
 TB3285
 Getting Started with Timers/Counters on PIC18

Introduction

Authors: Alin Stoicescu, Marius Nicolae, Stefan Vlad, Microchip Technology Inc.

This technical brief provides information about the Timers/Counters present on the PIC18 families of microcontrollers.

The document describes the application area, the modes of operation and the hardware and software requirements
of the Timers/Counters and configurable output or input for internal or external use with the help of the Peripheral Pin
Select (PPS).

Throughout the document, the configuration of the used peripherals for each use case will be described in detail.
Additionally, this technical brief explains the concepts of the TMR0, TMR1/3/5 and TMR2/4/6 and their
implementation in the PIC18 family of microcontrollers with the following use cases:

1. TIMER 0
1.1. Using TMR0 in 8-bit Mode with Periodic Interrupt:

This example describes how to configure TMR0 in 8-bit mode and generate a compare interrupt
every 100 ms, using LFINTOSC as clock source. A GPIO pin is toggled each time an interrupt
occurs.

1.2. Using and operating TMR0 in 16-bit Mode while the Microcontroller is in Sleep:
This example describes how to configure and operate TMR0 in 16-bit mode while the microcontroller
is in Sleep mode and generate an overflow interrupt every ten seconds. When the interrupt occurs, a
GPIO pin connected to an LED is ON for 100 ms and then the microcontroller is put back to Sleep.

1.3. Using TMR0 in 8-bit Mode and to Generate an Output Signal:
This example describes how to configure TMR0 in 8-bit mode and generate a 125 Hz signal on one
of the T0 output pins using Peripheral Pin Select (PPS).

2. TIMER 1/3/5
2.1. Using TMR1 Gate to Measure Frequency:

This example shows how to use the TMR1 configured in Gate Single-Pulse and Toggle Combined
mode. It will sample a full period of a signal. A GPIO pin will be configured as input and it will be
connected to a periodical signal.

2.2. Using TMR1 to Trigger a Special Event:
This example shows how to use the TMR1 configured as a counter. The Capture/Compare/PWM
(CCP) module will be configured with a user-defined value. A GPIO pin will be configured as an
output for the CCP. When the counter reaches the CCP value, the pin logic value will be toggled.

2.3. Using TMR1 Gate to Measure Short vs Long Button Press:
This example shows how to use the TMR1 configured in Gate Single-Pulse mode. It will start
counting when the button is pressed. Two different interrupts will be activated based on how long the
button was pressed.

3. TIMER 2/4/6
3.1. Using TMR2 as Auto-conversion Trigger for ADCC Module

This example will present how to use TMR2 peripheral to trigger the ADCC to make conversions at a
fixed frequency rate that can be adjusted by modifying the period of TMR2.

3.2. Using TMR4 in One-Shot Mode with External Signal as Reset
This example will present how to use TMR4 peripheral in One-Shot mode to stop TMR2 if an external
pin is pulled to GND for more than the desired period.

3.3. Using TMR4 as HLT to Generate an Interrupt (like a WDT without Reset)

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 1

This example will present how to use the TMR4 as a Hardware Limit Timer (HLT) in order to generate
an interrupt and stop TMR2 that also stops the ADCC auto-conversion.

3.4. Using TMR2 as Alternate SPI Clock
This example will present how to use the TMR2 as alternate clock for SPI peripheral with a 10 kHz
frequency.

Note:  For each use case, there are two different implementations that have the same functionality: one bare metal
code example and one MPLAB® Code Configurator (MCC) generated code example.

View Code Examples on GitHub
Click to browse repositories

 TB3285

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 2

https://github.com/microchip-pic-avr-examples?q=pic18f47q10timers&type=&language=

Table of Contents

Introduction...1

1. Peripheral Overview..4

2. Using TMR0 in 8-bit Mode with Periodic Interrupt...8

3. Using and Operating TMR0 in 16-bit Mode while the Microcontroller is in Sleep..................................11

4. Using TMR0 in 8-bit Mode and to Generate an Output Signal..14

5. Using TMR1 Gate to Measure Frequency.. 17

6. Using TMR1 to Trigger a Special Event..22

7. Using TMR1 Gate to Measure Short vs. Long Button Press...25

8. Using TMR2 for Auto-Conversion Trigger for the ADCC Module..30

9. Using TMR4 in One-Shot Mode with External Signal as Reset.. 35

10. Using TMR4 as HLT to Generate an Interrupt ..39

11. Using TMR2 as Alternate SPI Clock... 45

12. References..50

13. Revision History.. 51

The Microchip Website...52

Product Change Notification Service..52

Customer Support.. 52

Microchip Devices Code Protection Feature.. 52

Legal Notice... 52

Trademarks.. 53

Quality Management System... 53

Worldwide Sales and Service...54

 TB3285

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 3

1. Peripheral Overview
TIMER0

Timer0 can operate either as an 8-bit or 16-bit timer. The 16-bit mode is enabled by setting the T016BIT bit.

In the 8-bit mode, a buffered version of TMR0H is maintained. This is compared with the value of TMR0L on each
cycle of the selected clock source. When the two values match, the following events occur:

• TMR0L is reset
• The contents of TMR0H are copied to the TMR0H buffer for next comparison

In the 16-bit mode, TMR0H:TMR0L form the 16-bit timer value and read and write of the TMR0H register are
buffered. Timer0 rolls over to 0x0000 on incrementing past 0xFFFF. This makes the timer free-running. TMR0L/H
registers cannot be reloaded in this mode once started. In both 8-bit and 16-bit modes, Timer0 increments on the
rising edge of the selected clock source.

Figure 1-1. Timer0 Block Diagram

Rev. 10-000017I
2/8/2018

T0CKIPPS

See T0CON1
Register

T0CS

T0CKPS

Prescaler

FOSC/4
T0ASYNC

T016BIT

T0OUTPS T0IF

T0_out

Peripherals

TMR0

1

0
Postscaler

TMR0L

COMPARATOR

TMR0 High
Byte

TMR0H

T0_match

Clear

Latch
Enable

8-bit TMR0 Body Diagram (T016BIT = 0)

TMR0L

TMR0H

Internal Data Bus

16-bit TMR0 Body Diagram (T016BIT = 1)

SYNC
IN OUT

TMR0
 body

Q

Q

D

CK

PPS

RxyPPS

RIN

OUT

TMR0 High
Byte

IN OUT

Read TMR0L

Write TMR0L

8

8

8

8

8

PPS

 TB3285
Peripheral Overview

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 4

TIMER 1/3/5

Timer1 module is a 16-bit incrementing counter. When used with an internal clock source, the module is a timer and
increments on every instruction cycle. When used with an external clock source, the module can be used either as a
timer or counter and increments on every selected edge of the external source. Timer1 can function on several
possible synchronous and asynchronous clock sources. When the FOSC internal clock source is selected, the
Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2-LSB error
in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input
signal must be used to gate the Timer1 clock input.

Important:  References to module Timer1 apply to all the odd numbered timers on this device.

Timer1 is a 16-bit module which has the following features:

• 16-Bit Timer/Counter register
• Optionally synchronized comparator out
• Multiple Timer1 gate (count enable) sources
• Interrupt-on-Overflow
• Wake-Up on Overflow (external clock, Asynchronous mode only)
• Time base for the capture/compare function with the CCP modules
• Special Event Trigger (with CCP)

The following figure is a simplified diagram showing signal flow through the TMR1.

