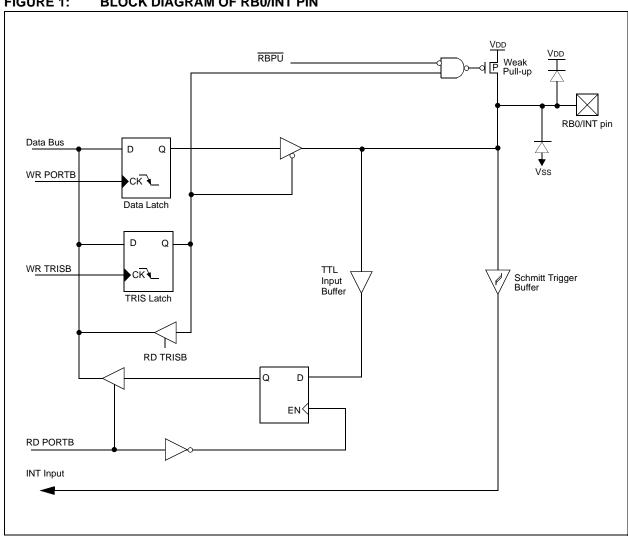


PIC16F628


PIC16F628 Rev. A Silicon Errata Sheet

The PIC16F628 (Rev. A) parts you have received conform functionally to the Device Data Sheet (DS40300B), except for the anomalies described below.


1. Module: I/O Ports

A read of the PORTB Data Direction Register (TRISB) returns the Data Direction state on the port pins themselves and not the contents of the TRISB register latch.

