B
AtmeL APPLICATION NOTE

Atmel AT01616: Using the WeX Timer/Counter Extension

Atmel AVR XMEGA E

Features

® Output matrix for timer/counter compare channels distribution
e Configurable distribution of compare channel outputs across port pins
e Redistribution of dead-time insertion resource between TC4 and TC5
e Four dead-time insertion (DTI) units
e 8-bit resolution
e Separated high and low side dead-time setting
e Double buffered dead time
® Four swap (SWAP) units
e Separated port pair or low/high side swap
e Double buffered swap feature
e Pattern generator unit creating synchronized bit pattern across the port pins
e Double buffered pattern generation

e OQutput disable

Introduction

This application note describes the various functions of the Waveform Extension
(WeX) to Timer/Counter 4/5 available on the Atmel® XMEGA® E.

It details the differences and improvements according to the AWeX extension to
Timer/Counters of the previous XMEGA (see AVR®1311 Application Note).

Included are code examples to simplify the use of WEX in typical applications.

All the software examples mentioned in this cookbook are provided in ASF (Atmel®
Software Framework).

42086A-AVR-04/2013

http://www.atmel.com/images/doc8076.pdf�
http://www.atmel.com/images/doc8076.pdf�
http://www.atmel.com/images/doc8076.pdf�
http://www.atmel.com/tools/avrsoftwareframework.aspx�
http://www.atmel.com/tools/avrsoftwareframework.aspx�
http://www.atmel.com/tools/avrsoftwareframework.aspx�
http://www.atmel.com/tools/avrsoftwareframework.aspx�

Table of Contents

1. GlOSSAIY .o eas 4
2. Pre-reQUISITESooiiiiiiiiiee s 4
K L= PP RSRPR 5
3.1 WEX OVEIVIEW ...ttt ettt e e e e e ettt e e e e e e e eeeeaeaannes 5

3.2 WEX VEISUS AWEX....coi ittt ettt 5

4, OUIPUE MALFiX e 6
4.2 HDbBridge €XamPIlecccuuiiiiiiiieiie s 6

4.3 Configuration 000eeieiiieeeiiiee e 8

4.4 Configuration 007 ..ot e 8
441 APPIICALIONS .. 8

4.5 Configuration 010cccueeeeiiie e e et 8
451 Example of applications in this mode............ccccooiiiiiii 8

4.6 Configuration 017 .. .o 8
4.6.1 APPLICAtIONS oo 8

4.7 Configuration 100cueieeiiiie e 8
4.7.1 APPHCALIONS ... 9

4.8 REGISIEIS ..t 9

4.9 Example 1 (Output Matrix CONtrol).........coocerieiiiieeieee e 9
4.9.1 DIIVEIS e 9

4.9.11 Write funCtionoooiiiii 9

49.1.2 Read funCtionooiiiiiii e 9

492 EXAMIPIE .. oo 10

5. Dead-Time INSErtioncooiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e 11
BT OVEIVIBW ..ttt 11

5.2 APPlICAtIONS VIEW....uuuiiiiiiiiiiiii s 12

5.3 WeX DTHIMProvemMeENt........coiuiiiiiiiiiiiiiie ittt 13

5.4 REGISEIS ...t a e 13

5.5 Dead Time Insertion eXample ... 14
5.5.1 DIIVETS ettt 14

55.2 EXAMPIE .. oo 15

TS 11 =T o PSSR 16
[0 I @ =Y 1R PSR 16

6.2 APPLICAtIONS...ccc e 16
6.2.1 SIOW dECAY MOAEeoiiiiieiiiiee et 17

6.2.2 Fastdecay MOUEccuiiiiiiiiiiiiie e 17

6.2.3 Mixed decay MOAE.........c.uuviieeieeicciie e 18

6.3 SWAP WeX iMPrOVEMENTuviiiiieeeiieiiiii e e e ettt e e e e e e e e e e e eaaareeaaa e 18

B.4 REGISIEIS e 18

6.5 SWAP €XAMPIE ...t 19
6.5.1 DIFIVEIS et e 19

6.5.2 EXamPIEo e 21

7. Pattern Generatoruueiiiiii i 23
T APPIICAIONS ...t 23

7.2 Pattern Generator WeX improvementscooiviiiiiiiiiiiiieecesie e 23
7.21 Pattern Generator bUffers ..o 23

7.2.2 Registers update. ... 23

7.3 REGISIEIS ...ttt a e e e e 23

7.4 Pattern Generator @XampPleccoiiiiiiiiiiiiii 25
741 DIFIVEIS o e 25

7.4.2 EXamPIEo 26
/ItmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 2

42086A-AVR-04/2013

8. Output Override Disableooooviiiiiiiiiiiiiiiieeeeeeeeeeeereaes 28

8.1 REISIEIS ... aa e 28

8.2 Output override disable example............cccccoveiiiiiiiiee e 28

8.2.1 DIIVEIS .ot e 28

8.2.2 otz 1 0] o] LY OO P PSSO PP PPPPPPPPPIRt 28

9. ReVISION HiStOrYcoooiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeee et 29

/ItmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 3

42086A-AVR-04/2013

1. Glossary
WeX Waveform Extension
AWeX Advanced Waveform Extension of previous XMEGA A, B, C, D
OTMX Output Matrix
DTI Dead-time insertion
ASF Atmel Software Framework
Atmel Studio Integrated Development Environment (IDE) for Atmel applications
SMPS Switching Mode Power Supply

2. Pre-requisites
The solutions discussed in this document require basic familiarity with the following skills and technologies.
e XMEGA E Manual
e XMEGA E Datasheet
e AWeX AVR1311 Application Note
e Atmel Studio 5 or 6
e Atmel debugger AVR JTAGICE mkll or JTAGICE3
e Atmel STK®600 Starter Kit

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 4

42086A-AVR-04/2013

http://www.atmel.com/images/doc8076.pdf�
http://www.atmel.com/tools/atmelstudio.aspx�
http://www.atmel.com/tools/avrjtagicemkii.aspx�
http://www.atmel.com/tools/jtagice3.aspx�
http://www.atmel.com/tools/stk600.aspx�
http://www.atmel.com/tools/stk600.aspx�
http://www.atmel.com/tools/stk600.aspx�

3. WeX

3.1 WeX overview

The waveform extension (WEX) provides extra functions to the Timer/counter in waveform generation (WG) modes. It is
primarily intended for use in different types of motor control, ballast, LED, H-bridge, power converter, and other types of
power control applications. The WEX consists of five independent sub-functions, as shown in Figure 3-1. This overview
example is the Atmel ATxmega32E5 configuration with two Timer/Counters (TC4 and TC5).

