
 AN2775
 CPU Usage Demonstration Using DMAC for SAM L10

MCUs

Introduction

The Direct Memory Access Controller (DMAC) in Microchip® | SMART™ SAM L10/SAM L11 enables the
transfer between memories and peripherals, and enables the off-loading of these tasks from the CPU.
The DMAC enables high data transfer rates with minimum CPU intervention and frees up CPU time. It
contains both a Direct Memory Access engine and a Cyclic Redundancy Check (CRC) engine. With
access to all peripherals, the DMAC can handle automatic transfer of data between communication
modules.

This document demonstrates the CPU usage when an application is executed with or without the DMA.
The analog data from the light sensor is sampled with the ADC, and the data is sent to the USART. In this
document, the CPU usage is calculated with, and without the DMA for the data transfer.

Features
This application covers the following peripheral features:

• DMA data transfer between:
– Peripheral (ADC) to peripheral (USART)
– Peripheral (ADC) to memory (SRAM)
– Memory (SRAM) to memory (SRAM)
– Memory (SRAM) to peripheral (USART)

• Transfer trigger sources
– Software
– Peripherals (ADC Result Ready, USART Data Register Empty)

• Multi buffer transfer modes by linking multiple descriptors
• Enabling three independent channels with automatic descriptor for each channel
• Fixed priority scheme within each priority level
• 1 to 256 KB data transfer in a single block transfer
• Multiple addressing modes

– Static
– Programmable increment scheme

• Transaction complete interrupt generation
• DMA event output
• Event System for direct peripheral-to-peripheral communication signaling
• Event triggered ADC conversion for accurate timing
• DMA transfer of conversion result
• CPU usage calculation using System Timer (SYSTICK)

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 1

Prerequisites
The solutions discussed in this document require a basic familiarity with the following tools:

• SAM L10/SAM L11 Xplained Pro Evaluation Kit with USB cable

This document covers the overview of the following peripherals:

• DMAC
• SERCOM – USART
• EVSYS
• ADC
• SYSTICK

Refer to the product data sheet for a detailed information on each of the peripherals.

 AN2775

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 2

Table of Contents

Introduction..1

1. Setup... 5
1.1. Hardware Setup... 5

2. Direct Memory Access Controller (DMAC).. 8
2.1. Block Diagram..8
2.2. Functional Description..8

3. Peripherals Overview...11
3.1. Event System... 11
3.2. Analog-to-Digital Converter.. 11
3.3. SERCOM - USART...11
3.4. The System Timer (SYSTICK)... 12

4. Example Implementation... 13
4.1. Peripheral-to-Peripheral Transfer with the DMAC (ADC to USART)..13
4.2. Peripheral-to Memory and Memory-to-Peripheral Transfer with the DMAC (ADC to SRAM and

SRAM to USART)...17
4.3. Peripheral-to-Memory and Memory-to-Peripheral Transfer Without DMAC (ADC to SRAM and

SRAM to USART)...20
4.4. Logic Implementation Used to Calculate the CPU Utilization...21

5. Application Limitations...25
5.1. USART Baud-Rate and ADC Sampling Frequency... 25
5.2. SRAM to SRAM Transfer Type...25

6. CPU Utilization Analysis Between Different Cases... 26
6.1. CPU Frequency Calculation...26
6.2. CPU Idle Time Calculation from Result Observed... 26

7. Execution of Application.. 29

8. References.. 30

The Microchip Web Site.. 31

Customer Change Notification Service..31

Customer Support... 31

Microchip Devices Code Protection Feature... 31

Legal Notice...32

Trademarks... 32

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 3

Quality Management System Certified by DNV...33

Worldwide Sales and Service..34

 AN2775

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 4

1. Setup
This application was developed for SAM L10 Xplained Pro board. This chapter covers hardware and
software setup required for testing this application.

1.1 Hardware Setup

1.1.1 SAM L10 Xplained Pro
The Microchip SAM L10 Xplained Pro evaluation kit is a hardware platform to evaluate the
ATSAML10E16A-AU microcontroller.

The evaluation kit offers a set of features that enables the ATSAML10E16A user to get started with the
micro-controller peripherals instantly, and to understand the steps to integrate the device in a custom
design.

The evaluation kit supports a wide range of Xplained Pro extension boards through Xplained Pro
extension headers. The SAM L10 Xplained Pro has three such Xplained Pro extension headers, and
EXT1 is used in this application.

 AN2775
Setup

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 5

Figure 1-1. SAM L10 Xplained Pro Board

1.1.2 IO1 Xplained Pro Extension Board
The Microchip IO1 Xplained Pro extension board is a generic extension board for the Xplained Pro
platform. It connects to any Xplained Pro standard extension header on any Xplained Pro MCU board.
The extension board utilizes all functions available on the standard Xplained Pro extension header.

 AN2775
Setup

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 6

Figure 1-2. IO1 Xplained Pro Extension Board

The Microchip IO1 Xplained Pro has is designed to be connected to the Xplained Pro header marked
EXT1 or EXT2. However, it is compatible with all Xplained Pro EXT headers available on an Xplained Pro
board. The pin-out of the respective Xplained Pro evaluation kit is needed to find out which Xplained Pro
EXT headers can be used. This document describes the demonstration using the EXT1 header.

The IO1 Xplained Pro features a light sensor. Pin3 of the extension board is utilized for this purpose. The
sensor data can be gathered from an ADC pin on the Xplained Pro MCU board. In the SAM L10 Xplained
Pro kit, it is connected to the EXT1 header. This application utilizes a light sensor on the IO1 Xplained pro
board as an analog input to the ADC.

 AN2775
Setup

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 7

2. Direct Memory Access Controller (DMAC)
This chapter covers the DMAC features and its operation relevant to this document. Refer to the product
data sheet for a detailed description about its operation and configuration.