FIGURE 1: **BLOCK DIAGRAM OF RB0/INT PIN**

FIGURE 2: BLOCK DIAGRAM OF RB1/TX/DT PIN

FIGURE 3: BLOCK DIAGRAM OF RB2/TX/CK PIN

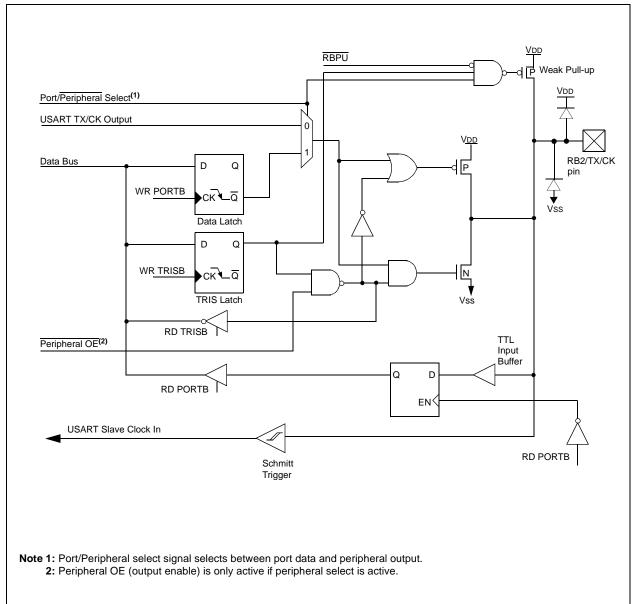


FIGURE 4: BLOCK DIAGRAM OF THE RB3/CCP1 PIN

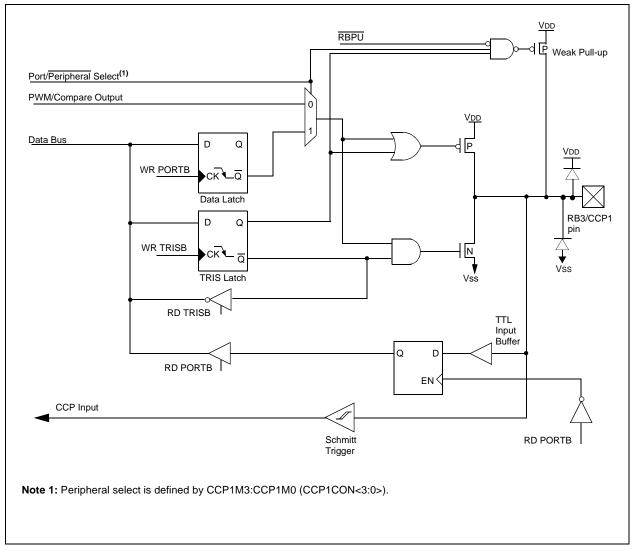


FIGURE 5: BLOCK DIAGRAM OF RB4/PGM PIN

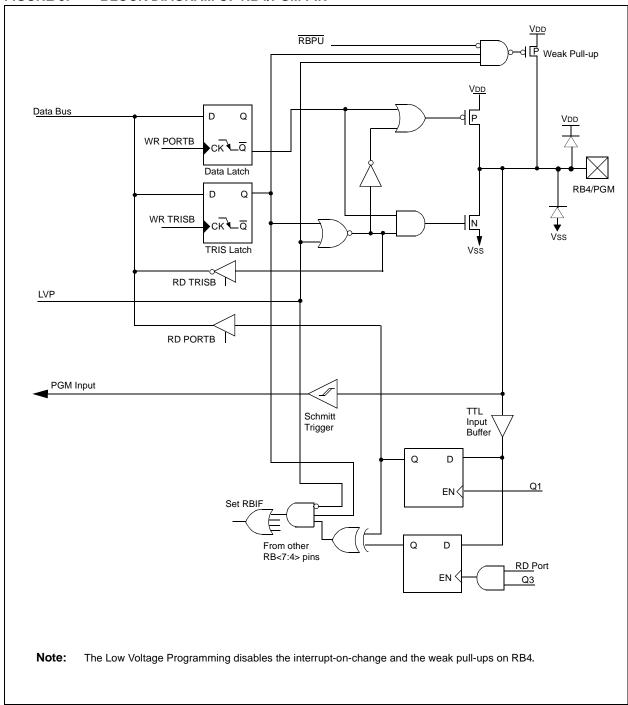
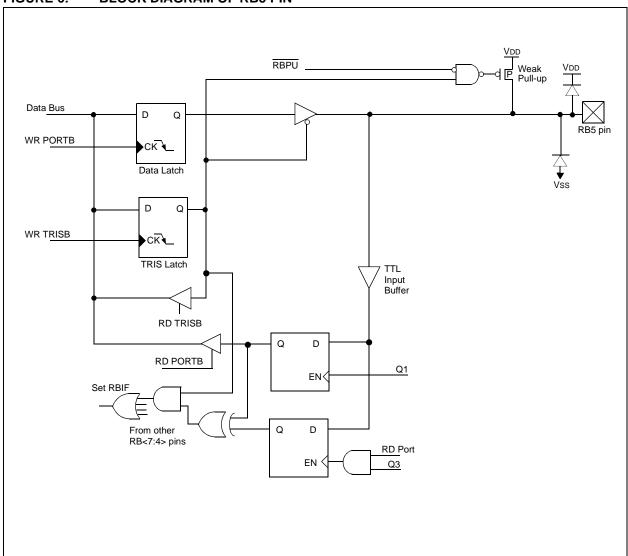



FIGURE 6: BLOCK DIAGRAM OF RB5 PIN

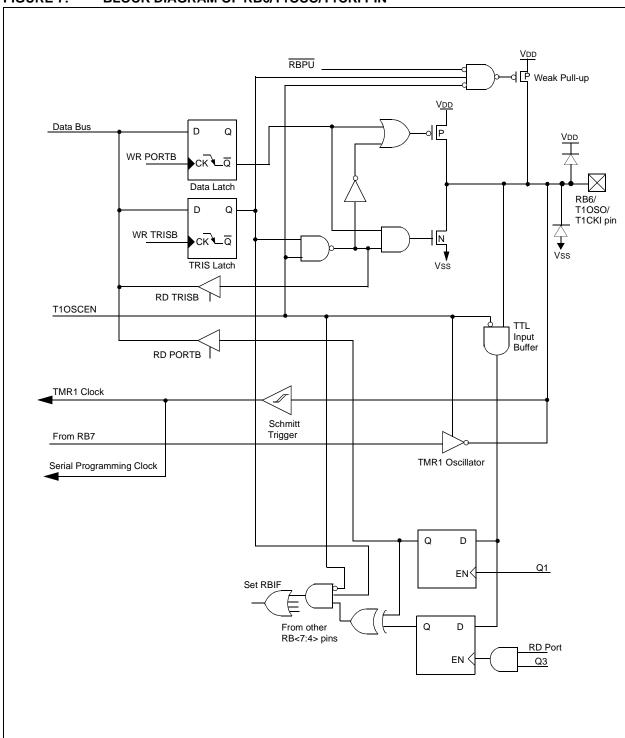


FIGURE 7: BLOCK DIAGRAM OF RB6/T10S0/T1CKI PIN

RBPU d Weak Pull-up TMR1 Oscillator To RB6 T1OSCEN Data Bus WR PORTB RB7/T1OSI ∙ck ****_Q Data Latch Q WR TRISB ск**∛**_Q TRIS Latch RD TRISB T10SCEN RD PORTB Input Buffer Serial Programming Input Schmitt Trigger Q D Q1 EN< Set RBIF Q D From other RB<7:4> pins RD Port EN. Q3

