUFL: SPIx Buffer Register Low

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA[15:8]

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA[7:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA[15:0]: SPIx FIFO Data bits
When MODE[32] is used, the SPIx uses DATA[31:0].
When MODE[16] is used, the SPIx uses DATA[15:0].
When WLENGTH[4:0] bits select N bit data, content of DATA[(N-1):0] is only valid.

Register 2-8: SPIxBUFH: SPIx Buffer Register High

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA[31:24]

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA[23:16]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA[31:16]: SPIx FIFO Data bits
When MODE[32] is used, the SPIx uses DATA[31:0].
When MODE[16] is used, the SPIx uses DATA[15:0].
When WLENGTH[4:0] bits select N bit data, content of DATA[(N-1):0] is only valid.

Note: When the WLENTHx value is N, the MODE32 and MODE16 value should be zero.

MODE32 MODE16 WLENGTH[4:0] COMMUNICATION Valid Data Field
Data[31:0]

1 x 0 32-bit DATA[31:0]

0 1 0 16-bit DATA[15:0]

0 0 0 8-bit DATA[7:0]

0 0 N N-bit DATA[(N-1):0]
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 15

dsPIC33/PIC24 Family Reference Manual
Register 2-9: SPIxBRGL: SPIx Baud Rate Generator Register Low

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — BRG[12:8](1)

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BRG[7:0](1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’
bit 12-0 BRG[12:0]: SPIx Baud Rate Generator Divisor bits(1)

Note 1: Changing the BRG value when SPIEN = 1 causes undefined behavior.

Register 2-10: SPIxBRGH: SPIx Baud Rate Generator Register High

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 Unimplemented: Read as ‘0’
DS70005136B-page 16  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
Register 2-11: SPIxIMSKL: SPIx Interrupt Mask Register Low

U-0 U-0 U-0 R/W-0 R/W-0 U-0 U-0 R/W-0
— — — FRMERREN BUSYEN — — SPITUREN

bit 15 bit 8

R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0
SRMTEN SPIROVEN SPIRBEN — SPITBEN — SPITBFEN SPIRBFEN

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’
bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit

1 = Frame error generates an interrupt event
0 = Frame error does not generate an interrupt event

bit 11 BUSYEN: Enable Interrupt Events via SPIBUSY bit
1 = SPIBUSY generates an interrupt event
0 = SPIBUSY does not generate an interrupt event

bit 10-9 Unimplemented: Read as ‘0’
bit 8 SPITUREN: Enable Interrupt Events via SPITUR bit

1 = Transmit Underrun (TUR) generates an interrupt event
0 = Transmit Underrun does not generate an interrupt event

bit 7 SRMTEN: Enable Interrupt Events via SRMT bit
1 = Shift register empty generates an interrupt event
0 = Shift register empty does not generate an interrupt event

bit 6 SPIROVEN: Enable Interrupt Events via SPIROV bit
1 = SPIx Receive Overflow (ROV) generates an interrupt event
0 = SPIx Receive Overflow does not generate an interrupt event

bit 5 SPIRBEN: Enable Interrupt Events via SPIRBE bit
1 = SPIx receive buffer empty generates an interrupt event
0 = SPIx receive buffer empty does not generate an interrupt event

bit 4 Unimplemented: Read as ‘0’
bit 3 SPITBEN: Enable Interrupt Events via SPITBE bit

1 = SPIx transmit buffer empty generates an interrupt event
0 = SPIx transmit buffer empty does not generate an interrupt event

bit 2 Unimplemented: Read as ‘0’
bit 1 SPITBFEN: Enable Interrupt Events via SPITBF bit

1 = SPIx transmit buffer full generates an interrupt event
0 = SPIx transmit buffer full does not generate an interrupt event

bit 0 SPIRBFEN: Enable Interrupt Events via SPIRBF bit
1 = SPIx receive buffer full generates an interrupt event
0 = SPIx receive buffer full does not generate an interrupt event
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 17

dsPIC33/PIC24 Family Reference Manual
Register 2-12: SPIxIMSKH: SPIx Interrupt Mask Register High

R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RXWIEN — RXMSK5(1) RXMSK4(1,4) RXMSK3(1,3) RXMSK2(1,2) RXFMSK1(1) RXMSK0(1)

bit 15 bit 8

R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TXWIEN — TXMSK5(1) TXMSK4(1,4) TXMSK3(1,3) TXMSK2(1,2) TXMSK1(1) TXMSK0(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 RXWIEN: Receive Watermark Interrupt Enable bit
1 = Triggers receive buffer element watermark interrupt when RXMSK[5:0] = RXELM[5:0]
0 = Disables receive buffer element watermark interrupt

bit 14 Unimplemented: Read as ‘0’
bit 13-8 RXMSK[5:0]: RX Buffer Mask bits(1,2,3)

RX mask bits; used in conjunction with the RXWIEN bit.
bit 7 TXWIEN: Transmit Watermark Interrupt Enable bit

1 = Triggers transmit buffer element watermark interrupt when TXMSK[5:0] = TXELM[5:0]
0 = Disables transmit buffer element watermark interrupt

bit 6 Unimplemented: Read as ‘0’
bit 5-0 TXMSK[5:0]: TX Buffer Mask bits(1,2,3)

TX mask bits; used in conjunction with the TXWIEN bit.

Note 1: Mask values higher than FIFODEPTH are not valid. The module will not trigger a match for any value in
this case.

2: RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.
3: RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.
4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.
DS70005136B-page 18  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
Register 2-13: SPIxURDTL: SPIx Underrun Data Register Low

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
URDATA[15:8]

bit 15 bit 8

R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
URDATA[7:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 URDATA[15:0]: SPIx Underrun Data bits
These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit
Underrun condition occurs.
When MODE[32] is used, the SPIx uses URDATA[31:0].
When MODE[16] is used, the SPIx uses URDATA[15:0].
When WLENGTH[4:0] bits select N bit data, content of URDATA[(N-1):0] is only valid.

Note: When the WLENTHx value is N, the MODE32 and MODE16 value should be zero.

MODE32 MODE16 WLENGTH[4:0] COMMUNICATION Valid Data Field
Data[31:0]

1 x 0 32-bit URDATA[31:0]

0 1 0 16-bit URDATA[15:0]

0 0 0 8-bit URDATA[7:0]

0 0 N N-bit URDATA[(N-1):0]
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 19

dsPIC33/PIC24 Family Reference Manual
Register 2-14: SPIxURDTH: SPIx Underrun Data Register High

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
URDATA[31:24]

bit 15 bit 8

R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
URDATA[23:16]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 URDATA[31:16]: SPIx Underrun Data bits
These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit
Underrun condition occurs.
When MODE[32] is used, the SPIx uses URDATA[31:0].
When MODE[16] is used, the SPIx uses URDATA[15:0].
When WLENGTH[4:0] bits select N bit data, content of URDATA[(N-1):0] is only valid.

Note: When the WLENTHx value is N, the MODE32 and MODE16 value should be zero.

MODE32 MODE16 WLENGTH[4:0] COMMUNICATION Valid Data Field
Data[31:0]

1 x 0 32-bit URDATA[31:0]

0 1 0 16-bit URDATA[15:0]

0 0 0 8-bit URDATA[7:0]

0 0 N N-bit URDATA[(N-1):0]
DS70005136B-page 20  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
3.0 MODES OF OPERATION
The SPI module offers the following operating modes:
• 8-Bit, 16-Bit and 32-Bit Data Transmission modes
• 8-Bit, 16-Bit and 32-Bit Data Reception modes
• Host and Client modes
• Framed SPI modes
• Audio Protocol Interface mode

3.1 8-Bit, 16-Bit and 32-Bit Operation
The SPI module allows three types of data widths when transmitting and receiving data over an
SPI bus. The selection of data width determines the minimum length of SPI data. For example,
when the selected data width is 32, all transmission and receptions are performed in 32-bit val-
ues. All reads and writes from the CPU are also performed in 32-bit values. Accordingly, the
application software should select the appropriate data width to maximize its data throughput.
Two control bits, MODE32 and MODE16 (SPIxCON1L[11:10]), which are referred to as
MODE[32,16], define the mode of operation. To change the mode of operation on-the-fly, the SPI
module must be Idle (i.e., not performing any transactions). If the SPI module is switched off
(SPIxCON1L[15] = 0), the new mode will be available when the module is again switched on.
Additionally, the following items should be noted in this context:
• The MODE[32,16] bits should not be changed when a transaction is in progress
• The first bit to be shifted out from SPIxTXSR varies with the selected mode of operation:

- 8-bit mode, bit 7
- 16-bit mode, bit 15
- 32-bit mode, bit 31

• In each mode, data are shifted into bit 0 of the SPIxRXSR
• The number of clock pulses at the SCKx pin are also dependent on the selected mode of

operation:
- 8-bit mode, 8 clocks
- 16-bit mode, 16 clocks
- 32-bit mode, 32 clocks

3.2 Buffer Modes
There are two SPI Buffering modes: Standard and Enhanced.

3.2.1 STANDARD BUFFER MODE
The SPIx Data Receive/Transmit Buffer (SPIxBUF) register is actually two separate internal regis-
ters: the Transmit Buffer (SPIxTXB) and the Receive Buffer (SPIxRXB). These two unidirectional
registers share the SFR address of SPIxBUF.
When a complete byte/word is received, it is transferred from SPIxRXSR to SPIxRXB and the
SPIRBF bit is set. If the software reads the SPIxBUF buffer, the SPIRBF bit is cleared.
As the software writes to SPIxBUF, the data are loaded into the SPIxTXB and the SPITBF bit is
set by hardware. As the data are transmitted out of SPIxTXSR, the SPITBF bit is cleared.

Note 1: In Framed SPI mode, these four pins are used: SDIx, SDOx, SCKx and SSx.
2: If the Client Select feature is used, all four pins listed in Note 1 are used.
3: If standard SPI is used, but CKE = 1, enabling/using the Client Select feature is

mandatory, and therefore, all four pins listed in Note 1 are used.
4: If standard SPI is used, but DISSDO = 1, only two pins are used: SDIx and SCKx;

unless Client Select is also enabled.
5: In all other cases, three pins are used: SDIx, SDOx and SCKx.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 21

dsPIC33/PIC24 Family Reference Manual
The SPI module double-buffers transmit/receive operations and allows continuous data transfers
in the background. Transmission and reception occur simultaneously in SPIxTXSR and
SPIxRXSR, respectively.

3.2.2 ENHANCED BUFFER MODE
The Enhanced Buffer Enable (ENHBUF) bit in the SPIx Control Register 1 Low (SPIxCON1L[0])
can be set to enable the Enhanced Buffer mode.
In Enhanced Buffer mode, two FIFO buffers are used: the SPIx Transmit Buffer (SPIxTXB) and
the SPIx Receive Buffer (SPIxRXB). SPIxBUF provides access to both the receive and transmit
FIFOs. The data transmission and reception in the SPIxSR buffer are identical to that in the Stan-
dard Buffer mode. The FIFO depth depends on the data width chosen by the Word/Half-Word
Byte Communication Select (MODE[32,16]) bits in the SPIx Control Register 1 Low
(SPIxCON1L[11:10]). The FIFO depth varies between devices. For a device with a FIFO depth
of ‘X’, the MODE field will modify it as follows:
• MODE = 8-bit, FIFO depth = X
• MODE = 16-bit, FIFO depth = X/2
• MODE = 32-bit, FIFO depth = X/4

The SPITBF status bit is set when all of the elements in the Transmit FIFO Buffer are full and is
cleared if one or more of those elements are empty. The SPIRBF status bit is set when all of the
elements in the Receive FIFO Buffer are full and is cleared if the SPIxBUF buffer is read by the
software.

The SPITBE status bit is set if all the elements in the Transmit FIFO Buffer are empty and is
cleared otherwise. The SPIRBE bit is set if all of the elements in the Receive FIFO Buffer are
empty and is cleared otherwise.
There is underrun or overflow protection against reading an empty receive FIFO element or writ-
ing a full transmit FIFO element. The SPIxSTATL register provides the SPIx Transmit Underrun
bit (SPITUR) and the Receive Overflow Status bit (SPIROV). Depending on the requirements,
IGNTUR and IGNROV can be configured for SPI operation to be continued or not, at the time of
error. When a Transmit Underrun occurs, the last received data or the data in the SPIxURDT
register can be transmitted by configuring the URDTEN bit (SPIxCON1H[10]).
The Receive Buffer Element Count bits (RXELM[5:0]) in the SPIx Status Register High
(SPIxSTATH[13:8]) indicate the number of unread elements in the receive FIFO. The Transmit
Buffer Element Count bits (TXELM[5:0]) in the SPIx Status Register High (SPIxSTATH[5:0])
indicate the number of elements not transmitted in the transmit FIFO.
When configured for Non-Framed Client mode, it is important to ensure that the software can
reload the transmit buffer quickly enough to keep up with the configured transfer rate. If the
SPIxTXB is empty at the start of a transaction, then the transmit behavior will be undefined, and
is likely to cause errors (duplicate transmissions, missed bits, etc.) in the received data.