Figure 3-1. WeX module overview.

WEX
*IE Px7
DTI3 SWAP3 |X|
— Px6
Fault x s DX e
| 1 £ — DTI2 SWAP2 o
TICS | extension 0 —— = o g - 7& Pxd
= & 5| | I8
g £ 5 T —% Px3
=3 — DTH SWAP1 g (o)
© N & Px2
o — X
T/C4
_— Fault *IE Px1
—1 extension 1 i DTIO SWAPO %
— Px0

3.2 WeXversus AWeX
WeX provides the following improvements compared to standard AWeX module in ATxmega products:
New functions:
e Output Matrix
e Swap
e Output Disable
Improved functions:
e Pattern generator
e Dead-time insertion (DTI)
e Fault (see below)
Other changes:

e FAULT extension is a new standalone extension with improved features versus the Fault function included in
standard AWeX description.

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE])

42086A-AVR-04/2013

4. Output Matrix

New Output Matrix sub-function has been developed in WeX for Power control systems (such as SMPS) and Lighting
applications.

The output matrix (OTMX) can distribute the waveform outputs of Timer/Counters across the port pins according to the
configurations detailed in Table 4-1.

Table 4-1. Timer/counter 4 and 5 compare channel pin routing configuration.

mmmmmm

TC5CCB | TC5CCA | TC4CCD | TC4ACCC | TC4ACCB | TC4CCA Reset configuration
001 TC5CCB | TC5CCA | TC5CCB | TC5CCA | TC4CCD | TC4CCC | TC4CCB | TC4CCA H bridges/SMPS + Motor control
010 TC5CCB | TC5CCA | TC4CCB | TC4CCA | TC5CCB | TC5CCA | TC4CCB | TC4CCA | H bridges/SMPS + Motor control
011 TC4CCA | TC4CCA | TC4CCA | TC4CCA | TC4CCA | TC4CCA | TC4CCA @ TC4CCA LED
100 TC4CCB | TCACCA | TC4CCA | TC4CCA | TC4CCA | TC4CCA | TCA4CCA | TC4CCA LED

Caution: As the Output Matrix is the first sub-function in WeX, all the following sub-functions will be applied to the
output signals of the Matrix (DTI, SWAP, Pattern generator and Port override).

Table 4-1 is only valid if DTI, SWAP and Pattern generator are in Reset configuration. Else, the TCxCCy
outputs are transformed according to the sub-extensions configurations until they reach the Output pins.

The different Output Matrix modes can be used to adapt the WeX outputs to different Application topologies. Some
different power control topologies are shown Figure 4-2.

Figure 4-2. Power control topologies examples.

Power supply Power supply Wut

Power supply

L4l)
] | i
k— Q3 |~ Q1 |k Q1
Qi1
[— [— [—
TR Q2 |k)
[
— r—‘
Q2 | Q4 | Q |~
f Synchronized Buck
Half Bridge
H Bridge

4.2 H bridge example
Lighting applications use Half or Full H bridges.
DC Motor control applications also use different switching schemes to control H bridges.
Some switching schemes examples are listed in Table 4-2 and in Figure 4-3.

The different Output Matrix modes can be useful to adapt a generic control system to these different switching
schemes.

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 6

42086A-AVR-04/2013

Table 4-2. H bridge control schemes requirements.

Unipolar/Bipolar m DTl required | Pattern generator use
1 No

Unipolar 1 PWM
2 Unipolar 1 PWM No
4 Unipolar 2 complimentary PWM = Yes Yes
4 Bipolar 2 complimentary PWM | Yes Center-aligned mode

In the following figures, FWD and REV are exclusive logic levels 0/1.

Figure 4-3. H bridge control schemes figures.

Power supply

Power supply

_
LN o o

LOAD

—
PWM JH
[>——

PWM is the cho signal
Pped sig FWD andREV are Oor 1
PWM is the chopped signal

\ 2 Quadrants drive mode

1 Quadrant drive mode

Power supply Power supply

PWM & REV ,_‘ PWM & FWD ;—‘ ;—‘
Or FWD —at Or REV - Q3 PWM — Q1 PWM < Q3
DJ% [>—— [O>—— [>—"—
4

FWD Lo
-
LOAD
— — —
PWM & REV Q2 PWM & FWD Q4 PWM Q2

- i S R iy Sy

Current path only shown in FWD and REV are 0 or 1 PWM is the chopped signal
Forward mode PWM is the chopped signal
Unipolar 4 Quadrants drive 4 Quadrants bipolar drive
mode mode

All the six outputs of Timer4 and Timer5 are available and can be rerouted or overwritten with following configurations of
Output Matrix.

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 7

42086A-AVR-04/2013

4.3 Configuration 000
The 000 is the Reset default configuration.

44 Configuration 001

This configuration duplicates the waveform outputs from timer/counter 5 compare channel A and B (TC5CCA and
TC5CCB) on two other pin locations.

OTMX][2:0] PIN7 PIN 6 PIN 5 PIN 4 PIN 3 PIN 2 PIN 1 PINO Main Applications
001 TC5CCB = TC5CCA TC5CCB | TC5CCA TCACCD | TC4CCC | TC4CCB | TC4CCA | H bridges/SMPS + Motor control
So the TC5 (CCA and CCB) outputs are available at the same time on outputs respectively 4/6 and 5/7.

441 Applications
This mode can be used, for instance, to control the four transistors of a full H bridge.

4.5 Configuration 010
OTMX[2:0] PIN7 PIN 6 PIN 5 PIN 4 PIN 3 PIN 2 PIN 1 PIN O Main Applications

010 TC5CCB | TC5CCA | TC4CCB | TC4CCA TC5CCB | TC5CCA | TC4CCB & TCACCA H bridges/SMPS + Motor control

This mode distributes the waveform generator outputs from compare channels A and B (CCA and CCB) of both
timer/counter 4 and 5 on two other pin locations.

4.51 Example of applications in this mode
This Matrix mode can be used:

- if user needs to get Compare channels outputs with DTI from Timer TC5. If DTl is set, the outputs will be:

OTMX[2:0] PIN7 PIN 6 PIN 5 PIN 4 PIN 3 PIN 2 PIN 1 PIN 0 Main Applications
010 TC5CCB | TC5CCB TC5CCA TC5CCA TC4CCB | TCACCB = TC4CCA TCACCA H bridges/SMPS + Motor control
LS HS LS HS LS HS LS HS

- in applications which require dynamic braking. The mode provides redundant outputs with same PWM signal. This
function saves external logic in customer application.

