MICROCHIP TB3285
Getting Started with Timers/Counters on PIC18

Introduction

Authors: Alin Stoicescu, Marius Nicolae, Stefan Vlad, Microchip Technology Inc.

This technical brief provides information about the Timers/Counters present on the PIC18 families of microcontrollers.

The document describes the application area, the modes of operation and the hardware and software requirements
of the Timers/Counters and configurable output or input for internal or external use with the help of the Peripheral Pin
Select (PPS).

Throughout the document, the configuration of the used peripherals for each use case will be described in detail.
Additionally, this technical brief explains the concepts of the TMRO, TMR1/3/5 and TMR2/4/6 and their
implementation in the PIC18 family of microcontrollers with the following use cases:

1. TIMERO

1.1. Using TMRO in 8-bit Mode with Periodic Interrupt:
This example describes how to configure TMRO in 8-bit mode and generate a compare interrupt
every 100 ms, using LFINTOSC as clock source. A GPIO pin is toggled each time an interrupt
occurs.

1.2. Using and operating TMRO in 16-bit Mode while the Microcontroller is in Sleep:
This example describes how to configure and operate TMRO in 16-bit mode while the microcontroller
is in Sleep mode and generate an overflow interrupt every ten seconds. When the interrupt occurs, a
GPIO pin connected to an LED is ON for 100 ms and then the microcontroller is put back to Sleep.

1.3. Using TMRO in 8-bit Mode and to Generate an Output Signal:
This example describes how to configure TMRO in 8-bit mode and generate a 125 Hz signal on one
of the TO output pins using Peripheral Pin Select (PPS).

2. TIMER 1/3/5

21. Using TMR1 Gate to Measure Frequency:
This example shows how to use the TMR1 configured in Gate Single-Pulse and Toggle Combined
mode. It will sample a full period of a signal. A GPIO pin will be configured as input and it will be
connected to a periodical signal.

2.2. Using TMR1 to Trigger a Special Event:
This example shows how to use the TMR1 configured as a counter. The Capture/Compare/PWM
(CCP) module will be configured with a user-defined value. A GPIO pin will be configured as an
output for the CCP. When the counter reaches the CCP value, the pin logic value will be toggled.

2.3. Using TMR1 Gate to Measure Short vs Long Button Press:
This example shows how to use the TMR1 configured in Gate Single-Pulse mode. It will start
counting when the button is pressed. Two different interrupts will be activated based on how long the
button was pressed.

3. TIMER 2/4/6

3.1. Using TMR2 as Auto-conversion Trigger for ADCC Module
This example will present how to use TMR2 peripheral to trigger the ADCC to make conversions at a
fixed frequency rate that can be adjusted by modifying the period of TMR2.

3.2. Using TMR4 in One-Shot Mode with External Signal as Reset
This example will present how to use TMR4 peripheral in One-Shot mode to stop TMR2 if an external
pin is pulled to GND for more than the desired period.

3.3. Using TMR4 as HLT to Generate an Interrupt (like a WDT without Reset)

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 1

TB3285

This example will present how to use the TMR4 as a Hardware Limit Timer (HLT) in order to generate
an interrupt and stop TMR2 that also stops the ADCC auto-conversion.

3.4. Using TMR2 as Alternate SPI Clock
This example will present how to use the TMR2 as alternate clock for SPI peripheral with a 10 kHz
frequency.

Note: For each use case, there are two different implementations that have the same functionality: one bare metal
code example and one MPLAB® Code Configurator (MCC) generated code example.

View Code Examples on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 2

https://github.com/microchip-pic-avr-examples?q=pic18f47q10timers&type=&language=

TB3285

Table of Contents

[0 To [0 e (1] o TP P U PP P PTRPPRPPPROI 1
1. PEriPREIal OVEIVIEW...... ...ttt e et e e e et e e e e et e e e e e s aabaeeaesentaaeaeeeeasnsaeeaesasnsreneas 4
2. Using TMRO in 8-bit Mode with Periodic INterrupt...........coooiiiiiii i 8
3. Using and Operating TMRO in 16-bit Mode while the Microcontroller is in Sleep.........cccceecvrerieeernnenn. 11
4. Using TMRO in 8-bit Mode and to Generate an Output Signal...........ccccooiiiiiiiiiinii e 14
5. Using TMR1 Gate t0 Measure FrEQUENCY...........ueiii ittt e e e e e e e e 17
6. Using TMR1 to Trigger @ SpecCial EVENL..........ooooiiiiiiiii ettt a e 22
7. Using TMR1 Gate to Measure Short vs. Long Button Press...........cccvoiiiiiiiiiiiiiee e 25
8. Using TMR2 for Auto-Conversion Trigger for the ADCC ModUle.........cccoiiiiiiiiiiiiiieeieeeee e 30
9. Using TMR4 in One-Shot Mode with External Signal as Reset...........ccooceviiiiiiiiiiiicee e 35
10. Using TMR4 as HLT to Generate an INterruptcoccoeeoiii i 39
11. Using TMR2 as ARRErNAte SPI CIOCK.........coiiiiiiiiiii et 45
12, REFEIENCES. ...ttt e et st e e se et e et et e s ne e e e s e e e e ne e e s nns 50
13, REVISION HiSHOMY ..ot e ettt e e et e eeaeaaaaaaeeeeaesaaaaaannnnnsnsnenrnnnns 51
The MICrOChiIP WEDSITE. ...ttt et e et 52
Product Change Notification SEIVICE.oii i e e e 52
(G0 (o] 11 1=T B0 o] o o] o SO PSPPSRI 52
Microchip Devices Code Protection FEAtUre..........uuuviiiiiiiiiiiic e 52
(=T o T 1 Ao i o7 TSRS PPPRRRRN 52
LI (o =T 0 1 F= T T T OO PR PP PP OPPPPTI 53
Quality Management SYSTEM...........iiiiiiiiiie ittt se ettt e e 53
Worldwide Sales @nd SEIVICE........coiuiiiiiiieiii ettt e b e et sne e neee s 54

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 3

TB3285

Peripheral Overview

Peripheral Overview
TIMERO
TimerO can operate either as an 8-bit or 16-bit timer. The 16-bit mode is enabled by setting the TO16BIT bit.
In the 8-bit mode, a buffered version of TMROH is maintained. This is compared with the value of TMROL on each
cycle of the selected clock source. When the two values match, the following events occur:
* TMROL is reset
» The contents of TMROH are copied to the TMROH buffer for next comparison
In the 16-bit mode, TMROH:TMROL form the 16-bit timer value and read and write of the TMROH register are
buffered. TimerO rolls over to 0x0000 on incrementing past OxFFFF. This makes the timer free-running. TMROL/H

registers cannot be reloaded in this mode once started. In both 8-bit and 16-bit modes, Timer0 increments on the
rising edge of the selected clock source.

Figure 1-1. Timer0 Block Diagram

Rev. 10-0000171
2812018

[}
See TOCON1 TOCKPS TMRO ——» Peripherals

Register TOOUTPS TOIF
I

Prescaler

TMRO
TOASYNC
TOCKIPPS i cK O RxyPPS
TOCS
8-bit TMRO Body Diagram (TO16BIT = 0) 16-bit TMRO Body Diagram (TO16BIT = 1)
Clear TMRO High
N—»> TMROL R< N s> TMROL Byte gh L_our

I 8

Read TMROL
COMPARATOR ——¢——®OUT — Write TMROL
TO_match 8 v

8 TMROH

TMRO High

Byte
ﬁ é Latch H8
Enable
TMROH < >
L] 8

Internal Data Bus

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 4

TB3285

Peripheral Overview

TIMER 1/3/5

Timer1 module is a 16-bit incrementing counter. When used with an internal clock source, the module is a timer and
increments on every instruction cycle. When used with an external clock source, the module can be used either as a
timer or counter and increments on every selected edge of the external source. Timer1 can function on several
possible synchronous and asynchronous clock sources. When the FOSC internal clock source is selected, the
Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2-LSB error
in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input
signal must be used to gate the Timer1 clock input.

Important: References to module Timer1 apply to all the odd numbered timers on this device.

Timer1 is a 16-bit module which has the following features:

16-Bit Timer/Counter register

Optionally synchronized comparator out

Multiple Timer1 gate (count enable) sources

Interrupt-on-Overflow

Wake-Up on Overflow (external clock, Asynchronous mode only)
Time base for the capture/compare function with the CCP modules
Special Event Trigger (with CCP)

The following figure is a simplified diagram showing signal flow through the TMR1.

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 5

TB3285

Peripheral Overview

Figure 1-2. Timer1 Block Diagram

GSS<4:0> ; -

GSPM

Single Pulse b Qo— GVAL
Acq. Control
— Q1
D Q
GPOL £l GGO/DONE
CK Q int i
ON —— " | nierrup | sethit
GTM ‘\;det TMRXGIF

DJ_C
GE
set flag bit i

TMRxIF L on

EN

TMRx? » To Comparators (6)

Tx_overflow i
— TMRxH ‘ TMRxL 4 Q Dbl 0 Synchronized Clock Input

1

TxCLK i
SYNC
CS<4:0>

TxCKIPPS
o)
X b 00000

A

Prescaler

iza®)
1248 Synchronize]

Note © : A et
——11111 ‘

2
Fosc/2
CKPS<1:0> |nternal Sleep
Clock Input

TIMER 2/4/6

Timer2 operates in three major modes:
* Free Running Period
* One-shot
* Monostable

Free-Running Period Mode

The value of T2TMR is compared to that of the Period register (T2PR) on each clock cycle. When the two values
match, the comparator resets the value of T2TMR to 00h on the next cycle and increments the output postscaler
counter. When the postscaler count equals the value in the OUTPS bits of the T2CON register, then a one clock
period wide pulse occurs on the TMR2_postscaled output and the postscaler count is cleared.

One-Shot Mode

The One-Shot mode is identical to the Free-Running Period mode except for when the ON bit is cleared and the timer
is stopped when T2TMR matches T2PR and will not restart until the ON bit is cycled off and on. The Postscaler
(OUTPS) values other than zero are ignored in this mode because the timer is stopped at the first period event and
the postscaler is reset when the timer is restarted.

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 6

TB3285

Peripheral Overview

Monostable Mode

Monostable modes are similar to One-Shot modes except for when the ON bit is not cleared and the timer can be

restarted by an external Reset event.

Figure 1-3. Timer2 Block Diagram

RSEL
TxINPPS
TxIN[X]

External
Reset
Sources®

CKPOL

MODE

cs
TxINPPS
TxIN[X]

See
TxCLKCON

register®

Sync

(2 Clocks)

ON

Notes:

CSYNC

TMRXx_ers Edge Detector
Level Detector
Mode Control
(2 clock Sync)
enable
TMRx_clk

Prescaler

CKPS

Rev. 10-000168D.
4202019

Fosc/4 PSYNC

1. This signal comes from the pin selected by TxCKIPPS.

o ok wdN

TMRXx register increments on rising edge.

Synchronize does not operate while in Sleep.
See TMRXxCLK for clock source selections from device data sheet.
See TMRxGATE for gate source selection from device data sheet.
Synchronized comparator output should not be used in conjunction with synchronized input clock.

(MODE[3]
reset Lr\
CCP_pset"
)
MODE[4:3]=’bOlD
Clear ON
MODE[4:1]="b1011 %}D Q
cl
Set flag bit
TMRxIF

Comparator

—e— Postscaler

™ Rx_postscaLed

OUTPS

© 2020 Microchip Technology Inc.

Technical Brief

DS90003285A-page 7

2,

21

TB3285
Using TMRO in 8-bit Mode with Periodic Int...

Using TMRO in 8-bit Mode with Periodic Interrupt

This example describes how to configure Timer0 in 8-bit mode and to generate a compare interrupt every 100 ms
using LFINTOSC as clock source. A GPIO pin (the development board’s on-board LED) will be configured as output
and toggled each time the interrupt occurs. Additionally, the main clock will use a separate clock source (HFINTOSC)
and Timer0 will run asynchronously from the main clock.