3.3 Variable Word Length Operation
The SPI module allows variable word length when transmitting and receiving data over an SPI
bus. Word length can vary from 2 to 32 bits. Different word lengths can be configured by changing
the WLENGTH[4:0] bits (SPIxCON2L[4:0]). The number of clock pulses at the SCKx pin will
correspond to the word length that is selected.

Note: SPIxBUF refers to SPIxBUFL/SPIxBUFH. If data length is greater than 16, then both
SPIxBUFL and SPIxBUFH have to be used, else only SPIxBUFL has to be used.

Note: FIFO depth does not change when variable word length is configured.

Note: When data are more than 16 bits, always write SPIxBUFL first and then write
SPIxBUFH. Similarly, read SPIxBUFL first and then read SPIxBUFH.
DS70005136B-page 22  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
3.4 Host and Client Modes
In Host and Client modes, data can be thought of as taking a direct path between the Most Sig-
nificant bit (MSb) of one module’s Shift register and the Least Significant bit (LSb) of the other,
and then moving them into the appropriate transmit or receive buffer. The module configured as
the Host module provides the serial clock and synchronization signals (as required) to the Client
device. The relationship between the Host and Client modules is shown in Figure 3-1.

Figure 3-1: SPIx Host/Client Connection Diagram

Serial Receive Buffer
(SPIxTXB)

Shift Register
(SPIxTXSR)

LSb

MSbSDIx

SDOx

PROCESSOR 2

SCKx

SSx(1)

Shift Register
(SPIxRXSR)

Serial Receive Buffer
(SPIxRXB)(2)

Shift Register
(SPIxRXSR)

MSb LSb SDOx

SDIx

dsPIC33/PIC24

Serial Clock

SSEN (SPIxCON1L[7]) = 1 and
MSTEN (SPIxCON1L[5]) = 0

Note 1: Using the SSx pin in Client mode of operation is optional.
2: The user must write transmit data to SPIxBUF and read received data from SPIxBUF. The SPIxTXB and

SPIxRXB registers are memory-mapped to SPIxBUF.

SSx

SCKx

MSTEN (SPIxCON1L[5]) = 1

Serial Transmit Buffer

[SPI Host] [SPI Client]

SPI Buffer
(SPIxBUF)

Shift Register
(SPIxTXSR)

(SPIxTXB)(2)

SPI Buffer
(SPIxBUF)

Serial Transmit Buffer
(SPIxRXB)

MSb MSbLSb

LSb
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 23

dsPIC33/PIC24 Family Reference Manual
3.4.1 HOST MODE OPERATION
Perform the following steps to set up the SPI module for Host mode operation:
1. Disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit.
3. Clear the receive buffer.
4. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
5. If SPIx interrupts are not going to be used, skip this step. Otherwise, the following

additional steps are performed:
a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

6. Write the Baud Rate register, SPIxBRGL.
7. Clear the SPIROV bit (SPIxSTATL[6]).
8. Write the desired settings to the SPIxCON1L register with MSTEN (SPIxCON1L[5]) = 1.
9. Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).
10. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission

(and reception) will start as soon as data are written to the SPIxBUFL/H register.

In Host mode, the PBCLK is divided and then used as the serial clock. The division is based on
the settings in the SPIxBRGL register. The serial clock is output through the SCKx pin to the
Client devices. Clock pulses are only generated when there are data to be transmitted, except
when in Framed mode, when the clock is generated continuously. For further information, refer
to Section 3.8 “SPI Host Mode Clock Frequency”.
The Host Mode Client Select Enable (MSSEN) bit in the SPIx Control Register 1 High
(SPIxCON1H[4]) can be set to automatically drive the Client Select signal (SSx) in Host mode.
Clearing this bit disables the Client Select signal support in Host mode. The FRMPOL bit
(SPIxCON1H[5]) determines the polarity for the Client Select signal in Host mode.

In devices that do not feature the MSSEN bit, the Client Select signal (in Non-Framed SPI mode)
must be generated by using the SSx pin or another general purpose I/O pin under software
control.
The CKP (SPIxCON1L[6]) and CKE (SPIxCON1L[8]) bits determine on which edge of the clock
data transmission occurs.

Both data to be transmitted and data that are received are written to, or read from, the SPIxBUF
register, respectively.

Note: The SPI device must be turned off prior to changing the mode from Client to Host.
(When using the Client Select mode, the SSx pin or another GPIO pin is used to
control the Client’s SSx input. The pin must be controlled in software).

Note: The MSSEN bit is not available on all devices. This bit should not be set when the
SPI Framed mode is enabled (i.e., FRMEN = 1). Refer to the specific device data
sheet for details.

Note: The user must turn off the SPI device prior to changing the CKE or CKP bits.
Otherwise, the behavior of the device is not ensured.
DS70005136B-page 24  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
The following progression describes the SPI module operation in Host mode:
1. Once the module is set up for Host mode operation and enabled, data to be transmitted

are written to the SPIxBUF register. The SPITBE bit (SPIxSTATL[3]) is cleared.
2. The contents of SPIxTXB are moved to the SPIx Shift register, SPIxTXSR (see Figure 3-1),

and the SPITBE bit is set by the module.
3. A series of 8/16/32 clock pulses shifts 8/16/32 bits of transmit data from SPIxTXSR to the

SDOx pin and simultaneously shifts the data at the SDIx pin into SPIxRXSR.
4. When the transfer is complete, the following events will occur:

a) The SPIxRXIF interrupt flag bit is set. SPIx interrupts can be enabled by setting the
SPIxRXIE interrupt enable bit. The SPIxRXIF flag is not cleared automatically by the
hardware.

b) Also, when the ongoing transmit and receive operation is complete, the contents of
SPIxRXSR are moved to SPIxRXB.

c) The SPIRBF bit (SPIxSTATL[0]) is set by the module, indicating that the receive
buffer is full. Once SPIxBUF is read by the user code, the hardware clears the
SPIRBF bit. In Enhanced Buffer mode, the SPIRBE bit (SPIxSTATL[5]) is set when
the SPIxRXB FIFO buffer is completely empty and cleared when not empty.

5. If the SPIRBF bit is set (the receive buffer is full) when the SPI module needs to transfer
data from SPIxRXSR to SPIxRXB, the module will set the SPIROV bit (SPIxSTATL[6])
indicating an overflow condition.

6. Data to be transmitted can be written to SPIxBUF by the user software at any time, if the
SPITBE bit (SPIxSTATL[3]) is set. The write can occur while SPIxTXSR is shifting out the
previously written data, allowing continuous transmission. In Enhanced Buffer mode, the
SPITBF bit (SPIxSTATL[1]) is set when the SPIxTXB FIFO buffer is completely full and
clear when it is not full.

Example 3-1: Initialization Code for 16-Bit SPI Host Mode

Note: The SPIxTXSR register cannot be written directly by the user. All writes to the
SPIxTXSR register are performed through the SPIxBUF register.

/* The following code example will initialize the SPI1 in Host mode. */
int rData;

IPC2bits.SPI1TXIP = 4; //Set SPI Interrupt Priorities

SPI1BRGL = 0x1; // use FPB/4 clock frequency
SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1L = 0x0420; // 16 bits transfer, Host mode,ckp=0,cke=0,smp=0
SPI1IMSKLbits.SPITBFEN = 1; // SPI1 transmit buffer full generates interrupt event

IEC0bits.SPI1TXIE = 1; // Enable interrupts

SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to transmit and receive data. Buffer can be loaded to
transmit data.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 25

dsPIC33/PIC24 Family Reference Manual
Figure 3-2: SPIx Host Mode Operation in 8-Bit Mode (MODE32 = 0, MODE16 = 0)

SCKx
(CKP =0

SCKx
(CKP =1

SCKx
(CKP =0

SCKx
(CKP =1

4 Clock Modes

Input
Sample(2)

Input
Sample

SDIx(2)

bit 7 bit 0

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1

bit 7

SDIx

SPIxRXIF

(SMP =1)

(SMP =0)

(SMP =1)

CKE =1)

CKE =0)

CKE =1)

CKE =0)

(SMP =0)

User Writes
to SPIxBUF

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

(CKE =0)

(CKE =1)

Approximately 2 SYSCLK Latency to
Set SPIxRXIF Flag Bit

Note 1: Four SPI Clock modes are shown here to demonstrate the functionality of bits, CKP (SPIxCON1L[6]) and CKE
(SPIxCON1L[8]). Only one of the four modes can be chosen for operation.

2: The SDIx and input samples shown here for two different values of the SMP bit (SPIxCON1L[9]) are strictly for
demonstration purposes. Only one of the two configurations of the SMP bit can be chosen during operation.

3: If there are no pending transmissions, SPIxTXB is transferred to SPIxTXSR as soon as the user writes to
SPIxBUF.

4: Operation for 8-bit mode is shown; 16-bit and 32-bit modes are similar.

SPIxRXSR Moved
into SPIxRXB

User Reads
SPIxBUF

(clock output
at the SCKx
pin in Host
mode)(1)

(SPIxSTAT[0])

 SPITBE

SPIxTXB to SPIxTXSR(3)
User Writes New Data
During Transmission

SPIRBF

Two Modes
Available for
SMP Control
Bit(4)

SSx

bit 0

bit 0
DS70005136B-page 26  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
3.4.2 CLIENT MODE OPERATION
The following steps are used to set up the SPI module for the Client mode of operation:
1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit.
3. Clear the receive buffer.
4. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
5. If using interrupts, the following additional steps are performed:
6. Clear the SPIx interrupt flags/events in the respective IFSx register.
7. Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
8. Set the SPIx interrupt enable bits in the respective IECx register.
9. Clear the SPIROV bit (SPIxSTATL[6]).
10. Write the desired settings to the SPIxCON1L register with MSTEN (SPIxCON1L[5]) = 0.
11. Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).
12. Transmission (and reception) will start as soon as the Host provides the serial clock.

In Client mode, data are transmitted and received as the external clock pulses appear on the
SCKx pin. The CKP bit (SPIxCON1L[6]) and the CKE bit (SPIxCON1L[8]) determine on which
edge of the clock data transmission occurs.
Both data to be transmitted and data that are received are respectively written into or read from
the SPIxBUFL and SPIxBUFH registers.
The rest of the operation of the module is identical to that in the Host mode, including Enhanced
Buffer mode.

3.4.2.1 Client Mode Additional Features
The following additional features are provided in the Client mode:
• Client Select Synchronization

The SSx pin allows a Synchronous Client mode. If the SSEN bit (SPIxCON1L[7]) is set,
transmission and reception are enabled in Client mode only if the SSx pin is driven to a Low
state. The port output or other peripheral outputs must not be driven in order to allow the SSx
pin to function as an input. If the SSEN bit is set and the SSx pin is driven high, the SDOx
pin is no longer driven and will tri-state, even if the module is in the middle of a transmission.
An aborted transmission will be retried the next time the SSx pin is driven low using the data
held in the SPIxTXB register. If the SSEN bit is not set, the SSx pin does not affect the
module operation in Client mode.

• SPITBE Status Flag Operation
The SPITBE bit (SPIxSTATL[3]) has a different function in the Client mode of operation. The
following describes the function of SPITBE for various settings of the Client mode of operation:
- If SSEN (SPIxCON1L[7]) is cleared, the SPITBE bit is cleared when SPIxBUF is

loaded by the user code. It is set when the module transfers SPIxTXB to SPIxTXSR.
This is similar to the SPITBE bit function in Host mode.

- If SSEN is set, SPITBE is cleared when SPIxBUF is loaded by the user code. How-
ever, it is set only when the SPI module completes data transmission. A transmission
will be aborted when the SSx pin goes high and may be retried at a later time. So,
each data word is held in SPIxTXB until all bits are transmitted to the receiver.

Note: The SPI module must be turned off prior to changing the mode from Host to Client.

Note: Client Select cannot be used when operating in Frame mode.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 27

dsPIC33/PIC24 Family Reference Manual
Example 3-2: Initialization Code for 16-Bit SPI Client Mode

Figure 3-3: SPIx Client Mode Operation in 8-Bit Mode with Client Select Pin Disabled (MODE32 = 0,
MODE16 = 0, SSEN = 0)

/* The following code example will initialize the SPI1 in Client mode. */
int rData;

IPC14bits.SPI1RXIP = 4; //Set SPI Interrupt Priorities

SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1L = 0x0400; // 16 bits transfer, Client mode,ckp=0,cke=0,smp=0
SPI1IMSKLbits.SPIRBFEN = 1; // SPI1 receive buffer full generates interrupt event

IEC3bits.SPI1RXIE = 1; // Enable interrupts

SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to transmit and receive data. Buffer can be loaded to
transmit data.

SCKx Input(1)
(CKP = 1

SCKx Input(1)

(CKP = 0

Input
Sample

SDIx Input

bit 7 bit 0

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SPIxRXIF

(SMP = 0)

CKE = 0)

CKE = 0)

(SMP = 0)

User Writes to
SPIxBUF(2)

SPIxRXSR to
SPIxRXB

SPITBE

SPIRBF

Output

Note 1: Two SPI Clock modes are shown here only to demonstrate the functionality of bits, CKP (SPIxCON1L[6]) and CKE
(SPIxCON1L[8]). Any combination of CKP and CKE bits can be chosen for module operation.