- in applications which require to drive 2 full H-bridges.

4.6 Configuration 011
This mode is equivalent to the Common Waveform mode.

It distributes the waveform output from timer/counter 4 compare channel A (TC4CCA) to all port pins.

4.6.1 Applications

This configuration can be used with Pattern generator to control a stepper motor.

For Lighting applications, this mode can be useful to control multiple LED strings.

4.7 Configuration 100

This configuration distributes the waveform output from TC5CCA to pin 7 and the waveform output from TC4CCA to all
other pins (Px0 to Px6).

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 8

42086A-AVR-04/2013

4.71 Applications
Application examples using this configuration could be:
e Control of 1 to 7 LEDs strings

e Control, at the same time, of the Led strings and the DC/DC converter which powers the LEDs. In this case,
TC5 is used to control the Transistor of the DC/DC converter (Buck or Boost) while the LED current regulation
loop controls the TC4

4.8 Registers

| Address | Name __Bit7 | Bit6 | Bits __ Bit4 __Bit3 __Bitz __Bit1 _Bit0o

+0x00 CTRL OTMX][2] OTMX][1] OTMX][0]
Read/Write R/W R/W R/W R/W
Initial value 0 0 0 0

e Bit 6:4 — OTMX[2:0]: Output Matrix
These bits define the matrix routing of the timers/counter waveform generation outputs to the port pins, according
to Table 4-1.

49 Example 1 (Output Matrix control)

This project provides the way to configure the Output Matrix to the different modes.

491 Drivers
The drivers to configure the Output Matrix are included in ASF:
\src\asf\xmega\drivers\tcdrivers/tc.h
Parameters:
o *WEX s the Pointer to WEX module (WEXC)
e Otmx is the Output Matrix mode
4.9.1.1 Write function
static inline void tc45_WEX_set_otmx(WEX_t *WEX, enum wex_otmx_mode_t otmx)
((WEX_t *)WEX)->CTRL = (((WEX_t *)WEX)->CTRL & ~WEX_OTMX_gm) | otmx;
It configures WEX in the specified output matrix mode
Examples:
tc45 WEX_set_otmx(&WEXC, WEX_OTMX_DEFAULT);
tc45_WEX_set_otmx(&WEXC, WEX_OTMX_1);
tc45_WEX_set_otmx(&WEXC, WEX_OTMX_2);
(
(

tc45_WEX_set_otmx(&WEXC, WEX_OTMX_3

)
)
)
tc45_WEX_set_otmx(&WEXC, WEX_OTMX_4)

4.9.1.2 Read function
static inline uint16_t tc45_WEX_read_otmx(WEX_t *WEX)

return (((WEX_t *)WEX)->CTRL & WEX_OTMX_gm);

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 9

42086A-AVR-04/2013

49.2 Example

Configuration:
TCC4 Timer:

Compare/Capture modules A/B: Compare and waveform generation in One slope mode
Outputs of Port CO/C1 C2/C3 are with Duty-cycle: Period/4 and Period/2
WexC: OTMX configuration can be changed

TCC5 Timer

Compare/Capture modules A/B: Compare and waveform generation in One slope mode

Outputs of Port C4/C5 are with Duty-cycle: Period/8 (472us @66MHz and F/4) and Period/6 (616us @66MHz and F/4)
WexC: OTMX configuration can be changed

OTMX:
To configure the OTMX, the function: tc45_WEX_set_otmx(..) must be modified

Results:

In OTMX 0 mode, the Outputs will be:
PCO/PC1: TC4 CCA/CCB
PC2/PC3: TC4 CCC/CCD
PC4/PC5: TC5 CCA/CCB

In OTMX 1 mode, the Outputs will be:
PCO/PC1: TC4 CCA/CCB
PC2/PC3: TC4 CCC/CCD
PC4/PC5: TC5 CCA/CCB
PC6/PC7: TC5 CCA/CCB

In OTMX2 mode, the Outputs will be:
PCO/PC1: TC4 CCA/CCB
PC2/PC3: TC5 CCA/CCB
PC4/PC5: TC4 CCA/CCB
PC6/PC7: TC5 CCA/CCB

In OTMX3 mode, the Outputs will be:
PCO0 to PC7:TC4 CCA

In OTMX4 mode, the Outputs will be:
PCO0 to PC6:TC4 CCA
PC7: TC4 CCB

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 10

42086A-AVR-04/2013

5. Dead-Time Insertion
5.1 Overview
In a system driven by a pair of transistors operating in the Complementary Output mode it is completely forbidden to
enable simultaneously the two FETs on the same side. This would lead to Shoot Through (a short circuit from power
supply to ground).
Because the power output devices cannot switch instantaneously, some amount of time must be provided between the
turn-off event of one PWM output in a complementary pair and the turn-on event of the other transistor.
The dead time function in the PWM control avoids the drivers of the same set of PWMs (PWMxH and PWMxL) from
being on simultaneously due to the operating speed of the driver during output generation.
This requirement is also explained in AVR1311 Application Note which describes the DTI sub-function in AWeX of
ATxmega.
Dead time must be inserted when any of the PWM 1/O pin pairs are operating in the Complementary Output mode.
Four DTI insertion functions (DTIO to DTI3) control the four lowest OTMX outputs (see Figure 3-1 WeX module
overview.):
Figure 5-1 shows a diagram of one dead-time insertion until action on a port pin pair.
Figure 5-1. DTI overview.
EAWEX PORTS
OTMX DTI SWAP PATTERN
- - -
OTMX[2x+1]
P[2x+1]
LSJ
OTMX | OTMX[x] >— DTix
HS
=
P[2x]
OTMX[2x]
The dead-time for high-side and low-side can be set individually through the DTHS and DTLS registers respectively
(see Figure 5-2).
The dead-time DTHS and DTLS are common to all the OTMX outputs.
AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 11
42086A-AVR-04/2013

http://www.atmel.com/images/doc8076.pdf�

Figure 5-2. DTI action.

OTMX output

b u
Low output of DTI |

4|7

| DTHS

.