FIGURE 8: BLOCK DIAGRAM OF THE RB7/T10SI PIN

2. Comparator Mode 1

Mode 1 allows AN2 to drive the (+) inputs of both comparators. AN1 continues to drive the (-) input of Comparator 2, but AN0 and AN3 can be switched into the (-) input of Comparator 1. The state of the CIS bit chooses which input is to be connected to the comparator. When CIS = 0, AN0 is attached and the comparator functions correctly. When CIS = 1, AN3 is not completely connected to the comparator, resulting in incorrect behavior.

Mode 2 is also a multiplex mode using the CIS bit. This mode functions correctly.

All other modes are unaffected by this Errata.

3. Low Voltage Programming Mode

The 16F62X parts have a defective Low Voltage Programming mode. In this mode, the devices are able to be programmed without using 12V on the pin 4. This functions correctly. However, when high voltage programming is used while the part has Low Voltage Programming enabled, the Low Voltage mode is not overridden. This is incorrect. Because of this defect, when programming with high voltage, pull RB4 (pin 10) to ground to prevent programming interruptions. If RB4 goes high for any reason during high voltage programming with LVP enabled, the programming will be interrupted. Once LVP has been disabled, there is no issue with RB4.

Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS40300**B**), the following clarifications and corrections should be noted.

- The bit T1SYNC in the Register T1CON (address 10h) should be asserted logic low (ie., T1SYNC. Table 4-1, page 15, and Table 10-2, page 65, of DS40300B should be listed as follows:
- 2. The bit ADEN in Register RCSTA (address 18h), Table 4-1, is misspelled. The correct spelling should be ADDEN. This also appears in Figures and text on pages 72, 79, 80, 81, 82, 83, 84, 85, 86 and 89.

TABLE 4-1: SPECIAL REGISTERS SUMMARY BANKO

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
Bank 0	Bank 0										
10h	T1CON	_	l	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x

Legend: \cdot = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non power-up) RESETS include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during normal operation.

TABLE 10-2 REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

17.1 DC Characteristics: PIC16F62X-04 (Commercial, Industrial, Extended) PIC16F62X-20 (Commercial, Industrial, Extended)

			Standard Operating Conditions (unless otherwise stated)							
			Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \le \text{Ta} \le +70^{\circ}\text{C}$ for commercial and							
	1	1	-40°C ≤ TA ≤ +125°C for extended							
Param	Sym	Characteristic	Min	Typ†	Max	Units	Conditions			
No.										
D001	VDD	Supply Voltage	3.0	-	5.5	V				
D002	VDR	RAM Data Retention Voltage (Note 1)	_	1.5*	_	V	Device in SLEEP mode			
D003	VPOR	VDD start voltage to ensure Power-on Reset	_	Vss	_	V	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	-	_	V/ms	See section on Power-on Reset for details			
D005	VBOD	Brown-out Detect Voltage	3.7	4.0	4.35	V	BODEN configuration bit is cleared			
D010	IDD	Supply Current (Notes 2, 5)	_	_	0.7	mA	Fosc = 4.0MHz, VDD = 3.0			
			_	-	2.0	mA	Fosc = 4.0MHz, VDD = 5.5*			
D013			_	4.0	7.0	mA	FOSC = $20.0MHz$, $VDD = 5.5*$			
			_	-	6.0	mA	FOSC = 20.0MHz, $VDD = 4.5$			
			_	_	2.0	mA	FOSC = 10.0MHz, VDD = 3.0 (Note 6)			
D014			_	_	10	μΑ	FOSC = 32kHz, VDD = 3.0			
D020	IPD	Power Down Current (Note 3)	-	-	2.2	μΑ	VDD = 3.0			
			_	_	5.0	μΑ	VDD = 4.5			
			_	-	9.0	μΑ	VDD = 5.5*			
			_	_	15.0	μΑ	VDD = 5.5 Extended*			
D022	ΔI WDT	WDT Current (Note 4)	_	6.0	20	μΑ	VDD = 4.0V			
					25	μΑ	<u>(125°</u> C)			
D022A	ΔIBOD	Brown-out Detect Current (Note 4)	_	75	125	μΑ	BOD enabled, VDD = 5.0V			
D023	Δ ICOMP	Comparator Current for each	_	30	50	μΑ	VDD = 4.0V			
DOGGA	Alvore	Comparator (Note 4)			105		1/00 4.01/			
D023A	ΔIVREF	VREF Current (Note 4)	_		135	μΑ	VDD = 4.0V			
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	kHz	All temperatures			
		XT Oscillator Operating Frequency	0	_	4	MHz	All temperatures			
	1	HS Oscillator Operating Frequency	0	_	20	MHz	All temperatures			

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
- **4:** The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 5: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula, Ir = VDD/2REXT (mA) with REXT in kΩ.
- 6: Commercial temperature range only.