 TB3285
Peripheral Overview

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 5

Figure 1-2. Timer1 Block Diagram

Rev. 10-000018L
6/26/2017

TxGPPS

GSS<4:0>

GPOL

0
1

Single Pulse
Acq. Control

1
0

GSPM

ON

GTM

GE

ON

DQ

EN

TMRxLTMRxH
Tx_overflow

set flag bit
TMRxIF

TMRx(2)

1
0

CS<4:0>

Prescaler
1,2,4,8

SYNC

Sleep
Input

Fosc/2
Internal
Clock

CKPS<1:0>

Synchronized Clock Input

2

det

Synchronize(3)

(1)

D

QCK

R

Q

GGO/DONE

TxCLK

D Q

set bit
TMRxGIF

GVAL

Q1

det

Interrupt

NOTE (5)

Note (4)

To Comparators (6)

00000

00000

5

5

11111

11111

PPS

TxCKIPPS

PPS

TIMER 2/4/6

Timer2 operates in three major modes:
• Free Running Period
• One-shot
• Monostable

Free-Running Period Mode

The value of T2TMR is compared to that of the Period register (T2PR) on each clock cycle. When the two values
match, the comparator resets the value of T2TMR to 00h on the next cycle and increments the output postscaler
counter. When the postscaler count equals the value in the OUTPS bits of the T2CON register, then a one clock
period wide pulse occurs on the TMR2_postscaled output and the postscaler count is cleared.

One-Shot Mode

The One-Shot mode is identical to the Free-Running Period mode except for when the ON bit is cleared and the timer
is stopped when T2TMR matches T2PR and will not restart until the ON bit is cycled off and on. The Postscaler
(OUTPS) values other than zero are ignored in this mode because the timer is stopped at the first period event and
the postscaler is reset when the timer is restarted.

 TB3285
Peripheral Overview

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 6

Monostable Mode

Monostable modes are similar to One-Shot modes except for when the ON bit is not cleared and the timer can be
restarted by an external Reset event.

Figure 1-3. Timer2 Block Diagram

Rev. 10-000168D
4/29/2019

MODE[3]

Clear ON

TxTMR

Comparator

TxPR

CSYNC

ON

OUTPS

Postscaler

Set flag bit
TMRxIF

TMRx_postscaled

CKPOL

MODE

PSYNC

Prescaler

CKPS

TMRx_clk

RSEL

R

Sync
(2 Clocks)

Edge Detector
Level Detector
Mode Control
(2 clock Sync)

TMRx_ers

0

1

1

0

enable

reset

Sync

Fosc/4

D Q

CCP_pset(1)

MODE[4:1]=’b1011

MODE[4:3]=’b01

PPS

TxINPPS
TxIN

External
Reset

Sources(2)

CS

PPS

TxINPPS

TxIN

See
TxCLKCON

register(3)

Notes: 
1. This signal comes from the pin selected by TxCKIPPS.
2. TMRx register increments on rising edge.
3. Synchronize does not operate while in Sleep.
4. See TMRxCLK for clock source selections from device data sheet.
5. See TMRxGATE for gate source selection from device data sheet.
6. Synchronized comparator output should not be used in conjunction with synchronized input clock.

 TB3285
Peripheral Overview

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 7

2. Using TMR0 in 8-bit Mode with Periodic Interrupt
This example describes how to configure Timer0 in 8-bit mode and to generate a compare interrupt every 100 ms
using LFINTOSC as clock source. A GPIO pin (the development board’s on-board LED) will be configured as output
and toggled each time the interrupt occurs. Additionally, the main clock will use a separate clock source (HFINTOSC)
and Timer0 will run asynchronously from the main clock.

To achieve the functionality described by the use case, the following actions will have to be performed:
• System clock initialization
• Port initialization
• Timer0 initialization
• Interrupts initialization
• Timer0 interrupt handling

2.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources → System → System Module and make the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 1 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
– In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR0 and do the following configurations:
Timer0 Configuration:

– Enable Timer: checked
– Timer Clock tab

• Clock Source: LFINTOSC
• Clock Prescaler: 1:16
• Postscaler: 1:1
• Timer mode: 8-bit
• Enable Synchronization: unchecked

– Timer period: 100 ms
– Enable Timer Interrupt: checked

5. Open Pin Manager → Grid View window and select UQFN40 in the MCU package field and make the following
pin configuration:

– Set Port E pin 0 (RE0) as output

Figure 2-1. Pin Mapping

6. Click Pin Module in the Project Resources and set the custom name for RE0 to LED0.
7. Click Generate in the Project Resources tab.

 TB3285
Using TMR0 in 8-bit Mode with Periodic Int...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 8

https://microchipdeveloper.com/install:mcc

8. In the main.c file generated by MCC, change or add the following code:
– Enable the global and peripheral interrupts
– Add the TMR0 Interrupt function
– Set the TMR0 interrupt handler initializer

void TMR0_compareInterrupt(void);

void main(void)
{
 // Initialize the device
 SYSTEM_Initialize();

 // Enable the Global Interrupts
 INTERRUPT_GlobalInterruptEnable();

 // Enable the Peripheral Interrupts
 INTERRUPT_PeripheralInterruptEnable();

 TMR0_SetInterruptHandler(TMR0_compareInterrupt);

 while (1)
 {
 // Add your application code
 }
}

void TMR0_compareInterrupt(void)
{
 LED0_Toggle();
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

2.2 Bare Metal Code
First, the Watchdog Timer has to be disabled and Low-Voltage Programming (LVP) has to be enabled using the
following pragma code:

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

The following function initializes the system clock to have the HFINTOSC oscillator as input clock and to run at 1
MHz:

static void CLK_Initialize(void)
{
 OSCCON1 = 0x60; /* set HFINTOSC as new oscillator source */
 OSCFRQ = 0x00; /* set HFFRQ to 1 MHz */
}

The following function initializes the RE0 pin (corresponding to the on-board LED0) as output pin:

static void PORT_Initialize(void)
{
 TRISEbits.TRISE0 = 0; /* configure RE0 as output */
}

The following function initializes Timer0 in 8-bit mode, sets the prescaler to 1:16, loads TMR0H and TMR0L registers,
clears the Interrupt flag, and enables the interrupt and Timer0:

static void TMR0_Initialize(void)
{

 TB3285
Using TMR0 in 8-bit Mode with Periodic Int...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 9

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr0-8bit-cmp-int-mcc

 T0CON1 = 0x94; /* Select LFINTOSC, set the prescaler to 1:16, Disable TMR0 sync */
 TMR0H = 0xC1; /* Load the compare value to TMR0H */
 TMR0L = 0x00; /* Load the reset value to TMR0L */
 PIR0bits.TMR0IF = 0; /* clear the interrupt flag */
 PIE0bits.TMR0IE = 1; /* enable TMR0 interrupt */
 T0CON0 = 0x80; /* Configure TMR0 in 8-bit mode and enable TMR0 */
}

The following function enables the global and peripheral interrupts:

static void INTERRUPT_Initialize(void)
{
 INTCONbits.GIE = 1; /* Enable the Global Interrupts */
 INTCONbits.PEIE = 1; /* Enable the Peripheral Interrupts */
}

The following function handles the Timer0 interrupt and it is called in the interrupt manager function:
static void TMR0_ISR(void)
{
 PIR0bits.TMR0IF = 0; /* clear the TMR0 interrupt flag */
 LATEbits.LATE0 = ~LATEbits.LATE0; /* toggle LED0 */
}

The following function handles the interrupts in the project:
void __interrupt() INTERRUPT_InterruptManager (void)
{
 /* Check if TMR0 interrupt is enabled and if the interrupt flag is set */
 if(PIE0bits.TMR0IE == 1 && PIR0bits.TMR0IF == 1)
 {
 TMR0_ISR();
 }
}

The main function will call all the initializing functions and run all the peripherals in an infinite empty loop:
void main(void)
{
 CLK_Initialize();
 PORT_Initialize();
 TMR0_Initialize();
 INTERRUPT_Initialize();

 while(1)
 {
 ;
 }
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR0 in 8-bit Mode with Periodic Int...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 10

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr0-8bit-cmp-int-bare

3. Using and Operating TMR0 in 16-bit Mode while the Microcontroller is
in Sleep
This example describes how to configure TMR0 in 16-bit mode and generate an overflow interrupt every ten seconds,
using LFINTOSC as clock source. TMR0 will run while the microcontroller is in Sleep mode. A GPIO pin (the
development board’s on-board LED) will be configured as output. When the interrupt occurs, the microcontroller is
woken up and the LED is lit for 100 ms and then the microcontroller is put back to Sleep.