To achieve the functionality described by the use case, the following actions will have to be performed:

System clock initialization
Port initialization

TimerO initialization
Interrupts initialization
TimerOQ interrupt handling

MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1.
2.
3.

Create a new MPLAB X IDE project for PIC18F47Q10.
Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
Go to Project Resources — System — System Module and make the following configurations:
— Oscillator Select: HFINTOSC
HF Internal Clock: 1 MHz
Clock Divider: 1
In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
In the Programming tab, Low-Voltage Programming Enable has to be checked
From the Device Resources window, add TMRO and do the following configurations:
Timer0 Configuration:

Enable Timer: checked
Timer Clock tab
* Clock Source: LFINTOSC
* Clock Prescaler: 1:16
* Postscaler: 1:1
» Timer mode: 8-bit
» Enable Synchronization: unchecked
— Timer period: 100 ms
— Enable Timer Interrupt: checked
Open Pin Manager — Grid View window and select UQFN40 in the MCU package field and make the following
pin configuration:
— Set Port E pin 0 (REO) as output

Figure 2-1. Pin Mapping

Package: |UQFN40 | '| | Pin No: 17‘15‘19|20|21|22|29‘23 B‘ 9|1ﬂ|11|12|13‘14‘15 30|31|32|33‘33‘39‘4D|1 34|35|35‘37‘2‘3|4| 5 23|24‘25‘1ﬁ
Port AW PortB ¥ Port C¥ PortD ¥ PortEW
Module Function Direction 0|1/ 2|3|4(5|6 7 0|1(2|3)|4(5|6 (7 0|1(2|3 4|5/ 6(7|0(1|2|3 4|5(6|7]0]J1|2|3
0sC CLKoUT output a
I GEl input O A T A O O A O A O A R A A A O A A A I A A A B M R N
GPIO autput N N N O O O O O O O R R - R I - B O B B B AR
RESET |MCLR Faet a
ROy TR input R T B R R R
TMRO output I T A B B

Click Pin Module in the Project Resources and set the custom name for REO to LEDO.
Click Generate in the Project Resources tab.

© 2020 Microchip Technology Inc.

Technical Brief DS90003285A-page 8

https://microchipdeveloper.com/install:mcc

TB3285
Using TMRO in 8-bit Mode with Periodic Int...

8. Inthemain.c file generated by MCC, change or add the following code:
— Enable the global and peripheral interrupts
— Add the TMRO Interrupt function
— Set the TMRO interrupt handler initializer

void TMRO comparelnterrupt (void);

void main (void)

{
// Initialize the device
SYSTEM Initialize();

// Enable the Global Interrupts
INTERRUPT GloballInterruptEnable () ;

// Enable the Peripheral Interrupts
INTERRUPT PeripherallnterruptEnable () ;

TMRO SetInterruptHandler (TMRO compareInterrupt);

while (1)
{
// Add your application code
}
}

void TMRO compareInterrupt (void)

{
LEDO_Toggle () ;

}

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

Bare Metal Code

First, the Watchdog Timer has to be disabled and Low-Voltage Programming (LVP) has to be enabled using the
following pragma code:

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

The following function initializes the system clock to have the HFINTOSC oscillator as input clock and to run at 1
MHz:

static void CLK Initialize(void)

OSCCON1 = 0x60; /* set HFINTOSC as new oscillator source */
OSCFRQ = 0x00; /* set HFFRQ to 1 MHz */
}

The following function initializes the REO pin (corresponding to the on-board LEDO) as output pin:

static void PORT Initialize(void)
{

TRISEbits.TRISEO = O; /* configure REO as output */
}

The following function initializes Timer0 in 8-bit mode, sets the prescaler to 1:16, loads TMROH and TMROL registers,
clears the Interrupt flag, and enables the interrupt and TimerO:

static void TMRO Initialize(void)

{

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 9

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr0-8bit-cmp-int-mcc

TB3285
Using TMRO in 8-bit Mode with Periodic Int...

TOCON1 = 0x94; /* Select LFINTOSC, set the prescaler to 1:16, Disable TMRO sync */
TMROH = 0xCl; /* Load the compare value to TMROH */

TMROL = 0x00; /* Load the reset value to TMROL */

PIRObits.TMROIF = 0; /* clear the interrupt flag */

PIEObits.TMROIE = 1; /* enable TMRO interrupt */

TOCONO = 0x80; /* Configure TMRO in 8-bit mode and enable TMRO */

The following function enables the global and peripheral interrupts:

static void INTERRUPT Initialize (void)

{
INTCONbits.GIE = 1; /* Enable the Global Interrupts */
INTCONbits.PEIE = 1; /* Enable the Peripheral Interrupts */

The following function handles the TimerO interrupt and it is called in the interrupt manager function:

static void TMRO ISR (void)

{
PIRObits.TMROIF = 0; /* clear the TMRO interrupt flag */
LATEbits.LATEO = ~LATEbits.LATEOQ; /* toggle LEDO */

The following function handles the interrupts in the project:

void _ interrupt () INTERRUPT_ InterruptManager (void)
{
/* Check if TMRO interrupt is enabled and if the interrupt flag is set */
if (PIEObits.TMROIE == 1 && PIRObits.TMROIF == 1)
{
TMRO_ISR();
}

The main function will call all the initializing functions and run all the peripherals in an infinite empty loop:

void main (void)
{
CLK Initialize();
PORT Initialize();
TMRO Initialize();
INTERRUPT_Initialize ()7

while (1)
{

}

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 10

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr0-8bit-cmp-int-bare

TB3285
Using and Operating TMRO in 16-bit Mode while ...

in Sleep

This example describes how to configure TMRO in 16-bit mode and generate an overflow interrupt every ten seconds,
using LFINTOSC as clock source. TMRO will run while the microcontroller is in Sleep mode. A GPIO pin (the
development board’s on-board LED) will be configured as output. When the interrupt occurs, the microcontroller is
woken up and the LED is lit for 100 ms and then the microcontroller is put back to Sleep.

Using and Operating TMRO in 16-bit Mode while the Microcontroller is

To achieve the functionality described by the use case, the following actions will have to be performed:

System clock initialization
Port initialization

TimerQ initialization
Interrupts initialization
TimerO0 interrupt handling

31 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:
Create a new MPLAB X IDE project for PIC18F47Q10.
Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
Go to Project Resources — System — System Module and make the following configurations:
— Oscillator Select: HFINTOSC

1.
2.
3.

HF Internal Clock: 1 MHz

Clock Divider: 1

In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
In the Programming tab, Low-Voltage Programming Enable has to be checked

From the Device Resources window, add TMRO and do the following configurations:
Timer0 Configuration:

— Enable Timer: checked
— Timer Clock tab

Clock Source: LFINTOSC

Clock Prescaler: 1:32

Postscaler: 1:1

Timer mode: 16-bit

Enable Synchronization: unchecked

— Timer period: 10s
— Enable Timer Interrupt: checked
Open Pin Manager — Grid View window and select UQFN40 in the MCU package field and make the following

pin configuration:
— Set Port E pin 0 (REOQ) as output

Figure 3-1. Pin Mapping

© 2020 Microchip Technology Inc.

Pﬂckage:|UQFN40|'| | Pin No: 17‘1&‘19|20|21|22|29‘29 a‘9|1o|11||2|13‘14‘15 3o|31|32|33‘39‘39‘4o|1 34|35|36‘37‘2‘3|4|5 23|24‘25‘16
PortA Y PortB ¥ PortC¥ PortD ¥ PortE¥
Module Function Direction |0 | 1|2 |3|[4|5|6|7 0[1|2|3|4|5 6|7 01|23 4|5 6|7|0[1|2/3 4|5|6[7|0)J1]|2]3
0sC CLKOUT output T
pmMudu‘E'CP‘O input N N O O O O O O O RO R O A N I O O B B A R
Gric output G N N O O O O O O O R R A G A O O B B A
RESET MCLR input]
T — TOCKI input m'haaaaa'a'a'sh|d|d|EEh
TMRO output AR I - - O - O O - - B
Technical Brief DS90003285A-page 11

https://microchipdeveloper.com/install:mcc

3.2

TB3285
Using and Operating TMRO in 16-bit Mode while ...

6. Click Pin Module in the Project Resources and set the custom name for REO to LEDO.
7. Click Generate in the Project Resources tab.
8. Inthemain.c file generated by MCC, change or add the following code:

— Enable the Global and Peripheral interrupts

— Light up LEDO, wait 100 ms, turn off LEDO and put the microcontroller to Sleep

9. void main (void)
{
// Initialize the device
SYSTEM Initialize();

// Enable the Global Interrupts
INTERRUPT GloballInterruptEnable();

// Enable the Peripheral Interrupts
INTERRUPT PeripherallnterruptEnable();

while (1)

{
LEDO_SetLow () ;
__delay ms (100);
LEDO_SetHigh();
SLEEP () ;

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

Bare Metal Code

First, the Watchdog Timer has to be disabled and Low-Voltage Programming (LVP) has to be enabled using the
following pragma code:

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

The following function initializes the system clock to have the HFINTOSC oscillator as input clock and to run at 1
MHz:

static void CLK Initialize (void)

{
OSCCON1 = 0x60; /* set HFINTOSC as new oscillator source */
OSCFRQ = 0x00; /* set HFFRQ to 1 MHz */

}

The following function initializes the REO pin (corresponding to the on-board LEDO) as output pin:

static void PORT Initialize (void)
{

TRISEbits.TRISEO = 0; /* configure REO as output */
}

The following function initializes Timer0 in 16-bit mode, sets the prescaler to 1:32, loads the TMROH and TMROL
registers, clears the Interrupt flag and enables the interrupt and Timer0:

static void TMRO Initialize(void)

{

TOCON1 = 0x95; /* select LFINTOSC, disable TMRO sync, set prescaler to 1:32 */
TMROH = OxDA; /* set TMROH reload value */

TMROL = 0x29; /* set TMROL reload value */

PIRObits.TMROIF = 0; /* clear the interrupt flag */

PIEObits.TMROIE = 1; /* enable TMRO interrupt */

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 12

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR0-16BIT-SLEEP-INT-MCC

TB3285
Using and Operating TMRO in 16-bit Mode while ...

TOCONO = 0x90; /* configure TMRO in 16-bit mode and enable TMRO */
}

The following function enables the Global and Peripheral interrupts:

static void INTERRUPT Initialize (void)
{
INTCONbits.GIE = 1; /* Enable the Global Interrupts */
INTCONbits.PEIE = 1; /* Enable the Peripheral Interrupts */
}

The following function handles the TimerO0 interrupt and it is called in the Interrupt Manager function:

static void TMRO_ISR(void)
{

PIRObits.TMROIF = 0; /* clear the TMRO interrupt flag */
TMROH = OxDA; /* set TMROH reload value */
TMROL = 0x29; /* set TMROL reload value */

The following function handles the interrupts in the project:

void _ interrupt () INTERRUPT InterruptManager (void)
{
/* Check if TMRO interrupt is enabled and if the interrupt flag is true */
if (PIEObits.TMROIE == 1 && PIRObits.TMROIF == 1)
{
TMRO ISR();
}

The main function will call all the initializing functions and will turn on the LEDO for 100 ms and put the microcontroller
to Sleep using the SLEEP () instruction. Additionally, prior to the main function, the _XTAL_FREQ symbol must be
defined and set to 1000000 (equivalent to the 1 MHz system frequency) for the use of the _ delay ms () function:

#define XTAL FREQ 1000000UL

void main (void)
{
CLK Initialize();
PORT Initialize();
TMRO Initialize();
INTERRUPT Initialize();

while (1)

{
LATEbits.LATEO = 0; /* turn LED ON */
__delay ms(100); /* wait 100 ms */
LATEbits.LATEO = 1; /* turn LED OFF */
SLEEP () ;

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 13

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR0-16BIT-SLEEP-INT-BARE

4.1

TB3285
Using TMRO in 8-bit Mode and to Generate an ...