2.1 Block Diagram
Figure 2-1. DMAC Block Diagram

2.2 Functional Description

2.2.1 DMAC Basic Operation
The Direct Memory Access Controller (DMAC) contains both a Direct Memory Access engine and a
Cyclic Redundancy Check (CRC) engine. The DMAC can transfer data between memories and
peripherals, and allows for off-loading these tasks from the CPU. The DMAC enables high data transfer
rates with minimum CPU intervention, and frees up CPU time. With access to all peripherals, the DMAC
can handle the automatic transfer of data between communication modules. This allows the CPU to sleep
for a longer time and reduce the power consumption.

A complete DMA read and write operation between memories and peripherals is called a DMA
transaction. DMA reads data from the source address before writing to the destination address. New data
is read when the previous write operation is completed. The transaction is initiated by a trigger and uses
a DMA channel. The DMA trigger source can be application software, a peripheral, or events from Event
System (EVSYS). Each read and write operation is done in blocks. The size of the transfer is controlled
by the block transfer size and is configured in the software. The size of the block can be from 1 to 64K
beats. The beat can be a byte, half-word or word.

 AN2775
Direct Memory Access Controller (DMAC)

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 8

2.2.2 DMAC Channels
The DMA implements eight channels, which enables eight independent transfers. Each DMA channel has
an individual Transfer control descriptor setting that is stored in SRAM.

The transfer control descriptor defines the source and destination address, source and destination
address increment settings, block transfer count, and optional event output condition selection.

Source and destination addressing can be static or incremental.

Dedicated I/O registers for each channel are available which control the trigger mode (peripheral/
software), peripheral trigger source type, event input actions, and channel priority level settings.

Dedicated write-back memory section is available for each active channel, to maintain the current transfer
settings and status.

When enabling multiple channels, 4-level channel priority is supported, and fixed or round-robin scheme
is available within each priority level.

2.2.3 DMAC Transfer Operation
A single transaction can be executed (using only one descriptor), or multiple transactions can be
executed (using linked descriptor). Single or multiple block transfers can be enabled using the same DMA
channel.

When the DMA peripheral and respective channel are enabled, the transfer will happen upon receiving
the trigger request. The transfer type can be beat, block (group of beats together forms block), or
transaction (group of blocks forms transaction).

The channel is automatically disabled when the DMA transfer is completed. If a single descriptor is
defined for a channel, the channel will be disabled when a block transfer is completed. In the case of
linked descriptors, the channel is disabled once the last descriptor is executed.

2.2.4 Other Features

Channel Suspend and Resume
The channel operation can be suspended or resumed at any time by software, or can be suspended
when a selectable block transfer is complete.

Interrupt Request
Interrupt requests can be generated in the following scenario:

• A transaction is complete
• Selectable block transfer is complete
• DMA controller detects a bus error
• A channel operation is suspended

Event Input
The event input actions are available on the least significant DMA channels. The event can be
programmed to trigger:

• Transfers
• Periodic transfers
• Conditional transfers
• To suspend or resume a channel operation

 AN2775
Direct Memory Access Controller (DMAC)

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 9

Event Output
Event output selection is available for the least significant DMA channels. Events can be generated
during the following scenario:

• Each AHB data transfer is complete
• Selectable block transfer is complete
• Entire transaction is complete

 AN2775
Direct Memory Access Controller (DMAC)

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 10

3. Peripherals Overview
This section covers the overview of other peripherals relevant to this document. Refer to respective
sections in the product data sheet for a detailed description about operation and configuration.

3.1 Event System
The Event System (EVSYS) allows autonomous, low-latency, and configurable communication between
peripherals. Several peripherals can be configured to emit and respond to signals known as events.

The exact condition to generate an event, or the action taken upon receiving an event, is specific to each
module. Peripherals that respond to events are called event users. Peripherals that emit events are called
event generators. A peripheral can have many event generators, and can have many event users.

Communication is made without CPU intervention, and without consuming system resources such as bus
or RAM bandwidth. This reduces the load on the CPU and other system resources, compared to a
traditional interrupt-based system.

In this document, the EVSYS is configured to use ‘DMA channel 0 transfer complete’ (DMAC CH0) as the
event generator, and ADC start conversion (ADC START) as event user. At the completion of the DMA
transfer, the DMA will trigger an output event, and the event system upon receiving this event, triggers the
ADC start conversion.

3.2 Analog-to-Digital Converter
The Analog-to-Digital Converter (ADC) converts analog signals to digital values. The ADC has up to 12-
bit resolution, and is capable of converting up to 1MSPS. The input selection is flexible, and both
differential and single-ended measurements can be performed. In addition, several internal signal inputs
are available.

ADC measurements can be started by either application software or an incoming event from another
peripheral in the device. Both internal and external reference voltages can be used.

The ADC may be configured for 8-bit, 10-bit, or 12-bit results, reducing the conversion time. ADC
conversion results are provided as left-adjusted or right-adjusted, which eases calculation when the result
is represented as a signed value. It is possible to use the DMA to move the ADC results directly to
memory or peripherals when the conversions are done.

In this example, the ADC is configured for 8-bit resolution and uses the DMA to transfer the ADC result to
the configured destination address (can be peripheral or memory). Event input from the DMA is used to
trigger the next ADC conversion. A software trigger is used when the process is implemented without
using the DMA.

3.3 SERCOM - USART
The SERCOM serial engine consists of a transmitter and receiver, baud-rate generator, and address
matching functionality. The transmitter consists of a single write buffer and a shift register. The receiver
consists of a two-level receive buffer and a shift register. The baud-rate generator is capable of running
on the GCLK_SERCOMx_CORE clock or an external clock.

 AN2775
Peripherals Overview

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 11

The Serial Communication Interface (SERCOM) can be configured to support a number of modes: I2C,
SPI, and USART. Once configured and enabled, all SERCOM resources are dedicated to the selected
mode.

The Universal Synchronous and Asynchronous Receiver and Transmitter (USART) is one of the available
modes in the Serial Communication Interface (SERCOM).

A data transmission is initiated by loading the DATA register with the data to be sent. The data in TxDATA
is moved to the shift register when the shift register is empty and ready to send a new frame. When the
shift register is loaded with data, one complete frame will be transmitted.