High output of DTI |

DTIO transforms the OTMXO0 output

- in two complementary PWM outputs

- with hardware dead-time:

- and outputs are Port pins 0 and 1
DTI1 transforms the OTMX1 output

- in two complementary PWM outputs

- with hardware dead-time:

- and outputs are Port pins 2 and 3
DTIn transforms the OTMXn output

- in two complementary PWM outputs

- with hardware dead-time:

- and outputs are Port pins 2x and 2x+1
As a shortcut, DTHS and DTLS can be set to the same value by writing to the DTBOTH register.

The dead-time value is given in main system clock cycles. The allowable range for the dead-time is thus 0-255 main
system clock cycles.

The Dead Time length should not be too short otherwise the same driver pair may still be simultaneously activated. It
should not be too long to ensure good efficiency. A proper dead-time length should be selected according to the speed
of the selected driver.

This dead-time is usually 100ns to 2.5us (real result is 1.5us due to slopes of Gate voltages of MOSFET versus input
capacitance). So the maximum dead-time can be configured with the 8-bit register.

5.2 Applications view
Dead-time insertion is mandatory if a pair of transistors is operating in the Complementary Output mode.
This mode is used for instance in:
- Half H bridge
- H bridge in 2 and 4 Quadrant unipolar control
- Synchro buck converter (see Figure 5-3)

- Interleaved Boost converter

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 12

42086A-AVR-04/2013

Figure 5-3. Synchro buck converter example.

ILoAD + IRIPPLE

—

Vout

+

Q1
O O
1T 9
A Q2 ILoap
FTTY PWML Y
PWMH Cout IriPPLE

Cin

Period
PWMH _ 1
PWML —

IRIPPLE

5.3 WeX DTI improvement

The improvement of WeX DTI compared to AWeX DTl is that the DTI registers are no more shared with Pattern
Generator sub-function.

So in WeX, Pattern Generator can be used with PWM signals which have built-in DTI.

Nevertheless, DTI registers are shared with blanking function in FAULT feature (see description in FAULT section of the
XMEGA E Manual). So DTl in WeX and Blank in FAULT cannot be used at the same time.

5.4 Registers
| Address | Name | Bit7 it Bits | Bit4 | Bit3 | Bitz | Bit1_| Bito
+0x00 CTRL DTI3EN DTI2EN DTHMEN DTIOEN
Read/Write R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0
e Bit 3:0 — DTIXEN: Dead-Time Insertion Generator x Enable
Setting any of these bits enables the dead-time insertion generator for the corresponding matrix output. This will
override the related matrix outputs[2x] and [2x+1], with the low side and high side waveform respectively.
| Address | Name | Bit7 | Bit6 _Bit5 | Bit4 | Bit3 | Btz Bit1 | _Bito
+0x01 DTBOTH | DTBOTH[7] = DTBOTH[6] | DTBOTH[5] | DTBOTH[4] = DTBOTH[3] = DTBOTH[2] | DTBOTH[1] | DTBOTHL.0]
Read/Write w w w w w w w w w
Initial value 0 0 0 0 0 0 0 0 0
e Bit 7:0 - DTBOTH]I7:0]: Dead-time Both Sides
Writing to this register will update the DTHS and DTLS registers at the same time (i.e., at the same /O write
access). Reading it, give 0x00 Value.
AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 13
42086A-AVR-04/2013

5.5

5.5.1

| Address | Name | Bit7 | Bit6 | _Bit5 __Bit4 __Bit3 | Bitz | Bit1 | Bito _

+0x02 DTLS DTLS[7] DTLSI6] DTLSI5] DTLS[4] DTLSI3] DTLS[2] DTLS[1] DTLSI.0]
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0 0

e Bit7:0 - DTLS[7:0]: Dead-time Low Side
This register holds the number of peripheral clock cycles for the dead-time low side.

| Address | Name _ Bit7 | Bit6 | Bit5 __ Bit4 _Bit3 Btz __Bit1 | Bito _

+0x03 DTHS DTHS[7] DTHS[6] DTHS[5] DTHS[4] DTHS[3] DTHS[2] DTHS[1] DTHSI.0]
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0 0

e Bit 7:0 - DTHS[7:0]: Dead-time High Side
This register holds the number of peripheral clock cycles for the dead-time high side.

Dead Time Insertion example

Drivers

Parameters

*WEX: Pointer to WEX module (WEXC)

Functions

e To enable Deadtime insertion on CCA
static inline void tc45_WEX_enable_cca_deadtime(WEX_t *WEX)

((WEX_t *)WEX)->CTRL |= WEX_DTIOEN_bm;

e To disable Deadtime insertion on CCA

static inline void tc45_WEX_disable_cca_deadtime(WEX_t *WEX)
((WEX_t *)WEX)->CTRL &= ~WEX_DTIOEN_bm;

e To enable Deadtime insertion on CCB

static inline void tc45_WEX_enable_ccb_deadtime(WEX_t *WEX)
((WEX_t *)WEX)->CTRL |= WEX_DTI1EN_bm;

e To disable Deadtime insertion on CCB

static inline void tc45_WEX_disable_ccb_deadtime(WEX_t *WEX)
((WEX_t *)WEX)->CTRL &= ~WEX_DTI1EN_bm;

e To enable Deadtime insertion on ccC
static inline void tc45_WEX_enable_ccc_deadtime(WEX_t *WEX)

((WEX_t *)WEX)->CTRL |= WEX_DTI2EN_bm;

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 14

42086A-AVR-04/2013

e To disable Deadtime insertion on ccD
static inline void tc45 WEX_disable_ccc_deadtime(WEX_t *WEX)

((WEX_t *)WEX)->CTRL &= ~WEX_DTI2EN_bm;

e To enable Deadtime insertion on ccD

static inline void tc45_WEX_enable_ccd_deadtime(WEX_t *WEX)
((WEX_t *)WEX)->CTRL |= WEX_DTI3EN_bm;

e To disable Deadtime insertion on ccD

static inline void tc45_WEX_disable_ccd_deadtime(WEX_t *WEX)
((WEX_t *)WEX)->CTRL &= ~WEX_DTI3EN_bm;

e To configure the high side deadtime

parameter value: deadtime value
static inline void tc45_WEX_set_dti_high(WEX_t *WEX, int16_t value)
((WEX_t *)WEX)->DTHS = value;

e To configure the low side deadtime
static inline void tc45_WEX_set_dti_low(WEX_t *WEX, int16_t value)

((WEX_t *)WEX)->DTLS = value;

e To configure a symmetrical deadtime
static inline void tc45_WEX_set_dti_both(WEX_t *WEX, int16_t value)