2: If there are no pending transmissions, or a transmission is in progress, SPIxBUF is transferred to SPIxTXSR as
soon as the user writes to SPIxBUF.

3: Operation for 8-bit mode is shown; 16-bit and 32-bit modes are similar.

Approximately 2 SYSCLK Latency to
Set SPIxRXIF Flag Bit

(Note 3)
DS70005136B-page 28  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
Figure 3-4: SPIx Client Mode Operation in 8-Bit Mode with Client Select Pin Enabled (MODE32 = 0,
MODE16 = 0, SSEN = 1)

SCKx
(CKP = 1

SCKx
(CKP = 0

Input
Sample

SDIx
bit 7

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1

SPIxRXIF

(SMP = 0)

CKE = 0)

(SMP = 0)

User Writes
to SPIxBUF

SPIxRXSR
to SPIxBUF

SSx(1)

Note 1: When the SSEN (SPIxCON1L[7]) bit is set to ‘1’, the SSx pin must be driven low so as to enable transmission
and reception in Client mode.

2: Transmit data are held in SPIxTXB and SPITBE (SPIxSTATL[3]) remains clear until all bits are transmitted.
3: Operation for 8-bit mode is shown; 16-bit and 32-bit modes are similar.

SPIRBF

~2 SYSCLK
Latency

SPITBE(2)

SPIxBUF
User Reads

CKE = 0)

(Note 3)

SPIxBUF
to SPIxTXSR

bit 0

bit 0
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 29

dsPIC33/PIC24 Family Reference Manual
3.5 SPI Error Handling
When a new data word has been shifted into the SPIx Shift register, SPIxRXSR, and the previous
contents of the SPIx Receive register, SPIxRXB, have not been read by the user software, the
SPIROV bit (SPIxSTATL[6]) will be set. The module will not transfer the received data from
SPIxRXSR to the SPIxRXB. Further data reception is disabled until the SPIROV bit is cleared.
The SPIROV bit is not cleared automatically by the module and must be cleared by the user
software.

3.6 SPI Receive Only Operation
Setting the DISSDO control bit (SPIxCON1L[12]) disables transmission at the SDOx pin. This
allows the SPI module to be configured for a Receive Only mode of operation. The SDOx pin will
be controlled by the respective port function if the DISSDO bit is set.
The DISSDO function is applicable to all SPI operating modes.

3.7 Framed SPI Modes
The module supports a very basic framed SPI protocol while operating in either Host or Client
modes. The following features are provided in the SPI module to support Framed SPI modes:
• The FRMEN control bit (SPIxCON1H[7]) enables Framed SPI mode and causes the SSx

pin to be used as a Frame Synchronization pulse input or output pin. The state of SSEN
(SPIxCON1L[7]) is ignored.

• The FRMSYNC control bit (SPIxCON1H[6]) determines whether the SSx pin is an input or
an output (i.e., whether the module receives or generates the Frame Synchronization
pulse).

• The FRMPOL control bit (SPIxCON1H[5]) determines the Frame Synchronization pulse
polarity for a single SPI clock cycle.

• The FRMSYPW control bit (SPIxCON1H[3]) can be set to configure the width of the Frame
Synchronization pulse to one character wide.

• The FRMCNT[2:0] control bits (SPIxCON1H[2:0]) can be set to configure the number of
data characters transmitted per Frame Synchronization pulse.

The following Framed SPI modes are supported by the SPI module:
• Frame Host mode

The SPI module generates the Frame Synchronization pulse and provides this pulse to
other devices at the SSx pin.

• Frame Client mode
The SPI module uses a Frame Synchronization pulse received at the SSx pin.

The Framed SPI modes are supported in conjunction with the Host and Client modes. Therefore,
the following Framed SPI mode configurations are available:
• SPI Host mode and Frame Host mode
• SPI Host mode and Frame Client mode
• SPI Client mode and Frame Host mode
• SPI Client mode and Frame Client mode
These four modes determine whether or not the SPI module generates the serial clock and the
Frame Synchronization pulse.
The ENHBUF bit (SPIxCON1L[0]) can be configured to use the Standard Buffering mode or
Enhanced Buffering mode in Framed SPI mode.
In addition, the SPI module can be used to interface to external audio DAC/ADC and codec
devices in Framed SPI mode.

Note: The FRMSYPW bit is not available on all devices. Refer to the specific device data
sheet for details.
DS70005136B-page 30  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
Figure 3-5: SPIx Host, Frame Host Connection Diagram

3.7.1 SCKx IN FRAMED SPI MODES
When FRMEN (SPIxCON1H[7]) = 1 and MSTEN (SPIxCON1L[5]) = 1, the SCKx pin becomes
an output and the SPI clock at SCKx becomes a free-running clock.
When FRMEN = 1 and MSTEN = 0, the SCKx pin becomes an input. The source clock provided
to the SCKx pin is assumed to be a free-running clock.
The polarity of the clock is selected by the CKP bit (SPIxCON1L[6]). The CKE bit (SPIxCON1L[8])
is not used for the Framed SPI modes.
When CKP or CKE = 0, the Frame Sync pulse output and the SDOx data output change on the
rising edge of the clock pulses at the SCKx pin. Input data are sampled at the SDIx input pin on
the falling edge of the serial clock.
When CKP xor CKE = 1, the Frame Sync pulse output and the SDOx data output change on the
falling edge of the clock pulses at the SCKx pin. Input data are sampled at the SDIx input pin on
the rising edge of the serial clock.

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the Frame Synchronization pulse.
2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not optional).
3: The SPIxTXB and SPIxRXB registers are memory-mapped to the SPIxBUF register.

Serial Receive Buffer
(SPIxTXB)(3)

Shift Register
(SPIxTXSR)

LSbMSbSDIx

SDOx

PROCESSOR 2

SCKx

SSx(1)

Shift Register
(SPIxRXSR)

Serial Receive Buffer
(SPIxRXB)(2,3)

Shift Register
(SPIxRXSR)

MSb LSb SDOx

SDIx

dsPIC33/PIC24

Serial Clock

SSx

SCKxSerial Transmit Buffer

[SPI Host, Frame Host] [SPI Client, Frame Client]

SPI Buffer
(SPIxBUF)

Shift Register
(SPIxTXSR)

(SPIxTXB)(2,3)

SPI Buffer
(SPIxBUF)

Serial Transmit Buffer
(SPIxRXB)(3)

MSb MSbLSb LSb

Frame Sync
Pulse(1,2)
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 31

dsPIC33/PIC24 Family Reference Manual
3.7.2 SPI BUFFERS IN FRAMED SPI MODES
When FRMSYNC (SPIxCON1H[6]) = 0, the SPI module is in the Frame Host mode of operation.
In this mode, the Frame Sync pulse is initiated by the module when the user software writes the
transmit data to a SPIxBUF location (thus, writing the SPIxTXB register with transmit data). At
the end of the Frame Sync pulse, SPIxTXB is transferred to SPIxTXSR and data transmission/
reception begins.
When FRMSYNC = 1, the module is in Frame Client mode. In this mode, the Frame Sync pulse is
generated by an external source. When the module samples the Frame Sync pulse, it will transfer
the contents of the SPIxTXB register to SPIxTXSR, and data transmission/reception begins. The
user must make sure that the correct data are loaded into the SPIxBUF for transmission before the
Frame Sync pulse is received.

3.7.3 SPI HOST MODE AND FRAME HOST MODE
This Framed SPI mode is enabled by setting the MSTEN bit (SPIxCON1L[5]) and the FRMEN
bit (SPIxCON1H[7]) to ‘1’, and the FRMSYNC bit (SPIxCON1H[6]) to ‘0’. In this mode, the serial
clock will be output continuously at the SCKx pin, regardless of whether the module is
transmitting. When SPIxBUF is written, the SSx pin will be driven active-high or active-low,
depending on the FRMPOL bit (SPIxCON1H[5]), on the next transmit edge of the SCKx clock.
The SSx pin will be high for one SCKx clock cycle. The module will start transmitting data on the
next transmit edge of SCKx, as shown in Figure 3-6. A connection diagram indicating signal
directions for this operating mode is shown in Figure 3-6.

Figure 3-6: SPIx Host, Frame Host (MODE32 = 0, MODE16 = 1, SPIFE = 0,
FRMPOL = 1)

Note: Receiving a Frame Sync pulse will start a transmission, regardless of whether or
not data were written to SPIxBUF. If a write was not performed, zeros will be
transmitted.

SCKx

SSx

SDOx

(CKP = 0)

bit 14 bit 13 bit 12

SDIx bit 14 bit 13 bit 12

Write to SPIxBUF Receive Samples at SDIx
Pulse Generated at SSx

SCKx
(CKP = 1)

bit 15

bit 15
DS70005136B-page 32  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
3.7.4 SPI HOST MODE AND FRAME CLIENT MODE
This Framed SPI mode is enabled by setting the MSTEN bit (SPIxCON1L[5]), the FRMEN bit
(SPIxCON1H[7]) and the FRMSYNC bit (SPIxCON1H[6]) to ‘1’. The SSx pin is an input and it is
sampled on the sample edge of the SPI clock. When it is sampled active-high or active-low,
depending on the FRMPOL bit (SPIxCON1H[5]), data will be transmitted on the subsequent
transmit edge of the SPI clock, as shown in Figure 3-7. The SPIx Interrupt Flag, SPIxIF, is set
when the transmission is complete. The user must make sure that the correct data are loaded
into SPIxBUF for transmission before the signal is received at the SSx pin. A connection diagram
indicating signal directions for this operating mode is shown in Figure 3-8.

Figure 3-7: SPIx Host, Frame Client (MODE32 = 0, MODE16 = 1, SPIFE = 0,
FRMPOL = 1)

Figure 3-8: SPIx Host, Frame Client Connection Diagram

Receive Samples at SDIx

SCKx

FSYNC

SDOx

(CKP = 0)

bit 14 bit 13 bit 12

SDIx

Sample SSx Pin
for Frame Sync Pulse

bit 14 bit 13 bit 12

Write to
SPIxBUF

SCKx
(CKP = 1)

bit 15

bit 15

SDOx

SDIx

Serial Clock

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the Frame Synchronization
pulse.

2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not
optional).

SSx

SCKx
Frame Sync

SDIx

SDOx

SSx

SCKx

dsPIC33/PIC24
[SPI Host, Frame Client]

PROCESSOR 2
[SPI Client, Frame Host]

Pulse(1,2)
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 33

dsPIC33/PIC24 Family Reference Manual
3.7.5 SPI CLIENT MODE AND FRAME HOST MODE
This Framed SPI mode is enabled by setting the MSTEN bit (SPIxCON1L[5]) to ‘0’, the FRMEN
bit (SPIxCON1H[7]) to ‘1’ and the FRMSYNC bit (SPIxCON1H[6]) to ‘0’. The input SPI clock will
be continuous in Client mode. The SSx pin will be an output when bit, FRMSYNC, is low. There-
fore, when SPIxBUF is written, the module will drive the SSx pin active-high or active-low,
depending on the FRMPOL bit (SPIxCON1H[5]), on the next transmit edge of the SPI clock. The
SSx pin will be driven high for one SPI clock cycle. Data transmission will start on the next SPI
clock transmit edge. A connection diagram indicating signal directions for this operating mode is
shown in Figure 3-9.

Figure 3-9: SPIx Client, Frame Host Connection Diagram

3.7.6 SPI CLIENT MODE AND FRAME CLIENT MODE
This Framed SPI mode is enabled by setting the MSTEN bit (SPIxCON1L[5]) to ‘0’, the FRMEN
bit (SPIxCON1H[7]) to ‘1’ and the FRMSYNC bit (SPIxCON1H[6]) to ‘1’. Therefore, both the
SCKx and SSx pins will be inputs. The SSx pin will be sampled on the sample edge of the SPI
clock. When SSx is sampled active-high or active-low, depending on the FRMPOL bit
(SPIxCON1H[5]), data will be transmitted on the next transmit edge of SCKx. A connection
diagram indicating signal directions for this operating mode is shown in Figure 3-10.

Figure 3-10: SPIx Client, Frame Client Connection Diagram

Serial Clock

SDOx

SDIx

SSx

SCKx

dsPIC33/PIC24
[SPI Client, Frame Host]

SDIx

SDOx

SSx

SCKx

PROCESSOR 2
[SPI Host, Frame Client]

Frame Sync
Pulse(1,2)

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the Frame Synchronization
pulse.

2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not
optional).

Serial Clock

SDOx

SDIx

SSx

SCKx

dsPIC33/PIC24
[SPI Client, Frame Client]

SDIx

SDOx

SSx

SCKx

PROCESSOR 2
[SPI Host, Frame Host]

Frame Sync
Pulse(1,2,3)

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the Frame Synchronization
pulse.