To achieve the functionality described by the use case, the following actions will have to be performed:

• System clock initialization
• Port initialization
• Timer0 initialization
• Interrupts initialization
• Timer0 interrupt handling

3.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources → System → System Module and make the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 1 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
– In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR0 and do the following configurations:
Timer0 Configuration:

– Enable Timer: checked
– Timer Clock tab

• Clock Source: LFINTOSC
• Clock Prescaler: 1:32
• Postscaler: 1:1
• Timer mode: 16-bit
• Enable Synchronization: unchecked

– Timer period: 10s
– Enable Timer Interrupt: checked

5. Open Pin Manager → Grid View window and select UQFN40 in the MCU package field and make the following
pin configuration:

– Set Port E pin 0 (RE0) as output

Figure 3-1. Pin Mapping

 TB3285
Using and Operating TMR0 in 16-bit Mode while ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 11

https://microchipdeveloper.com/install:mcc

6. Click Pin Module in the Project Resources and set the custom name for RE0 to LED0.
7. Click Generate in the Project Resources tab.
8. In the main.c file generated by MCC, change or add the following code:

– Enable the Global and Peripheral interrupts
– Light up LED0, wait 100 ms, turn off LED0 and put the microcontroller to Sleep

9. void main(void)
{
 // Initialize the device
 SYSTEM_Initialize();

 // Enable the Global Interrupts
 INTERRUPT_GlobalInterruptEnable();

 // Enable the Peripheral Interrupts
 INTERRUPT_PeripheralInterruptEnable();

 while (1)
 {
 LED0_SetLow();
 __delay_ms(100);
 LED0_SetHigh();
 SLEEP();
 }
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

3.2 Bare Metal Code
First, the Watchdog Timer has to be disabled and Low-Voltage Programming (LVP) has to be enabled using the
following pragma code:

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

The following function initializes the system clock to have the HFINTOSC oscillator as input clock and to run at 1
MHz:

static void CLK_Initialize(void)
{
 OSCCON1 = 0x60; /* set HFINTOSC as new oscillator source */
 OSCFRQ = 0x00; /* set HFFRQ to 1 MHz */
}

The following function initializes the RE0 pin (corresponding to the on-board LED0) as output pin:

static void PORT_Initialize(void)
{
 TRISEbits.TRISE0 = 0; /* configure RE0 as output */
}

The following function initializes Timer0 in 16-bit mode, sets the prescaler to 1:32, loads the TMR0H and TMR0L
registers, clears the Interrupt flag and enables the interrupt and Timer0:

static void TMR0_Initialize(void)
{
 T0CON1 = 0x95; /* select LFINTOSC, disable TMR0 sync, set prescaler to 1:32 */
 TMR0H = 0xDA; /* set TMR0H reload value */
 TMR0L = 0x29; /* set TMR0L reload value */
 PIR0bits.TMR0IF = 0; /* clear the interrupt flag */
 PIE0bits.TMR0IE = 1; /* enable TMR0 interrupt */

 TB3285
Using and Operating TMR0 in 16-bit Mode while ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 12

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR0-16BIT-SLEEP-INT-MCC

 T0CON0 = 0x90; /* configure TMR0 in 16-bit mode and enable TMR0 */
}

The following function enables the Global and Peripheral interrupts:

static void INTERRUPT_Initialize(void)
{
 INTCONbits.GIE = 1; /* Enable the Global Interrupts */
 INTCONbits.PEIE = 1; /* Enable the Peripheral Interrupts */
}

The following function handles the Timer0 interrupt and it is called in the Interrupt Manager function:
static void TMR0_ISR(void)
{
 PIR0bits.TMR0IF = 0; /* clear the TMR0 interrupt flag */
 TMR0H = 0xDA; /* set TMR0H reload value */
 TMR0L = 0x29; /* set TMR0L reload value */
}

The following function handles the interrupts in the project:
void __interrupt() INTERRUPT_InterruptManager(void)
{
 /* Check if TMR0 interrupt is enabled and if the interrupt flag is true */
 if(PIE0bits.TMR0IE == 1 && PIR0bits.TMR0IF == 1)
 {
 TMR0_ISR();
 }
}

The main function will call all the initializing functions and will turn on the LED0 for 100 ms and put the microcontroller
to Sleep using the SLEEP() instruction. Additionally, prior to the main function, the _XTAL_FREQ symbol must be
defined and set to 1000000 (equivalent to the 1 MHz system frequency) for the use of the __delay_ms() function:

#define _XTAL_FREQ 1000000UL

void main(void)
{
 CLK_Initialize();
 PORT_Initialize();
 TMR0_Initialize();
 INTERRUPT_Initialize();

 while(1)
 {
 LATEbits.LATE0 = 0; /* turn LED ON */
 __delay_ms(100); /* wait 100 ms */
 LATEbits.LATE0 = 1; /* turn LED OFF */

 SLEEP();
 }
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using and Operating TMR0 in 16-bit Mode while ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 13

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR0-16BIT-SLEEP-INT-BARE

4. Using TMR0 in 8-bit Mode and to Generate an Output Signal
This example describes how to configure TMR0 in 8-bit mode, using LFINTOSC as clock source. A GPIO pin will be
configured as output and a 125 Hz signal will be generated on the GPIO pin using the Peripheral Pin Select (PPS).

To achieve the functionality described by this use case, the following actions will have to be performed:

• System clock initialization
• Port initialization
• Timer0 initialization
• Peripheral Pin Select initialization

4.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources → System → System Module and make the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 1 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
– In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR0 and make the following configurations:
Timer0 Configuration:

– Enable Timer: checked
– Timer Clock tab

• Clock Source: LFINTOSC
• Clock Prescaler: 1:1
• Postscaler: 1:1
• Timer mode: 8-bit
• Enable Synchronization: unchecked

– Timer period: 4 ms
– Enable Timer Interrupt: unchecked

5. Open Pin Manager → Grid View window and select UQFN40 in the MCU package field and make the following
pin configuration:

– Set Port C pin 2 (RE0) as output

Figure 4-1. Pin Mapping

6. Click Generate in the Project Resources tab.

 TB3285
Using TMR0 in 8-bit Mode and to Generate an ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 14

https://microchipdeveloper.com/install:mcc

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

4.2 Bare Metal Code
First, the Watchdog Timer has to be disabled and Low-Voltage Programming (LVP) has to be enabled using the
following pragma code:

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

The following function initializes the system clock to have the HFINTOSC oscillator as input clock and to run at 1
MHz:

static void CLK_Initialize(void)
{
 OSCCON1 = 0x60; /* set HFINTOSC as new oscillator source */
 OSCFRQ = 0x00; /* set HFFRQ to 1 MHz */
}