((WEX_t *)WEX)->DTBOTH = value;

5.5.2 Example

Functions

The program enables the dead-time of CCx outputs with following functions:
tc45_WEX_enable_cca_deadtime(&WEXC);
tc45_WEX_enable_ccb_deadtime(&WEXC)
tc45_WEX_enable_ccc_deadtime(&WEXC);
tc45_WEX_enable_ccd_deadtime(&WEXC)

and configures the dead-time of CCx outputs with following functions:
tc45_WEX_set_dti_high(&WEXC, 0x40);
tc45_WEX_set_dti_low(&WEXC, 0x40);/* 0x40=64 so DT time= 64 * 1/(Fextern / 4) -> DT=64 /66 * 4 = 3.87us */

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 15

42086A-AVR-04/2013

6. Swap

6.1 Overview
This new feature is useful to switch simultaneously two output signals when a Timer Update occurs.
Swap operation is achieved at UPDATE and is able to provide a very short timing constraint (some hundred ns) as

shown in Figure 6-1.

Figure 6-1. Output swap.

TR SuUilpLl

DTLE

DOTHS

SWapP

SWAF gocurs here

As shown in Figure 3-1 and Figure 5-1, the DTl and SWAP units can be seen as a four port pair slices:
Slice 0 DTIO/ SWAPO acting on port pins (Px[0],Px[1])

Slice 1 DTI1/ SWAP1 acting on port pins (Px[2],Px[3])

And more generally:

Slice n DTIn/ SWAPR acting on port pins (Px[2n],Px[2n+1])

6.2 Applications

The channel swap function is very useful in BLDC motor control. It allows the immediate change of top and bottom
transistors in the phase. Using this function the rotor commutation and speed control can be splitted into two
independent program parts. The state of the control signals can be changed immediately when required by the motor
position (phase commutation) without changing the content of the PWM value registers. These changes can be
accomplished asynchronously to the PWM duty cycle update.

Once the chopping current threshold is reached, the H-bridge can operate in two different current recirculation modes:

- an asynchronous mode if current recirculates through the diodes (in FETs or external). The user cannot control the
occurrence of the alternate path creation

- a synchronous mode if enabling and disabling FETs in order to promote an alternate path

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 16

42086A-AVR-04/2013

6.2.1

6.2.2

Two synchronous modes can be used: fast decay or slow decay. Fast and slow refer to the current decay mode and not
the motor speed. It is the opposite for speed. In Fast decay mode, the motor will slow down in speed while in slow
decay mode, the motor stops very quickly.

Slow decay mode

The Slow Decay mode uses the FETs on the same upper or lower H Bridge segment. More often the two low side FETs
are used. The current inductor decreases to zero through the two FET’s path. The decay time will depend on the
RDSon of the FETs.

In slow decay mode the rotor stops very quickly.

Figure 6-2. Slow decay mode.

Power supply Power supply

— — — —

Q1 — @ ~ Ql <~ Q3

— — — —
SLOW
DECAY I

— — — —
Q2 < Q4 <~ Q2 < Q4
— — — —

NS NS

Q2and Q4 are ON

Q1and Q4 are ON

Fast decay mode

In fast decay mode, once the PWM chopping current level has been reached, the H-bridge reverses state to allow
winding current to flow in a reverse direction. The opposite FETs are used as alternate path for the current to flow
through which produces the fast decrease of the current in the H bridge. We are applying a voltage which fights, in an
opposite way, the inductor current.

As the winding current approaches zero, the bridge is disabled to prevent any reverse current flow.

Fast decay mode is also named synchronous rectification and is mainly used in Stepper Motor applications
(Microstepping...). Fast decay does not stress the internal diodes of FET or external diodes in parallel with FETs.

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 17

42086A-AVR-04/2013

Figure 6-3. Fast decay mode.

Power supply Power supply

— —
Q1 — Q3
— —

— —
Q2 <~ Q4
— —

3andQ2 ON
Q1and Q4 are ON Q3and Q2 are

6.2.3 Mixed decay mode

A third current decay mode is called Mixed Decay Mode. It is a mixture of Slow and Fast Decay modes. It is also mainly
used in stepper motors control, especially microstepping.

6.3 SWAP WeX improvement
This mode was not available in previous AWeX.
The Swap can be achieved at Update of Timer4 or Timer5.
A Bit UPSEL (CTRL Register) allows selecting the UPDATE event from Timer4 or Timer5.

6.4 Registers

address L Name L BT Bite L BiS L Bitd L BitY L Bit2 L Bitt it

+0x06 SWAP SWAP3 SWAP2 SWAP1 SWAPO
Read/Write R/W - - - - R/W R/W R/W R/W
Initial value 0 - - - - 0 0 0 0

e Bit 3:0 - SWAPx: Swap DTI output pair

Setting these bits enables output swap of DTI outputs [2x] and [2x+1]. The outputs will be swapped
independently of DTI enable bit (DTIXEN) setting.

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 18

42086A-AVR-04/2013

hddress L Name L7 _|_Bits L BitS_L_Bitd L Bitd_L B2 L et L git)

+0x0A SWAPBUF SWAP3BUF SWAP2BUF SWAP1BUF SWAPOBUF
Read/Write R/W - - - - R/W R/W R/W R/W
Initial value 0 - - - - 0 0 0 0

e Bit 3:0 - SWAPxBUF: Swap DTI output pair

These register bits are the buffer for the SWAP register bits. If double buffering is used, valid content in these bits
are copied to the corresponding SWAPX bits on an UPDATE condition.

hddress L Name L _BRT L Bite L _Bits | Bit4 | Bit3 L Bit2 LBt Bito

+0x04/0x05 | STATUSCLR/STATUSSET - SWAPBUFV -
Read/Write R/W - - - - - R/W - -
Initial value 0 - - - - - 0 - -

e Bit2 - SWAPBUFV: SWAP Buffer Valid

If this bit is set, the swap buffer is written and contains valid data that will be copied into the SWAP register on the
next UPDATE condition. If this bit is zero, no action will be taken. The connected timer/counter lock update
(LUPD) flag also affects the update for the swap registers.

mmmmmmmm

+0x00 CTRL
Read/Write R/W UPSEL - - - - - - -
Initial value 0 R - - = - - - -

e Bit 7 — UPSEL: Update Source Selection

By default the timer/counter 5 update condition is used by the swap and pattern generation units to also update
their register content. Setting this bit, makes the timer/counter 5 update condition the source.