2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not optional).
3: Client Select is not available when using Frame mode as a Client device.
DS70005136B-page 34  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
3.8 SPI Host Mode Clock Frequency
The SPI module allows flexibility in baud rate generation through the 13-bit SPIxBRGL register.
SPIxBRGL is readable and writable, and determines the baud rate. The peripheral clock, PBCLK,
provided to the SPI module is a divider function of the CPU core clock. This clock is divided based
on the value loaded into SPIxBRGL. The SCKx clock, obtained by dividing PBCLK, is 50% duty
cycle and it is provided to the external devices through the SCKx pin.

Equation 3-1 defines the SCKx clock frequency as a function of SPIxBRGL settings.

Equation 3-1: SCKx Frequency

Therefore, the maximum baud rate possible is FPB/2 (SPIxBRGL = 0) and the minimum baud
rate possible is FPB/16384.
Some sample SPI clock frequencies (in kHz) are shown in Table 3-1.

Note: The SCKx clock is not free running for Non-Framed SPI modes. It will only run for 8,
16 or 32 pulses when SPIxBUF is loaded with data. It will, however, be continuous for
Framed modes.

FSCK
FPB

2 SPIxBRG 1+ 
--=

Table 3-1: Sample SCKx Frequencies(1)

SPIxBRGL
Setting 0 15 31 63 85 127 255 511

FPB = 32 MHz 16.00 MHz 10.0 MHz 500 kHz 257 kHz 190.48 kHz 125 kHz 62.5 kHz 31.25 kHz
FPB = 25 MHz 12.50 MHz 781.25 kHz 390.63 kHz 145.35 kHz 97.66 kHz 281.25 kHz 48.83 kHz 24.41 kHz
FPB = 20 MHz 10.00 MHz 625 kHz 312.50 kHz 156.25 kHz 116.28 kHz 78.13 kHz 39.06 kHz 19.53 kHz
FPB = 12 MHz 6.00 MHz 375 MHz 187.50 kHz 93.75 kHz 69.77 kHz 46.88 kHz 23.44 kHz 11.72 kHz
FPB = 10 MHz 5.00 MHz 312.50 kHz 156.25 kHz 78.13 kHz 58.14 kHz 39.06 kHz 19.53 kHz 9.77kHz
FPB = 8 MHz 4.00 MHz 250 kHz 125 kHz 62.50 kHz 46.51 kHz 31.25 kHz 15.63 kHz 7.81 kHz
Note 1: Not all clock rates are supported. For further information, refer to the SPI timing specifications in the

“Electrical Characteristics” chapter of the specific device data sheet.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 35

dsPIC33/PIC24 Family Reference Manual
4.0 AUDIO PROTOCOL INTERFACE MODE
The SPI module can be interfaced to most codec devices available today to provide dsPIC33/
PIC24 microcontroller-based audio solutions. The SPI module provides support to the audio pro-
tocol functionality through four standard I/O pins. The four pins that make up the audio protocol
interface modes are:
• SDIx: Serial Data Input for receiving sample Digital Audio Data (ADCDAT)
• SDOx: Serial Data Output for transmitting Digital Audio Data (DACDAT)
• SCKx: Serial Clock, also known as the Bit Clock (BCLK)
• SSx: Left/Right Channel Clock (LRCK)
BCLK provides the clock required to drive the data out or into the module, while LRCK provides
the synchronization of the frame based on the Protocol mode selected.
In some codecs, Serial Clock (SCK) refers to the Baud/Bit Clock (BCLK). Throughout this
section, the signal, SSx, is to be referred to as LRCK to be consistent with codec naming con-
ventions. The SPI module has the ability to function in Audio Protocol Host and Audio Protocol
Client modes. In Host mode, the module generates both the BCLK on the SCKx pin and the
LRCK on the SSx pin. In certain devices, while in Client mode, the module receives these two
clocks from its I2S partner, which is operating in Host mode.
While in Host mode, the SPI module has the ability to generate its own clock internally through
the Host Clock (MCLK) from various internal sources, such as the primary clock, PBCLK, USB
clock, FRC and other internal sources. In addition, the SPI module has the ability to provide the
MCLK to the codec device, which is a common requirement.
To start the Audio Protocol mode, first disable the peripheral by setting the SPIEN bit
(SPIxCON1L[15]) = 0. Next, set the AUDEN bit (SPIxCON1H[15]) = 1 and then re-enable the
peripheral by setting the SPIEN bit = 1.
When configured in Host mode, the leading edge of SCKx and the LRCK is driven out within one
SCKx period of starting the audio protocol. Serial data are shifted in or out with timing determined
by the Protocol mode set by the AUDMOD[1:0] bits (SPIxCON1H[9:8]). If the transmit FIFO is
empty, zeros are transmitted.
In Client mode, the peripheral drives zeros out of SDOx, but does not transmit the contents of
the transmit FIFO until it sees the leading edge of the LRCK, after which time, it starts receiving
data (provided SDIx has not been disabled). It will continue to transmit zeros as long as the
transmit FIFO is empty.
While in Client or Host mode, the SPI module does not generate an underrun on the TX FIFO
after start-up. This allows software to set up the SPI, set up the DMA, turn on the SPI module’s
audio protocol and then turn on the DMA without getting an error.
After the first write to the TX FIFO (SPIxBUF), the SPI enables underrun detection and genera-
tion. To keep the RX FIFO empty until the DMA is enabled, set DISSDI (SPIxCON1L[4]) = 1. After
enabling the DMA, set DISSDI = 0 to start receiving.

4.1 Host Mode
To configure the dsPIC33/PIC24 device in Audio Protocol Host mode, set both the MSTEN bit
(SPIxCON1L[5]) and the AUDEN bit (SPIxCON1H[15]) to ‘1’.
A few characteristics of Host mode are:
• This mode enables the device to generate SCKx and LRCK pulses as long as the SPIEN

bit (SPIxCON1L[15]) = 1.
• The SPI module generates LRCK and SCKx continuously in all cases, regardless of the

transmit data while in Host mode.
• The SPI module drives the leading edge of LRCK and SCKx within one SCKx period, and

the serial data shift in and out continuously, even when the TX FIFO is empty.
DS70005136B-page 36  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
Figure 4-1 shows a typical interface between Host and Client while in Host mode.

Figure 4-1: Host Generating its Own Clock – Output BCLK and LRCK

4.2 Client Mode
The SPI module can be configured in Audio Protocol Client mode by setting the MSTEN bit = 0
(SPIxCON1L[5]) and the AUDEN bit = 1 (SPIxCON1H[15]).
A few characteristics of Client mode are:
• This mode enables the device to receive SCKx and LRCK pulses as long as the

SPIEN bit (SPIxCON1L[15]) = 1.
• The SPI module drives zeros out of SDOx, but does not shift data out or in (SDIx) until the

module receives the LRCK (i.e., the edge that precedes the left channel).
• Once the module receives the leading edge of LRCK, it starts receiving data if DISSDI

(SPIxCON1L[4]) = 0 and the serial data shift out continuously, even when the TX FIFO is
empty.

Figure 4-2 shows the interface between a SPI module in Audio Client Interface mode to a codec
Host device.

Figure 4-2: Codec Device as Host Generates Required Clock via External Crystal

SCKx

SSx

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

dsPIC33/PIC24
[SPI Host]

Codec
[Client]

Internal
Clock

SCKx

SSx

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

dsPIC33/PIC24
[SPI Client]

Codec
[Host]
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 37

dsPIC33/PIC24 Family Reference Manual
Figure 4-3 shows the interface between an SPI module in Audio Client Interface mode to a codec
Host device, in which the Host Clock is being derived from the SPI reference clock out function.

Figure 4-3: Codec Device as Host Derives MCLK from dsPIC33/PIC24
Reference Clock Out

4.3 Audio Data Length and Frame Length
While codec devices may generate audio data samples of various word lengths of 8, 16, 20, 24,
32, the dsPIC33/PIC24 SPI module supports transmit/receive audio data lengths of 16, 24 and 32.

Table 4-1 illustrates how the MODE[32,16] bits (SPIxCON1L[11:10]) control the maximum allowable
sample length and frame length (LRCK period on SSx).

Table 4-1: Audio Data Length vs. LRCK Period

The parameters of the MODE[32,16] bits (SPIxCON1L[11:10]) have the following behavior:
• Controls left/right channel data length, frame length
• In 16-Bit Sample mode, 32/64-bit frame length is supported
• In 24/32-Bit Sample mode, 64-bit frame length is supported
• Defines FIFO width and depth (for example, 24-bit data have a 32-bit wide and X/4-location

deep FIFO)
• If the written data are greater than the data selected, the upper bytes are ignored
• If the written data are less than the data selected, the FIFO Pointers change on the write to

the Most Significant Byte (MSB) of the selected length
If these data are written to the transmit FIFO in more than one write, the write order must be from
Least Significant to Most Significant.

Note: Actual sample data can be any length, with a maximum of 32 bits, and the data must
be packed in one of three (16/24/32) formats.

SPIxCON1L[11:10]
Data Length

(bits)
FIFO Width

(bits)

Left/Right
Channel

Sample Length
(bits)

Enhanced
Buffer FIFO

Depth
(samples)(1)

LRCK Period
Frame

Length (bits)MODE32 MODE16

0 0 16 16  16 X/2 32
0 1 16 16  32 X/2 64
1 1 24 32  32 X/4 64
1 0 32 32  32 X/4 64

Note 1: FIFO depth varies between devices. The data in the table above are specified
considering a device with an available FIFO depth of ‘X’.

SCKx

SSx

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

dsPIC33/PIC24
[SPI Client]

Codec
[Client]

REFCLKO MCLKIN
DS70005136B-page 38  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
For example, assuming that audio data are 24 bits per sample, with 8 bits available at a time.
According to Table 4-1, the FIFO width is 32 bits per sample. Therefore, the 8 Most Significant
bits (MSbs), bits[31:24], in each FIFO sample are ignored.
Bits[15:8] and [7:0] can be written to the SPIxBUFL register in any order; however, bits[23:16]
must be written last to the SPIxBUFH, as writing the Most Significant bit (bit 24) triggers a change
in the pointers of the transmit buffer.
Data written to unused bytes are ignored. Also, transactions that are only to unused bytes are
also ignored. Therefore, a byte write to address offset, 0x0023, is completely ignored and does
not cause a FIFO push if the data are less than 32 bits wide.

4.4 Frame Error/LRCK Errors
The SPI module provides detection of frame/LRCK errors for debugging. The frame/LRCK error
occurs when the LRCK edge, that is defining a channel start, happens before the correct number
of bits (as defined by MODE[32,16]).
The SPI module immediately sets the FRMERR bit (SPIxSTATL[12]), pushes data in from the
SPIxRXSR register into the SPIxRXB register, and pops data from the SPIxTXB register into the
SPIxTXSR register. The module can be configured to detect frame/LRCK related errors by
setting the FRMERREN bit (SPIxIMSKL[12]).

4.5 Audio Protocol Modes
The SPI module supports four Audio Protocol modes and can be operated in any one of these
modes:
• I2S mode (not available on all devices; refer to the specific device data sheet for

availability)
• Left Justified mode
• Right Justified mode
• PCM/DSP mode
These Audio Protocol modes can be enabled by configuring the AUDMOD[1:0] bits
(SPIxCON1H[9:8]). These modes enable communication to different types of codecs, and
control the edge relationships of LRCK and SDIx/SDOx with respect to SCKx.
With respect to data transmit in all of the Protocol modes, the MSB is first transmitted, followed
by MSB-1 and so on, until the Least Significant Byte (LSB) transmits. The length of the data is
discussed in Section 4.3 “Audio Data Length and Frame Length”. If there are SCKx periods
left over after the LSb is transmitted, zeros are sent to fill up the frame.
When in Client mode, the relationship between the BCLK (on the SCKx pin) and the period (or
frame length) of the LRCK (on the SSx pin) is far less constrained than that of Host mode. In Host
mode, the frame length equals 32 or 64 BCLKs, depending on the MODE[32,16]
(SPIxCON1L[11:10]) bit settings. However, in Client mode, the frame length can be greater than
or equal to 32 or 64 BCLKs, but the FRMERR bit (SPIxSTATL[12]) will be set if the frame LRCK
edge arrives early.

Note: In Audio Protocol mode, both the BCLK (on the SCKx pin) and the LRCK (on the
SSx pin) are free running, meaning they are continuous. Normally, the LRCK is a
fixed number of BCLKs long. In all cases, the SPI module will realign to the new
frame edge and will set the FRMERR bit. If operating in a Non-PCM mode, the SPI
module will also push the abbreviated data onto the FIFO when the frame is too
short.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 39

dsPIC33/PIC24 Family Reference Manual
Figure 4-4 illustrates the general interface between the codec device and the SPI module in
Audio mode.