17.2 DC Characteristics: PIC16LF62X-04 (Commercial, Industrial, Extended)

			Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \le \text{TA} \le +70^{\circ}\text{C}$ for commercial and $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for extended Operating voltage VDD range as described in DC spec Table 17-1 and Table 12-2							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
D001	VDD	Supply Voltage	2.0	-	5.5	V				
D002	VDR	RAM Data Retention Voltage (Note 1)	-	1.5*	_	V	Device in SLEEP mode			
D003	VPOR	VDD start voltage to ensure Power-on Reset	_	Vss	_	V	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	-	_	V/ms	See section on Power-on Reset for details			
D005	VBOD	Brown-out Detect Voltage	3.7	4.0	4.35	V	BODEN configuration bit is cleared			
D010	IDD	Supply Current (Notes 2, 5)	_	-	0.6	mA mA	Fosc = 4.0MHz, VDD = 2.0, WDT disabled (Note 5) Fosc = 4.0MHz, VDD = 3.0			
D013					0.7	1117	Fosc = 4.0MHz, VDD = 5.5*			
			_	40	7.0	mA	Fosc = 20.0MHz, VDD = 5.5*			
			_	_	6.0	mA	FOSC = 20.0MHz, $VDD = 4.5$			
D014			_	_	2.0 TBD	mA	Fosc = 10.0MHz, VDD = 3.0 (Note 6) Fosc = 32kHz, VDD = 2.0, WDT disabled			
D020	IPD	Power Down Current (Notes 2, 3)					VDD = 2.0			
		, , ,	_	_	2.0	μΑ	VDD = 2.5*			
			_	_	2.2	μΑ	VDD = 3.0*			
			_	_	9.0	μΑ	VDD = 5.5			
					15.0	μΑ	VDD = 5.5 Extended			
	Δ lWDT	WDT Current (Note 4)	_	6.0	15	μΑ	VDD = 3.0V			
D023	ΔIBOD	Brown-out Detect Current (Note 4)	_	75	125	μΑ	BOD enabled, VDD = 5.0V			
	ΔICOMP	Comparator Current for each Comparator (Note 4)	_	30	50	μА	VDD = 3.0V			
	Δ IVREF	VREF Current (Note 4)	_	30	135	μΑ	VDD = 3.0V VDD = 3.0V			
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	kHz	All temperatures			
		XT Oscillator Operating Frequency	0	_	4	MHz	All temperatures			
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures			

Standard Operating Conditions (unless otherwise stated)

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.
 - **4:** The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
 - 5: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula, Ir = VDD/2REXT (mA) with REXT in $k\Omega$.

17.3 **DC Characteristics:** PIC16F62X (Commercial, Industrial, Extended) PIC16LF62X (Commercial, Industrial, Extended)

			Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial and 0°C ≤ TA ≤ +70°C for commercial and -40°C ≤ TA ≤ +125°C for extended								
	1	I	Operating voltage	ge VDD	range as des		ped in DC spec Table 17-1 and Table 12-2				
Param. No.	Sym	Characteristic	Min	Typ†	Max	Unit	Conditions				
	VIL	Input Low Voltage I/O ports:									
D030		with TTL buffer	Vss	_	0.8V 0.15VDD	V	VDD = 4.5V to 5.5V otherwise				
D031		with Schmitt Trigger input	Vss		0.2VDD	V					
D032		MCLR, RA4/T0CKI,OSC1 (in ER mode)	Vss	_	0.2VDD	V	(Note 1)				
D033		OSC1 (in XT and HS)	Vss	_	0.3VDD	V					
		OSC1 (in LP)	Vss	_	0.6VDD-1.0	V					
	VIH	Input High Voltage									
		I/O ports:		_							
D040		with TTL buffer	2.0V .25VDD + 0.8V	_	VDD VDD	V	VDD = 4.5V to 5.5V otherwise				
D041		with Schmitt Trigger input	0.8VDD	_	VDD						
D042		MCLR RA4/T0CKI	0.8VDD	_	VDD	V					
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in ER mode)	0.7Vdd 0.9Vdd	-	VDD	V	(Note 1)				
D070	IPURB	PORTB weak pull-up current	50	200	400	μΑ	VDD = 5.0V, VPIN = VSS				
		Input Leakage Current									
	lı∟	(Notes 2, 3) I/O ports (except PORTA)			±1.0	μΑ	Vss ≤ Vpin ≤ Vdd, pin at hi-impedance				
D060		PORTA	_	_	±0.5	μΑ	Vss ≤ VPIN ≤ VDD, pin at hi-impedance				
D061		RA4/T0CKI	_	_	±1.0	μΑ	Vss ≤ Vpin ≤ Vdd				
D063		OSC1, MCLR	-	_	±5.0	μΑ	Vss ≤ VPIN ≤ VDD, XT, HS and LP osc configuration				
	Vol	Output Low Voltage									
D080		I/O ports	_	_	0.6	V	IOL=8.5 mA, VDD=4.5V, -40° to +85°C				
			_	_	0.6	V	IOL=7.0 mA, VDD=4.5V, +125°C				
D083		OSC2/CLKOUT (ER only)	_	_	0.6	V	IOL=1.6 mA, VDD=4.5V, -40° to +85°C				
	ļ		_	_	0.6	V	IOL=1.2 mA, VDD=4.5V, +125°C				
Door	Voh	Output High Voltage (Note 3)	\/ps 0.7			,	lou 2.0 mA Von 4.5V 400 to 10500				
D090		I/O ports (except RA4)	VDD-0.7	_	_	V	IOH=-3.0 mA, VDD=4.5V, -40° to +85°C				
Dooo		0000/01 KOLIT (FD and a)	VDD-0.7	_	_	V	IOH=-2.5 mA, VDD=4.5V, +125°C				
D092		OSC2/CLKOUT (ER only)	VDD-0.7 VDD-0.7	_	_	V	IOH=-1.3 mA, VDD=4.5V, -40° to +85°C				
D150	Von	Open Drain High Voltage	VDD-0.7	_	8.5	V	RA4 pin PIC16F62X, PIC16LF62X				
*D150	Vod	Open Drain High Voltage Capacitive Loading Specs on		_	0.0	V	1174 PIII FIG 10F02A, PIG 10LF02A				
		Output Pins									
D100	COSC2	OSC2 pin		-	15	pF	In XT, HS and LP modes when external clock used to drive OSC1				
D101	Cio	All I/O mino/OCCO (in ED mode)		1	L 50						

CIO All I/O pins/OSC2 (in ER mode) These parameters are characterized but not tested.

D101

Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In ER oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16F62X be driven with external clock in ER mode.

^{2:} The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

3. The following block diagram shown in Section 5, Figure 5-5 is incorrect. The following figure should be used instead.

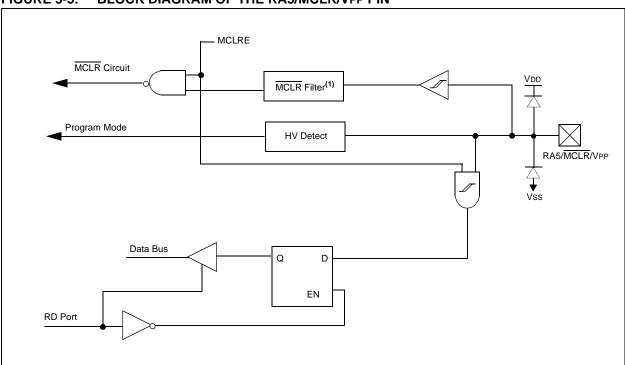


FIGURE 5-5: BLOCK DIAGRAM OF THE RA5/MCLR/VPP PIN

The example given in Section 9, Example 9-1, concerning Initializing the Comparator Module is incorrect. The following code example should be used instead.