6.5 SWAP example

6.5.1 Drivers
Parameters:

e *WEX: Pointer to WEX module (WEXC)
Functions:

e Enable Swap on OTMX 0 and 1

static inline void tc45_WEX_enable_swap0(WEX_t *WEX)
((WEX_t *)WEX)->SWAP |= WEX_SWAPO_bm;

e Disable Swap on OTMX 0 and 1

static inline void tc45_WEX_disable_swapO(WEX_t *WEX)
((WEX_t *)WEX)->SWAP &= ~WEX_SWAPO_bm;

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 19

42086A-AVR-04/2013

e Enable Swap Buffer on OTMX 0 and 1
static inline void tc45_WEX_enable_swap0_buffer(WEX_t *WEX)

((WEX_t *)WEX)->SWAPBUF |= WEX_SWAPOBUF_bm;

e Disable Swap on OTMX 0 and 1
static inline void tc45_WEX_disable_swap0_buffer(WEX_t *WEX)

((WEX_t *)WEX)->SWAPBUF &= ~WEX_SWAPOBUF_bm;

e Enable Swap on OTMX 2 and 3

static inline void tc45_WEX_enable_swap1(WEX_t *WEX)
((WEX_t *)WEX)->SWAP |= WEX_SWAP1_bm;

e Disable Swap on OTMX 2 and 3

static inline void tc45_WEX_disable_swap1(WEX_t *WEX)
((WEX_t *)WEX)->SWAP &= ~WEX_SWAP1_bm;

e Enable Swap buffer on OTMX 2 and 3
static inline void tc45_WEX_enable_swap1_buffer(WEX_t *WEX)

((WEX_t *)WEX)->SWAPBUF |= WEX_SWAP1BUF_bm;

e Disable Swap on OTMX 2 and 3
static inline void tc45_WEX_disable_swap1_buffer(WEX_t *WEX)

((WEX_t *)WEX)->SWAPBUF &= ~WEX_SWAP1BUF_bm;

e Enable Swap on OTMX 4 and 5

static inline void tc45_WEX_enable_swap2(WEX_t *WEX)
((WEX_t *)WEX)->SWAP |= WEX_SWAP2_bm;

e Disable Swap on OTMX 4 and 5

static inline void tc45_WEX_disable_swap2(WEX_t *WEX)
((WEX_t *)WEX)->SWAP &= ~WEX_SWAP2_bm;

e Enable Swap buffer on OTMX 4 and 5
static inline void tc45_WEX_enable_swap2_buffer(WEX_t *WEX)

((WEX_t *)WEX)->SWAPBUF |= WEX_SWAP2BUF_bm;

e Disable Swap on OTMX 4 and 5
static inline void tc45_WEX_disable_swap2_buffer(WEX_t *WEX)

((WEX_t *)WEX)->SWAPBUF &= ~WEX_SWAP2BUF_bm;

e Enable Swap on OTMX 6 and 7
static inline void tc45_WEX_enable_swap3(WEX_t *WEX)

((WEX_t *)WEX)->SWAP |= WEX_SWAP3_bm;

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 20

42086A-AVR-04/2013

e Disable Swap on OTMX 6 and 7
static inline void tc45_WEX_disable_swap3(WEX_t *WEX)

((WEX_t *)WEX)->SWAP &= ~WEX_SWAP3_bm;

e Enable Swap buffer on OTMX 6 and 7
static inline void tc45_WEX_enable_swap3_buffer(WEX_t *WEX)

((WEX_t *)WEX)->SWAPBUF |= WEX_SWAP3BUF_bm;

e Disable Swap on OTMX 6 and 7
static inline void tc45_WEX_disable_swap3_buffer(WEX_t *WEX)

((WEX_t *)WEX)->SWAPBUF &= ~WEX_SWAP3BUF_bm;

6.5.2 Example

Configuration:
The CCx Interrupts are enabled with following functions,

/* Declares the interrupt functions which will be called when CCA and CCB

interrupts will occur */
tc45_set_cca_interrupt_callback(&TIMER_EXAMPLE_C,example_cca_interrupt_callback);
tc45_set_ccb_interrupt_callback(&TIMER_EXAMPLE_C,example_ccb_interrupt_callback);

/* Configures the interrupt level of CCA CCB CCC and CCD modules of Timer4: low */
tc45_set_cca_interrupt_level(&TIMER_EXAMPLE_C, TC45 INT_LVL_LO);
tc45_set_ccb_interrupt_level(&TIMER_EXAMPLE_C, TC45_INT_LVL_LO);
tc45_set_ccc_interrupt_level(&TIMER_EXAMPLE_C, TC45 INT_LVL_LO);
tc45_set_ccd_interrupt_level(&TIMER_EXAMPLE_C, TC45_INT_LVL_LO)

OTMX mode 2 is used:

Outputs in "unswapped mode" are:
PC7...0 =TC5 CCB/ TC5 CCA/ TC4 CCB/ TC4CCA / TC5 CCB/ TC5 CCA/ TC4 CCB / TC4CCA.

The following instruction will enable CO/C1 to be swapped and C2/C3 to be swapped as well:
tc45 set_cca_interrupt_callback(&TIMER_EXAMPLE_C, example_cca_interrupt_callback);

The following instruction will enable C4/C5 to be swapped and C6/C7 to be swapped as well:
tc45_set_ccb_interrupt_callback(&TIMER_EXAMPLE_C, example_ccb_interrupt_callback);

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 21

42086A-AVR-04/2013

Functions:

® CCx Interrupt example

The Compare/Capture detection interrupt callback function is called when an interrupt occurs on a Compare A channel
(TIMER_C).