Figure 4-4: SPIx Module in Audio Client Mode – BCLK and WS or LRCK
Generated by Host

4.5.1 I2S MODE

The Inter-IC Sound (I2S) protocol enables transmission of two channels of digital audio data over
a single serial interface. The I2S protocol defines a 3-wire interface that handles the stereo data
using the WS/LRCK line. The I2S specification defines a half-duplex interface that supports trans-
mit or receive, but not both at the same time. With both SDOx and SDIx available, full-duplex
operation is supported by this peripheral, as shown in Figure 4-5.
• Data Transmit and Clocking:

- The transmitter shifts the audio sample data’s MSb, on the first falling edge of SCKx,
after an LRCK transition

- The receiver samples the MSB on the second rising edge of SCKx
- The left channel data shift out while LRCK is low and the right channel data are shifted

out while LRCK is high
- The data in the left and right channels consist of a single frame

• Required Configuration Settings
To set the module to I2S mode, the following bits must be set:
- AUDMOD[1:0] = 00 (SPIxCON1H[9:8])
- FRMPOL = 0 (SPIxCON1H[5])
- CKP = 1 (SPIxCON1L[6])

Setting these bits enables the SDOx and LRCK (SSx) transitions to occur on the falling edge of
SCKx (BCLK) and sampling of SDIx to occur on the rising edge of SCKx. Refer to the diagrams
shown in Figure 4-5.

Figure 4-5: I2S with 16-Bit Data/Channel or 32-Bit Data/Channel

Note: This feature is not available on all devices. Refer to the specific device data sheet
for availability.

SCKx

SSx

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

dsPIC33/PIC24
[SPI Client]

Codec
[Host]

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx MSb – 1 LSbLSb + 1 MSb – 1 LSb + 1 LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample
Left Channel LSb Sample

Transmit
Right Channel LSb

MSb MSb
DS70005136B-page 40  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
4.5.1.1 I2S Audio Client Mode of Operation
Use the following steps to set up the SPI module for the I2S Audio Client mode of operation:
1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit (SPIxCON1L[15]).
3. Reset the SPIx Control Register 1 High, SPIxCON1H.
4. Clear the receive buffer.
5. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
6. If using interrupts, the following additional steps need to be performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

7. Clear the SPIROV bit (SPIxSTATL[6]).
8. Write the desired settings to the SPIxCON1H register.

a) AUDMOD[1:0] bits (SPIxCON1H[9:8]) = 00
b) AUDEN bit (SPIxCON1H[15]) = 1

9. Write the desired settings to the SPIxCON1L register:
a) MSTEN (SPIxCON1L[5]) = 0
b) CKP (SPIxCON1L[6]) = 1
c) MODE[32,16] (SPIxCON1L[11:10]) = 0 for 16-bit audio channel data.
d) Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).

10. Transmission (and reception) will start as soon as the Host provides the BCLK and LRCK.

Example 4-1: I2S Client Mode, 16-Bit Channel Data, 32-Bit Frame
/* The following code example will initialize the SPI1 Module in I2S Client mode. */

int rData;
IPC14bits.SPI1RXIP = 4;

SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1H=0x8000; // AUDEN=1, I2S mode, stereo mode
SPI1CON1L=0x0440; // 16 bits/32 channel transfer, Client mode,ckp=1
SPI1IMSKLbits.SPIRBFEN = 1; // SPI1 receive buffer full generates interrupt event

IEC3bits.SPI1RXIE = 1; // Enable interrupts

SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to receive and transmit data
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 41

dsPIC33/PIC24 Family Reference Manual
4.5.1.2 I2S Audio Host Mode of Operation
A typical application could be to play PCM data (8 kHz sample frequency, 16-bit data, 32-bit
frame size) when interfaced to a codec Client device. In this case, the SPI module is initialized
to generate BCLK @ 625 kbps. Assuming a 20 MHz peripheral bus clock, FPB = 20e6, the baud
rate would be determined using Equation 4-1.

Equation 4-1: Baud Rate Calculation

Solving for the value of SPIxBRGL is shown in Equation 4-2.

Equation 4-2: Baud Rate Calculation

The Baud Rate is now equal to 256e3. Equation 4-3 shows the resulting calculation.

Equation 4-3: Baud Rate Calculation

If the result of Equation 4-3 is rounded to the nearest integer, SPIxBRGL is now equal to 15;
therefore, the effective Baud Rate is that of Equation 4-4.

Equation 4-4: Baud Rate Calculation

Baud Rate
FPB

2 SPIxBRG 1+ 
--=

SPIxBRG
FPB

2 Baud Rate 
--------------------------------- 1–=

SPIxBRG 40e6
2 256e3 
----------------------- 1 15=–=

20e6
2 15 1+ 
--------------------------- 20e6

32------------
625000 bits per second= =
DS70005136B-page 42  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
The following steps can be used to set up the SPI module for operation in I2S Audio Host mode:
1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit (SPIxCON1L[15]).
3. Reset the SPIx Control Register 1 High, SPIxCON1H.
4. Reset the SPIx Baud Rate Register Low, SPIxBRGL.
5. Clear the receive buffer.
6. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
7. If using interrupts, perform these additional steps:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

8. Clear the SPIROV bit (SPIxSTATL[6]).
9. Write the desired settings to the SPIxCON1H register. The AUDMOD[1:0] bits

(SPIxCON1H[9:8]) must be set to ‘00’ for I2S mode and the AUDEN bit (SPIxCON1H[15])
must be set to ‘1’ to enable the audio protocol.

10. Set the SPIxBRGL register to 0x4F (to generate approximately 625 kbps sample rate with
PBCLK @ 20 MHz).

11. Write the desired settings to the SPIxCON1L register:
a) MSTEN (SPIxCON1L[5]) = 1.
b) CKP (SPIxCON1L[6]) = 1.
c) MODE[32,16] (SPIxCON1L[11:10]) = 0 for 16-bit audio channel data.
d) Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).

12. Transmission (and reception) will start immediately after the SPIEN bit is set.

Example 4-2: I2S Host Mode, 625 kbps BCLK, 16-Bit Channel Data, 32-Bit Frame
/* The following code example will initialize the SPI1 Module in I2S Host mode. */

int rData;

IPC2bits.SPI1TXIP = 4;

SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1H = 0x8000; // AUDEN=1, I2S mode, stereo mode
SPI1BRGL = 0x000F; // to generate 625 kbps sample rate, PBCLK @ 20 MHz
SPI1CON1L = 0x0460; // 16 bits/32 channel transfer, Host mode,ckp=1
SPI1IMSKLbits.SPITBFEN = 1; // SPI1 transmit buffer full generates interrupt event

IEC0bits.SPI1TXIE = 1; // Enable interrupts

SPI1CON1Lbits.ENHBUF = 1;
SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to receive and transmit data
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 43

dsPIC33/PIC24 Family Reference Manual
4.5.2 LEFT JUSTIFIED MODE
The Left Justified mode is similar to I2S mode, however, in this mode, the SPI shifts the audio
data’s MSb on the first SCKx edge that is coincident with an LRCK transition. On the receiver
side, the SPI module samples the MSb on the next SCKx edge.
In general, a codec using justified protocols defaults to transmitting data on the rising edge of
SCKx and receiving data on the falling edge of SCKx.
• Required Configuration Settings

To set the module to Left Justified mode, the following bits must to be set:
- AUDMOD[1:0] = 01 (SPIxCON1H[9:8])
- FRMPOL = 1 (SPIxCON1H[5])
- CKP = 0 (SPIxCON1L[6])

This enables the SDOx and LRCK transitions to occur on the rising edge of SCKx. Refer to the
sample waveform diagrams shown in Figure 4-6 and Figure 4-7 for 16, 24 and 32-bit audio data
transfers.

Figure 4-6: Left Justified with 16-Bit Data/Channel or 32-Bit Data/Channel

Figure 4-7: Left Justified with 16/24-Bit Data and 32-Bit Channel

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx MSb – 1 LSbLSb + 1 MSb – 1 LSb + 1 LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample SampleTransmit

MSbMSb

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx LSb LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample SampleTransmit

00 0 0MSb MSb
DS70005136B-page 44  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
4.5.2.1 Left Justified Audio Client Mode Operation
Use the following steps to set up the SPI module for the Left Justified Audio Client mode of operation:
1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit (SPIxCON1L[15]).
3. Reset the SPIx Control Register 1 High, SPIxCON1H.
4. Clear the receive buffer.
5. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
6. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

7. Clear the SPIROV bit (SPIxSTATL[6]).
8. Write the desired settings in the SPIxCON1H register. The AUDMOD[1:0] bits

(SPIxCON1H[9:8]) must be set to ‘01’ for Left Justified mode and the AUDEN bit
(SPIxCON1H[15]) must be set to ‘1’ to enable the audio protocol.

9. Write the desired settings to the SPIxCON1L register:
a) Set to Client mode, MSTEN (SPIxCON1L[5]) = 0.
b) Set Clock Polarity, CKP (SPIxCON1L[6]) = 0.
c) Set Frame Polarity, FRMPOL (SPIxCON1H[5]) = 1.
d) Set MODE[32,16] (SPIxCON1L[11:10]) = 0 for 16-bit audio channel data
e) Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).

10. Transmission (and reception) will start as soon as the Host provides the BCLK and LRCK.

Example 4-3: Left Justified Client Mode, 16-Bit Channel Data, 32-Bit Frame
/* The following code example will initialize the SPI1 Module in Left Justified Client mode. */

int rData;
IPC14bits.SPI1RXIP = 4;

SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1H = 0x8120; // AUDEN=1, Left Justified mode, stereo mode,FRMPOL=1
SPI1CON1L = 0x0400; // 16 bits/32 channel transfer, Client mode,ckp=0
SPI1IMSKLbits.SPIRBFEN = 1; // SPI1 receive buffer full generates interrupt event

IEC3bits.SPI1RXIE = 1; // Enable interrupts

SPI1CON1Lbits.ENHBUF = 1;
SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to receive and transmit data
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 45

dsPIC33/PIC24 Family Reference Manual
4.5.2.2 Left Justified Audio Host Mode Operation
Use the following steps to set up the SPI module for the Left Justified Audio Host mode of operation:
1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit (SPIxCON1L[15]).
3. Reset the SPIx Control Register 1 High, SPIxCON1H.
4. Reset the SPIx Baud Rate Register Low, SPIxBRGL.
5. Clear the receive buffer.
6. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
7. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

8. Clear the SPIROV bit (SPIxSTATL[6]).
9. Write the desired settings in the SPIxCON1H register. The AUDMOD[1:0] bits

(SPIxCON1H[9:8]) must be set to ‘01’ for left justified and the AUDEN bit
(SPIxCON1H[15]) must be set to ‘1’ to enable the audio protocol.

10. Set the SPIx Baud Rate Register Low, SPIxBRGL, to 0x4F (to generate approximately
256 kbps sample rate with PBCLK @ 20 MHz).

11. Write the desired settings to the SPIxCON1L register:
a) Set to Host mode, MSTEN (SPIxCON1L[5]) = 1.
b) Set Clock Polarity, CKP (SPIxCON1L[6]) = 0.
c) Set Frame Polarity, FRMPOL (SPIxCON1H[5]) = 1.
d) Set MODE[32,16] (SPIxCON1L[11:10]) = 0 for 16-bit audio channel data.
e) Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).

12. Transmission (and reception) will start immediately after the SPIEN bit is set.

Example 4-4: Left Justified Host Mode, 625 kbps BLCK, 16-Bit Channel Data, 32-Bit Frame
/* The following code example will initialize the SPI1 Module in Left Justified Host mode. */

int rData;
IPC2bits.SPI1TXIP = 4;

SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1H = 0x8120; // AUDEN=1, Left Justified mode, stereo mode, FRMPOL = 1
SPI1BRGL = 0x000F; // to generate 625 kbps sample rate, PBCLK @ 20 MHz
SPI1CON1L = 0x0420; // 16 bits/32 channel transfer, Host mode,ckp=0
SPI1IMSKLbits.SPITBFEN = 1; // SPI1 transmit buffer full generates interrupt event

IEC0bits.SPI1TXIE = 1; // Enable interrupts

SPI1CON1Lbits.ENHBUF = 1;
SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to receive and transmit data
DS70005136B-page 46  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
4.5.3 RIGHT JUSTIFIED MODE
In Right Justified mode, the SPI module shifts the audio sample data’s MSb after aligning the data
to the last clock cycle. The bits preceding the audio sample data can be driven to logic level ‘0’
by setting the DISSDO bit (SPIxCON1L[12]) to ‘0’. When DISSDO = 0, the module ignores the
unused bit slot.
• Required Configuration Settings

To set the module to Right Justified mode, the following bits must to be set:
- AUDMOD[1:0] (SPIxCON1H[9:8]) = 10
- FRMPOL (SPIxCON1H[5]) = 1
- CKP (SPIxCON1L[6]) = 0

This enables the SDOx and LRCK transitions to occur on the rising edge of SCKx, after the LSb
is aligned to the last clock cycle. Refer to the sample waveform diagrams shown in Figure 4-8
and Figure 4-9 for 16, 24 and 32-bit audio data transfers.