Using TMRO in 8-bit Mode and to Generate an Output Signal

This example describes how to configure TMRO in 8-bit mode, using LFINTOSC as clock source. A GPIO pin will be
configured as output and a 125 Hz signal will be generated on the GPIO pin using the Peripheral Pin Select (PPS).

To achieve the functionality described by this use case, the following actions will have to be performed:

System clock initialization

Port initialization

TimerO initialization

Peripheral Pin Select initialization

MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1.
2.
3.

5.

6.

Create a new MPLAB X IDE project for PIC18F47Q10.
Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
Go to Project Resources — System — System Module and make the following configurations:

— Oscillator Select: HFINTOSC

— HF Internal Clock: 1 MHz

— Clock Divider: 1

— In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected

— In the Programming tab, Low-Voltage Programming Enable has to be checked

From the Device Resources window, add TMRO and make the following configurations:
Timer0 Configuration:

Enable Timer: checked
Timer Clock tab
* Clock Source: LFINTOSC
* Clock Prescaler: 1:1
» Postscaler: 1:1
» Timer mode: 8-bit
» Enable Synchronization: unchecked

Timer period: 4 ms
Enable Timer Interrupt: unchecked
Open Pin Manager — Grid View window and select UQFN40 in the MCU package field and make the following
pin configuration:
— Set Port C pin 2 (REO) as output

Figure 4-1. Pin Mapping

< Pin Manager: Grid View x

Package: |UQFN40 | '| ‘ Pin No: IT‘1E‘19|20|21‘22|29|28 8‘9|10|11‘12|13|I4‘15 30|31|32‘33|38|39‘4&)‘1 34|35‘36|37|2‘3‘4|5 23‘24|25|16
PortA W PortB Y PortC ¥ PortD¥ PortEY
Module Function Direction |0 | 1|2 (3|4 |5(6|7|0|1(2|3 | 45|67 |0(1§2)3(4|5|6|7(0|1|2(3|4|5|6(7|0|1(2)|13
0sC CLKOUT autput B
—) input N I O A RO O A A O O A OO A O O A O A A A T B B
GPIO output R I R N R R R R M R R N R N R R R N R NI G RC RCRC CRC
RESET MCLR input a
e input - T T OO OO O A TR A A A A O
TMRO output G A B GBI B GG BCC

Click Generate in the Project Resources tab.

© 2020 Microchip Technology Inc.

Technical Brief DS90003285A-page 14

https://microchipdeveloper.com/install:mcc

4.2

TB3285
Using TMRO in 8-bit Mode and to Generate an ...

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

Bare Metal Code

First, the Watchdog Timer has to be disabled and Low-Voltage Programming (LVP) has to be enabled using the
following pragma code:

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

The following function initializes the system clock to have the HFINTOSC oscillator as input clock and to run at 1
MHz:

static void CLK Initialize(void)

{
OSCCON1 = 0x60; /* set HFINTOSC as new oscillator source */
OSCFRQ = 0x00; /* set HFFRQ to 1 MHz */

}

The following function initializes the RC2 pin as output pin:

static void PORT Initialize(void)

{
TRISCbits.TRISC2 = 0; /* configure RC2 as output */

}

The following function initializes Timer0 in 8-bit mode, sets the prescaler to 1:1, loads the TMROH and TMROL
registers, clears the Interrupt flag and enables TimerO:

static void TMRO Initialize(void)

{

TOCON1 = 0x90; /* select LFINTOSC and disable TMRO sync*/
TMROH = 0x7B; /* load TMROH */

TMROL = 0x00; /* load TMROL */

PIRObits.TMROIF = O; /* clear the interrupt flag */

TOCONO = 0x80; /* enable TMRO */

}
The following function configures the TMRO output to RC2 in PPS:

static void PPS Initialize (void)
{

RC2PPS = 0x13; /* configure RC2 for TMRO output */
}

The main function calls all the initializing functions and run all the peripherals in an infinite empty loop:

void main (void)

{
CLK Initialize();
PORT Initialize();
TMRO Initialize();
PPS Initialize();

while (1)
{

}

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 15

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr0-clk-out-mcc

TB3285
Using TMRO in 8-bit Mode and to Generate an ...

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 16

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr0-clk-out-bare

5.1

TB3285
Using TMR1 Gate to Measure Frequency

Using TMR1 Gate to Measure Frequency

This example describes how to initialize and use the TMR1 in Gate-Single Pulse and Toggle combined mode. The
timer will start counting on an incrementing edge, will measure a full-cycle length of a gate signal and will stop when a
new incrementing edge appears. An interrupt will be generated when the measurement is completed. A GPIO pin will
be configured as input and the periodical signal will be applied on this pin.

In this example, the microcontroller was configured with a clock system of 32 MHz and the timer was configured with
a clock source frequency of 1 MHz and is able to measure the following range of values:

» The smallest frequency value: This is based on the number of values that the timer can count. It is a 16-bit timer
so it can count up to 65,535, resulting in a frequency of approximately 15.26 Hz.

» The biggest frequency value: This is based on the Nyquist frequency theorem. The sampling frequency must be
at least two times bigger than the one of the measured signal to obtain a more accurate result. This results in a
frequency of approximately 500 kHz.

Note: It is recommended to increase the clock source frequency of the timer to measure frequencies closer or
bigger than the Nyquist value from the above example.
To achieve the functionality described by this use case, the following actions will have to be performed:

» System clock initialization

» Port initialization

* Timer1 initialization

* Interrupts initialization

« Timer1 gate interrupt handling

MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources — System — System Module and make the following configurations:

— Oscillator Select: HFINTOSC

— HF Internal Clock: 32 MHz

— Clock Divider: 1

— In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected.

— In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR1 and make the following configurations:
Timer1 Configuration:

Enable Timer: checked
— Timer Clock tab
» Clock Source: FOSC/4
* Prescaler: 1:8
Enable Gate tab: checked
» Enable Gate Toggle: checked
» Enable Gate Single-Pulse mode: checked
Enable Timer Gate Interrupt: checked

5. Open Pin Manager — Grid View window and select UQFN40 in the MCU package field and make the following
pin configurations to enable the internal signal access to the 1/0O:

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 17

https://microchipdeveloper.com/install:mcc

5.2

TB3285
Using TMR1 Gate to Measure Frequency

Figure 5-1. Pin Mapping

! Output - MPLAB® Code Configurator x | Pin Manager: Grid View x |
Package: ‘ UQFN40 | w7 Pin No: (17 13|19‘20‘21|22|29|29 8 ‘ 9 ‘10‘11|12 13|14|15 30‘31‘32|33|39|39‘40‘ 1 34|35|35|37| 2 ‘ 3 ‘ 4 ‘ 5 23|24|25|15
PortA Y PortB Y PortCV¥ PortD ¥ PortEVY
Module Function |Direction | 0|12 |3 4|5|/6 7|01/ 2 3|/4)5%6(7 0 1|23/ 45/ 6/ 7|0/1/2(3 (4 5/ 6|70 123
QsC CLKOUT output B
o Mt e input N N R T R T I A B T - B T A O - A T B A R R R
GPIO output A A A N A A A A - A0 A A - RN N - O O O A O O A - A T A T B
RESET MCLR input a
TMRI Y T1CKI input RN R RN R] NN
T1G input I ARG L A A B A A T B

6. Click Generate in the Project Resources tab.
7. For this example, some extra code is required aside from the one generated from MCC.

— The Global and Peripheral interrupts need to be enabled in the main. c file. The macros were created by
the MCC and the user needs to remove the “//” so they are no longer treated as comments:

// Enable the Global Interrupts
INTERRUPT GloballInterruptEnable();

// Enable the Peripheral Interrupts
INTERRUPT PeripherallnterruptEnable();

— Inthe tmrl.cfile, the TMR1 GATE ISR() function needs to be updated to clear the Interrupt flag, read
the counted value, reset it afterward and re-enable the timer gate control for a new acquisition. The
following configuration is used:

void TMR1 GATE ISR (void)

{ volatile uintl6 t value = 0;
PIR5 &= ~(_ PIR5 TMRIGIF MASK) ;
value = TMR1 ReadTimer () ;

TMR1 WriteTimer (0);

T1GCON |= T1GCON T1GGO MASK;

Note: To obtain the frequency of the measured signal from the counted value read, the clock source frequency of
the timer needs to be divided by the value.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

Bare Metal Code

The functions and code necessary to implement the example discussed are analyzed in this section.

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming (LVP).

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, an initialization of peripherals must be added to the project: TMR1, the
system clock, the GPIO pin and the interrupts.

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 18

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-frequency-measuring-mcc

TB3285
Using TMR1 Gate to Measure Frequency

The system clock was configured to use the HFINTOSC oscillator with an internal frequency of 32 MHz. The
following function is used:

/* Clock initialization function */
static void CLK Initialize(void)

{
/* set HFINTOSC as new oscillator source */
OSCCON1lbits.NOSC = 0x6;

/* set HFFRQ to 32MHz */
OSCFRQbits.HFFRQ = 0x6;

The GPIO peripheral was configured to use PINB5 as input for the signal that needs to be measured. The following
function is used:

/* Port initialization function */
static void PORT Initialize(void)

{

/* configure RB5 as input */
TRISBbits.TRISB5 = 1;

/* configure RB5 as digital */
ANSELBbits.ANSELB5 = 0;

The TMR1 peripheral was configured in Gate Single-Pulse and Toggle combined mode, has a clock source of 1 MHz,
the counter is active on a trailing edge and the peripheral’s gate interrupt is Active. The following function is used:

/* TMR1 initialization function */

static void TMR1 Initialize(void)

{
/* Timer controlled by gate function */
T1GCONbits.GE = 1;

/* Timer gate toggle mode enabled */
T1GCONbits.GTM = 1;

/* Timer gate active high */
T1GCONbits.GPOL = 1;

/* Timer acquistion is ready */
T1GCONbits.GGO_nDONE = 1;

/* Timer gate single pulse mode enabled */
T1GCONbits.T1GSPM = 1;

/* Source Clock FOSC/4 */
T1CLKbits.CS = 0x1;

/* Clearing gate IF flag before enabling the interrupt */
PIRS5bits.TMR1GIF = 0;

/* Enabling TMR1 gate interrupt */
PIESbits.TMR1IGIE = 1;

/* CLK Prescaler 1:8 */
T1CONbits.CKPS = 0x3;

/* TMR1 enabled */
T1CONbits.ON = 1;

The microcontroller’s interrupts were enabled and are used to determine when the signal measurement is done. The
following function is used:

/* Interrupt initialization function */
static void INTERRUPT Initialize (void)
{
/* Enable the Global Interrupts */
INTCONbits.GIE = 1;

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 19

TB3285

Using TMR1 Gate to Measure Frequency

/* Enable the Peripheral Interrupts */
INTCONbits.PEIE = 1;

When the timer finishes measuring the frequency of the external signal, an interrupt will occur in the interrupt
manager. It will check for the source of the interrupt and, if it is from TMR1 gate, will call a handler function. The

following function is used:

/* Interrupt handler function */
static void _ interrupt () INTERRUPT InterruptManager (void)
{
// interrupt handler
if (INTCONbits.PEIE == 1)
{
if (PIESbits.TMRIGIE == 1 && PIRS5bits.TMRIGIF == 1)
{
TMR1 GATE ISR();
}
else
{
//Unhandled Interrupt
}
}
else
{
//Unhandled Interrupt
}

The handler needs to clear the Interrupt flag, read the counted value and reset it afterward, and re-enable the timer

gate control for a new acquisition. The following function is used:

/* TMR1 gate ISR function */
static void TMR1 GATE ISR (void)
{

volatile uintl6é t value = 0;

/* Clearing gate IF flag */
PIR5bits.TMR1GIF = 0;

/* Read TMR1 value */
value = TMR1 readTimer();

/* Reset the counted value */
TMR1 writeTimer (0);

/* Prepare for next read */
T1GCONbits.GGO nDONE = 1;
}

static uintl6 t TMR1 readTimer (void)
{
/* Return TMR1 value */
return ((uintlé t)TMR1H << 8) | TMRIL;

}

static void TMR1 writeTimer (uintl6 t timerValue)
{

/* Write TMR1H value */

TMR1H = timerValue >> 8;

/* Write TMR1L value */
TMR1L = timerValue;

Note: To obtain the frequency of the measured signal from the counted value read, the clock source frequency of

the timer needs to be divided by the value.