When the entire frame plus stop bits have been shifted out and there is no new data written to the DATA
register,the Transmit Complete interrupt flag in the Interrupt Flag Status and Clear register
(INTFLAG.TXC) is set, and the optional interrupt is generated.

The DATA register should only be written when the Data Register Empty flag in the Interrupt Flag Status
and Clear register (INTFLAG.DRE) are set, which indicates that the register is empty and ready for new
data.

The USART can generate a DMA request when the transmit buffer (TX DATA) is empty. The request is
cleared when DATA is written.

In this application, EDGB CDC (SERCOM0) is utilized to transfer the ADC result data to the terminal.

3.4 The System Timer (SYSTICK)
The System Timer is a 24-bit timer that extends the functionality of both the processor and the NVIC.
Refer to the ARM Technical Reference Manual for additional information, which is available for download
from the following location www.arm.com.

The timer consists of the following registers:

• A control and status register (SYST_CSR). This configures the SYSTICK clock, enables the
counter, enables the SYSTICK interrupt, and indicates the counter status.

• A counter reload value register (SYST_RVR). This provides the wrap value for the counter.
• A counter current value register (SYST_CVR).

When enabled, the timer counts down from the value in the SYST_CVR register. When the counter
reaches zero, it reloads the value in the SYST_RVR register on the next clock edge. It then decrements
on subsequent clocks. This reloading when the counter reaches zero is called wrapping. the interrupt can
be enabled, which is triggered for each time counter wrap around.

In this application, the counter is loaded with the maximum count value, and is used to take a time stamp
while calculating the CPU utilization. The SYSTICK runs at the processor clock as source.

 AN2775
Peripherals Overview

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 12

http://www.arm.com

4. Example Implementation
This section explains the application implementation in detail.

The objective of this document is to demonstrate the features and their configuration. In addition to that,
CPU utilization is calculated, when implemented with or without the DMA. This highlights the DMAC
usage in reducing the CPU load.

In the example implementation, the ADC converts the input analog signal to a digital value and the result
is transferred to the USART. The light sensor in the IO1 Xplained Pro is used as an input to the ADC
through the EXT1 header.

This document describes three different scenarios to cover the objective (i.e. with and without DMAC).
Each scenario is implemented through a separate Atmel Start example project, and users will need to
select the appropriate example project. The following sections explain each example project in detail.

4.1 Peripheral-to-Peripheral Transfer with the DMAC (ADC to USART)
The Atmel Start example project for this transfer type is ADC DMAC USART. In this case, the ADC result
is written to the USART DATA register to illustrate the peripheral-to-peripheral DMA transfer type.

4.1.1 Application Configuration and Implementation
The DMAC is configured to trigger a data transfer to the configured destination address when the ADC
RESULT is ready (peripheral trigger source). The configured destination address is the USART DATA
register address, and the source address is the ADC RESULT register address. The DMA source and
destination address is static in this case, as both the register addresses are fixed.

The ADC is configured as the event user, which will start conversion upon receiving an event signal from
the DMAC through the Event System (EVSYS). The EVSYS is configured with the DMAC as the event
generator, and the ADC as the event user.

The first ADC conversion is triggered by a software trigger. Once the input is sampled and the result is
ready, it triggers a DMA transfer from the ADC RESULT to the USART DATA register. The next ADC
conversion is triggered by the event signal from the DMA upon completing the transfer to the USART
DATA register and the cycle continues. Overall the operation is done as shown in the following figure.

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 13

Figure 4-1. Peripheral to Peripheral Transfer with DMAC

The whole operation is performed using the DMAC and EVSYS without interrupting the CPU. The DMAC
block transfer size is configured as 1024 bytes (BLOCK_COUNT), and an interrupt is configured to flag
once the block transfer is complete. Once the block transfer is completed, the DMAC channel gets
disabled automatically.

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 14

Oscillator Controller configuration:

The 16 MHz Internal Oscillator is selected and the frequency is set to 16 MHz.

• Configure the 16 MHz internal oscillator frequency to 16 MHz by setting the
OSC16MCTRL.FSEL[1:0] to 0x11

• Enable the 16 MHz internal oscillator by setting the OSC16MCTRL.ENABLE to 1

GCLK configuration:

The GCLK0 is configured to use the 16 MHz Internal Oscillator (OSC16M) as the clock source.

• Configure the GCLK0 clock source to 16 MHz oscillator output by setting GENCTRL0.SRC[4:0] to
0x05 (OSC16M oscillator output)

• Enable GCLK0 by setting GENCTRL0.GENEN to 1
• The GCLK0 output is enabled to measure the CPU clock frequency. I/O pin PA27 is configured to

output GCLK0
• Assign GCLK_IO[0] peripheral function to PA27 by setting PMUX13.PMUXO[3:0] to 0x07

(Peripheral Function H Selected)
• Set GENCTRL0.OE to 1 to output the Generator clock on GCLK_IO

MCLK configuration:

The GCLK0 is always the direct source for GCLK_MAIN, which is used by the MAIN clock module.

ADC Configuration:

ADC is configured to use GCLK0 (16MHz) as the clock source. The ADC conversion resolution is set to
8-bit and ADC reference to ½ VDDANA. The ADC clock is divided by 64 (ADC clock = 16MHz/64 =
250KHz). PA02 is selected as the positive input to the ADC and GND as the negative input.

• Select GCLK0 as the clock source to the ADC module by configuring PCHCTRL20.GEN[2:0] to 0x0
(Generic Clock Generator 0)

• Divide the input clock to the ADC peripheral by 64 by setting CTRLB.PRESCALER[2:0] to 0x05
• Set the ADC resolution to 8-bit by setting CTRLC.RESSEL[1:0] to 0x3
• Set the ADC reference voltage to ½ VDDANA by setting REFCTRL.REFSEL[3:0] to 0x02
• Select AIN0 as the positive input of the ADC by setting INPUTCTRL.MUXPOS[4:0] to 0x00 (ADC

AIN0 pin)
• Select GND as the negative input of the ADC by setting INPUTCTRL.MUXNEG[4:0] to 0x18

(Internal ground)
• Assign AIN[0] peripheral function to PA02 by setting PMUX1.PMUXE[3:0] to 0x01 (Peripheral

Function B Selected)
• ADC is configured to trigger a conversion on event input. The DMA transfer complete event will act

as the event input.
• Trigger ADC conversion on event input by setting EVCTRL.STARTEI = 1

DMAC Configuration:

DMA channel 0 is configured to perform a beat (8-bit) transfer on ADC Result Ready trigger. An event is
generated on each beat transfer. Since the source and destination addresses are static they are not
incremented. The DMA channel will be disabled once the last block transfer in the transaction is
completed.