Figure 4-8: Right Justified with 16-Bit Data/Channel or 32-Bit Data/Channel

Figure 4-9: Right Justified with 16/24-Bit Data and 32-Bit Channel

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx MSb – 1 LSbLSb + 1 MSb – 1 LSb + 1 LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample SampleTransmit

MSb MSb

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx LSb LSb

Transmit Sample SampleTransmit

00 0 0

RIGHT CHANNELLEFT CHANNEL

MSbMSb
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 47

dsPIC33/PIC24 Family Reference Manual
4.5.3.1 Right Justified Audio Client Mode Operation
Use the following steps to set up the SPI module for the Right Justified Audio Client mode of
operation:
1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit (SPIxCON1L[15]).
3. Reset the SPIx Control Register 1 High, SPIxCON1H.
4. Clear the receive buffer.
5. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
6. If using interrupts, perform the following steps:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

7. Clear the SPIROV bit (SPIxSTATL[6]).
8. Write the desired settings in the SPIxCON1H register. The AUDMOD[1:0] bits

(SPIxCON1H[9:8]) must be set to ‘10’ for Right Justified mode and the AUDEN bit
(SPIxCON1H[15]) must be set to ‘1’ to enable the audio protocol.

9. Write the desired settings to the SPIxCON1L register:
a) Set to Client mode, MSTEN (SPIxCON1L[5]) = 0.
b) Set Clock Polarity, CKP (SPIxCON1L[6]) = 0.
c) Set Frame Polarity, FRMPOL (SPIxCON1H[5]) = 1.
d) Set MODE[32,16] (SPIxCON1L[11:10]) = 0 for 16-bit audio channel data.
e) Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).

10. Transmission (and reception) will start as soon as the Host provides the BCLK and LRCK.

Example 4-5: Right Justified Client Mode, 16-Bit Channel Data, 32-Bit Frame
/* The following code example will initialize the SPI1 Module in Right Justified Client mode. */

int rData;
IPC14bits.SPI1RXIP = 4;

SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1H = 0x8220; // AUDEN=1, Right Justified mode, stereo mode,FRMPOL=1
SPI1CON1L = 0x0400; // 16 bits/32 channel transfer, Client mode,ckp=0
SPI1IMSKLbits.SPIRBFEN = 1; // SPI1 receive buffer full generates interrupt event

IEC3bits.SPI1RXIE = 1; // Enable interrupts

SPI1CON1Lbits.ENHBUF = 1;
SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to receive and transmit data
DS70005136B-page 48  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
4.5.3.2 Right Justified Audio Host Mode Operation
Use the following steps to set up the SPI module for the Right Justified Audio Host mode of
operation:
1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit (SPIxCON1L[15]).
3. Reset the SPIx Control Register 1 High, SPIxCON1H.
4. Reset the SPIx Baud Rate Register Low, SPIxBRGL.
5. Clear the receive buffer.
6. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
7. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

8. Clear the SPIROV bit (SPIxSTATL[6]).
9. Write the desired settings in the SPIxCON1H register. The AUDMOD[1:0] bits

(SPIxCON1H[9:8]) must be set to ‘10’ for Right Justified mode and the AUDEN bit
(SPIxCON1H[15]) must be set to ‘1’ to enable the audio protocol.

10. Set the SPIx Baud Rate Register Low, SPIxBRGL, to 0x0F (to generate approximately
256 kbps sample rate with PBCLK @ 20 MHz).

11. Write the desired settings to the SPIxCON1L register:
a) Set to Host mode, MSTEN (SPIxCON1L[5]) = 1.
b) Set Clock Polarity, CKP (SPIxCON1L[6]) = 0.
c) Set Frame Polarity, FRMPOL (SPIxCON1H[5]) = 1.
d) Set MODE[32,16] (SPIxCON1L[11:10]) = 0 for 16-bit audio channel data.
e) Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).

12. Transmission (and reception) will start immediately after the SPIEN bit is set.

Example 4-6: Right Justified Host Mode, 625 kbps BLCK, 16-Bit Channel Data, 32-Bit Frame
/* The following code example will initialize the SPI1 Module in Right Justified Host mode. */

int rData;
IPC2bits.SPI1TXIP = 4;

SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1H = 0x8220; // AUDEN=1, Right Justified mode, stereo mode
SPI1BRGL = 0x000F; // to generate 625 kbps sample rate, PBCLK @ 20 MHz
SPI1CON1L = 0x0420; // 16 bits/32 channel transfer, Host mode,ckp=0
SPI1IMSKLbits.SPITBFEN = 1; // SPI1 transmit buffer full generates interrupt event

IEC0bits.SPI1TXIE = 1; // Enable interrupts

SPI1CON1Lbits.ENHBUF = 1;
SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to receive and transmit data
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 49

dsPIC33/PIC24 Family Reference Manual
4.5.4 PCM/DSP MODE
The PCM/DSP Protocol mode is available for communication with some codecs and certain DSP
(Digital Signal Processor) devices. This mode modifies the behavior of LRCK and audio data
spacing. In PCM/DSP mode, the LRCK can be a single-bit wide (i.e., one SCKx) or as wide as
the audio data (16, 24, 32 bits). The audio data are packed in the frame with the left channel data
immediately followed by the right channel data. The frame length is still either 32 or 64 clocks
when this device is the Host.
In PCM/DSP mode, the transmitter drives the audio data’s (left channel) MSb on the first or sec-
ond transmit edge (see the SPIFE bit (SPIxCON1L[1])) of SCKx (after an LRCK transition).
Immediately after the (left channel) LSb, the transmitter drives the (right channel) MSb.
• Required Configuration Settings

To set the module to PCM/DSP mode, the following bits must to be set:
- AUDMOD[1:0] bits (SPIxCON1H[9:8]) = 11

Refer to the sample waveform diagrams shown in Figure 4-10 and Figure 4-11 for 16, 24 and
32-bit audio data transfers.

Figure 4-10: PCM/DSP with 16-Bit Data/Channel or 32-Bit Data/Channel

Figure 4-11: PCM/DSP with 16/24-Bit Data and 32-Bit Channel

(FRMSYPW = 1)
SCKx (BCLK)

SDOx/SDIx MSb – 1 LSbLSb + 1 MSb – 1 LSb + 1 LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample SampleTransmit

SSx (LRCK)
(FRMSYPW = 0)

RIGHT CHANNELSSx (LRCK)

(SPIFE = 1)

LEFT CHANNEL

MSb MSb

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx LSb LSb

RIGHT CHANNEL

Transmit Sample SampleTransmit

0 00

SSx (LRCK)

(FRMSYPW = 1)

(FRMSYPW = 0)

0

(SPIFE = 0)

LEFT CHANNEL

LEFT CHANNEL RIGHT CHANNEL

MSbMSb
DS70005136B-page 50  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
4.5.4.1 PCM/DSP Audio Client Mode of Operation
Use the following steps to set up the SPI module for the PCM/DSP Audio Client mode of operation:
1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit (SPIxCON1L[15]).
3. Reset the SPIx Control Register 1 High, SPIxCON1H.
4. Clear the receive buffer.
5. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
6. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

7. Clear the SPIROV bit (SPIxSTATL[6]).
8. Write the desired setting in the SPIxCON1H register. The AUDMOD[1:0] bits

(SPIxCON1H[9:8]) must be set to ‘11’ for DSP/PCM mode and the AUDEN bit
(SPIxCON1H[15]) must be set to ‘1’ to enable audio protocol

9. Write the desired settings to the SPIxCON1L register:
a) Set to Client mode, MSTEN (SPIxCON1L[5]) = 0.
b) Set MODE[32,16] (SPIxCON1L[11:10]) = 0 for 16-bit audio channel data.
c) Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).

10. Transmission (and reception) will start as soon as the Host provides the BCLK and LRCK.

Example 4-7: PCM/DSP Client Mode, 16-Bit Channel Data, 32-Bit Frame
/* The following code example will initialize the SPI1 Module in PCM/DSP Client Mode. */

int rData;
IPC14bits.SPI1RXIP = 4;

SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1H = 0x8320; // AUDEN=1, PCM/DSP mode, stereo mode,FRMPOL=1
SPI1CON1L = 0x0400; // 16 bits/32 channel transfer, Client mode,ckp=0
SPI1IMSKLbits.SPIRBFEN = 1; // SPI1 receive buffer full generates interrupt event

IEC3bits.SPI1RXIE = 1; // Enable interrupts

SPI1CON1Lbits.ENHBUF = 1;
SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to receive and transmit data
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 51

dsPIC33/PIC24 Family Reference Manual
4.5.4.2 PCM/DSP Audio Host Mode of Operation
Use the following steps to set up the SPI module for the PCM/DSP Audio Host mode of operation:
1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit (SPIxCON1L[15]).
3. Reset the SPIx Control Register 1 High, SPIxCON1H.
4. Reset the SPIx Baud Rate Register Low, SPIxBRGL.
5. Clear the receive buffer.
6. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
7. If using interrupts, perform the following steps:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

8. Clear the SPIROV bit (SPIxSTATL[6]).
9. Write the desired settings in the SPIxCON1H register. The AUDMOD[1:0] bits

(SPIxCON1H[9:8]) must be set to ‘11’ for DSP/PCM mode and the AUDEN bit
(SPIxCON1H[15]) must be set to ‘1’ to enable the audio protocol.

10. Set the SPIx Baud Rate Register Low, SPIxBRGL, to 0x0F (to generate approximately
256 kbps sample rate with PBCLK @ 20 MHz).

11. Write the desired settings to the SPIxCON1L register:
a) Set to Host mode, MSTEN (SPIxCON1L[5]) = 1.
b) Set MODE[32,16] (SPIxCON1L[11:10]) = 0 for 16-bit audio channel data.
c) Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).

12. Transmission (and reception) will start immediately after the SPIEN bit is set.

Example 4-8: PCM/DSP Host Mode, 16-Bit Channel Data, 32-Bit Frame
/* The following code example will initialize the SPI1 Module in PCM/DSP Host Mode. */

int rData;
IPC2bits.SPI1TXIP = 4;

SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1H = 0x8320; // AUDEN=1, PCM/DSP mode, stereo mode
SPI1BRGL = 0x000F; // to generate 625 kbps sample rate, PBCLK @ 20 MHz
SPI1CON1L = 0x0420; // 16 bits/32 channel transfer, Host mode,ckp=0
SPI1IMSKLbits.SPITBFEN = 1; // SPI1 transmit buffer full generates interrupt event

IEC0bits.SPI1TXIE=1; // Enable interrupts

SPI1CON1Lbits.ENHBUF = 1;
SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to receive and transmit data
DS70005136B-page 52  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
4.6 Audio Protocol Mode Features

4.6.1 BCLK/SCKx AND LRCK GENERATION
BCLK and LRCK generation is a key requirement in Host mode. The frame frequency of SCKx
and LRCK is defined by the MODE[32,16] bits (SPIxCON1L[11:10]). When the frame is 64 bits,
SCKx is 64 times the frequency of LRCK. Similarly, when the frame is 32 bits, SCKx is 32 times
the frequency of LRCK. The frequency of SCKx must be derived from the toggling rate of LRCK
and the frame size.
For example, to sample 16-bit channel data at 8 kHz with PBCLK = 36.864 MHz, set the
SPIxBRGL register to 0x47 to generate an 8 kHz LRCK.

4.6.2 HOST MODE CLOCKING AND MCLK
The SPI module as a Host has the ability to generate BCLK and LRCK by internally generating
using PBCLK (MCLKEN = 0). The SPI module can generate the clock for external codec devices
using the reference output, REFCLKO, function (see Figure 4-12), although some codecs may
have the ability to generate their own MCLK from a crystal to provide accurate audio sample
rates. Figure 4-13 shows that the REFCLKO clock can be used as MCLKIN by the codec.

Figure 4-12: SPIx Host Clock Generation

For more information on the reference clock output interface, refer to the specific device data
sheet.
Figure 4-13 shows the interface between an SPI Client and a codec Host, deriving the clock from
the MCLK input interface.

Figure 4-13: SPIx Client and Codec Host – Clock Derived from MCLK

Baud Rate
Generator

BCLK

USB-PLL

SOSC

LPRC

FRC

POSC

PBCLK

System Clock

MCLK

MCLKEN

R
eference

C
lock O

utput

REFCLKO
REFI

SCKx

SSx

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

dsPIC33/PIC24
[SPI Client]

Codec
[Host]

REFCLKO MCLKIN
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 53

dsPIC33/PIC24 Family Reference Manual
4.6.2.1 I2S Audio Host Mode of Operation Using REFCLKO
The following steps can be used to set up the SPI module for the I2S Audio Host mode of operation
with MCLK enabled. The SPI module is initialized to generate BCLK @ 625 kbps and MCLK is derived
from PBCLK using the Reference Oscillator Controller register. A typical application could be to play
PCM data (8 kHz sample frequency, 16-bit data, 32-bit frame) when interfaced to a codec Client
device.
1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the SPIEN bit (SPIxCON1L[15]).
3. Reset the SPIx Control Register 1 High, SPIxCON1H.
4. Reset the Reference Oscillator Controller register, REFOCON.
5. Reset the SPIx Baud Rate Register Low, SPIxBRGL.
6. Clear the receive buffer.
7. Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
8. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.
d) Clear the SPIROV bit (SPIxSTATL[6]).