© 2020 Microchip Technology Inc. Technical Brief

DS90003285A-page 20

TB3285
Using TMR1 Gate to Measure Frequency

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 21

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-frequency-measuring-bare

6.

6.1

TB3285
Using TMR1 to Trigger a Special Event

Using TMR1 to Trigger a Special Event

This example describes how to initialize and use the TMR1 as a counter. The Capture/Compare/PWM (CCP) module
will be configured with a user-defined value. A GPIO pin will be configured as output and the event will toggle the
logic value of this pin. The event will be triggered when the counted value from TMR1 will be equal with the CCP
value.

In this example, the microcontroller was configured with a clock system of 1 MHz and the timer was configured with a
clock source frequency of 250 kHz. It is a 16-bit timer so it can count up to 65,535. The CCP value was set to 4,095
in this example. When the counter reaches this value, an event will occur which will be strictly handled by the
hardware peripheral, without any software and load on the core.

The event can be configured to clear or not clear the timer counter value and, if the GPIO pin should be set high, set
low or toggled every time the event is triggered. In this example, the event will toggle the GPIO pin and will not clear
the timer, so the timer counted value will overflow when reaches the 65,535 maxim value and will restart counting
from zero. Thus, even when a value was predefined for CCP, the event will be triggered with a frequency of 250 kHz /
65,535 ~ = 3.81 Hz.
To achieve the functionality described by this use case, the following actions will have to be performed:

» System clock initialization

* PPS initialization

» Port initialization

* Timer1 initialization

* CCP initialization

MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

Create a new MPLAB X IDE project for PIC18F47Q10.
Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
Go to Project Resources — System — System Module and make the following configurations:

— Oscillator Select: HFINTOSC

— HF Internal Clock: 32 MHz

— Clock Divider: 32

— In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected.

4. From the Device Resources window, add TMR1 and CCP1. Make the following configurations for
each peripheral:

— TMR1 Configuration:
1. Enable Timer: checked
2. Timer Clock tab
— Clock Source: FOSC/4
— Prescaler: 1:1
— Enable Synchronization: Checked
— CCP1 Configuration:
» Enable CCP: Checked
* CCP Mode tab: Compare
— Select Timer: Timer1
— Compare Mode: Toggle

5. Open Pin Manager — Grid View window and select UQFN40 in the MCU package field and make the following
pin configuration to enable the internal signal access to the 1/O:

w N~

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 22

https://microchipdeveloper.com/install:mcc

6.2

TB3285
Using TMR1 to Trigger a Special Event

Figure 6-1. Pin Mapping

Package: ‘ UQFN40 | > H Pin No: 17|18|19|20|21|22‘29‘28 8 ‘ 9 |10|11|12|13|14‘15 30‘31|32|33|33|39|4D‘ 1 34‘35‘36|37| 2|3|4|5 23‘24‘25|16

PortA Y PortB ¥ PortC¥ PortD ¥ PortEVY

Module FunctionDirection012345670h123456701234567012345670123
CCPT (CCPT output A ICIASCRT

0SC |CLKOUT |output B |

P Module w 1O input oI B A I IO CCICIET

GPIO e IO B R S Y e I S A Y I T S

RESET MCLR input a
My IEK input GG ICICICICICICE
TIG input BfbeeEe e b e e e e

6. Click Generate in the Project Resources tab.

Note: In this example, the event will be strictly handled by the hardware peripheral without any software, and load
on the core so no extra code was used aside from the one generated from MCC.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

Bare Metal Code

The functions and code necessary to implement the example discussed are analyzed in this section.

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming (LVP).

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, an initialization of peripherals must be added to the project: TMR1, the
system clock and the GPIO pin.

The system clock was configured to use the HFINTOSC oscillator with an internal frequency of 32 MHz and the clock
divided by 32, so the actual system frequency is 1 MHz. The following function is used:

/* Clock initialization function */

static void CLK Initialize(void)

{
/* set HFINTOSC as new oscillator source */
OSCCON1lbits.NOSC = 0x6;

/* set Clock Div by 32 */
OSCCON1lbits.NDIV = 0x5;

/* set HFFRQ to 32MHz */
OSCFRQbits.HFFRQ = 0x6;

The GPIO peripheral was configured to use PINBO as output for the event triggered by CCP. The following function is
used:

/* PPS initialization function */
static void PPS_Initialize(void)
{
/* Configure RBO for CCPl output */
RBOPPS = 0x05;
}

/* Port initialization function */
static void PORT Initialize(void)

{
/* Set RBO as output */

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 23

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-special-event-trigger-mcc

TB3285
Using TMR1 to Trigger a Special Event

TRISBbits.TRISBO = 0;
}

The TMR1 peripheral was configured as a normal counter. The following function is used:

/* TMR1 initialization function */

static void TMR1 Initialize(void)

{
/* Set timer Source Clock to FOSC/4 */
T1CLKbits.CS = 0x1;

/* Enable timer */
T1CONbits.ON = 1;
}

The CCP1 peripheral was configured to toggle a GPIO pin when the TMR1 counted value is equal with the CCP
value. The following function is used:

/* CCP1 initialization function */
static void CCP1_Initialize(void)
{
/* Select TMR1 as input for CCP1l*/
CCPTMRSbits.CI1TSEL = 0x1;

/* Set the high value for compare */
CCPR1H = O0x0F;

/* Set the low value for compare */
CCPR1L = OxFF;

/* Compare mode with toggle*/
CCP1CONbits.CCP1MODE = 0x2;

/* Enable CCP1 */
CCP1CONbits.EN = 1;
}

Note: In this example, the event will be strictly handled by the hardware peripheral without any software and load on
the core.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 24

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-special-event-trigger-bare

TB3285
Using TMR1 Gate to Measure Short vs. Long ...

7. Using TMR1 Gate to Measure Short vs. Long Button Press

This example describes how to initialize and use the TMR1 in Gate Single-Pulse mode. The timer will start counting
on an falling edge. If the leading edge appears, a gate interrupt will be generated, denoting that the button was short
pressed. If the timer overflows before the leading edge appears, an overflow interrupt will be generated, denoting that
the button was long pressed. A GPIO pin will be configured as input and connected to a button.

Note: The polarity of the gate is based on the button logic. If the button is active-low (meaning it will provide zero
logic value when pressed), the timer needs to count on negative polarity and start counting on falling edge.

In this example, the microcontroller was configured with a clock system of 1 MHz and the timer was configured with a
clock source frequency of 31,250 MHz = 32 ys and is able to measure the following range of values:

The smallest pressed time: This is based on the clock frequency of the timer, resulting in a minimum time of 1/
31,250 Hz = 32 ps.

The biggest pressed time: This is based on the maximum value the timer can count. It is a 16-bit timer so it can
count up to 65,535. Thus, resulting in a minimum time of 32 ps * 65,535 ~ = 2.1 s. A longer press will result in a
timer overflow.

To achieve the functionality described by this use case, the following actions will have to be performed:

System clock initialization
Port initialization

Timer1 initialization

Interrupts initialization

Timer1 interrupt handling
Timer1 gate interrupt handling

71 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1.
2.
3.

Create a new MPLAB X IDE project for PIC18F47Q10.
Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
Go to Project Resources — System — System Module and make the following configurations:
Oscillator Select: HFINTOSC
HF Internal Clock: 32 MHz
Clock Divider: 32
In the Watchdog Timer Enable field, in the WWDT tab, WDT Disabled has to be selected.
From the Device Resources window, add TMR1 and do the following configurations:
Enable Timer: checked
— Timer Clock tab
* Clock Source: FOSC/4
* Prescaler: 1:8
Enable Gate tab: checked
+ Enable Gate Toggle: checked
» Enable Gate Single-Pulse mode: checked
» Gate Polarity: Low
Enable Timer Interrupt: Checked
Enable Timer Gate Interrupt: Checked

Open Pin Manager — Grid View window and select UQFN40 in the MCU package field and make the following
pin configuration to enable the internal signal access to the 1/O:

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 25

https://microchipdeveloper.com/install:mcc

TB3285
Using TMR1 Gate to Measure Short vs. Long ...

Figure 7-1. Pin Mapping

! Output - MPLAB® Code Configurator x | Pin Manager: Grid View x |
Package: ‘ UQFN40 | w7 Pin No: (17 13|19‘20‘21|22|29|29 8 ‘ 9 ‘10‘11|12 13|14|15 30‘31‘32|33|39|39‘40‘ 1 34|35|35|37| 2 ‘ 3 ‘ 4 ‘ 5 23|24|25|15
PortA Y PortB Y PortCV¥ PortD ¥ PortEVY
Module Function |Direction | 0|12 |3 4|5|/6 7|01/ 2 3|/4)5%6(7 0 1|23/ 45/ 6/ 7|0/1/2(3 (4 5/ 6|70 123
QsC CLKOUT output B
o Mt e input N N R T R T I A B T - B T A O - A T B A R R R
GPIO output A A A N A A A A - A0 A A - RN N - O O O A O O A - A T A T B
RESET MCLR input a
TMRI Y T1CKI input RN R RN R] NN
T1G input I ARG L A A B A A T B

6. Click Generate in the Project Resources tab.
7. For this example, some extra code is required aside from the one generated from MCC.
— The Global and Peripheral interrupts need to be enabled in the main. c file. The macros were created by
the MCC and the user needs to remove the “//” so they are no longer treated as comments:

// Enable the Global Interrupts
INTERRUPT GloballInterruptEnable();

// Enable the Peripheral Interrupts
INTERRUPT PeripherallnterruptEnable();

— Inthe tmrl.cfile, the TMR1 ISR () function needs to be updated to stop the gate control because the
button was not released yet and it will generate an undesired interrupt when that will happen. It also
needs to clear the Interrupt flag, reset the counted value and re-enable the timer gate control for a new
acquisition. The following function is used:

void TMR1 ISR (void)

T1GCON &= ~ T1GCON T1GGO MASK;
PIR4 &= ~ PIR4 TMRIIF MASK;
PIR5 &= ~ PIR5 TMRIGIF MASK;

TMR1 WriteTimer (0);
T1GCON |= TI1GCON_ T1GGO_ MASK;

if (TMR1 InterruptHandler)

{
TMR1 InterruptHandler();

}
}
— Inthe tmrl.cfile, the TMR1 GATE ISR () function needs to be updated to clear the Interrupt flag, reset
the counted value and re-enable the timer gate control for a new acquisition. The following function is
used:

void TMR1 GATE ISR (void)

{
PIR5 &= ~(PIR5 TMRIGIF MASK);

TMR1 WriteTimer (0);

T1GCON |= T1GCON T1GGO MASK;

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 26

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-button-press-count-mcc

7.2

TB3285
Using TMR1 Gate to Measure Short vs. Long ...

Bare Metal Code

The functions and code necessary to implement the example discussed are analyzed in this section.

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming (LVP):

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, the following peripherals must be initialized: TMR1, the system clock, the
GPIO pin and the interrupts.