• Select the DMA channel to configure (DMA channel 0 in this case) by setting CHID.ID[3:0] to 0x0

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 15

• Select the DMA trigger source as the ADC Result Ready by setting CHCTRLB.TRIGSRC[4:0] to
0x13 (ADC Result Ready Trigger)

• To perform a beat (8-bit) transfer on every trigger, set the trigger action in CHCTRLB.TRIGACT[1:0]
to 0x2 (One trigger required for each beat transfer)

• Enable channel event output by setting CHCTRLB.EVOE = 1. This event output will be used by the
ADC (through the event system) to start an ADC conversion.

• The DMA channel transfer descriptor registers are configured as configured as follows:
– Source and destination address are static. BTCTRL.SRCINC =0 and BTCTRL.DSTINC = 0.
– The beat size is configured to 1 byte. BTCTRL.BEATSIZE[1:0] = 0x0 (8-bit bus transfer).
– To generate an event output when a beat (1-byte) transfer is complete, set the

BTCTRL.EVOSEL[1:0] to 0x3 (Event strobe when beat transfer complete)
– Configure the DMA channel 0 source address (SRCADDR[31:0]) to ADC result register
– Configure the DMA channel 0 destination address (DSTADDR[31:0]) to the USART transmit

register
– Set the block transfer count to 1024 by setting BTCNT[15:0] to 1024
– The next descriptor address for channel 0 must be set to NULL by setting DESCADDR to 0

• Enable the DMA channel 0 transfer complete interrupt by setting CHINTENSET.TCMPL to 1

Note:  All transfer descriptors must reside in SRAM. The addresses stored in the Descriptor Memory
Section Base Address (BASEADDR) and Write-Back Memory Section Base Address (WRBADDR)
registers tell the DMAC where to find the descriptor memory section and the write-back memory section.
As BASEADDR points only to the first transfer descriptor of channel 0, all first transfer descriptors must
be stored in a contiguous memory section, where the transfer descriptors must be ordered according to
their channel number. For more information, refer the SAM L10/L11 data sheet.

USART Configuration:

The SERCOM0 is configured for USART mode operation with the GCLK0 (16MHz) as the clock source to
the SERCOM0 module. The USART RX and TX lines are mapped to PA25 (SERCOM0 PAD[3]) and
PA24 (SERCOM0 PAD[2]) respectively.

The baud rate is set to 460800. Refer to USART Baud-Rate and ADC Sampling Frequency for details on
why this baud is chosen.

Event System Configuration:

The Channel 0 of the Event System is configured with DMA channel 0 as the event generator and ADC
Start Conversion as the event user.

• Select DMA channel 0 as the event generator for channel 0 of the Event System by setting
CHANNEL0.EVGEN[5:0] to 0x26 (ADC Result Ready)

• Select asynchronous path for channel 0 of the event system by setting CHANNEL0.PATH[1:0] =
0x2 (Asynchronous path)

• Select ADC Start Conversion as the user of channel 0 of the event system, by setting
USER14.CHANNEL[3:0] to 0x1 (A value of x in this field selects channel n = x-1)

I/O Pin Configuration:

I/O pin PA04 is configured as Digital Output. PA04 is used to measure the time taken by the CPU to
increment the idle loop counter. This will then be used to calculate the CPU idle time.

I/O pin PA06 is configured as Digital Output. PA06 will be toggled in the interrupt service handlers, and is
also used in calculating the CPU idle time.

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 16

I/O pin PA27 is configured to output the GCLK0 frequency (as described previously, under the GCLK
configuration) and is used to measure the CPU clock frequency. The CPU clock frequency will be used to
calculate the total execution time.

4.1.2 CPU Utilization Calculation
Once the MCU and the peripheral initialization is complete, the application takes a time stamp by reading
the SYSTICK Current Value register and saves it to a variable (i.e., time_stamp1). It then starts the first
ADC conversion using a software trigger (SWTRIG.START = 1). Subsequent conversions are triggered
by the event generated by the DMA when the previous ADC result is transferred by the DMA to the
destination (USART DATA register).

While the conversion is in progress, the application enters a while (1) loop and increments an idle loop
counter (i.e., idle_loop_counter) and toggles the I/O pin PA04. The PA04 is probed using an oscilloscope
to calculate the time taken to increment one idle loop counter and hence the total duration of time for
which the CPU was idle.

Once all the 1024 ADC conversions are complete, another time stamp is taken (i.e., time_stamp2) in the
DMA interrupt and a flag is set to indicate that the transfer is complete. Once the transfer is complete, the
application calculates the total number of cycles taken to complete the transfer by taking the difference of
the time stamp taken before the start of conversion (i.e., time_stamp1) and the time stamp taken when
1024 transfers are complete (i.e., time_stamp2). The idle loop counter value and the value of the total
number of cycles to complete the transfer are printed on the terminal application running on the host
computer.

Note:  Refer to the CPU Utilization Analysis Between Different Cases for detailed description about the
CPU utilization calculation from the results observed.

4.2 Peripheral-to Memory and Memory-to-Peripheral Transfer with the DMAC (ADC to
SRAM and SRAM to USART)
In this case, three DMAC channels have been used to demonstrate each transfer type. The purpose of
having Memory-to-Memory type DMA transfer is for demonstration purposes only, and the application
does not need this for its proper working.

Note:  Refer to Atmel Start example document ADC DMAC MEM MEM USART.