The following function initializes the RC2 pin as output pin:

static void PORT_Initialize(void)
{
 TRISCbits.TRISC2 = 0; /* configure RC2 as output */
}

The following function initializes Timer0 in 8-bit mode, sets the prescaler to 1:1, loads the TMR0H and TMR0L
registers, clears the Interrupt flag and enables Timer0:

static void TMR0_Initialize(void)
{
 T0CON1 = 0x90; /* select LFINTOSC and disable TMR0 sync*/
 TMR0H = 0x7B; /* load TMR0H */
 TMR0L = 0x00; /* load TMR0L */
 PIR0bits.TMR0IF = 0; /* clear the interrupt flag */
 T0CON0 = 0x80; /* enable TMR0 */
}

The following function configures the TMR0 output to RC2 in PPS:

static void PPS_Initialize(void)
{
 RC2PPS = 0x13; /* configure RC2 for TMR0 output */
}

The main function calls all the initializing functions and run all the peripherals in an infinite empty loop:
void main(void)
{
 CLK_Initialize();
 PORT_Initialize();
 TMR0_Initialize();
 PPS_Initialize();

 while(1)
 {
 ;
 }
}

 TB3285
Using TMR0 in 8-bit Mode and to Generate an ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 15

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr0-clk-out-mcc

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR0 in 8-bit Mode and to Generate an ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 16

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr0-clk-out-bare

5. Using TMR1 Gate to Measure Frequency
This example describes how to initialize and use the TMR1 in Gate-Single Pulse and Toggle combined mode. The
timer will start counting on an incrementing edge, will measure a full-cycle length of a gate signal and will stop when a
new incrementing edge appears. An interrupt will be generated when the measurement is completed. A GPIO pin will
be configured as input and the periodical signal will be applied on this pin.

In this example, the microcontroller was configured with a clock system of 32 MHz and the timer was configured with
a clock source frequency of 1 MHz and is able to measure the following range of values:

• The smallest frequency value: This is based on the number of values that the timer can count. It is a 16-bit timer
so it can count up to 65,535, resulting in a frequency of approximately 15.26 Hz.

• The biggest frequency value: This is based on the Nyquist frequency theorem. The sampling frequency must be
at least two times bigger than the one of the measured signal to obtain a more accurate result. This results in a
frequency of approximately 500 kHz.

Note:  It is recommended to increase the clock source frequency of the timer to measure frequencies closer or
bigger than the Nyquist value from the above example.

To achieve the functionality described by this use case, the following actions will have to be performed:
• System clock initialization
• Port initialization
• Timer1 initialization
• Interrupts initialization
• Timer1 gate interrupt handling

5.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources → System → System Module and make the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 32 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected.
– In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR1 and make the following configurations:
Timer1 Configuration:

– Enable Timer: checked
– Timer Clock tab

• Clock Source: FOSC/4
• Prescaler: 1:8

– Enable Gate tab: checked
• Enable Gate Toggle: checked
• Enable Gate Single-Pulse mode: checked

– Enable Timer Gate Interrupt: checked
5. Open Pin Manager → Grid View window and select UQFN40 in the MCU package field and make the following

pin configurations to enable the internal signal access to the I/O:

 TB3285
Using TMR1 Gate to Measure Frequency

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 17

https://microchipdeveloper.com/install:mcc

Figure 5-1. Pin Mapping

6. Click Generate in the Project Resources tab.
7. For this example, some extra code is required aside from the one generated from MCC.

– The Global and Peripheral interrupts need to be enabled in the main.c file. The macros were created by
the MCC and the user needs to remove the “//” so they are no longer treated as comments:

// Enable the Global Interrupts
INTERRUPT_GlobalInterruptEnable();

// Enable the Peripheral Interrupts
INTERRUPT_PeripheralInterruptEnable();

– In the tmr1.c file, the TMR1_GATE_ISR() function needs to be updated to clear the Interrupt flag, read
the counted value, reset it afterward and re-enable the timer gate control for a new acquisition. The
following configuration is used:
void TMR1_GATE_ISR(void)
{
 volatile uint16_t value = 0;

 PIR5 &= ~(_PIR5_TMR1GIF_MASK);

 value = TMR1_ReadTimer();

 TMR1_WriteTimer(0);

 T1GCON |= _T1GCON_T1GGO_MASK;
}

Note:  To obtain the frequency of the measured signal from the counted value read, the clock source frequency of
the timer needs to be divided by the value.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

5.2 Bare Metal Code
The functions and code necessary to implement the example discussed are analyzed in this section.

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming (LVP).

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, an initialization of peripherals must be added to the project: TMR1, the
system clock, the GPIO pin and the interrupts.

 TB3285
Using TMR1 Gate to Measure Frequency

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 18

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-frequency-measuring-mcc

The system clock was configured to use the HFINTOSC oscillator with an internal frequency of 32 MHz. The
following function is used:

/* Clock initialization function */
static void CLK_Initialize(void)
{
 /* set HFINTOSC as new oscillator source */
 OSCCON1bits.NOSC = 0x6;

 /* set HFFRQ to 32MHz */
 OSCFRQbits.HFFRQ = 0x6;
}

The GPIO peripheral was configured to use PINB5 as input for the signal that needs to be measured. The following
function is used:

/* Port initialization function */
static void PORT_Initialize(void)
{
 /* configure RB5 as input */
 TRISBbits.TRISB5 = 1;

 /* configure RB5 as digital */
 ANSELBbits.ANSELB5 = 0;
}

The TMR1 peripheral was configured in Gate Single-Pulse and Toggle combined mode, has a clock source of 1 MHz,
the counter is active on a trailing edge and the peripheral’s gate interrupt is Active. The following function is used:

/* TMR1 initialization function */
static void TMR1_Initialize(void)
{
 /* Timer controlled by gate function */
 T1GCONbits.GE = 1;

 /* Timer gate toggle mode enabled */
 T1GCONbits.GTM = 1;

 /* Timer gate active high */
 T1GCONbits.GPOL = 1;

 /* Timer acquistion is ready */
 T1GCONbits.GGO_nDONE = 1;

 /* Timer gate single pulse mode enabled */
 T1GCONbits.T1GSPM = 1;

 /* Source Clock FOSC/4 */
 T1CLKbits.CS = 0x1;

 /* Clearing gate IF flag before enabling the interrupt */
 PIR5bits.TMR1GIF = 0;

 /* Enabling TMR1 gate interrupt */
 PIE5bits.TMR1GIE = 1;

 /* CLK Prescaler 1:8 */
 T1CONbits.CKPS = 0x3;

 /* TMR1 enabled */
 T1CONbits.ON = 1;
}

The microcontroller’s interrupts were enabled and are used to determine when the signal measurement is done. The
following function is used:

/* Interrupt initialization function */
static void INTERRUPT_Initialize(void)
{
 /* Enable the Global Interrupts */
 INTCONbits.GIE = 1;

 TB3285
Using TMR1 Gate to Measure Frequency

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 19

 /* Enable the Peripheral Interrupts */
 INTCONbits.PEIE = 1;
}

When the timer finishes measuring the frequency of the external signal, an interrupt will occur in the interrupt
manager. It will check for the source of the interrupt and, if it is from TMR1 gate, will call a handler function. The
following function is used:

/* Interrupt handler function */
static void __interrupt() INTERRUPT_InterruptManager(void)
{
 // interrupt handler
 if(INTCONbits.PEIE == 1)
 {
 if(PIE5bits.TMR1GIE == 1 && PIR5bits.TMR1GIF == 1)
 {
 TMR1_GATE_ISR();
 }
 else
 {
 //Unhandled Interrupt
 }
 }
 else
 {
 //Unhandled Interrupt
 }
}