The system clock was configured to use the HFINTOSC oscillator with an internal frequency of 32 MHz and the clock
divided by 32, so the actual system frequency is 1 MHz. The following function is used:

/* Clock initialization function */

static void CLK Initialize (void)

{
/* set HFINTOSC as new oscillator source */
OSCCON1lbits.NOSC = 0x6;

/* set Clock Div by 32 */
OSCCON1bits.NDIV = 0x5;

/* set HFFRQ to 32MHz */
OSCFRQbits.HFFRQ = 0x6;

The GPIO peripheral was configured to use PINBS as input for TMR1 button. The following function is used:

/* Port initialization function */
static void PORT Initialize(void)
{
/* configure RB5 as input */
TRISBbits.TRISB5 = 1;

/* configure RB5 as digital */
ANSELBbits.ANSELBS = 0;

The TMR1 peripheral is configured in Gate Single-Pulse mode, has a clock source of 1 MHz, the counter is active on
a falling edge and the peripheral gate and overflow interrupts are Active. The following function is used:

/* TMR1 initialization function */

static void TMR1 Initialize(void)

{
/* Timer controlled by gate function */
T1GCONbits.GE = 1;

/* Timer acquistion is ready */
T1GCONbits.GGO nDONE = 1;

/* Timer gate single pulse mode enabled */
T1GCONbits.T1GSPM = 1;

/* Source Clock FOSC/4 */
T1CLKbits.CS = 0x1;

/* Clearing IF flag before enabling the interrupt */
PIR4bits.TMR1IF = 0;

/* Enabling TMR1 interrupt */
PIE4bits.TMRIIE = 1;

/* Clearing gate IF flag before enabling the interrupt */
PIR5bits.TMR1IGIF = 0;

/* Enabling TMR1 gate interrupt */
PIES5bits.TMRIGIE = 1;

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 27

TB3285
Using TMR1 Gate to Measure Short vs. Long ...

/* CLK Prescaler 1:8 */
T1CONbits.CKPS = 0x3;

/* TMR1 enabled */
T1CONbits.ON = 1;

The microcontroller’s interrupts were enabled and are used to determine the button press time. The following function
is used:

/* Interrupt initialization function */
static void INTERRUPT Initialize (void)
{
/* Enable the Global Interrupts */
INTCONbits.GIE = 1;

/* Enable the Peripheral Interrupts */
INTCONbits.PEIE = 1;

When the timer finishes counting the button pressed time, an interrupt will occur in the interrupt manager. It will check
for the source of the interrupt and it will call a handler function. The following function is used:

/* Interrupt handler function */
static void _ interrupt() INTERRUPT interruptManager (void)
{

// interrupt handler

if (INTCONbits.PEIE == 1)

{

if (PIE4bits.TMRIIE == 1 && PIR4bits.TMRIIF == 1)
{
TMR1 ISR();
}
else if (PIESbits.TMRIGIE == 1 && PIRSbits.TMRIGIF == 1)

{
TMR1 GATE ISR();
}
else
{
//Unhandled Interrupt
}
}
else
{
//Unhandled Interrupt
}

The overflow interrupt will occur when the button is pressed for so long that the timer maximum value is exceeded.
The handler needs to stop the gate control because the button was not released yet and it will generate an undesired
interrupt when that will happen. It also needs to clear the Interrupt flag, reset the counted value and re-enable the
timer gate control for a new acquisition. The following function is used:

/* TMR1 ISR function */

static void TMR1 ISR (void)

{
/* Stop Gate control */

T1GCONbits.GGO nDONE = 0;

/* Clearing overflow IF flag */
PIR4bits.TMR1IF = 0;

/* Clearing gate IF flag */
PIR5bits.TMR1IGIF = 0;

/* Reset the counted value */
TMR1 writeTimer (0);

/* Prepare for next read */
T1GCONbits.GGO nDONE = 1;

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 28

TB3285
Using TMR1 Gate to Measure Short vs. Long ...

The gate interrupt will occur when the button is released before the timer reaches its maximum value. The handler
needs to clear the Interrupt flag, reset the counted value and re-enable the timer gate control for a new acquisition.
The following function is used:

/* TMR1 GATE ISR function */
static void TMR1 GATE ISR (void)

{
/* Clearing gate IF flag after button release */
PIRS5bits.TMR1GIF = 0;

/* Reset the counted value */
TMR1 writeTimer (0);

/* Prepare for next read */
T1GCONbits.GGO_nDONE = 1;
}

When any interrupt occurs, the timer counted value is reset to ‘0’. The following function is used:

static void TMR1 writeTimer (uintl6 t timerValue)
{

/* Write TMR1H value */

TMR1H = timerValue >> 8;

/* Write TMR1L value */
TMR1L = timerValue;

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 29

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-button-press-count-bare

8.1

TB3285
Using TMR2 for Auto-Conversion Trigger for the ...

Using TMR2 for Auto-Conversion Trigger for the ADCC Module

This example will present how to use the TMR2 peripheral to trigger the ADCC to make conversions at a fixed
frequency rate that can be adjusted by modifying the TMR2 period.

The application will blink the LEDO with a rate of Timer2 period (100 ms), get the ADCC value and compare it with a
desired threshold and, if it is higher, the LEDO will stop blinking.

This example uses the PIC18F47Q10 Curiosity Nano board with a POT click, both inserted into a Curiosity Nano
adapter. For more details, visit the Hardware Configuration section in the GitHub repository.
To achieve the functionality described by this use case, the following actions will have to be performed:

» System clock initialization

« ADCC initialization and reading

» Portinitialization

» Timer2 initialization

* Interrupts handling and initialization

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources — System — System Module and make the following configurations:

— Oscillator Select: HFINTOSC

— HF Internal Clock: 1 MHz

— Clock Divider: 1

— In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected

— In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR2 and ADCC and then make the following configurations:
Timer2 Configuration:

— Enable Timer: checked
— Control Mode: Roll over pulse
Start/Reset Option: Software control
Timer Clock tab

* Clock Source: LFINTOSC

* Clock Prescaler: 1:64

* Postscaler: 1:1

Set 100 ms period in the Timer Period tab
ADCC Configuration:

— Enable ADCC: checked

— Operating: Basic mode

— In the ADC tab choose the following options:
* ADC Clock — Clock Source: Select FRC
» Auto-conversion Trigger: Select TMR2

— CVD Features tab:

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 30

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-ADC-TRIGGER-MCC
https://microchipdeveloper.com/install:mcc

TB3285
Using TMR2 for Auto-Conversion Trigger for the ...

* Enable ADC Interrupt: checked
5. Open Pin Manager — Grid View window and select UQFN40 in the MCU package field and select the 1/O pins
outputs to enable the internal signal access to the 1/O.

Figure 8-1. Pin Mapping

Wolifcations Ouipel | Sewrchfessts | Bottfcstions (MOC) | P Hosapen Sod Wies = |

.fl:h.lq'c L bt - Fin Ma: 17 18 v 11 221 0% 28 KR % m0oMm 1.?.II.I1.'H lD.II.IJ !I.H I'I.IDI. I-]‘.I\.Iﬂ.ir J.I.l-‘a.n'!..'l.?\.lh
| L. .'mkAT T | .fml-"' = ; Puﬂ.{' el Parll:r"'. | FotEw
:ﬁdnﬁ Jm:bnn_l‘.‘lmbn '|.i‘_:_4 5_5_?‘&1}3_4iﬁ_?.ﬂ_|_? i_+_: n_]‘:bl_ﬂ_il_i_&_fol_]‘_l
nput BEahe s sl R T
Apat b hhhhhh BHhhheEhh
-- wamees wwmwwmwwwe ||
a BBt b BB h B E b h B hh b h blhaE
- [
Pl " |
i CLErR ot I t
o Bahb bbb bbb b s e bbb BB h bbb EalaE
"7 lae P Ba bbb bbb B bbb bbb B e e Rl
ot WCLR et I}
gt hEennEs B hhhEEh R

6. Click Pin Module in the Project Resources and set the custom name for REO to LEDO, select Output box and
for the ANAO pin select the Analog box.

7. Click Generate in the Project Resources tab.
8. Addinto the main. c file, the following lines of code:

#define DesiredThreshold 300 /* Desired threshold value */
volatile uintl6_t adcVal;
static void ADCC interrupt (void);

static void ADCC_ interrupt (void)

{
/* Toggle LEDO at the Timer2Period frequency */
LEDO_Toggle () ;
adcval = ADCC GetConversionResult () ;

}

void main (void)
{
// Initialize the device
SYSTEM Initialize();
ADCC_SetADIInterruptHandler (ADCC_Interrupt by TMR2) ;
// Enable the Global Interrupts
INTERRUPT GloballInterruptEnable();
// Enable the Peripheral Interrupts
INTERRUPT PeripherallnterruptEnable () ;

while (1)
{
if (adcVal > DesiredThreshold)
{
LEDO_SetLow () ;
}

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 31

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-ADC-TRIGGER-MCC

TB3285
Using TMR2 for Auto-Conversion Trigger for the ...

8.2 Bare Metal Code

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming (LVP):

#pragma config WDTE = OFF /*disable Watchdog*/
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

Then, the following variables need to be defined:

#define Timer2Period 0x2F /* TMR2 Period is 100ms */
#define DesiredThreshold 300 /* Desired threshold value */
#define AnalogChannel 0x00 /* Use ANAO as input for ADCC */
volatile uintl6_t adcVal; /* ADCC global result value */

The CLK_Initialize function initializes the HFINTOSC internal oscillator:

static void CLK Initialize(void)
{
/* set HFINTOSC Oscillator */
OSCCON1 = 0x60;
/* set HFFRQ to 1 MHz */
OSCFRQ = 0x00;

The PORT Initialize function has the role to configure the pin used in this application, which is the REO output
for LEDO:

static void PORT Initialize(void)
{
/* Set REO digital input buffer disabled */
ANSELE = 0x06;
/* Set REO pin as output */
TRISE = 0x06;

The next function initializes the ADCC and configures the TMR2 to be an auto-conversion trigger and enables the
ADCC Interrupt flag:

static void ADCC Initialize(void)
{
/* ADACT Auto-Conversion Trigger Source is TMR2 */
ADACT = 0x04;
/* ADGO stop; ADFM right; ADON enabled; ADCONT disabled; ADCS FRC */
ADCONO = 0x94;
/* Clear the ADCC interrupt flag */
PIRl1bits.ADIF = 0;
/* Enabling ADCC interrupt flag */
PIElbits.ADIE = 1;

The Timer2 initialization function sets the clock source and the registers needed to generate an 100 ms period:

static void TMR2 Initialize(void)
{
/* TMR2 Clock source, LFINTOSC (00100) has 31 kHz */
T2CLKCON = 0x04;
/* T2PSYNC Not Synchronized, T2MODE Software control, T2CKPOL Rising Edge */
T2HLT = 0x00;
/* TMR20ON on; T2CKPS Prescaler 1:64; T20UTPS Postscaler 1:1
Minimum timer period is 31 kHz/64 = 2.064516 ms */
T2CON = O0xEO;
/* Set TMR2 period, PR2 to 100ms */
T2PR = Timer2Period;
/* Clear the TMR2 interrupt flag */
PIR4bits.TMR2IF = 0;

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 32

TB3285
Using TMR2 for Auto-Conversion Trigger for the ...