9. Write the desired settings in the SPIxCON1H register. The AUDMOD[1:0] bits
(SPIxCON1H[9:8]) must be set to ‘00’ for I2S mode and the AUDEN bit (SPIxCON1H[15])
must be set to ‘1’ to enable the audio protocol.

10. Set the Reference Oscillator Controller register, REFOCON:
a) RODIV[14:0] (REFOCONH[14:0]) = 0.
b) ROEN (REFOCONL[15]) = 1, reference oscillator is enabled.
c) ROOUT (REFOCONL[12]) = 1, output is enabled.

11. Set the SPIx Baud Rate Register Low, SPIxBRGL, to 0x1F (to generate approximately
625 kbps sample rate with PBCLK @ 20 MHz).

12. Write the desired settings to the SPIxCON1L register with:
a) MSTEN (SPIxCON1L[5]) = 1.
b) CKP (SPIxCON1L[6]) = 1.
c) MODE[32,16] (SPIxCON1L[11:10]) = 0 for 16-bit audio channel data.
d) MCLKEN (SPIxCON1L[2]) = 1, Host mode.
e) Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).

13. Transmission (and reception) will start as soon as the Host provides the BCLK and LRCK.

Example 4-9: I2S Host Mode, 625 kbps BCLK, 16-Bit Channel Data, 32-Bit Frame

Note: The use of a reference clock output to generate MCLK for the codec may not be a perfect choice. Driving
a clock out to an I/O pad induces jitter that may degrade audio fidelity of the codec. The best solution is for
the codec to use a crystal and be the Host I2S/audio device.

/* The following code example will initialize the SPI1 Module in I2S Maaster mode.
int rData;
IPC2bits.SPI1TXIP = 4;

SPI1STATLbits.SPIROV = 0; // clear the Overflow
SPI1CON1H = 0x8000; // AUDEN=1, I2S mode, stereo mode
SPI1BRGL = 0x000F; // to generate 625 kbps sample rate, PBCLK @ 20 MHz
SPI1CON1L = 0x0464; // 16 bits/32 channel transfer, Host mode,ckp=1, MCLKEN=1
REFOCONL = 0x8001; // REFO ROEN = 1, ROSEL = 1 for PBCLK
SPI1IMSKLbits.SPITBFEN = 1; // SPI1 transmit buffer full generates interrupt event

IEC0bits.SPI1TXIE = 1; // Enable interrupts
IEC0bits.SPI1IE = 1;
IEC3bits.SPI1RXIE = 1;

SPI1CON1Lbits.ENHBUF = 1;
SPI1CON1Lbits.SPIEN = 1;

// from here, the device is ready to receive and transmit data
DS70005136B-page 54  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
4.7 Mono Mode vs. Stereo Mode
The SPI module enables the audio data transmission in Mono or Stereo mode by setting the
AUDMONO bit (SPIxCON1H[11]). When the AUDMONO bit is set to ‘0’ (Stereo mode), the SPIx
Shift register uses each FIFO location once, which gives each channel a unique stream of data
for stereo data. When the AUDMONO bit is set to ‘1’ (Mono mode), the SPIx Shift register uses
each FIFO location twice, to give each channel the same mono stream of audio data.

4.8 Streaming Data Support and Error Handling
Most audio streaming applications transmit or receive data continuously. This is required to keep
the channel active during the period of operation and ensures the best possible accuracy. Due
to streaming audio, the data feeds could be bursty or packet loss can occur causing the module
to encounter situations such as underrun. The software needs to be involved to recover from an
underrun.
The Ignore Transmit Underrun (IGNTUR) bit (SPIxCON1H[12]), when set to a ‘1’, ignores an
underrun condition. This is helpful for cases when software does not care or does not need to
know about underrun conditions. When an underrun is encountered, the SPI module sets the
SPITUR bit (SPIxSTATL[8]) and when URDTEN = 1 (SPIxCON1H[10]), the module remains in
an Error state until the software clears the state or the SPIEN bit = 0 (SPIxCON1L[15]).
During the underrun condition, the SPI module loads the SPIxTXSR with the data in the
SPIxURDT register when the URDTEN bit is set to ‘1’. If URDTEN is not set to ‘1’, then the last
received data during underrun are loaded to SPIxTXSR. The module samples the underrun
condition on channel boundaries, so transmission of SPIxURDT data can start with either the left
or right audio channel.
When the condition clears (i.e., SPIxTXB is not empty), the logic loads audio data from the transmit
buffer into the SPIxTXSR on the next LRC frame boundary. Because recovery from the underrun
condition occurs on the LRC frame boundary (i.e., at the end of a full left and right channel pair),
software must ensure the left and right audio data are always transferred to the FIFO in pairs.
The Ignore Receive Overflow (IGNROV) bit (SPIxCON1H[13]), when set to a ‘1’, ignores a
Receive Overflow condition. This is useful when there is a general performance problem in the
system that software must handle properly. An alternate method to handle the Receive Overflow
is by setting the DISSDI bit = 1 (SPIxCON1L[4]) when the system does not need to receive audio
data. After changing the DISSDI bit on-the-fly, the SPIx Receive Shift register starts a receive on
the leading LRCK edge.
If an RX overflow occurs when IGNROV = 0, the I2S will behave just like it would in SPI mode,
that is, it will stop writing to the RX FIFO. However, recovery from overflow is different from SPI
mode. When the CPU gets around to reading the RX FIFO, the I2S will restart receiving into the
RX FIFO only when two additional conditions are met:
• The I2S is on an LRC boundary
• There is a multiple of two locations free in the RX FIFO
These conditions will ensure the received data will start at the beginning of the LEFT channel and
there is room to receive the RIGHT channel information immediately following.

Note: Receive data are not affected by AUDMONO bit settings.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 55

dsPIC33/PIC24 Family Reference Manual
5.0 INTERRUPTS
The SPI module has the ability to generate interrupts reflecting the events that occur during the
data communication. The following types of interrupts can be generated:
• Receive data available interrupts are signaled by SPIxRXIF. This event occurs when:

- RX watermark interrupt
- SPIROV = 1
- SPIRBF = 1
- SPIRBE = 1, provided respective mask bits are enabled in SPIxIMSK

• Transmit buffer empty interrupts are signaled by SPIxTXIF. This event occurs when:
- TX watermark interrupt
- SPITUR = 1
- SPITBF = 1
- SPITBE = 1, provided respective mask bits are enabled in SPIxIMSK

• General interrupts are signaled by SPIxIF. This event occurs when:
- FRMERR = 1
- BUSY = 1
- SRMT = 1, provided respective mask bits are enabled in SPIxIMSK

All of these interrupt flags, which must be cleared in software, are located in the IFSx registers.
Refer to the specific device data sheet for more information.
To enable the SPIx interrupts, use the respective SPIx Interrupt Enable bits, SPIxRXIE,
SPIxTXIE and SPIxIE, in the corresponding IECx registers.
The Interrupt Priority Level (IPL) bits must be also be configured using the SPIxIP bits in the
corresponding IPCx registers.
When using Enhanced Buffer mode, the SPIx transmit buffer can be configured to interrupt at
different FIFO levels using mask bits, TXMSK[5:0] in SPIxIMSKH[5:0]. Also, the Transmit
Watermark Interrupt bit, TXWIEN (SPIxIMSKH[7]), should be enabled.
Similarly, the SPIx receive buffer can be configured to interrupt at different FIFO levels using
mask bits, RXMSK[5:0] (SPIxIMSKH[13:8]). Also, the Receive Watermark Interrupt, RXWIEN
(SPIxIMSKH[15]), should be enabled.
Refer to “Interrupts” (DS70000600) in the “dsPIC33/PIC24 Family Reference Manual” for
further details.

5.1 Interrupt Configuration
Each SPI module has three dedicated interrupt flag bits: SPIxIF, SPIxRXIF and SPIxTXIF, and
corresponding interrupt enable bits, SPIxIE, SPIxRXIE and SPIxTXIE. These bits are used to
determine the source of an interrupt and to enable or disable an individual interrupt source. Note
that all the interrupt sources for a specific SPI module share one interrupt vector. Each SPI
module can have its own priority level independent of other SPI modules.

Note: SPIxTXIF, SPIxRXIF and SPIxIF bits will be set without regard to the state of the
corresponding enable bit. The interrupt flag bits can be polled by software if desired.
DS70005136B-page 56  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
The SPIxIE, SPIxTXIE and SPIxRXIE bits are used to define the behavior of the interrupt con-
troller when a corresponding SPIxIF, SPIxTXIF or SPIxRXIF bit is set. When the corresponding
interrupt enable bit is clear, the interrupt controller does not generate a CPU interrupt for the
event. If the interrupt enable bit is set, the interrupt controller will generate an interrupt to the CPU
when the corresponding interrupt flag bit is set (subject to the priority as outlined below).
It is the responsibility of the user’s software routine, that services a particular interrupt, to clear
the appropriate interrupt flag bit before the service routine is complete.
The priority of each SPI module can be set independently with the SPIxIP[2:0] bits. This priority
defines the priority group to which the interrupt source will be assigned. The priority groups range
from a value of 7 (the highest priority), to a value of 0 (which does not generate an interrupt). An
interrupt being serviced will be preempted by an interrupt in a higher priority group.
The priority group bits allow more than one interrupt source to share the same priority. If simul-
taneous interrupts occur in this configuration, the natural order of the interrupt sources within a
priority group pair determines the interrupt generated. The natural priority is based on the vector
numbers of the interrupt sources. The lower the vector number, the higher the natural priority of
the interrupt. Any interrupts that were overridden by natural order will then generate their respec-
tive interrupts based on priority and natural order, after the interrupt flag for the current interrupt
is cleared.
After an enabled interrupt is generated, the CPU will jump to the vector assigned to that interrupt.
The vector number for the interrupt is the same as the natural order number. The CPU will then
begin executing code at the vector address. The user’s code at this vector address should per-
form any application-specific operations required, and clear interrupt flags, SPIxIF, SPIxTXIF or
SPIxRXIF, and then exit. For more information on interrupts, refer to the vector address table
details in “Interrupts” (DS70000600) in the “dsPIC33/PIC24 Family Reference Manual”.
For devices with Enhanced Buffering mode, the user application should clear the interrupt
request flag after servicing the interrupt condition.
If an SPIx interrupt has occurred, the ISR should read the SPIx Data Buffer (SPIxBUF) register
and then clear the SPIx interrupt flag.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 57

dsPIC33/PIC24 Family Reference Manual
6.0 OPERATION IN POWER-SAVING AND DEBUG MODES

6.1 Sleep Mode
When the device enters Sleep mode, the system clock is disabled. The exact SPI module oper-
ation during Sleep mode depends on the current mode of operation. The following sub-sections
describe mode-specific behavior.

6.1.1 HOST MODE IN SLEEP MODE
The following items should be noted in Sleep mode:
• The Baud Rate Generator (BRG) is stopped and may be reset (check the device data sheet).
• On-going transmission and reception sequences are aborted. The module may not resume

aborted sequences when Sleep mode is exited. (Again, check the device data sheet.)
• Once in Sleep mode, the module will not transmit or receive any new data.

6.1.2 CLIENT MODE IN SLEEP MODE
In Client mode, the SPI module operates from the SCKx provided by an external SPI Host. Since
the clock pulses at SCKx are externally provided for Client mode, the module will continue to
function in Sleep mode in Enhanced buffer mode only. The module will complete any transac-
tions during the transition into Sleep and while in Sleep. On completion of a transaction, SPI logic
checks the fill status of Rx FIFO. When RXMSK[5:0] = RXELM[5:0], the SPI generates RX event.
Consequently, the SPIxRXIF bit will be set. If SPIx interrupts are enabled (SPIxRXIE = 1) and
the SPI Interrupt Priority Level is greater than the present CPU priority level, the device will wake
from Sleep mode and the code execution will resume at the SPIx interrupt vector location. If the
SPI Interrupt Priority Level is lower than or equal to the present CPU priority level, the CPU will
remain in Idle mode.
The module is not reset on entering Sleep mode if it is operating as a Client device. Register
contents are not affected when the SPI module is going into or coming out of Sleep mode.

6.2 Idle Mode
When the device enters Idle mode, the system clock sources remain functional.

6.2.1 HOST MODE IN IDLE MODE
The SPISIDL bit (SPIxCON1L[13]) selects whether the module will stop or continue functioning
in Idle mode.
• If SPISIDL = 1, the module will discontinue operation in Idle mode. The module will perform

the same procedures when stopped in Idle mode that it does for Sleep mode.
• If SPISIDL = 0, the module will continue operation in Idle mode

6.2.2 CLIENT MODE IN IDLE MODE
The module will continue operation in Idle mode irrespective of the SPISIDL bit setting. The
behavior is identical to the one in Sleep mode.

6.3 Debug Mode

6.3.1 OPERATION OF SPIxBUF

6.3.1.1 Reads During Debug Mode
During Debug mode, SPIxBUF can be read, but the read operation does not affect any status bits.
For example, if the SPIRBF bit (SPIxSTATL[0]) is set when Debug mode is entered, it will remain
set on an exit from Debug mode, even though the SPIxBUF register was read in Debug mode.