The handler needs to clear the Interrupt flag, read the counted value and reset it afterward, and re-enable the timer
gate control for a new acquisition. The following function is used:

/* TMR1 gate ISR function */
static void TMR1_GATE_ISR(void)
{
 volatile uint16_t value = 0;

 /* Clearing gate IF flag */
 PIR5bits.TMR1GIF = 0;

 /* Read TMR1 value */
 value = TMR1_readTimer();

 /* Reset the counted value */
 TMR1_writeTimer(0);

 /* Prepare for next read */
 T1GCONbits.GGO_nDONE = 1;
}

static uint16_t TMR1_readTimer(void)
{
 /* Return TMR1 value */
 return ((uint16_t)TMR1H << 8) | TMR1L;
}

static void TMR1_writeTimer(uint16_t timerValue)
{
 /* Write TMR1H value */
 TMR1H = timerValue >> 8;

 /* Write TMR1L value */
 TMR1L = timerValue;
}

Note:  To obtain the frequency of the measured signal from the counted value read, the clock source frequency of
the timer needs to be divided by the value.

 TB3285
Using TMR1 Gate to Measure Frequency

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 20

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR1 Gate to Measure Frequency

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 21

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-frequency-measuring-bare

6. Using TMR1 to Trigger a Special Event
This example describes how to initialize and use the TMR1 as a counter. The Capture/Compare/PWM (CCP) module
will be configured with a user-defined value. A GPIO pin will be configured as output and the event will toggle the
logic value of this pin. The event will be triggered when the counted value from TMR1 will be equal with the CCP
value.

In this example, the microcontroller was configured with a clock system of 1 MHz and the timer was configured with a
clock source frequency of 250 kHz. It is a 16-bit timer so it can count up to 65,535. The CCP value was set to 4,095
in this example. When the counter reaches this value, an event will occur which will be strictly handled by the
hardware peripheral, without any software and load on the core.

The event can be configured to clear or not clear the timer counter value and, if the GPIO pin should be set high, set
low or toggled every time the event is triggered. In this example, the event will toggle the GPIO pin and will not clear
the timer, so the timer counted value will overflow when reaches the 65,535 maxim value and will restart counting
from zero. Thus, even when a value was predefined for CCP, the event will be triggered with a frequency of 250 kHz /
65,535 ~ = 3.81 Hz.

To achieve the functionality described by this use case, the following actions will have to be performed:
• System clock initialization
• PPS initialization
• Port initialization
• Timer1 initialization
• CCP initialization

6.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources → System → System Module and make the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 32 MHz
– Clock Divider: 32
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected.

4. From the Device Resources window, add TMR1 and CCP1. Make the following configurations for
each peripheral:

– TMR1 Configuration:
1. Enable Timer: checked
2. Timer Clock tab

– Clock Source: FOSC/4
– Prescaler: 1:1
– Enable Synchronization: Checked

– CCP1 Configuration:
• Enable CCP: Checked
• CCP Mode tab: Compare

– Select Timer: Timer1
– Compare Mode: Toggle_

5. Open Pin Manager → Grid View window and select UQFN40 in the MCU package field and make the following
pin configuration to enable the internal signal access to the I/O:

 TB3285
Using TMR1 to Trigger a Special Event

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 22

https://microchipdeveloper.com/install:mcc

Figure 6-1. Pin Mapping

6. Click Generate in the Project Resources tab.

Note:  In this example, the event will be strictly handled by the hardware peripheral without any software, and load
on the core so no extra code was used aside from the one generated from MCC.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

6.2 Bare Metal Code
The functions and code necessary to implement the example discussed are analyzed in this section.

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming (LVP).

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, an initialization of peripherals must be added to the project: TMR1, the
system clock and the GPIO pin.

The system clock was configured to use the HFINTOSC oscillator with an internal frequency of 32 MHz and the clock
divided by 32, so the actual system frequency is 1 MHz. The following function is used:

/* Clock initialization function */
static void CLK_Initialize(void)
{
 /* set HFINTOSC as new oscillator source */
 OSCCON1bits.NOSC = 0x6;

 /* set Clock Div by 32 */
 OSCCON1bits.NDIV = 0x5;

 /* set HFFRQ to 32MHz */
 OSCFRQbits.HFFRQ = 0x6;
}

The GPIO peripheral was configured to use PINB0 as output for the event triggered by CCP. The following function is
used:

/* PPS initialization function */
static void PPS_Initialize(void)
{
 /* Configure RB0 for CCP1 output */
 RB0PPS = 0x05;
}

/* Port initialization function */
static void PORT_Initialize(void)
{
 /* Set RB0 as output */

 TB3285
Using TMR1 to Trigger a Special Event

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 23

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-special-event-trigger-mcc

 TRISBbits.TRISB0 = 0;
}

The TMR1 peripheral was configured as a normal counter. The following function is used:

/* TMR1 initialization function */
static void TMR1_Initialize(void)
{
 /* Set timer Source Clock to FOSC/4 */
 T1CLKbits.CS = 0x1;

 /* Enable timer */
 T1CONbits.ON = 1;
}

The CCP1 peripheral was configured to toggle a GPIO pin when the TMR1 counted value is equal with the CCP
value. The following function is used:

/* CCP1 initialization function */
static void CCP1_Initialize(void)
{
 /* Select TMR1 as input for CCP1*/
 CCPTMRSbits.C1TSEL = 0x1;

 /* Set the high value for compare */
 CCPR1H = 0x0F;

 /* Set the low value for compare */
 CCPR1L = 0xFF;

 /* Compare mode with toggle*/
 CCP1CONbits.CCP1MODE = 0x2;

 /* Enable CCP1 */
 CCP1CONbits.EN = 1;
}

Note:  In this example, the event will be strictly handled by the hardware peripheral without any software and load on
the core.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR1 to Trigger a Special Event

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 24

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-special-event-trigger-bare

7. Using TMR1 Gate to Measure Short vs. Long Button Press
This example describes how to initialize and use the TMR1 in Gate Single-Pulse mode. The timer will start counting
on an falling edge. If the leading edge appears, a gate interrupt will be generated, denoting that the button was short
pressed. If the timer overflows before the leading edge appears, an overflow interrupt will be generated, denoting that
the button was long pressed. A GPIO pin will be configured as input and connected to a button.

Note:  The polarity of the gate is based on the button logic. If the button is active-low (meaning it will provide zero
logic value when pressed), the timer needs to count on negative polarity and start counting on falling edge.

In this example, the microcontroller was configured with a clock system of 1 MHz and the timer was configured with a
clock source frequency of 31,250 MHz = 32 µs and is able to measure the following range of values:

• The smallest pressed time: This is based on the clock frequency of the timer, resulting in a minimum time of 1 /
31,250 Hz = 32 µs.

• The biggest pressed time: This is based on the maximum value the timer can count. It is a 16-bit timer so it can
count up to 65,535. Thus, resulting in a minimum time of 32 µs * 65,535 ~ = 2.1 s. A longer press will result in a
timer overflow.

To achieve the functionality described by this use case, the following actions will have to be performed:
• System clock initialization
• Port initialization
• Timer1 initialization
• Interrupts initialization
• Timer1 interrupt handling
• Timer1 gate interrupt handling

7.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources → System → System Module and make the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 32 MHz
– Clock Divider: 32
– In the Watchdog Timer Enable field, in the WWDT tab, WDT Disabled has to be selected.