4.2.1 Application Configuration and Implementation
In this example, three DMA channels are used. The DMA channel 0 is configured to transfer 1024
number of beats (1 beat = 1 byte) from the ADC RESULT register (peripheral) to the SRAM buffer
(memory) using the ADC result ready as the trigger source. The DMA channel 1 is configured to transfer
1024 bytes from the SRAM buffer (memory) to another SRAM buffer (memory) using a software trigger.
The DMA channel 2 is configured to transfer the 1024 bytes from the second SRAM buffer (memory) to
the USART data register (peripheral) using USART DATA register is empty (DRE) as the trigger source.
Overall the operation is done as shown in the following figure.

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 17

Figure 4-2. Peripheral to Memory and Memory to Peripheral Transfer with DMAC

DMA Channel 0 Configuration (Peripheral to Memory):

DMAC channel 0 is configured for a peripheral trigger from ADC RESULT ready. The source address is
static as it is the ADC RESULT register. As the SRAM buffer will need to store 1024 bytes samples from
ADC, the destination address is incremented. The event output is enabled on completing each beat
transfer which is used to trigger the next ADC conversion.

• Select the DMA channel to configure (DMA channel 0 in this case) by setting CHID.ID[3:0] to 0x0
• Select the DMA trigger source as the ADC Result Ready by setting CHCTRLB.TRIGSRC[4:0] to

0x13 (ADC Result Ready Trigger)
• To perform a beat (8-bit) transfer on every trigger, set the trigger action in CHCTRLB.TRIGACT[1:0]

to 0x2 (One trigger required for each beat transfer)
• Enable channel event output by setting CHCTRLB.EVOE = 1. This event output will be used by the

ADC (through the event system) to start an ADC conversion.
• The DMA channel transfer descriptor registers are configured as configured as follows:

– Source address is static and the destination address is incremented. BTCTRL.SRCINC = 0
and BTCTRL.DSTINC = 1

– The beat size is configured to 1-byte. BTCTRL.BEATSIZE[1:0] = 0x0 (8-bit bus transfer).
– To generate an event output when a beat (1-byte) transfer is complete, set the

BTCTRL.EVOSEL[1:0] to 0x3 (Event strobe when beat transfer complete)
– Configure the DMA channel ‘0’ source address (SRCADDR[31:0]) to ADC result register
– Configure the DMA channel ‘0’ destination address (DSTADDR[31:0]) to the SRAM buffer

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 18

– Set the block transfer count to 1024 by setting BTCNT[15:0] to 1024
– Enable the DMA channel ‘0’ transfer complete interrupt by setting CHINTENSET.TCMPL to 1
– The next descriptor address for channel ‘0’ must be set to NULL by setting DESCADDR to 0

• Enable the DMA channel ‘0’ transfer complete interrupt by setting the CHINTENSET.TCMPL to 1

Once 1024 bytes samples get transferred from the ADC to the SRAM buffer, the DMA block transfer
complete interrupt handler is executed. From the interrupt handler the DMA channel 1 transfer is
triggered.

DMA Channel 1 Configuration (Memory-to-Memory):

Channel 1 is configured with software trigger and transfer type is transaction, that is, once software
triggers the transfer, all the ADC results stored in one SRAM buffer are transferred to another buffer
stored in SRAM. Because both source and destination address are SRAM buffers, both source and
destination addresses are incremented.

• Select the DMA channel to configure (DMA channel 1 in this case) by setting CHID.ID[3:0] to 0x1
• Select the DMA trigger source as software trigger by setting CHCTRLB.TRIGSRC[4:0] to 0x00

(Only software/event triggers)
• To transfer all 1024 bytes from one SRAM buffer to another on a single trigger, set the trigger action

in CHCTRLB.TRIGACT[1:0] to 0x3 (One trigger required for each transaction)
• The DMA channel transfer descriptor registers are configured as configured as follows:

– Source and destination address are incremented. BTCTRL.SRCINC = 1 and
BTCTRL.DSTINC = 1

– Set the address increment step size to 1 beat by setting BTCTRL.STEPSIZE[2:0] to 0x0
– The beat size is configured to 1-byte. BTCTRL.BEATSIZE[1:0] = 0x0 (8-bit bus transfer)
– Configure the DMA channel 1 source address (SRCADDR[31:0]) to the address of the source

SRAM buffer
– Configure the DMA channel 0 destination address (DSTADDR[31:0]) to the address of the

destination SRAM buffer
– Set the block transfer count to 1024 by setting BTCNT[15:0] to 1024
– The next descriptor address for channel 1 must be set to NULL by setting DESCADDR to 0

• Enable the DMA channel 1 transfer complete interrupt by setting CHINTENSET.TCMPL to 1

Once 1024 bytes get transferred from source buffer in SRAM to the destination buffer in SRAM, the DMA
block transfer complete interrupt handler is executed. From the interrupt handler the DMA channel 2
transfer is triggered to transfer the data from the destination buffer in SRAM to USART.

DMA Channel 2 Configuration (Memory-to-Peripheral):

Channel 2 is configured to have peripheral trigger and beat transfer type. A byte from SRAM buffer
should be written to the USART DATA register whenever it is empty, that is, whenever USART DATA
register is empty (DRE) and is ready for new data to be written, it triggers a DMA transfer from source to
destination over the channel 2.

• Select the DMA channel to configure (DMA channel 2 in this case) by setting CHID.ID[3:0] to 0x2
• Select the DMA trigger source as SERCOM0 TX Trigger by setting CHCTRLB.TRIGSRC[4:0] to

0x05
• To perform a beat (8-bit) transfer on every trigger, set the trigger action in CHCTRLB.TRIGACT[1:0]

to 0x2 (One trigger required for each beat transfer)
• The DMA channel transfer descriptor registers are configured as configured as follows:

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 19

– Source address is incremented and the destination address is static. BTCTRL.SRCINC =1
and BTCTRL.DSTINC = 0.