It increments the CC detection index and thus forces the pattern generator output one of two times. Example of CCA
interrupt function is following (CCB interrupt uses the same instructions sequence):

static void example_cca_interrupt_callback(void)
{
cca_pwm_index += 1;
if (cca_pwm_index == 2)
{
cca_pwm_index = 0;
tc45_WEX_enable_swap2(&WEXC);/* enable swap C4 and C5*/
tc45 WEX_disable_swap3(&WEXC); /* disable swap C6 and C7*/
}

else

{
tc45_WEX_disable_swap2(&WEXC);/* disable swap C4 and C5*/
tc4d5 WEX_enable_swap3(&WEXC); /* enable swap C6 and C7*/

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 22

42086A-AVR-04/2013

7. Pattern Generator
The pattern generation unit is used to generate synchronized output waveforms with constant logic level.
Using pattern generation, some of the eight outputs can be overwritten by a constant level.
As with other double buffered timer/counter registers, the register update is synchronized to the UPDATE condition set
by the timer/counter waveform generation mode. If the application does not need synchronization, the application code
can simply access the PGO, PGV or PORTXx registers directly.
7.1 Applications
Pattern generator can be used, for the control of:
e Stepper motors
e Power H bridges: H bridge can be controlled in a flexible way in all quadrant configurations, see Table 4-2 H
bridge control schemes requirements.
7.2 Pattern Generator WeX improvements
7.21 Pattern Generator buffers
The output enable buffer (PGOBUF) and the Output value buffer (PGVBUF) of the new Patter Generator are now
specific compared to previous DTBUFLS and DTBUFHS of AWeX which were shared with DTI. This way Pattern
generator can be used also with DTI signals.
7.2.2 Registers update
The update of Pattern Generator Registers (PGO and PGV) with content of PGOBUF and PGVBUF Buffers can be
achieved at Timer update of Timer4 or Timer5.
This update was only possible at UPDATE of Timer0 in previous AWeX.
A new Bit UPSEL (CTRL register) allows selecting the UPDATE event from Timer4 or Timer5.
7.3 Registers
mmmmmmmm
+0x07 PGO[7] PGO[6] PGO[5] PGO[4] PGO[3] PGO[2] PGO[1] PGOL.0]
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0 0
e Bit 7:0 - PGOJ[7:0]: Pattern Generation Override
This register holds the enables of pattern generation for each output. A bit position at one overrides the
corresponding SWAP output with the related PGV bit value.
mmmmmmmm
+0x08 PGV[7] PGV[6] PGV[5] PGV[4] PGV[3] PGV[2] PGV[1] PGV[.0]
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0 0
e Bit 7:0 — PGV[7:0]: Pattern Generation Value
This register holds the values of pattern for each output.
AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 23
42086A-AVR-04/2013

| Address | Name | Bit7 | Bit6 | Bit5 __ Bit4 | B3 Bit2 | Bit1 | Bit0 _

+0x0B PGOBUF | PGOBUF[7] | PGOBUF[6] A PGOBUF[5] @ PGOBUF[4] @ PGOBUF[3] | PGOBUF[2] @ PGOBUF[1] | PGOBUF[.0]
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0 0

e PGOBUF - Pattern Bit 7:0 — PGOBUF[7:0]: Pattern Generation Override Buffer

This register is the buffer for the PGO register. If double buffering is used, valid content in this register is copied
to the PGO register on an UPDATE condition.

| Address | Neme | Bit7 | Bit6 __ Bit5 | Bit4 | Bit3 | Btz Bit1 __Bit0 _

+0x0C PGVBUF | PGVBUF[7] | PGVBUF[6] | PGVBUF[5] | PGVBUF[4] | PGVBUF[3] A PGVBUF[2] A PGVBUF[1] A PGVBUFL0]
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW RIW
Initial value 0 0 0 0 0 0 0 0 0

e PGVBUF - Pattern Bit 7:0 — PGVBUF[7:0]: Pattern Generation Value Buffer

This register is the buffer for the PGV register. If double buffering is used, valid content in this register is copied to
the PGV register on an UPDATE condition.

A T AT

+0x04/0x05 STATUSCLR/STATUSSET PGVBUFV | PGOBUFV
Read/Write R/W - - - - - - R/W R/W
Initial value 0 - - - - - - 0 0

e Bit 1 — PGVBUFV: Pattern Generator Value Buffer Valid

If this bit is set, the pattern generation value (PGV) buffer is written and contains valid data that will be copied into
the PGV register on the next UPDATE condition. If this bit is zero, no action will be taken. The connected
timer/counter lock update (LUPD) flag also affects the update of the PGV buffer.

e Bit 0 - PGOBUFV: Pattern Generator Overwrite Buffer Valid

If this bit is set, the pattern generation overwrite (PGO) buffer is written and contains valid data that will be copied
into the PGO register on the next UPDATE condition. If this bit is zero, no action will be taken. The connected
timer/counter lock update (LUPD) flag also affects the update for the PGO buffers.

ot [oo [/ g | o | ous |l mos [o || s [e | cnp |

+0x00 CTRL
Read/Write R/W UPSEL - - - - - - -
Initial value 0 R - - - - - - -

e Bit 7 — UPSEL: Update Source Selection

By default the timer/counter 5 update condition is used by the swap and pattern generation units to also update
their register content. Setting this bit, makes the timer/counter 5 update condition the source.

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 24

42086A-AVR-04/2013

7.4 Pattern Generator example

7.41 Drivers
Parameters:
* WEX: Pointer to WEX module (WEXC)
Param:
- PGO enable
- PGV value

Functions:

Configures Pattern Generator output enable

static inline void tc45_WEX_write_pgo(WEX_t *WEX, int16_t value)
((WEX_t *)WEX)->PGO = (((WEX_t *)WEX)->PGO & 0x00) |

value;

Configures Pattern Generator Buffer output enable
static inline void tc45_WEX_write_pgo_buffer(WEX_t *WEX, int16_t value)
((WEX_t *)WEX)->PGOBUF =value;

Reads the Pattern generator Output buffer

return Patter Generator Buffer PGOBUF

static inline uint16_t tc45 WEX_read_pgo_buffer(volatile void *WEX)
return ((WEX_t *)WEX)->PGOBUF);

Configures Pattern Generator Value

Parameter: PGV value

static inline void tc45_WEX_write_pgv(WEX_t *WEX, int16_t value)
((WEX_t *)WEX)->PGV = (((WEX_t *)WEX)->PGV & 0x00) |

value;

Configures Pattern Generator Value Buffer

Parameter: PGVBUF value

static inline void tc45_WEX_write_pgv_buffer(WEX_t *WEX, int16_t value)
((WEX_t *)WEX)->PGVBUF = ((WEX_t *)WEX)->PGVBUF & 0x00) |

value;

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 25

42086A-AVR-04/2013

7.4.2

Example

Configuration:

Configures the Pattern Generator values
tc45_WEX_write_pgv(&WEXC, 0xFO0); /* writes a "1" pattern value
tc45_WEX_write_pgv_buffer(&WEXC, 0xFO0);