4. From the Device Resources window, add TMR1 and do the following configurations:
– Enable Timer: checked
– Timer Clock tab

• Clock Source: FOSC/4
• Prescaler: 1:8

– Enable Gate tab: checked
• Enable Gate Toggle: checked
• Enable Gate Single-Pulse mode: checked
• Gate Polarity: Low

– Enable Timer Interrupt: Checked
– Enable Timer Gate Interrupt: Checked

5. Open Pin Manager → Grid View window and select UQFN40 in the MCU package field and make the following
pin configuration to enable the internal signal access to the I/O:

 TB3285
Using TMR1 Gate to Measure Short vs. Long ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 25

https://microchipdeveloper.com/install:mcc

Figure 7-1. Pin Mapping

6. Click Generate in the Project Resources tab.
7. For this example, some extra code is required aside from the one generated from MCC.

– The Global and Peripheral interrupts need to be enabled in the main.c file. The macros were created by
the MCC and the user needs to remove the “//” so they are no longer treated as comments:

// Enable the Global Interrupts
INTERRUPT_GlobalInterruptEnable();

// Enable the Peripheral Interrupts
INTERRUPT_PeripheralInterruptEnable();

– In the tmr1.c file, the TMR1_ISR() function needs to be updated to stop the gate control because the
button was not released yet and it will generate an undesired interrupt when that will happen. It also
needs to clear the Interrupt flag, reset the counted value and re-enable the timer gate control for a new
acquisition. The following function is used:
void TMR1_ISR(void)

 T1GCON &= ~_T1GCON_T1GGO_MASK;

 PIR4 &= ~_PIR4_TMR1IF_MASK;

 PIR5 &= ~_PIR5_TMR1GIF_MASK;

 TMR1_WriteTimer(0);

 T1GCON |= _T1GCON_T1GGO_MASK;

 if(TMR1_InterruptHandler)
 {
 TMR1_InterruptHandler();
 }
}

– In the tmr1.c file, the TMR1_GATE_ISR() function needs to be updated to clear the Interrupt flag, reset
the counted value and re-enable the timer gate control for a new acquisition. The following function is
used:
void TMR1_GATE_ISR(void)
{
 PIR5 &= ~(_PIR5_TMR1GIF_MASK);

 TMR1_WriteTimer(0);

 T1GCON |= _T1GCON_T1GGO_MASK;
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR1 Gate to Measure Short vs. Long ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 26

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-button-press-count-mcc

7.2 Bare Metal Code
The functions and code necessary to implement the example discussed are analyzed in this section.

The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming (LVP):

#pragma config WDTE = OFF /* WDT operating mode->WDT Disabled */
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

As described in the example functionality, the following peripherals must be initialized: TMR1, the system clock, the
GPIO pin and the interrupts.

The system clock was configured to use the HFINTOSC oscillator with an internal frequency of 32 MHz and the clock
divided by 32, so the actual system frequency is 1 MHz. The following function is used:

/* Clock initialization function */
static void CLK_Initialize(void)
{
 /* set HFINTOSC as new oscillator source */
 OSCCON1bits.NOSC = 0x6;

 /* set Clock Div by 32 */
 OSCCON1bits.NDIV = 0x5;

 /* set HFFRQ to 32MHz */
 OSCFRQbits.HFFRQ = 0x6;
}

The GPIO peripheral was configured to use PINB5 as input for TMR1 button. The following function is used:

/* Port initialization function */
static void PORT_Initialize(void)
{
 /* configure RB5 as input */
 TRISBbits.TRISB5 = 1;

 /* configure RB5 as digital */
 ANSELBbits.ANSELB5 = 0;
}

The TMR1 peripheral is configured in Gate Single-Pulse mode, has a clock source of 1 MHz, the counter is active on
a falling edge and the peripheral gate and overflow interrupts are Active. The following function is used:

/* TMR1 initialization function */
static void TMR1_Initialize(void)
{
 /* Timer controlled by gate function */
 T1GCONbits.GE = 1;

 /* Timer acquistion is ready */
 T1GCONbits.GGO_nDONE = 1;

 /* Timer gate single pulse mode enabled */
 T1GCONbits.T1GSPM = 1;

 /* Source Clock FOSC/4 */
 T1CLKbits.CS = 0x1;

 /* Clearing IF flag before enabling the interrupt */
 PIR4bits.TMR1IF = 0;

 /* Enabling TMR1 interrupt */
 PIE4bits.TMR1IE = 1;

 /* Clearing gate IF flag before enabling the interrupt */
 PIR5bits.TMR1GIF = 0;

 /* Enabling TMR1 gate interrupt */
 PIE5bits.TMR1GIE = 1;

 TB3285
Using TMR1 Gate to Measure Short vs. Long ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 27

 /* CLK Prescaler 1:8 */
 T1CONbits.CKPS = 0x3;

 /* TMR1 enabled */
 T1CONbits.ON = 1;
}

The microcontroller’s interrupts were enabled and are used to determine the button press time. The following function
is used:

/* Interrupt initialization function */
static void INTERRUPT_Initialize(void)
{
 /* Enable the Global Interrupts */
 INTCONbits.GIE = 1;

 /* Enable the Peripheral Interrupts */
 INTCONbits.PEIE = 1;
}

When the timer finishes counting the button pressed time, an interrupt will occur in the interrupt manager. It will check
for the source of the interrupt and it will call a handler function. The following function is used:
/* Interrupt handler function */
static void __interrupt() INTERRUPT_interruptManager(void)
{
 // interrupt handler
 if(INTCONbits.PEIE == 1)
 {
 if(PIE4bits.TMR1IE == 1 && PIR4bits.TMR1IF == 1)
 {
 TMR1_ISR();
 }
 else if(PIE5bits.TMR1GIE == 1 && PIR5bits.TMR1GIF == 1)
 {
 TMR1_GATE_ISR();
 }
 else
 {
 //Unhandled Interrupt
 }
 }
 else
 {
 //Unhandled Interrupt
 }
}

The overflow interrupt will occur when the button is pressed for so long that the timer maximum value is exceeded.
The handler needs to stop the gate control because the button was not released yet and it will generate an undesired
interrupt when that will happen. It also needs to clear the Interrupt flag, reset the counted value and re-enable the
timer gate control for a new acquisition. The following function is used:
/* TMR1 ISR function */
static void TMR1_ISR(void)
{
 /* Stop Gate control */
 T1GCONbits.GGO_nDONE = 0;

 /* Clearing overflow IF flag */
 PIR4bits.TMR1IF = 0;

 /* Clearing gate IF flag */
 PIR5bits.TMR1GIF = 0;

 /* Reset the counted value */
 TMR1_writeTimer(0);

 /* Prepare for next read */
 T1GCONbits.GGO_nDONE = 1;
}

 TB3285
Using TMR1 Gate to Measure Short vs. Long ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 28

The gate interrupt will occur when the button is released before the timer reaches its maximum value. The handler
needs to clear the Interrupt flag, reset the counted value and re-enable the timer gate control for a new acquisition.
The following function is used:
/* TMR1 GATE ISR function */
static void TMR1_GATE_ISR(void)
{
 /* Clearing gate IF flag after button release */
 PIR5bits.TMR1GIF = 0;

 /* Reset the counted value */
 TMR1_writeTimer(0);

 /* Prepare for next read */
 T1GCONbits.GGO_nDONE = 1;
}

When any interrupt occurs, the timer counted value is reset to ‘0’. The following function is used:

static void TMR1_writeTimer(uint16_t timerValue)
{
 /* Write TMR1H value */
 TMR1H = timerValue >> 8;

 /* Write TMR1L value */
 TMR1L = timerValue;
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR1 Gate to Measure Short vs. Long ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 29

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr1-button-press-count-bare

8. Using TMR2 for Auto-Conversion Trigger for the ADCC Module
This example will present how to use the TMR2 peripheral to trigger the ADCC to make conversions at a fixed
frequency rate that can be adjusted by modifying the TMR2 period.