– Set the address increment step size to 1 beat by setting BTCTRL.STEPSIZE[2:0] to 0x0
– The beat size is configured to 1-byte. BTCTRL.BEATSIZE[1:0] = 0x0 (8-bit bus transfer).
– Configure the DMA channel 2 source address (SRCADDR[31:0]) to the address of the SRAM

buffer
– Configure the DMA channel 2 destination address (DSTADDR[31:0]) to the address of

USART transmit register
– Set the block transfer count to 1024 by setting BTCNT[15:0] to 1024
– The next descriptor address for channel 2 must be set to NULL by setting DESCADDR to 0

• Enable the DMA channel 2 transfer complete interrupt by setting CHINTENSET.TCMPL to 1

Unlike other channels, this channel should be enabled at the end of channel 1 transfer complete. The
reason is that the USART DRE is always set as no communication occurred previously. So, if this channel
is enabled during the initialization, as USART DRE is already set, the DMA transfer will start immediately
on channel 2 which results in wrong operation.

After the DMA channel 2 completes the transfer, a flag is set to indicate end of transfer and the time
stamp (i.e., time_stamp2) is taken for CPU utilization calculation.

Other peripheral configurations, such as Clock, ADC, Event System, USART and I/O remain same as the
Peripheral-to-Peripheral Transfer with DMAC.

4.2.2 CPU Utilization Calculation
The application takes the initial time stamp by reading the SYSTICK current value register and saves it to
a variable (i.e., time_stamp1). It then starts the first ADC conversion using a software trigger
(SWTRIG.START = 1). Subsequent conversions are triggered by the event generated by the DMA when
the previous ADC result is transferred by the DMA to the destination (USART DATA register).

Similar to the Peripheral to Peripheral Transfer with DMAC, the application enters a while (1) loop and
increments an idle loop counter and toggles the I/O pin PA04, while the transfer is in progress. Once all
the 1024 ADC conversions are complete, another time stamp (i.e., time_stamp2) is taken in the DMA
channel 2 interrupt handler and a flag is set to indicate that the transfer is complete.

Note:  Refer to the CPU Utilization Analysis Between Different Cases for further information.

4.3 Peripheral-to-Memory and Memory-to-Peripheral Transfer Without DMAC (ADC to
SRAM and SRAM to USART)
In this case, the application is implemented through interrupt handling without using the DMA. This is
done to demonstrate the DMAC usage in reducing the CPU load.

Peripheral-to-Memory: The ADC results are stored in ADC driver buffer (i.e., Buffer1).

Memory-to-Memory: Once all the ADC results are available, the data is copied from the ADC driver buffer
(Buffer1) to the application buffer (i.e., Buffer2).

Memory-to-Peripheral: The application buffer (Buffer2) is transmitted to USART.

Note:  Refer to the Atmel Start example ADC NO DMAC MEM MEM USART.

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 20

4.3.1 Application Configuration and Implementation
The Clock, USART and I/O configurations remain same as the Peripheral-to-Peripheral Transfer with
DMAC. This example does not utilize the DMA and the Event System. The ADC configuration is same as
the Peripheral-to- Peripheral Transfer with the DMAC except that the ADC is not configured to start a
conversion on an event output by setting EVCTRL.STARTEI to ‘0’.

After the MCU and the peripheral initialization is complete, a software trigger in the main loop starts the
first ADC conversion. Once the conversion is done, the ADC interrupt handler is called. In the interrupt
handler, the ADC sample is saved in a buffer (i.e., SRAM Buffer 0) and a count variable indicating the
number of ADC samples done is incremented. The next ADC conversion is triggered from interrupt
handler. This continues until all 1024 samples are available. Once the count reaches 1024, ADC is
disabled and further conversion is stopped. The ADC results are then read from the SRAM Buffer 0 and
copied to another buffer (i.e., SRAM Buffer 1). The ADC results are then sent to USART and a flag is set
to indicate that the transfer is complete. A time stamp is also taken now to find the CPU utilization.
Overall the application flow would work as illustrated in the following figure.

Figure 4-3. ADC to SRAM and SRAM to USART Transfer without DMAC

ADC

ADC results
counter ==
1024?

YesNo

Start Conversion

ADC Interrupt Handler

ADC Result Ready

Light Sensor input from
IO1 XPRO wing board

Output print
on terminal
window

AD
C
St
ar
t t
rig

ge
r f
ro
m
 so

ft
w
ar
e

Increment the ADC
results counter

variable

1. Copy ADC results from
SRAM Buffer 0 to
SRAM Buffer 1

2. Write results to USART
3. Set flag
4. Take time stamp

Store ADC results to SRAM
Buffer 0

4.3.2 CPU Utilization
The same logic is used to calculate the CPU utilization except that in this case, the interrupt is enabled
and does not use the DMA. The number of conversions is counted by incrementing a counter. Once the
counter reaches 1024, the ADC results are copied from the SRAM Buffer 0 to SRAM Buffer 1 and then
transferred to USART. A time stamp is taken and idle_loop_count is noted to calculate the CPU
utilization as shown in Logic Implementation Used to Calculate the CPU Utilization.

4.4 Logic Implementation Used to Calculate the CPU Utilization
This section covers the logic implemented in this application to calculate the CPU utilization.

For calculating the CPU utilization, measure the total time taken for executing the data transfer routine.
This is measured using the SYSTICK timer.

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 21

Measure the CPU idle time when executing the data transfer routine. This is measured by incrementing a
variable (idle_loop_count) whenever the CPU is idle. The idle counter value is converted to time
scale by multiplying the count value with the time taken to increment once.

Both the total time taken by the data transfer routine and the idle counter is measured for a fixed number
of data transfers as shown in the following figure. In this test, it is a 1024 byte transfer.

Figure 4-4. CPU Utilization Calculation

The Count is incremented and stopped by entering into an
infinite loop.

Count increments and CPU is in idle state

CPU is busy with other tasks and count stops

idle_loop_count idle_loop_count = x

time_stamp1 = SYST_CVR time_stamp2 = SYST_CVR

The Time stamp is taken from system timer before and after 1024 bytes
are transferred. From this, the time taken for a complete transfer is
calculated.