The following initialization function will safely enable the Global and Peripherals interrupts, after they were initialized
with proper settings:

static void INTERRUPT Initialize (void)

{
INTCONbits.GIE = 1; /* Enable Global Interrupts */
INTCONbits.PEIE = 1; /* Enable Peripheral Interrupts */

The ADCC interrupt is triggered by TMR2 to complete a conversion at a frequency determined by the Timer2 Period.
The following function handles the interrupts, in this case ADCC_Interrupt, checks the status of the ADCC
Interrupt flag, and then calls the ADCC Interrupt function:

static void _ interrupt() INTERRUPT InterruptManager (void)
: if (INTCONbits.PEIE == 1)
{ if (PIElbits.ADIE == 1 && PIRlbits.ADIF == 1)
{ ADCC_Interrupt();
}

The ADCC_Interrupt function is separated from the interrupt manager to be similar to the code generated by MCC.
In this function, the Interrupt flag is cleared first, the LEDO is toggled (this will happen with Timer2 Period frequency),
and finally the ADCC value for the Analog Channel is read (ANAO is used in this example).

static void ADCC Interrupt (void)

{
/* Clear the ADCC interrupt flag */
PIRl1bits.ADIF = 0;
/* Toggle LEDO at the Timer2Period frequency */
LATEbits.LATEO = ~LATEbits.LATEO;
/* Get the conversion result from ADCC AnalogChannel */
adcVal = ADCC ReadValue (AnalogChannel) ;

The ADCC read function only needs a parameter, the channel needed to be read:

static uintl6 t ADCC ReadValue (uint8 t channel)

{
ADPCH = channel; /*Set the input channel for ADCC*/
/* TMR2 is trigger source for auto-conversion for ADCC */
return ((uintlé t) ((ADRESH << 8) + ADRESL));

The next code in the void main function is an infinite loop (using a while (1)), which is used to check for the
ADCC value using an “i £” statement:

void main (void)
{

/* Initialize the device */

CLK Initialize(); /* Oscillator Initialize function */
PORT Initialize(); /* Port Initialize function */
ADCC_Initialize(); /* ADCC Initialize function */
TMR2 Initialize(); /* TMR2 Initialize function */
INTERRUPT Initialize(); /* Interrupt Initialize function */

while (1)
{
if (adcVal > DesiredThreshold)
{
/* turn LEDO ON by writing pin REO to low */
LATEbits.LATEO = 0;

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 33

TB3285
Using TMR2 for Auto-Conversion Trigger for the ...

This will check if the read value from Potentiometer (POT click) is above a defined value. If so, the LEDO will turn ON
without blinking.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 34

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-ADC-TRIGGER-BARE

TB3285
Using TMR4 in One-Shot Mode with External ...

9. Using TMR4 in One-Shot Mode with External Signal as Reset

This example will present how to use the TMR4 peripheral in One-Shot mode to stop TMR2 if an external pin is
pulled to GND for more than the desired period.

The application will blink the LEDO with a rate of Timer2 Period (100 ms) and, if the external pin RC7 is pulled down
for more than the Timer4 Period (500 ms), the LEDO will stop blinking.
To achieve the functionality described by this use case, the following actions will have to be performed:

» System clock initialization

» Port initialization

* PPS initialization

* Timer2 initialization

* Timer4 initialization

* Interrupts handling and initialization

9.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources — System — System Module and make the following configurations:
— Oscillator Select: HFINTOSC
HF Internal Clock: 1 MHz
Clock Divider: 1
In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR2, TMR4 and make the following configurations:
Timer2 Configuration:

— Enable Timer: checked
— Control Mode: Roll over pulse
— Ext. Reset Source: TMR4_postscaled
— Start/Reset Option: Starts at T2Z0N = 1 and TMR2_ers = 0
— Timer Clock tab
» Clock Source: LFINTOSC
» Clock Prescaler: 1:64
* Postscaler: 1:1
Set 100 ms period in the Timer Period tab
» Enabled Timer Interrupt: checked
5. Timer4 Configuration:

— Enable Timer: checked
— Control mode: One shot
— Ext. Reset Source: T4INPPS pin
— Start/Reset Option: Starts at TMR4_ers = 0 and Resets at TMR4_ers = 1
— Timer Clock tab:
* Clock Source: LFINTOSC
» Clock Prescaler: 1:64
* Postscaler: 1:1
— Set 500 ms period in the Timer Period tab

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 35

https://microchipdeveloper.com/install:mcc

9.2

TB3285
Using TMR4 in One-Shot Mode with External ...

6. Open Pin Manager — Grid View window, select UQFN40 in the MCU package field and select the 1/O pins
outputs to enable the internal signal access to the 1/0.

Figure 9-1. Pin Mapping

| Macatoms | Ovtpwt | Sesochhusskty | wotticotum focx] [Patomsgercdews]
Package: | UGS |- Pin Rlz: (FART RN T RE IR 0 P B RAIRIREERR VRS ENNETS IR TR RN VA F R R R TR0 LA PR B M R R T
Par A ¥ Far @ ¥ Fari L ¥ Pa D ¥ Pert k¥
Module Furelien _Dunhm I:I_I_.i' 3_1_'&_6_? III_I_z 3_4 i_lﬂ_i‘ D_1_2_$_4_i_£- l:l_1_.i_.t_1 !|_E-_i' 1_2_.*
s CLEOUT ocubpad t
(e b ah bbb s e s ss s e seslee e ne
Y T ¢ TWaBBEBBEBBDBEBEBbBEbBEaBEE R
PO mEaEE
AT SO IO

7. Click Pin Module in the Project Resources, set the custom name for REO to LEDO and select Output box. For

RC7 pin, select WPU.
8. Click Generate in the Project Resources tab.
9. The Interrupt function that will toggle LEDO at Timer2 period will need to be added before main function:

void TMRZ2 interrupt (void)

{
/* Toggle LEDO at the Timer2Period frequency */
LEDO_Toggle () ;

}

void main (void)
{
// Initialize the device
SYSTEM Initialize();
TMR2_SetInterruptHandler (TMR2_ interrupt);
// Enable the Global Interrupts
INTERRUPT GloballInterruptEnable();
// Enable the Peripheral Interrupts
INTERRUPT PeripherallnterruptEnable () ;
while (1)
{
// Add your application code
}

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

Bare Metal Code
The first step will be to configure the microcontroller to disable the Watchdog Timer (WDT) and to enable Low-
Voltage Programming (LVP).

#pragma config WDTE = OFF /*disable Watchdog*/
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

The following constants need to be defined:

#define Timer2Period 0x2F /* TMR2 Period is 100ms */
#define Timer4Period 0OxF1 /* TMR4 Period is 500ms */

The CLK_Initialize function initializes the HFINTOSC internal oscillator:

static void CLK Initialize(void)
{
/* set HFINTOSC Oscillator */
OSCCON1 = 0x60;
/* set HFFRQ to 1 MHz */

© 2020 Microchip Technology Inc.

Technical Brief DS90003285A-page 36

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-ONE-SHOT-RESET-MCC

TB3285
Using TMR4 in One-Shot Mode with External ...

OSCFRQ = 0x00;

The PPS_Initialize function has the role to configure the RC7 peripheral select as input for TMR4:

static void PPS Initialize(void)

{
/* Set RC7 as input for TMR4 (T4IN) */
T4INPPS = 0x17;

PORT Initialize has the role to configure the RC7, input channel, and REO output for LEDO pins:

static PORT_ Initialize (void)
{
/* Set RC7 pin as digital */
ANSELC = 0x7F;
/* Set REO pin as output */
TRISE = 0x06;
/* Enable weak pull-up on pin RC7 */
WPUC = 0x80;

The TMR2 Initialize function sets the clock source and the registers needed to generate an 100 ms period:

static void TMR2 Initialize(void)
{

/* TMR2 Clock source, LFINTOSC (00100) has 31 kHz */

T2CLKCON = 0x04;

/* T2PSYNC Not Synchronized; T2MODE Starts at T20N = 1 and TMRZierS = 0; T2CKPOL Rising
Edge */

T2HLT = 0x02;

/* TMR2 external reset is TMR4 postscaled */

T2RST = 0x02;

/* TMR2 ON on; T2 CKPS Prescaler 1:64; T2 OUTPS Postscaler 1:1

Minimum timer period is 31 kHz/64 = 2.064516 ms */

T2CON = O0xEO;

/* Set TMR2 period, PR2 to 100ms */

T2PR = Timer2Period;

/* Clear the TMR2 interrupt flag */

PIR4bits.TMR2IF = 0;

/* Enabling TMR2 interrupt */

PIE4bits.TMR2IE = 1;

The TMR4 Initialize function sets the clock source and the registers needed to generate an 500 ms period:

static void TMR4 Initialize(void)
{
/* TMR4 Clock source, LFINTOSC (00100) has 31 kHz */
T4CLKCON = 0x04;
/* TMR4 in OneShot mode, Starts at TMR4_ers=0 and resets on TMR4_ers=1 */
T4HLT = 0x17;
/* TMR4 External reset signal selected by T4INPPS pin */
T4RST = 0;
/* TMR4 ON on; T4 CKPS Prescaler 1:64; T4 OUTPS Postscaler 1:1
Minimum timer period is 31 kHz/64 = 2.064516 ms */
T4CON = OxEQ;
/* Set TMR4 period, PR4 to 500ms */
T4PR = Timer4Period;
/* Clear the TMR4 interrupt flag */
PIR4bits.TMR4IF = O;

The following initialization function will safely enable the Global and Peripherals interrupts, after all modules have
been initialized with proper settings:

static void INTERRUPT Initialize (void)
{
INTCONbits.GIE = 1; /* Enable Global Interrupts */

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 37

TB3285
Using TMR4 in One-Shot Mode with External ...

INTCONbits.PEIE = 1; /* Enable Peripheral Interrupts */
}

The next function handles the interrupts (in this case there is only one interrupt), checks the status of the TMR2
Interrupt flag, and then calls the TMR2 Interrupt function.

static void _ interrupt() INTERRUPT InterruptManager (void)

{
if (INTCONbits.PEIE == 1)

{
if (PIE4bits.TMR2IE == 1 && PIR4bits.TMR2IF == 1)

{
TMR2_Interrupt();

}
}

The TMR2 Interrupt clears the Interrupt flag and toggles the LEDO (this will happen with Timer2 Period
frequency).

static void TMR2 Interrupt (void)

{
/* Clear the TMR2 interrupt flag */
PIR4bits.TMR2IF = 0;
/* Toggle LEDO at the Timer2Period frequency */
LATEbits.LATEO = ~LATEbits.LATEO;

}

The void main function contains only the initialization functions:

void main (void)
{

/* Initialize the device */

CLK Initialize():; /* Oscillator Initialize function */

PPS Initialize(); /* Peripheral select Initialize function */
PORT Initialize(); /* Port Initialize function */

TMR2 Initialize(); /* TMR2 Initialize function */

TMR4 Initialize(); /* TMR4 Initialize function */

INTERRUPT Initialize(); /* Interrupt Initialize function */

while (1)

{
;/* Add your application code */

}
}

If the RC7 pin is pulled to GND for more than the Timer4 Period (500 ms), TMR4 will trigger TMR2 to stop and act as
a one-shot Reset.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 38

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-ONE-SHOT-RESET-BARE

10.

10.1

TB3285
Using TMR4 as HLT to Generate an Interrupt

Using TMR4 as HLT to Generate an Interrupt

This example will present how to use the TMR4 as a Hardware Limit Timer (HLT) in order to generate an interrupt
and stop TMR2 that also stops the ADCC auto-conversion.

This application will blink the LEDO with Timer2 Period (100 ms), if the potentiometer value is below a desired
threshold, and will keep the LED in an ON state constantly if the potentiometer value is above that value. If the ADCC
read value is above the maximum threshold and the RC7 pin is pulled to GND for more than Timer4 Period (500 ms),
TMR4 will stop TMR2 and LEDO will blink with a 500 ms period for as long as RC7 is tied to GND.

One practical use for this code example is in a motor control application where the ADCC reads the shunt current at a
fixed frequency. The user needs to compare that value with a maximum current and, if it is above for more than a
period, then the user will stop the motor since it is consuming too much power.