Note: To prevent unintentional abort of transmit and receive sequences, you may need to
wait for the current transmission to be completed before activating Sleep mode.
DS70005136B-page 58  2013-2022 Microchip Technology Inc. and its subsidiaries

 Serial Peripheral Interface (SPI) with Audio Codec Support
7.0 EFFECTS OF VARIOUS RESETS

7.1 Device Reset
All SPIx registers are forced to their Reset states upon a device Reset. When the asynchronous
Reset input goes active, the SPI logic:
• Resets all bits in SPIxCON1L and SPIxSTAT
• Resets the SPIx Transmit and Receive Buffers (SPIxBUF) to the Empty state
• Resets the Baud Rate Generator (BRG)

7.2 Power-on Reset
All SPIx registers are forced to their Reset states when a Power-on Reset occurs.

7.3 Watchdog Timer Reset
All SPIx registers are forced to their Reset states when a Watchdog Timer Reset occurs.

8.0 PERIPHERALS USING SPI MODULES
There are no other peripherals using the SPI module.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 59

dsPIC33/PIC24 Family Reference Manual
9.0 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33/PIC24 device family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the SPI module are:

Title Application Note #
Interfacing Microchip’s MCP41XXX and MCP42XXX Digital Potentiometers AN746
to a PIC® Microcontroller
Interfacing Microchip’s MCP3201 Analog-to-Digital Converter AN719
to the PIC® Microcontroller

Note: Please visit the Microchip website (www.microchip.com) for additional application
notes and code examples for the dsPIC33/PIC24 family of devices.
DS70005136B-page 60  2013-2022 Microchip Technology Inc. and its subsidiaries

http://www.microchip.com
http://www.microchip.com

 Serial Peripheral Interface (SPI) with Audio Codec Support
10.0 REVISION HISTORY

Revision A (September 2013)
This is the initial released version of this document.

Revision B (July 2022)
This revision includes the following updates:
• Updated Section 1.0 “Introduction”, Section 3.2.2 “Enhanced Buffer Mode”,

Section 3.2.2 “Enhanced Buffer Mode”, Section 4.3 “Audio Data Length and Frame
Length”, Section 5.0 “Interrupts” and Section 6.1.2 “Client Mode in Sleep Mode”.

• Added additional information to the SPISGNEXT bit in Register 2-2.
• Updated Register 2-1, Register 2-2, Register 2-5, Register 2-7, Register 2-8, Register 2-13

and Register 2-14.
• Updated the values for Enhanced Buffer FIFO Depth in Table 4-1 and added a note.
• Changes to formatting and minor text updates have been incorporated throughout the

document.
• The SPI standard uses the terminology “Master” and “Slave”. The equivalent Microchip

terminology used in this document is “Host” and “Client”, respectively.
 2013-2022 Microchip Technology Inc. and its subsidiaries DS70005136B-page 61

dsPIC33/PIC24 Family Reference Manual
NOTES:
DS70005136B-page 62  2013-2022 Microchip Technology Inc. and its subsidiaries

Note the following details of the code protection feature on Microchip products:
• Microchip products meet the specifications contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and
under normal conditions.

• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of
Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
continuously improving the code protection features of our products.
This publication and the information herein may be used only
with Microchip products, including to design, test, and integrate
Microchip products with your application. Use of this informa-
tion in any other manner violates these terms. Information
regarding device applications is provided only for your conve-
nience and may be superseded by updates. It is your responsi-
bility to ensure that your application meets with your
specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at https://
www.microchip.com/en-us/support/design-help/client-support-
services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE, OR WARRANTIES RELATED TO
ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-
RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-
QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY
KIND WHATSOEVER RELATED TO THE INFORMATION OR
ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES
ARE FORESEEABLE. TO THE FULLEST EXTENT
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP
FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applica-
tions is entirely at the buyer's risk, and the buyer agrees to
defend, indemnify and hold harmless Microchip from any and
all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under
any Microchip intellectual property rights unless otherwise
stated.
 2013-2022 Microchip Technology Inc. and its subsidiaries

For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.
Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AVR,
AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory,
CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq,
Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB,
megaAVR, Microsemi, Microsemi logo, MOST, MOST logo,
MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo,
PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity,
SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are
registered trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions
Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight
Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge,
ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire,
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, TrueTime, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,
BodyCom, Clockstudio, CodeGuard, CryptoAuthentication,
CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,
ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-
Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling,
IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display,
KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI,
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total
Endurance, Trusted Time, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2013-2022, Microchip Technology Incorporated and its
subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-0865-3
DS70005136B-page 63

www.microchip.com/quality
www.microchip.com/quality
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

DS70005136B-page 64  2013-2022 Microchip Technology Inc. and its subsidiaries

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

09/14/21

http://support.microchip.com
http://www.microchip.com

	Serial Peripheral Interface (SPI) with Audio Codec Support
	Highlights
	1.0 Introduction
	Figure 1-1: SPIx Module Block Diagram
	1.1 Normal Mode SPI Operation
	Figure 1-2: Typical SPIx Host-to-Client Device Connection Diagram
	Figure 1-3: Typical SPIx Client-to-Host Device Connection Diagram

	1.2 Framed Mode SPI Operation
	Figure 1-4: Typical SPIx Host, Frame Host Connection Diagram
	Figure 1-5: Typical SPIx Host, Frame Client Connection Diagram

	1.3 Audio Protocol Interface Mode
	1.3.1 SPI in Audio Host Mode Connected to a Codec Client
	Figure 1-6: Host Generating its Own Clock – Output BCLK and LRCK

	1.3.2 SPI in Audio Client Mode Connected to a Codec Host
	Figure 1-7: Codec Device as Host Generates Required Clock via External Crystal

	2.0 Status and Control Registers
	Register 2-1: SPIxCON1L: SPIx Control Register 1 Low
	Register 2-2: SPIxCON1H: SPIx Control Register 1 High
	Register 2-3: SPIxCON2L: SPIx Control Register 2 Low
	Register 2-4: SPIxCON2H: SPIx Control Register 2 High
	Register 2-5: SPIxSTATL: SPIx Status Register Low
	Register 2-6: SPIxSTATH: SPIx Status Register High
	Register 2-7: SPIxBUFL: SPIx Buffer Register Low
	Register 2-8: SPIxBUFH: SPIx Buffer Register High
	Register 2-9: SPIxBRGL: SPIx Baud Rate Generator Register Low
	Register 2-10: SPIxBRGH: SPIx Baud Rate Generator Register High
	Register 2-11: SPIxIMSKL: SPIx Interrupt Mask Register Low
	Register 2-12: SPIxIMSKH: SPIx Interrupt Mask Register High
	Register 2-13: SPIxURDTL: SPIx Underrun Data Register Low
	Register 2-14: SPIxURDTH: SPIx Underrun Data Register High

	3.0 Modes of Operation
	3.1 8-Bit, 16-Bit and 32-Bit Operation
	3.2 Buffer Modes
	3.2.1 Standard Buffer Mode
	3.2.2 Enhanced Buffer Mode

	3.3 Variable Word Length Operation
	3.4 Host and Client Modes
	Figure 3-1: SPIx Host/Client Connection Diagram
	3.4.1 Host Mode Operation
	Example 3-1: Initialization Code for 16-Bit SPI Host Mode
	Figure 3-2: SPIx Host Mode Operation in 8-Bit Mode (MODE32 = 0, MODE16 = 0)

	3.4.2 Client Mode Operation
	Example 3-2: Initialization Code for 16-Bit SPI Client Mode
	Figure 3-3: SPIx Client Mode Operation in 8-Bit Mode with Client Select Pin Disabled (MODE32 = 0, MODE16 = 0, SSEN = 0)
	Figure 3-4: SPIx Client Mode Operation in 8-Bit Mode with Client Select Pin Enabled (MODE32 = 0, MODE16 = 0, SSEN = 1)

	3.5 SPI Error Handling
	3.6 SPI Receive Only Operation
	3.7 Framed SPI Modes
	Figure 3-5: SPIx Host, Frame Host Connection Diagram
	3.7.1 SCKx in Framed SPI Modes
	3.7.2 SPI Buffers in Framed SPI Modes
	3.7.3 SPI Host Mode and Frame Host Mode
	Figure 3-6: SPIx Host, Frame Host (MODE32 = 0, MODE16 = 1, SPIFE = 0, FRMPOL = 1)

	3.7.4 SPI Host Mode and Frame Client Mode
	Figure 3-7: SPIx Host, Frame Client (MODE32 = 0, MODE16 = 1, SPIFE = 0, FRMPOL = 1)
	Figure 3-8: SPIx Host, Frame Client Connection Diagram

	3.7.5 SPI Client Mode and Frame Host Mode
	Figure 3-9: SPIx Client, Frame Host Connection Diagram

	3.7.6 SPI Client Mode and Frame Client Mode
	Figure 3-10: SPIx Client, Frame Client Connection Diagram

	3.8 SPI Host Mode Clock Frequency
	Equation 3-1: SCKx Frequency
	Table 3-1: Sample SCKx Frequencies(1)

	4.0 Audio Protocol Interface Mode
	4.1 Host Mode
	Figure 4-1: Host Generating its Own Clock – Output BCLK and LRCK

	4.2 Client Mode
	Figure 4-2: Codec Device as Host Generates Required Clock via External Crystal
	Figure 4-3: Codec Device as Host Derives MCLK from dsPIC33/PIC24 Reference Clock Out

	4.3 Audio Data Length and Frame Length
	Table 4-1: Audio Data Length vs. LRCK Period

	4.4 Frame Error/LRCK Errors
	4.5 Audio Protocol Modes
	Figure 4-4: SPIx Module in Audio Client Mode – BCLK and WS or LRCK Generated by Host
	4.5.1 I2S Mode
	Figure 4-5: I2S with 16-Bit Data/Channel or 32-Bit Data/Channel
	Example 4-1: I2S Client Mode, 16-Bit Channel Data, 32-Bit Frame
	Equation 4-1: Baud Rate Calculation
	Equation 4-2: Baud Rate Calculation
	Equation 4-3: Baud Rate Calculation
	Equation 4-4: Baud Rate Calculation
	Example 4-2: I2S Host Mode, 625 kbps BCLK, 16-Bit Channel Data, 32-Bit Frame

	4.5.2 Left Justified Mode
	Figure 4-6: Left Justified with 16-Bit Data/Channel or 32-Bit Data/Channel
	Figure 4-7: Left Justified with 16/24-Bit Data and 32-Bit Channel
	Example 4-3: Left Justified Client Mode, 16-Bit Channel Data, 32-Bit Frame
	Example 4-4: Left Justified Host Mode, 625 kbps BLCK, 16-Bit Channel Data, 32-Bit Frame

	4.5.3 Right Justified Mode
	Figure 4-8: Right Justified with 16-Bit Data/Channel or 32-Bit Data/Channel
	Figure 4-9: Right Justified with 16/24-Bit Data and 32-Bit Channel
	Example 4-5: Right Justified Client Mode, 16-Bit Channel Data, 32-Bit Frame
	Example 4-6: Right Justified Host Mode, 625 kbps BLCK, 16-Bit Channel Data, 32-Bit Frame

	4.5.4 PCM/DSP Mode
	Figure 4-10: PCM/DSP with 16-Bit Data/Channel or 32-Bit Data/Channel
	Figure 4-11: PCM/DSP with 16/24-Bit Data and 32-Bit Channel
	Example 4-7: PCM/DSP Client Mode, 16-Bit Channel Data, 32-Bit Frame
	Example 4-8: PCM/DSP Host Mode, 16-Bit Channel Data, 32-Bit Frame

	4.6 Audio Protocol Mode Features
	4.6.1 BCLK/SCKx and LRCK Generation
	4.6.2 Host mode Clocking and MCLK
	Figure 4-12: SPIx Host Clock Generation
	Figure 4-13: SPIx Client and Codec Host – Clock Derived from MCLK
	Example 4-9: I2S Host Mode, 625 kbps BCLK, 16-Bit Channel Data, 32-Bit Frame

	4.7 Mono Mode vs. Stereo Mode
	4.8 Streaming Data Support and Error Handling

	5.0 Interrupts
	5.1 Interrupt Configuration

	6.0 Operation in Power-Saving and Debug Modes
	6.1 Sleep Mode
	6.1.1 Host Mode in Sleep Mode
	6.1.2 Client Mode in Sleep Mode

	6.2 Idle Mode
	6.2.1 Host Mode in Idle Mode
	6.2.2 Client Mode in Idle Mode

	6.3 Debug Mode
	6.3.1 Operation of SPIxBUF

	7.0 Effects of Various Resets
	7.1 Device Reset
	7.2 Power-on Reset
	7.3 Watchdog Timer Reset

	8.0 Peripherals Using SPI Modules
	9.0 Related Application Notes
	10.0 Revision History
	Revision A (September 2013)
	Revision B (July 2022)

	Worldwide Sales and Service