EXAMPLE 9-1: INITIALIZING COMPARATOR MODULE

```
INTCON, GIE
                                     ; Turn OFF Global Interrupts
       BCF
                   INTCON, PEIE
                                    ; Turn OFF Peripheral Interrupts
       CLRF
                   PORTA
                                     ; Init Port A
                   0x03
       MOVI W
                                     ; Init comparator mode
       MOVWF
                   CMCON
                                     ; CM < 2:0 > = 011
       BSF
                   STATUS, RPO
                                     ; Select BANK 1
       MOVLW
                   0x07
                                     ; Initialize Port A Direction
       MOVWF
                   TRISA
                                     ; Set RA<2:0> as Inputs
                                     ; RA<4:3> as outputs
                                     ; TRIS<5> always reads '0'
       BCF
                    STATUS, RPO
                                     ; Select BANK 0
       CALL
                   DELAY10
                                     ; Wait 10us for comparator output to become valid
                                     ; See Table 17-1 Parameter 301
       MOVE
                   CMCON, F
                                     ; Read CMCON to end change condition
                                     ; Clear pending interrupts
       BCF
                   PIR1,CMIF
                    STATUS, RPO
                                     ; Select BANK 1
       BSF
                    PIE1,CMIE
                                     ; Enable Comparator Interrupts
                                     ; Select BANK 0
       BCF
                   STATUS, RPO
                                    ; Enable Peripheral Interrupts
       BSF
                    INTCON, PEIE
       BSF
                   INTCON, GIE
                                    ; Global Interrupt Enable
        ; Insert Your code....
        ; Helper function is the Delay for 10us routine show below.
DELAY10
                    ; burns 8 cycles + the call for 10 cycles or 10us at 4Mhz
       goto $+1
                    ; goto the next instruction and burn 2 cycles
       call retlbl ; goto the next instruction and burn 2 more cycles
                  ; go back and burn 2 cycles (actualy done 2x for 4 cycles consumed)
retlbl return
```

PIC16F628

5. The examples given in Section 13, concerning the Data EEPROM are incorrect. The EEPROM registers are all located in Bank 1. The examples show the registers in Bank 0 and Bank 1. The following code examples should be used instead to use this feature.

EXAMPLE 13-1: DATA EEPROM READ

```
BSF STATUS, RPO ; Bank 1

MOVLW CONFIG_ADDR ;

MOVWF EEADR ; Address to read

BSF EECON1, RD ; EE Read

MOVF EEDATA, W ; W = EEDATA

BCF STATUS, RPO ; Bank 0
```

EXAMPLE 13-2: DATA EEPROM WRITE

```
; set up the data and
                         the address
        STATUS, RPO
BSF
                      ; Bank 1
MOVLW
        CONFIG_ADDR
MOVWF
        EEADR
                      ; Address to write
        CONFIG_DATA
MOVT-W
MOVWF
        EEDATA
                      ; Data to write
                      ; perform the write
                        operation
        EECON1, WREN ; Enable Write
BSF
BCF
        INTCON, GIE
                      ; Disable INTs
MOVLW
        055h
MOVWF
        EECON2
                      ; Write 55
MOVLW
        0AAh
MOVWF
        EECON2
                      ; Write AA
BSF
        EECON1, WR
                      ; Set WR bit
        STATUS, RPO
                      ; Bank 0
```

EXAMPLE 13-3: DATA EEPROM VERIFY

```
; after the write in complete (i.e. in the
 write interrupt)
   BSF STATUS, RPO; Bank 1
   MOVF EEDATA, W \,; load the last
                       written value into W
   BSF
         EECON1, RD ; start a read
; Is the value written (in W Reg) and
; read (in EEDATA) the same?
    SUBWF EEDATA, W ; the EEDATA has fresh
                      data
   BTFSS STATUS, Z
                    ; Is the Zero flag set?
   GOTO WRITE_ERR
                    ; NO, Write Error
                     ; YES, Good Write
                     ; continue program
```

Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, KEELOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, FilterLab, MXDEV, microID, *Flex*ROM, *fuzzyL*AB, MPASM, MPLINK, MPLIB, PICC, PICDEM, PICDEM.net, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR, Select Mode, dsPIC, rfPIC and microPort are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELO® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Austin - Analog

13740 North Highway 183 Building J, Suite 4 Austin, TX 78750

Tel: 512-257-3370 Fax: 512-257-8526

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Boston - Analog

Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road Concord, MA 01742 Tel: 978-371-6400 Fax: 978-371-0050

Chicago

333 Pierce Road, Suite 180

Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915

Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Rm. 531, North Building Fujian Foreign Trade Center Hotel 73 Wusi Road Fuzhou 350001, China Tel: 86-591-7557563 Fax: 86-591-7557572

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B

Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu

Shenzhen 518001, China

Tel: 86-755-2350361 Fax: 86-755-2366086

Hong Kong

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062 Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Germany - Analog

Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road

Winnersh Triangle Wokingham

Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

08/01/01