The number of cycles taken (cycles_taken) to complete the transaction can be calculated from the
time stamp taken using the SYSTICK. As the SYSTICK runs the processor clock, the time taken for the
total transaction can be calculated from the cycles taken, and the CPU clock frequency of the application
is as follows.

Time taken to complete transaction = (cycles_taken/CPU clock frequency)

The idle_loop_count represents the number of times the code enters idle task. This can be used to
derive the time that the CPU is idle during a complete transaction. To convert this count value to time
scale, the time taken for each count increment should be known.

For this purpose, in the application code, two separate port pins are toggled in the idle loop and in the
interrupt handler. Whenever the code enters the interrupt handler, the idle loop count stops and the pin
toggled inside the idle loop stays at the same level. When the code comes out of the handler, the pin
toggled inside the handler stays at same level, and the idle loop pin starts the toggle. The time taken for
single toggling is calculated after removing the time taken for handler execution. This is shown in the
following figure.

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 22

Figure 4-5. Calculation of Time Taken for a Single idle_loop_count Increment

From the oscilloscope, the time taken for each count increment is calculated to be ~9.1µs, as shown in
the following figure. The count value when multiplied with the pulse width (i.e., 9.1 µs) will give the time
the CPU spends inside the idle task.

Note: 
1. The width of the idle_loop_count pulse is the time taken to increment one idle count value

when there is no interrupt triggered. The idle_loop_count pulse is output on the PA04 and
PA06 is toggled in the interrupt handler.

2. The CPU idle time can be calculated by multiplying the idle_loop_count with the
idle_loop_count pulse width.

Figure 4-6. Oscilloscope Shot of Idle Task

The CPU utilization analysis for each case is described in CPU Utilization Analysis Between Different
Cases.

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 23

Note:  The ideal expectation is that the idle loop count should be more when using the DMA than when
not using it. When using the DMA, the CPU is not interrupted and the idle task can be executed in
parallel. But in practice, this cannot be the case. The reason is that, the DMA will take less time to
complete the transfer. In case of using the interrupt method, it takes more time to complete the
transaction. Therefore, the time that code can spend for the ideal task would be lesser for the DMAC
case and the idle_loop_count value can be lesser than when not using the DMA. To avoid such
confusion, the time taken for completing the transfer is also taken using the system timer, and the ratio of
both is used to calculate the CPU utilization.

 AN2775
Example Implementation

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 24

5. Application Limitations

5.1 USART Baud-Rate and ADC Sampling Frequency
In the DMAC usage case, the ADC RESULT is directly written to the USART DATA register. The DMA
triggers the next ADC conversion immediately once the data is written to the USART. This causes data
loss on the terminal window if the USART baud rate is slower than the ADC conversion time. To avoid
this, the ADC is configured with lowest possible frequency and the USART is configured with a higher
baud-rate.

For the ADC:

The rate of conversion of the ADC clock depends on the GCLK_ADC (i.e. 16 MHz), and its pre-scalar,
which is 64 in this case.

Therefore, the ADC clock frequency = 16 MHz/64 = 250 kHz ~= 4 µs.

Conversion time = 8 cycles (8-bit resolution) + 1 cycle (Sampling time) = 9 * 4 μs ~= 36 μs

For the USART:

In the product data sheet under Baud Rate Equations, the fbaud should be ≤ fref/S.

For the Asynchronous Arithmetic mode, the number of samples per bit is (S) = 16.

fref = 16 MHz

So, the maximum possible baud-rate = 16 MHz/16 = 1000000.

The baud-rate configured = 460800 (i.e. 460800 bits sent in = 1s).

For 10 bits, it takes = (10/460800) ~= 21.7µs.

Therefore, setting a 460800 baud rate is advisable, as the ADC sample is ready for every 36 µs. The
USART would have sent the previous data in 21.7 µs, and waits for the next ADC result without any data
loss.

Note: 
1. The 10 bits come from the USART data frame = Start bit (1) + Data bit (8) + Stop bit (1).
2. Refer to the device data sheet for additional information on timing calculations on the ADC and

USART.

5.2 SRAM to SRAM Transfer Type
For the ADC DMAC MEM MEM USART and the ADC NO DMAC MEM MEM USART examples, the
transfer type Memory-to-Memory, that is, a copy of the ADC results from one SRAM buffer to another
SRAM buffer is done for demonstration purposes. This application does not require this to work properly.

 AN2775
Application Limitations

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 25

6. CPU Utilization Analysis Between Different Cases
After programming the firmware, the results can be seen in the terminal window. The result contains the
ADC result data, number of cycles taken, and idle loop count in ‘hex’ format. This chapter explains how to
derive the CPU usage for each case from the results observed. The calculation is done as explained in
Logic Implementation Used to Calculate the CPU Utilization.

Note:  The results shown in this document are taken with the following conditions. The resulting
idle_loop_count and cycles_taken will vary with the optimizations, frequency or any change in the
application code.

• Optimization set to zero (-O0)
• Configuration: Debug
• Port toggling function (ENABLE_PORT_TOGGLE) is enabled
• OSC16M internal oscillator is used with frequency selected as 16 MHz

6.1 CPU Frequency Calculation
To find the time taken, the CPU frequency needs to be known. This application runs at 16 MHz
(OSC16M). The accuracy on the internal RC oscillator can be taken from the Electrical Characteristics
section of the product data sheet. The accuracy of the RC in the board used for testing was calculated to
be 15.98 MHz. This is done by giving the main clock, the GCLK0 (which runs at 16 MHz) output to the I/O
pin.

Note: 
1. The I/O Pin used here is PA27.
2. The GCLK0 output is enabled in all the three example projects.

6.2 CPU Idle Time Calculation from Result Observed
The following figures display the results of various cases used in the application.

Note:  The ADC values are printed in Hex format. Therefore, the terminal emulator program must be
configured to display the Hex values. Use the following steps to configure Tera Term to display Hex
values:

1. Go to the installation folder of Tera Term and search for the file
TERATERM.INI

.
2. Open the

TERATERM.INI

file and set the Debug variable to ON.
3. Open Tera Term and setup the connection. Press the Shift + Esc keys twice to change the mode to

the Hex format.