The application will blink the LED0 with a rate of Timer2 period (100 ms), get the ADCC value and compare it with a
desired threshold and, if it is higher, the LED0 will stop blinking.

This example uses the PIC18F47Q10 Curiosity Nano board with a POT click, both inserted into a Curiosity Nano
adapter. For more details, visit the Hardware Configuration section in the GitHub repository.

To achieve the functionality described by this use case, the following actions will have to be performed:
• System clock initialization
• ADCC initialization and reading
• Port initialization
• Timer2 initialization
• Interrupts handling and initialization

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

8.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources → System → System Module and make the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 1 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
– In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR2 and ADCC and then make the following configurations:
Timer2 Configuration:

– Enable Timer: checked
– Control Mode: Roll over pulse
– Start/Reset Option: Software control
– Timer Clock tab

• Clock Source: LFINTOSC
• Clock Prescaler: 1:64
• Postscaler: 1:1

– Set 100 ms period in the Timer Period tab

ADCC Configuration:

– Enable ADCC: checked
– Operating: Basic mode
– In the ADC tab choose the following options:

• ADC Clock → Clock Source: Select FRC
• Auto-conversion Trigger: Select TMR2

– CVD Features tab:

 TB3285
Using TMR2 for Auto-Conversion Trigger for the ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 30

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-ADC-TRIGGER-MCC
https://microchipdeveloper.com/install:mcc

• Enable ADC Interrupt: checked
5. Open Pin Manager → Grid View window and select UQFN40 in the MCU package field and select the I/O pins

outputs to enable the internal signal access to the I/O.
Figure 8-1. Pin Mapping

6. Click Pin Module in the Project Resources and set the custom name for RE0 to LED0, select Output box and
for the ANA0 pin select the Analog box.

7. Click Generate in the Project Resources tab.
8. Add into the main.c file, the following lines of code:

#define DesiredThreshold 300 /* Desired threshold value */
volatile uint16_t adcVal;
static void ADCC_interrupt(void);

static void ADCC_interrupt(void)
{
 /* Toggle LED0 at the Timer2Period frequency */
 LED0_Toggle();
 adcVal = ADCC_GetConversionResult();
}

void main(void)
{
 // Initialize the device
 SYSTEM_Initialize();
ADCC_SetADIInterruptHandler(ADCC_Interrupt_by_TMR2);
 // Enable the Global Interrupts
 INTERRUPT_GlobalInterruptEnable();
 // Enable the Peripheral Interrupts
 INTERRUPT_PeripheralInterruptEnable();

 while (1)
 {
 if (adcVal > DesiredThreshold)
 {
 LED0_SetLow();
 }
 }
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR2 for Auto-Conversion Trigger for the ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 31

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-ADC-TRIGGER-MCC

8.2 Bare Metal Code
The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming (LVP):

#pragma config WDTE = OFF /*disable Watchdog*/
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

Then, the following variables need to be defined:

#define Timer2Period 0x2F /* TMR2 Period is 100ms */
#define DesiredThreshold 300 /* Desired threshold value */
#define AnalogChannel 0x00 /* Use ANA0 as input for ADCC */
volatile uint16_t adcVal; /* ADCC global result value */

The CLK_Initialize function initializes the HFINTOSC internal oscillator:

static void CLK_Initialize(void)
{
 /* set HFINTOSC Oscillator */
 OSCCON1 = 0x60;
 /* set HFFRQ to 1 MHz */
 OSCFRQ = 0x00;
}

The PORT_Initialize function has the role to configure the pin used in this application, which is the RE0 output
for LED0:

static void PORT_Initialize(void)
{
 /* Set RE0 digital input buffer disabled */
 ANSELE = 0x06;
 /* Set RE0 pin as output */
 TRISE = 0x06;
}

The next function initializes the ADCC and configures the TMR2 to be an auto-conversion trigger and enables the
ADCC Interrupt flag:

static void ADCC_Initialize(void)
{
 /* ADACT Auto-Conversion Trigger Source is TMR2 */
 ADACT = 0x04;
 /* ADGO stop; ADFM right; ADON enabled; ADCONT disabled; ADCS FRC */
 ADCON0 = 0x94;
 /* Clear the ADCC interrupt flag */
 PIR1bits.ADIF = 0;
 /* Enabling ADCC interrupt flag */
 PIE1bits.ADIE = 1;
}

The Timer2 initialization function sets the clock source and the registers needed to generate an 100 ms period:

static void TMR2_Initialize(void)
{
 /* TMR2 Clock source, LFINTOSC (00100) has 31 kHz */
 T2CLKCON = 0x04;
 /* T2PSYNC Not Synchronized, T2MODE Software control, T2CKPOL Rising Edge */
 T2HLT = 0x00;
 /* TMR2ON on; T2CKPS Prescaler 1:64; T2OUTPS Postscaler 1:1
 Minimum timer period is 31 kHz/64 = 2.064516 ms */
 T2CON = 0xE0;
 /* Set TMR2 period, PR2 to 100ms */
 T2PR = Timer2Period;
 /* Clear the TMR2 interrupt flag */
 PIR4bits.TMR2IF = 0;
}

 TB3285
Using TMR2 for Auto-Conversion Trigger for the ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 32

The following initialization function will safely enable the Global and Peripherals interrupts, after they were initialized
with proper settings:

static void INTERRUPT_Initialize(void)
{
 INTCONbits.GIE = 1; /* Enable Global Interrupts */
 INTCONbits.PEIE = 1; /* Enable Peripheral Interrupts */
}

The ADCC interrupt is triggered by TMR2 to complete a conversion at a frequency determined by the Timer2 Period.
The following function handles the interrupts, in this case ADCC_Interrupt, checks the status of the ADCC
Interrupt flag, and then calls the ADCC_Interrupt function:

static void __interrupt() INTERRUPT_InterruptManager(void)
{
 if (INTCONbits.PEIE == 1)
 {
 if (PIE1bits.ADIE == 1 && PIR1bits.ADIF == 1)
 {
 ADCC_Interrupt();
 }
 }
}

The ADCC_Interrupt function is separated from the interrupt manager to be similar to the code generated by MCC.
In this function, the Interrupt flag is cleared first, the LED0 is toggled (this will happen with Timer2 Period frequency),
and finally the ADCC value for the Analog Channel is read (ANA0 is used in this example).

static void ADCC_Interrupt(void)
{
 /* Clear the ADCC interrupt flag */
 PIR1bits.ADIF = 0;
 /* Toggle LED0 at the Timer2Period frequency */
 LATEbits.LATE0 = ~LATEbits.LATE0;
 /* Get the conversion result from ADCC AnalogChannel */
 adcVal = ADCC_ReadValue(AnalogChannel);
}

The ADCC read function only needs a parameter, the channel needed to be read:

static uint16_t ADCC_ReadValue(uint8_t channel)
{
 ADPCH = channel; /*Set the input channel for ADCC*/
 /* TMR2 is trigger source for auto-conversion for ADCC */
 return ((uint16_t)((ADRESH << 8) + ADRESL));
}

The next code in the void main function is an infinite loop (using a while(1)), which is used to check for the
ADCC value using an “if” statement:

void main(void)
{
 /* Initialize the device */
 CLK_Initialize(); /* Oscillator Initialize function */
 PORT_Initialize(); /* Port Initialize function */
 ADCC_Initialize(); /* ADCC Initialize function */
 TMR2_Initialize(); /* TMR2 Initialize function */
 INTERRUPT_Initialize(); /* Interrupt Initialize function */

 while (1)
 {
 if (adcVal > DesiredThreshold)
 {
 /* turn LED0 ON by writing pin RE0 to low */
 LATEbits.LATE0 = 0;
 }
 }
}

 TB3285
Using TMR2 for Auto-Conversion Trigger for the ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 33

This will check if the read value from Potentiometer (POT click) is above a defined value. If so, the LED0 will turn ON
without blinking.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR2 for Auto-Conversion Trigger for the ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 34

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-ADC-TRIGGER-BARE

9. Using TMR4 in One-Shot Mode with External Signal as Reset
This example will present how to use the TMR4 peripheral in One-Shot mode to stop TMR2 if an external pin is
pulled to GND for more than the desired period.