This example uses the PIC18F47Q10 Curiosity Nano board with a POT Click, both inserted into a Curiosity Nano
adapter.
To achieve the functionality described by this use case, the following actions will have to be performed:

» System clock initialization

» Port initialization

* PPS initialization

» ADCC initialization

* Timer2 initialization

» Timer4 initialization

* Interrupts handling and initialization

MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources — System — System Module and make the following configurations:
— Oscillator Select: HFINTOSC
HF Internal Clock: 1 MHz
Clock Divider: 1
In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR2, TMR4, ADCC and do the following configurations:
Timer2 Configuration:

— Enable Timer: checked
— Control Mode: Roll over pulse
— Ext. Reset Source: TMR4_postscaled
— Start/Reset Option: Starts at T2Z0N =1 and TMR2_ers = 0
— Timer Clock tab
* Clock Source: LFINTOSC
* Clock Prescaler: 1:64
* Postscaler: 1:1
Set 100 ms period in the Timer Period tab

Timer4 Configuration:

— Enable Timer: checked
— Control Mode: Roll over pulse
— Ext. Reset Source: T4INPPS

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 39

https://microchipdeveloper.com/install:mcc

TB3285
Using TMR4 as HLT to Generate an Interrupt

— Start/Reset Option: Resets at TMR4_ers =1
Timer Clock tab

* Clock Source: LFINTOSC

* Clock Prescaler: 1:64

» Postscaler: 1:1
Set 500 ms period in the Timer Period tab
Enable Timer Interrupt: checked

ADCC Configuration:

— Enable ADC: Checked

— Operating: Basic mode

— + Inthe ADC tab, check the following options:
— ADC Clock — Clock Source: Select FRC
— Auto-conversion Trigger: Select TMR2

* CVD Features tab:
— Enable ADC Interrupt: checked

5. Open Pin Manager — Grid View window, select UQFN40 in the MCU package field, and select the 1/O pins
outputs to enable the internal signal access to the 1/0.

Figure 10-1. Pin Mapping

e L e e e R]
Fackage .-'.=-.+'|- Pibo: |17 BB 19 2020 22 29 28| & | 9 (0|10 62|03 e 15 303932 33| 38 38 a0 0 |3e|3s (06 am 2| 3 4|5 23 24 25 0e

Paii & W Foai W Peril W Foat O W Paril W
Mordale 1ot D o o a2 1. 4 5| &% T O T 2| ¥ &4 % & F 00 2 B 4 5 &jTRO® 1|2 b4, 3% & T 040 2 2

ACACT gt | mmhanbnb | IO

: wops |mfnm e wn I
. e I OO

e G/oabhnnssn b bbb sh s b hhsessh s s s

e .i'h.
T HEER . Ll] ! L]
- . I T A n|
*7 oo Bhbhbhbhhbhbhbhhbhhhbhbhbhbhhbhhb b W
ESE MCLR [*]
mz |T2M Bhbhbhh | | mhahhbhhbbhb |
wae [re bbb hEh e hhhhhh bl

6. Go to Project Resources — Pin Module — RAO(ANAQ) and select only the Analog box. For the RC7 pin,
select WPU, rename |IO_REO to LEDO and select Output box .

7. Click Generate in the Project Resources tab.
8. Add these lines into the main. c file:

#define DesiredThreshold 300 /* Desired threshold value */
#define MaxThreshold 500 /* Maximum threshold value */
volatile uintl6_ t adcVal;

void TMR4 interrupt (void)
{
/* HLT trigger: if adcVal > MaxThreshold and pin RC7 pulled-down */
if (adcVal > MaxThreshold)
{
/* Toggle LEDO at the Timer2Period frequency */
LEDO_ Toggle () ;
/* HLT will stop TMR2 that also stops ADCC */
TMR2_Stop () ;
}
}
void ADCC interrupt (void)
{
/* This will toggle at a rate of 10Hz if adcVal < DesiredThreshold */
if (adcVal < DesiredThreshold)
{
LEDO_ Toggle () ;
}
adcvVal = ADCC GetConversionResult () ;

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 40

TB3285
Using TMR4 as HLT to Generate an Interrupt

}

void main (void)

{
// Initialize the device
SYSTEM Initialize();
TMR4 SetlInterruptHandler (TMR4 interrupt);
ADCC_SetADIInterruptHandler (ADCC interrupt);
// Enable the Global Interrupts
INTERRUPT GlobalInterruptEnable();
// Enable the Peripheral Interrupts
INTERRUPT PeripherallnterruptEnable();

while (1)
{
if ((adcVal > DesiredThreshold) && (adcVal < MaxThreshold))
{
LEDO_SetLow () ;
}

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

10.2 Bare Metal Code

The application with bare metal code will have the same behavior as the MCC generated code.

The first step will be to configure the microcontroller to disable the Watchdog Timer (WDT) and to enable Low-
Voltage Programming (LVP).

#pragma config WDTE = OFF /*disable Watchdog*/
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

Then, the following variables need to be defined:

#define Timer2Period 0x2F /* TMR2 Period is 100ms */
#define Timer4Period 0OxF1 /* TMR4 Period is 500ms */
#define DesiredThreshold 300 /* Desired threshold value */
#define MaxThreshold 500 /* Maximum threshold value */
#define AnalogChannel 0x00 /* Use ANAQO as input for ADCC */
volatile uintl6 t adcVal; /* ADCC global result value */

The CLK Initialize function initializes the HFINTOSC internal oscillator:

static void CLK Initialize(void)
{
/* set HFINTOSC Oscillator */
OSCCON1 = 0x60;
/* set HFFRQ to 1 MHz */
OSCFRQ = 0x00;

The PPS_Initialize function has the role to configure the RC7 peripheral select as input for TMR4:

static void PPS Initialize (void)

{
/* Set RC7 as input for TMR4 (T4IN) */
T4INPPS = 0x17;

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 41

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-HLT-INTERRUPT-MCC

TB3285
Using TMR4 as HLT to Generate an Interrupt

PORT Initialize configures the RC7 digital input and REO output pins used for LEDO:

static void PORT Initialize(void)
{
/* Set RC7 pin as digital */
ANSELC = 0x7F;
/* Set REO pin as output */
TRISE = 0x06;
/* Enable weak pull-up on pin RC7 */
WPUC = 0x80;

ADCC_Initialize configures the TMR2 to be an auto-conversion trigger and enables the ADCC Interrupt flag:

static void ADCC Initialize(void)
{
/* ADACT Auto-Conversion Trigger Source is TMR2 */
ADACT = 0x04;
/* ADGO stop; ADFM right; ADON enabled; ADCONT disabled; ADCS FRC */
ADCONO = 0x94;
/* Clear the ADCC interrupt flag */
PIRlbits.ADIF = 0;
/* Enabling ADCC interrupt flag */
PIElbits.ADIE = 1;

The TMR2 Initialize function sets the clock source and the registers needed to generate an 100 ms period:

static void TMR2 Initialize(void)
{

/* TMR2 Clock source, LFINTOSC (00100) has 31 kHz */

T2CLKCON = 0x04;

/* T2PSYNC Not Synchronized; T2MODE Starts at T20N = 1 and TMR2 ers = 0; T2CKPOL Rising
Edge */

T2HLT = 0x02;

/* TMR2 external reset is TMR4 postscaled */

T2RST = 0x02;

/* TMR2 ON on; T2 CKPS Prescaler 1:64; T2 OUTPS Postscaler 1:1

Minimum timer period is 31 kHz/64 = 2.064516 ms */

T2CON = O0xEO;

/* Set TMR2 period, PR2 to 100ms */

T2PR = Timer2Period;

/* Clear the TMR2 interrupt flag */

PIR4bits.TMR2IF = 0;

The TMR4 Initialize function sets the clock source and the registers needed to generate a 500 ms period:

static void TMR4 Initialize(void)
{
/* TMR4 Clock source, LFINTOSC (00100) has 31 kHz */
T4CLKCON = 0x04;
/* T4PSYNC Synchronized; T4MODE Resets at TMR4 ers = 1; T4CKPOL Rising Edge */
T4HLT = 0x87;
/* TMR4 External reset signal by T4INPPS pin */
T4RST = 0;
/* TMR4 ON on; T4 CKPS Prescaler 1:64; T4 OUTPS Postscaler 1:1
Minimum timer period is 31 kHz/64 = 2.064516 ms */
T4CON = 0xEOQ;
/* Set TMR4 period, PR4 to 500ms */
T4PR = Timer4Period;
/* Clear the TMR4 interrupt flag */
PIR4bits.TMR4IF = 0;
/* Enabling TMR4 interrupt flag */
PIE4bits.TMR4IE = 1;

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 42

TB3285
Using TMR4 as HLT to Generate an Interrupt

The following initialization function will safely enable the Global and Peripherals interrupts, after all modules have
been initialized with proper settings:

static void INTERRUPT Initialize (void)

{
INTCONbits.GIE = 1; /* Enable Global Interrupts */
INTCONbits.PEIE = 1; /* Enable Peripheral Interrupts */

This function handles the two interrupts, checks the status of the Interrupt flag, and then calls the TMR4 Interrupt
or ADCC_Interrupt functions:

static void _ interrupt () INTERRUPT manager (void)
{ /* Interrupt handler */
if (INTCONbits.PEIE == 1)
: if (PIE4bits.TMR4IE == 1 && PIR4bits.TMR4IF == 1)
{ TMR4 Interrupt();
;lse if (PIElbits.ADIE == 1 && PIRlbits.ADIF == 1)
{ ADCC Interrupt();
}

The ADCC_Interrupt function first clears the Interrupt flag, toggles the LEDO (this will happen with Timer2 Period
frequency), and then reads the ANAO analog channel.

static void ADCC Interrupt (void)

{
/* Clear the ADCC interrupt flag */
PIRlbits.ADIF = 0;

if (adcVal < DesiredThreshold)
{
/* Toggle LEDO at the Timer2Period frequency */
LATEbits.LATEO = ~LATEbits.LATEO;
}
/* Get the conversion result from ADCC AnalogChannel */
adcVal = ADCC ReadValue (AnalogChannel) ;

The ADCC read function only needs a parameter (the channel that needs to be read):

static uintl6_t ADCC ReadValue (uint8 t channel)

{
ADPCH = channel; /* Set the input channel for ADCC */
/* TMR2 is trigger source for auto-conversion for ADCC */
return ((uintlé t) ((ADRESH << 8) + ADRESL));

The TMR4 Interrupt function first clears the Interrupt flag (if the ADCC read value is above the maximum
threshold and if the RC7 pin is pulled to GND for more than 500 ms), TMR4 will stop TMR2 and LEDO will blink for a
500 ms period, as long as RC7 is tied to GND.

static void TMR4 Interrupt (void)
{
/* Clear the TMR4 interrupt flag */
PIR4bits.TMR4IF = 0;
/* HLT trigger condition: if adcVal > MaxThreshold and pin RC7 is pulled-down */
if (adcVal > MaxThreshold)
{
/* Toggle LEDO at the Timer4Period frequency */
LATEbits.LATEO = ~LATEbits.LATEO;
/* HLT will stop TMR2 that also stops ADCC */
/* Stop the Timer by writing to TMRxON bit */
T2CONbits.TMR20ON = 0;

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 43

TB3285
Using TMR4 as HLT to Generate an Interrupt

}

The next code in the void main function, is an infinite loop (using a while (1)) to check for the ADCC value, using

an “i£” statement.

void main (void)
{
/* Initialize the device */
CLK Initialize(); e
PPS Initialize(); /*
PORT Initialize () /*
ADCC_Initialize() e
TMR2_ Initialize ()
()
al

; /*
TMR4 Initialize(); /*
INTERRUPT Initialize(); /*

while (1)
{

Oscillator Initialize function */
Peripheral select Initialize function */
Port Initialize function */

ADCC Initialize function */

TMR2 Initialize function */

TMR4 Initialize function */

Interrupt Initialize function */

if ((adcVal > DesiredThreshold) && (adcVal < MaxThreshold))

{

/* turn LEDO ON by writing pin REO to low */

LATEbits.LATEO = 0;

}

This will check if the read value from the Potentiometer (POT Click) is between two values. If so, the LEDO will turn
on without blinking with a frequency. The ADCC interrupt is triggered by TMR2 to complete a conversion at a

frequency determined by the Timer2 Period.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc.