 AN2775
CPU Utilization Analysis Between Different Cases

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 26

Figure 6-1. ADC DMAC USART Terminal Output

Figure 6-2. ADC DMAC MEM MEM USART Terminal Output

Figure 6-3. ADC NO DMAC MEM MEM USART Terminal Output

 AN2775
CPU Utilization Analysis Between Different Cases

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 27

ADC DMAC USART:

The last eight bytes of data represent the idle_loop_count and the cycles_taken in big endian
format shown in the following equations. The last four bytes of the result is the idle_loop_count and
the next four bytes is the cycles_taken.

idle_loop_count = 0x0000150B = 5387d

cycles_taken = 0x000C0251 = 787025d

Time taken to complete the transaction = (cycles_taken/CPU clock frequency)

The time taken to complete the transaction = (787025/15.98) µs = 49.250 ms.

The time taken for each idle count is calculated to be 3.391 µs as in Logic Implementation Used to
calculate the CPU Utilization.

Total CPU idle time = idle_loop_count * 9.1 µs = 5387 * 9.1 µs = 49.021 ms

Therefore, in a 49.250 ms transfer period, the CPU is idle for about 49.021 ms for the ADC_DMAC_USART
case.

Similarly the calculation can be done for other cases as shown in the following table.

Table 6-1. CPU Usage Calculation

Case Idle_Loop_Count Cycles_Taken Total Transfer
Time (ms)

CPU Idle
Time (ms)

CPU Idle
Time (%)

ADC DMAC USART 0x0000150B 0x000C0251 49.250 49.021 99.53

ADC DMAC MEM
MEM USART

0x00001EAC 0x001185EF 71.864 71.453 99.42

ADC NO DMAC
MEM MEM USART

0x000011D7 0x00208086 133.294 41.559 31.178

When using the DMAC, the CPU is idle mostly during the data transfer. But without the DMAC, the CPU
is in Idle mode only for a small portion of the data transfer, and the overall transfer time is also high.

Note:  The table serves to provide an indication of performance improvement that can be gained by
using the DMA, and is not intended to draw a comparison between the different use case scenarios.

 AN2775
CPU Utilization Analysis Between Different Cases

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 28

7. Execution of Application
The example applications corresponding to this document can be downloaded from the following location:
start.atmel.com. Follow these steps to download the example project.

1. Go to start.atmel.com and click on the Browse Examplestab.
2. Search for the desired project:

– ADC DMAC USART
– ADC DMAC MEM MEM USART
– ADC NO DMAC MEM MEM USART

3. Click on Open Selected Example to view the software components in the project or click on
Download Selected Example to download the example project.

 AN2775
Execution of Application

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 29

http://start.atmel.com/
http://start.atmel.com/

8. References
ARM documentation on Cortex-M23 Core

• Cortex-M23 Processor Technical Reference Manual revision r1p0

Device data sheet

This data sheet contains the block diagrams of the peripherals and details about implementing firmware
for the device. It also contains the electrical specifications and expected characteristics of the device.

This data sheet is available for download at https://www.microchip.com. Follow this path to download the
document Products > Microcontrollers & Microprocessors > 32-bit MCUs > SAM 32-bit MCUs > SAM L
MCUs.

Hardware tools user’s guide

• SAM L10 Xplained Pro User’s Guide and Schematics is available at the following location: http://
www.microchip.com/DevelopmentTools/ProductDetails/dm320204

• For SAM L11 Xplained Pro User’s Guide and Schematics is availabe at the following location: http://
www.microchip.com/DevelopmentTools/ProductDetails/dm320205

 AN2775
References

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 30

https://www.microchip.com
http://www.microchip.com/DevelopmentTools/ProductDetails/dm320204
http://www.microchip.com/DevelopmentTools/ProductDetails/dm320204
http://www.microchip.com/DevelopmentTools/ProductDetails/dm320205
http://www.microchip.com/DevelopmentTools/ProductDetails/dm320205

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 AN2775

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 31

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings,
BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA,
SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL
ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 AN2775

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 32

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-3535-8

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 AN2775

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 33

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2018 Microchip Technology Inc. Application Note DS00002775A-page 34

	Introduction
	Table of Contents
	1. Setup
	1.1. Hardware Setup
	1.1.1. SAM L10 Xplained Pro
	1.1.2. IO1 Xplained Pro Extension Board

	2. Direct Memory Access Controller (DMAC)
	2.1. Block Diagram
	2.2. Functional Description
	2.2.1. DMAC Basic Operation
	2.2.2. DMAC Channels
	2.2.3. DMAC Transfer Operation
	2.2.4. Other Features

	3. Peripherals Overview
	3.1. Event System
	3.2. Analog-to-Digital Converter
	3.3. SERCOM - USART
	3.4. The System Timer (SYSTICK)

	4. Example Implementation
	4.1. Peripheral-to-Peripheral Transfer with the DMAC (ADC to USART)
	4.1.1. Application Configuration and Implementation
	4.1.2. CPU Utilization Calculation

	4.2. Peripheral-to Memory and Memory-to-Peripheral Transfer with the DMAC (ADC to SRAM and SRAM to USART)
	4.2.1. Application Configuration and Implementation
	4.2.2. CPU Utilization Calculation

	4.3. Peripheral-to-Memory and Memory-to-Peripheral Transfer Without DMAC (ADC to SRAM and SRAM to USART)
	4.3.1. Application Configuration and Implementation
	4.3.2. CPU Utilization

	4.4. Logic Implementation Used to Calculate the CPU Utilization

	5. Application Limitations
	5.1. USART Baud-Rate and ADC Sampling Frequency
	5.2. SRAM to SRAM Transfer Type

	6. CPU Utilization Analysis Between Different Cases
	6.1. CPU Frequency Calculation
	6.2. CPU Idle Time Calculation from Result Observed

	7. Execution of Application
	8. References
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