Configures the interrupt level of CCA CCB CCC and CCD modules of Timer4: low
tc45_set_cca_interrupt_level(&TIMER_EXAMPLE_C, TC45_INT_LVL_LO);
tc45_set_ccb_interrupt_level(&TIMER_EXAMPLE_C, TC45_INT_LVL_LO);
tc45_set_ccc_interrupt_level(&TIMER_EXAMPLE_C, TC45_INT_LVL_LO);
tc45_set_ccd_interrupt_level(&TIMER_EXAMPLE_C, TC45_INT_LVL_LO);

Declares the interrupt functions which will be called when CCA and CCB interrupts will occur
tc45_set_cca_interrupt_callback(&TIMER_EXAMPLE_C,example_cca_interrupt_callback);
tc45_set_ccb_interrupt_callback(&TIMER_EXAMPLE_C,example_ccb_interrupt_callback);
tc45_set_ccc_interrupt_callback(&TIMER_EXAMPLE_C,example_ccc_interrupt_callback);
tc45_set_ccd_interrupt_callback(&TIMER_EXAMPLE_C,example_ccd_interrupt_callback);

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 26

42086A-AVR-04/2013

Functions:

Compare/Capture detection interrupt callback functions are called when an interrupt occurs on a Compare channel

(TIMER_C).

It increments the CC detection index and thus forces the pattern generator output 1 of 2 times.

Example for CCA Channel:

static void example_cca_interrupt_callback(void)

{

cca_pwm_index += 1;
if (cca_pwm_index == 2)

{
cca_pwm_index = 0;
value = tc45 WEX_read_pgo_buffer(&WEXC);
value_tmx = tc45_WEX_read_otmx(&WEXC);
if (value_tmx == 0x20) value |= 0x11; /* if Output matrix is 010, duplicate bits 0 and 4 (TC4 CCA) */
else value |= 0x01;
tc45_WEX_write_pgo_buffer(&WEXC, value);/* enables the Pattern Generator 1 time of 2 */
}
else
{
value = tc45_WEX_read_pgo_buffer(&WEXC);
value_tmx = tc45_WEX_read_otmx(&WEXC);
if (value_tmx == 0x20) value &= OxEE;
else
value &= OxFE;
tc45_WEX_write_pgo_buffer(&WEXC, value); [* disables the Pattern Generator the other time */
}

}

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 27

42086A-AVR-04/2013

8. Output Override Disable

The output override disable unit can be used to disable the waveform output on selectable port pins.

This function provides the benefit to optimize the pins usage. Selected pins can be let free for other functional use when
the application does not need the waveform output spread across all the port pins.

This port override logic is common for all the timer/counter extensions.
The WeX extension controls the Port pins as soon as all the following configurations are present:

e Compare channel of Timer/Counter is enable for waveform generation (COMP or BOTHCC)

e Compare channel is swapped or duplicated through the sub-functions of WeX
e AVR1330: Using the WeX Timer/Counter extension

8.1 Registers

| Address | Name | Bit7 | Bit6 __ Bits __ Bit4 | Bit3 | Bitz | Bit1 | Bit0

+0x0F OUTOVDIS | OUTOVDIS[7] = OUTOVDIS[6] = OUTOVDIS[5] = OUTOVDIS[4] @ OUTOVDIS[3] A OUTOVDIS[2] @ OUTOVDIS[1] | OUTOVDIS[.0]
Read/Write R/IW R/W R/IW R/W R/W R/W R/W R/IW R/W
Initial value 0 0 0 0 0 0 0 0 0

e Bit 7:0 — OUTOVDIS[7:0]: Output Override Disable
These bits disable override of the corresponding port output register (i.e., one-to-one bit relation to pin position).

8.2 Output override disable example

8.2.1 Drivers

Parameters:
* WEX: Pointer to WEX module (WEXC)

param: Output value

Functions:

Configures Output override

static inline void tc45_WEX_set_output_override(WEX_t *WEX, int16_t value)
((WEX_t *)WEX)->OUTOVDIS = ((WEX_t *)WEX)->OUTOVDIS & 0x00) |

value;

8.2.2 Example
/* Configures the Output Disable */

tc45 WEX_set_output_override(&WEXC, 0xOF); /* as a 1 disable: only highest 4 outputs are enable */
/I tc45_WEX_set output_override(&WEXC, 0xFO0); /* as a 1 disable: only lowest 4 outputs are enable */

AtmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 28

42086A-AVR-04/2013

9. Revision History

Doc. Rev. Date Comments
42086A 04/2013 Initial document release

/ItmeL Atmel AT01616: Using the WeX Timer/Counter Extension [APPLICATION NOTE] 29

42086A-AVR-04/2013

/ltmeL Enabling Unlimited Possibilities®

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K.

1600 Technology Drive Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Building
San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku
USA 418 Kwun Tong Road D-85748 Garching b. Munich Tokyo 141-0032

Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81)(3) 6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81)(3) 6417-0370

Fax: (+852) 2722-1369

© 2013 Atmel Corporation. All rights reserved. / Rev.: 42086A-AVR-04/2013

Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, STK®, XMEGA®, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Glossary
	2. Pre-requisites
	3. WeX
	3.1 WeX overview
	3.2 WeX versus AWeX

	4. Output Matrix
	4.2 H bridge example
	4.3 Configuration 000
	4.4 Configuration 001
	4.4.1 Applications

	4.5 Configuration 010
	4.5.1 Example of applications in this mode

	4.6 Configuration 011
	4.6.1 Applications

	4.7 Configuration 100
	4.7.1 Applications

	4.8 Registers
	4.9 Example 1 (Output Matrix control)
	4.9.1 Drivers
	4.9.2 Example

	5. Dead-Time Insertion
	5.1 Overview
	5.2 Applications view
	5.3 WeX DTI improvement
	5.4 Registers
	5.5 Dead Time Insertion example
	5.5.1 Drivers
	5.5.2 Example

	6. Swap
	6.1 Overview
	6.2 Applications
	6.2.1 Slow decay mode
	6.2.2 Fast decay mode
	6.2.3 Mixed decay mode

	6.3 SWAP WeX improvement
	6.4 Registers
	6.5 SWAP example
	6.5.1 Drivers
	6.5.2 Example

	7. Pattern Generator
	7.1 Applications
	7.2 Pattern Generator WeX improvements
	7.2.1 Pattern Generator buffers
	7.2.2 Registers update

	7.3 Registers
	7.4 Pattern Generator example
	7.4.1 Drivers
	7.4.2 Example

	8. Output Override Disable
	8.1 Registers
	8.2 Output override disable example
	8.2.1 Drivers
	8.2.2 Example

	9. Revision History