Technical Brief DS90003285A-page 44

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-HLT-INTERRUPT-BARE

TB3285
Using TMR2 as Alternate SPI Clock

11. Using TMR2 as Alternate SPI Clock

The Timer 2 peripheral can be used as an alternative clock for the MSSP peripheral and can be used in the SPI clock
configuration.

For example, to create a 10 kHz SPI clock, modify the Timer Period to 50 ps. This corresponds to 20 kHz since the
SPI uses TMR2output/2 as clock, meaning that 20 kHz / 2 = 10 kHz frequency.

The following code examples will present how to set up the TMR2 peripheral and be used as clock source for the SPI
configured as Master communicating to two Slave devices, alternatively.

To achieve the functionality described by the use case, the following actions will have to be performed:

System clock initialization
TMR2 initialization

SPI1 initialization

PPS initialization

Port initialization

Slave control functions
Data exchange function

1.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC) the next steps need to be followed:

1.
2.
3.

Create a new MPLAB X IDE project for PIC18F47Q10.
Open the MCC from the toolbar (information about how to install the MCC plug-in can be found here).
Go to Project Resources — System — System Module and make the following configurations:

— Oscillator Select: HFINTOSC

— HF Internal Clock: 4 MHz

— Clock Divider: 1

— In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected

— In the Programming tab, Low-Voltage Programming Enable has to be checked

From the Device Resources window, add TMR2, MSSP1 and make the following configurations:
Timer2 Configuration:

— Enable Timer: checked

— Timer Clock tab
* Clock Source: HFINTOSC
* Clock Prescaler: 1:64
* Postscaler: 1:1

— Set 50 ps period in the Timer Period tab
MSSP1 Configuration:

— Serial Protocol: SPI

— Mode: Master

— SPI Mode: SPI Mode 0

— Input Data Sampled At: Middle

— Clock Source Selection: TMR2/2

— Actual Clock Frequency (Hz): 10000.00

Open Pin Manager — Grid View window, select UQFN40 in the MCU package field, and make the following
pin configurations:

— Set Port C pin 6 (RC6) as output for Slave Select 1 (SS 1)
— Set Port C pin 7 (RC7) as output for Slave Select 2 (SS 2)

The SCK, SDO and SDI pins appear alongside the MSSP1 peripheral and have their direction preset.

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 45

https://microchipdeveloper.com/install:mcc

TB3285
Using TMR2 as Alternate SPI Clock

Figure 11-1. Pin Mapping

Padmge:‘UQFN«)| '|‘Ph1No:1ﬂ1419k0k1h2#9#8 8‘9‘1ﬂ1ﬂ141ﬂ1%153@3ﬂ343ﬂ343#4d1 3%35%6%7‘2‘3‘4‘5 2#24h5h6
PortAV PortBY PortC V¥ PortD V¥V PortEVY

Module Function |Direction| 0| 1|2 3 4|5(6|7|0[1]2 3/4[5|6[7|0 1 /2(3|4|5Y6|7]0 1]|2[3[4[5]6/7 0]1]2]3
SCK1 in/out CIC GGG GG GG GO
MSSP1 ¥ |SDIT input GGG GGG R G O
SDO1 output GGG ARG GG R R GG D AL
0sC CLKOUT |output]
PmModu\eVGPIO input I G G R N R N R N R R R G R G G R R
GPIO output |B|Bm|m BB B|B|B|b|E'Bd B BB |B|s s B BB Bé|AfB B e B BB B R B BB

6. Click Pin Module in the Project Resources and set the custom names SS pins:
— Rename RC6 to Slave1
— Rename RCY7 to Slave2
7. Click Generate in the Project Resources tab.
8. Inthemain. c file generated by MCC, add the following code:
— Control of Slave devices
— Data transmission

uint8 t writeData = 1; /* Data that will be transmitted */
uint8_t receiveData; /* Data that will be received */

void main (void)

{
// Initialize the device
SYSTEM Initialize();

while (1)
{
SPI1 Open(SPI1 DEFAULT) ;
Slavel SetLow();
receiveData = SPI1_ExchangeByte (writeData) ;
Slavel SetHigh();
SPI1 Close();

SPI1 Open(SPI1 DEFAULT) ;

Slave2 SetLow () ;

receiveData = SPI1_ExchangeByte (writeData) ;
Slave2 SetHigh();

SPI1 Close();

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

11.2 Bare Metal Code
The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming (LVP).

/* WDT operating mode->WDT Disabled */

#pragma config WDTE = OFF

/* Low voltage programming enabled, RE3 pin is MCLR */
#pragma config LVP = ON

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 46

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-SPI-CLOCK-MCC

TB3285
Using TMR2 as Alternate SPI Clock

The internal oscillator has to be set to the desired value. This example uses the HFINTOSC with a frequency of 4
MHz. This translates in the following function:

static void CLK init (void)
{
OSCCON1
OSCFRQ

0x60; /* set HFINTOSC Oscillator */
0x02; /* set HFFRQ to 4 MHz */

}
The following function initializes the Timer2 peripheral with the HFINTOSC clock:

static void TMR2 Initialize(void)
{
/* TMR2 Clock source, HFINTOSC (00011) */
T2CLKCON = 0x03;
/* T2PSYNC Not Synchronized, T2MODE Software control, T2CKPOL Rising Edge */
T2HLT = 0x00;
/* TMR20ON on; T2CKPS Prescaler 1:1; T20UTPS Postscaler 1:1 */
T2CON = 0x80;
/* Set TMR2 period, PR2 to 199 (50us) */
T2PR = Timer2Period;
/* Clear the TMR2 interrupt flag */
PIR4bits.TMR2IF = 0;
}

The sPI1 Initialize function will configure the SPI clock source to be TMR2 Output/2:

static void SPI1 Initialize(void)
{
/* SSP1ADD = 1 */
SSP1ADD = 0x01;
/* Enable module, SPI Master Mode, TMR2 as clock source */
SSP1CON1 = 0x23;
}

Therefore, the SPI pins can be relocated using the SSPxCLKPPS, SSPxDATPPS, SSPxSSPPS registers for the
input channels and by using the RxyPPS registers for output channels.

The method to configure the location of the pins is independent of the application purpose and the SPI mode. Each
microcontroller has its own default physical pin position for peripherals, but they can be changed using the Peripheral
Pin Select (PPS).

For SPI1 in Master mode, only the SDI pin needs to be input so it is used with its default location RC4. SCK was
mapped to RC3 and SDO was mapped to RC5. This translates into the following code:

static void PPS Initialize(void)

{

RC3PPS = 0x0F; /* SCK channel on RC3 */
SSP1DATPPS = 0x14; /* SDI channel on RC4 */
RC5PPS = 0x10; /* SDO channel on RC5 */

}

Since this example has the Master sending data to two Slave devices, two SS pins are needed (SS1 and SS2). For
both, a General Purpose Input/Output (GPIO) pin was used (RC6 for SS1 and RC7 for SS2).

Table 11-1. SPI Pin Locations

e,

SCK RC3
SDI RC4
SDO RC5
SS1 RC6
882 RC7

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 47

TB3285
Using TMR2 as Alternate SPI Clock

Since the Master devices control and initiate transmissions, the SDO, SCK and SS pins must be configured as output
while the SDI channel will keep its default direction as input. The following example is based on the relocation of the
SPI1 pins made above:

static void PORT Initialize(void)
{
ANSELC
TRISC

0x07; /* Set RC6 and RC7 pins as digital */
0x17; /* Set SCK, SDO, SS1, SS2 as output and SDI as input */

}

A Master will control a Slave by pulling low the SS pin. If the Slave has set the direction of its SDO pin to output
(when the SS pin is low), the SPI driver of the Slave will take control of the SDI pin of the Master, shifting data out
from its Transmit Buffer register.

All Slave devices can receive a message, but only those with the SS pin pulled low can send data back. It is not
recommended to enable more than one Slave in a typical connection since all of them will try to respond to the
message and the Master has only one SDI channel. Therefore, the transmission will result in a write collision.

Before sending data, the user must pull low one of the configured SS signals to let the correspondent Slave device
know it is the recipient of the message.

static void SPI1 slavelSelect (void)
{

LATCbits.LATC6 = 0; /* Set SS1 pin value to LOW */
}

Once the user writes new data into the Buffer register, the hardware starts a new transfer, generating the clock on the
line and shifting out the bits. The bits are shifted out starting with the Most Significant bit (MSb).

When the hardware finishes shifting all the bits, it sets the Buffer Full Status bit. The user must check the state of the
flag before writing new data into the register by constantly reading the value of the bit (or polling), or else a write
collision will occur.

static uint8 t SPI1 exchangeByte (uint8 t data)
{
SSP1BUF = data;

while (!PIR3bits.SSP1IF) /* Wait until data is exchanged */
{

}

PIR3bits.SSP1IF = 0;

return SSP1BUF;
}

The user can pull the SS channel high if there is nothing left to transmit.

static void SPI1 slavelDeselect (void)
{

LATCbits.LATC6 = 1; /* Set SS1 pin value to HIGH */
}

The following function is the int _main (void) and begins peripheral initialization before the SPI commands are run
in a infinite loop while (1):

int main(void)

{
CLK Initialize();
PPS Initialize();
PORT Initialize();
TMR2 Initialize();
SPI1 Initialize();

while (1)

{
SPI1 slavelSelect();
receiveData = SPI1 exchangeByte (writeData);
SPI1 slavelDeselect();

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 48

TB3285
Using TMR2 as Alternate SPI Clock

SPI1 slave2Select();
receiveData = SPI1_exchangeByte (writeData) ;
SPI1 slave2Deselect();

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 49

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr2-spi-clock-bare

TB3285

References

12. References
1. MPLAB Code Configurator User’s Guide
2. Getting Started with Writing C-Code for PIC16 and PIC18 Tech Brief

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 50

http://ww1.microchip.com/downloads/en/devicedoc/40001725b.pdf
https://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en1002117

TB3285

Revision History

13. Revision History

A 05/2020 Initial document release

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 51

TB3285

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

* Microchip products meet the specification contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is one of the most secure families of its kind on the market today,
when used in the intended manner and under normal conditions.

» There are dishonest and possibly illegal methods used to breach the code protection feature. All of these
methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

» Microchip is willing to work with the customer who is concerned about the integrity of their code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code
protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 52

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

TB3285

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeelLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
1/0, SMART-1.S., SQI, SuperSwitcher, SuperSwitcher Il, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany || GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-6546-1

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 53

http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC B

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

www.microchip.com/support

Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

© 2020 Microchip Technology Inc.

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Technical Brief

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS90003285A-page 54

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Peripheral Overview
	2. Using TMR0 in 8-bit Mode with Periodic Interrupt
	2.1. MCC Generated Code
	2.2. Bare Metal Code

	3. Using and Operating TMR0 in 16-bit Mode while the Microcontroller is in Sleep
	3.1. MCC Generated Code
	3.2. Bare Metal Code

	4. Using TMR0 in 8-bit Mode and to Generate an Output Signal
	4.1. MCC Generated Code
	4.2. Bare Metal Code

	5. Using TMR1 Gate to Measure Frequency
	5.1. MCC Generated Code
	5.2. Bare Metal Code

	6. Using TMR1 to Trigger a Special Event
	6.1. MCC Generated Code
	6.2. Bare Metal Code

	7. Using TMR1 Gate to Measure Short vs. Long Button Press
	7.1. MCC Generated Code
	7.2. Bare Metal Code

	8. Using TMR2 for Auto-Conversion Trigger for the ADCC Module
	8.1. MCC Generated Code
	8.2. Bare Metal Code

	9. Using TMR4 in One-Shot Mode with External Signal as Reset
	9.1. MCC Generated Code
	9.2. Bare Metal Code

	10. Using TMR4 as HLT to Generate an Interrupt
	10.1. MCC Generated Code
	10.2. Bare Metal Code

	11. Using TMR2 as Alternate SPI Clock
	11.1. MCC Generated Code
	11.2. Bare Metal Code

	12. References
	13. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