The application will blink the LED0 with a rate of Timer2 Period (100 ms) and, if the external pin RC7 is pulled down
for more than the Timer4 Period (500 ms), the LED0 will stop blinking.

To achieve the functionality described by this use case, the following actions will have to be performed:
• System clock initialization
• Port initialization
• PPS initialization
• Timer2 initialization
• Timer4 initialization
• Interrupts handling and initialization

9.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources → System → System Module and make the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 1 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
– In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR2, TMR4 and make the following configurations:
Timer2 Configuration:

– Enable Timer: checked
– Control Mode: Roll over pulse
– Ext. Reset Source: TMR4_postscaled
– Start/Reset Option: Starts at T2ON = 1 and TMR2_ers = 0
– Timer Clock tab

• Clock Source: LFINTOSC
• Clock Prescaler: 1:64
• Postscaler: 1:1

– Set 100 ms period in the Timer Period tab
• Enabled Timer Interrupt: checked

5. Timer4 Configuration:

– Enable Timer: checked
– Control mode: One shot
– Ext. Reset Source: T4INPPS pin
– Start/Reset Option: Starts at TMR4_ers = 0 and Resets at TMR4_ers = 1
– Timer Clock tab:

• Clock Source: LFINTOSC
• Clock Prescaler: 1:64
• Postscaler: 1:1

– Set 500 ms period in the Timer Period tab

 TB3285
Using TMR4 in One-Shot Mode with External ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 35

https://microchipdeveloper.com/install:mcc

6. Open Pin Manager → Grid View window, select UQFN40 in the MCU package field and select the I/O pins
outputs to enable the internal signal access to the I/O.
Figure 9-1. Pin Mapping

7. Click Pin Module in the Project Resources, set the custom name for RE0 to LED0 and select Output box. For
RC7 pin, select WPU.

8. Click Generate in the Project Resources tab.
9. The Interrupt function that will toggle LED0 at Timer2 period will need to be added before main function:

void TMR2_interrupt(void)
{
 /* Toggle LED0 at the Timer2Period frequency */
 LED0_Toggle();
}

void main(void)
{
 // Initialize the device
 SYSTEM_Initialize();
 TMR2_SetInterruptHandler(TMR2_interrupt);
 // Enable the Global Interrupts
 INTERRUPT_GlobalInterruptEnable();
 // Enable the Peripheral Interrupts
 INTERRUPT_PeripheralInterruptEnable();
 while (1)
 {
 // Add your application code
 }
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

9.2 Bare Metal Code
The first step will be to configure the microcontroller to disable the Watchdog Timer (WDT) and to enable Low-
Voltage Programming (LVP).

#pragma config WDTE = OFF /*disable Watchdog*/
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

The following constants need to be defined:

#define Timer2Period 0x2F /* TMR2 Period is 100ms */
#define Timer4Period 0xF1 /* TMR4 Period is 500ms */

The CLK_Initialize function initializes the HFINTOSC internal oscillator:

static void CLK_Initialize(void)
{
 /* set HFINTOSC Oscillator */
 OSCCON1 = 0x60;
 /* set HFFRQ to 1 MHz */

 TB3285
Using TMR4 in One-Shot Mode with External ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 36

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-ONE-SHOT-RESET-MCC

 OSCFRQ = 0x00;
}

The PPS_Initialize function has the role to configure the RC7 peripheral select as input for TMR4:

static void PPS_Initialize(void)
{
 /* Set RC7 as input for TMR4 (T4IN) */
 T4INPPS = 0x17;
}

PORT_Initialize has the role to configure the RC7, input channel, and RE0 output for LED0 pins:

static PORT_Initialize(void)
{
 /* Set RC7 pin as digital */
 ANSELC = 0x7F;
 /* Set RE0 pin as output */
 TRISE = 0x06;
 /* Enable weak pull-up on pin RC7 */
 WPUC = 0x80;
}

The TMR2_Initialize function sets the clock source and the registers needed to generate an 100 ms period:

static void TMR2_Initialize(void)
{
 /* TMR2 Clock source, LFINTOSC (00100) has 31 kHz */
 T2CLKCON = 0x04;
 /* T2PSYNC Not Synchronized; T2MODE Starts at T2ON = 1 and TMR2_ers = 0; T2CKPOL Rising
Edge */
 T2HLT = 0x02;
 /* TMR2 external reset is TMR4_postscaled */
 T2RST = 0x02;
 /* TMR2 ON on; T2 CKPS Prescaler 1:64; T2 OUTPS Postscaler 1:1
 Minimum timer period is 31 kHz/64 = 2.064516 ms */
 T2CON = 0xE0;
 /* Set TMR2 period, PR2 to 100ms */
 T2PR = Timer2Period;
 /* Clear the TMR2 interrupt flag */
 PIR4bits.TMR2IF = 0;
 /* Enabling TMR2 interrupt */
 PIE4bits.TMR2IE = 1;
}

The TMR4_Initialize function sets the clock source and the registers needed to generate an 500 ms period:

static void TMR4_Initialize(void)
{
 /* TMR4 Clock source, LFINTOSC (00100) has 31 kHz */
 T4CLKCON = 0x04;
 /* TMR4 in OneShot mode, Starts at TMR4_ers=0 and resets on TMR4_ers=1 */
 T4HLT = 0x17;
 /* TMR4 External reset signal selected by T4INPPS pin */
 T4RST = 0;
 /* TMR4 ON on; T4 CKPS Prescaler 1:64; T4 OUTPS Postscaler 1:1
 Minimum timer period is 31 kHz/64 = 2.064516 ms */
 T4CON = 0xE0;
 /* Set TMR4 period, PR4 to 500ms */
 T4PR = Timer4Period;
 /* Clear the TMR4 interrupt flag */
 PIR4bits.TMR4IF = 0;
}

The following initialization function will safely enable the Global and Peripherals interrupts, after all modules have
been initialized with proper settings:

static void INTERRUPT_Initialize(void)
{
 INTCONbits.GIE = 1; /* Enable Global Interrupts */

 TB3285
Using TMR4 in One-Shot Mode with External ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 37

 INTCONbits.PEIE = 1; /* Enable Peripheral Interrupts */
}

The next function handles the interrupts (in this case there is only one interrupt), checks the status of the TMR2
Interrupt flag, and then calls the TMR2_Interrupt function.

static void __interrupt() INTERRUPT_InterruptManager(void)
{
 if (INTCONbits.PEIE == 1)
 {
 if (PIE4bits.TMR2IE == 1 && PIR4bits.TMR2IF == 1)
 {
 TMR2_Interrupt();
 }
 }
}

The TMR2_Interrupt clears the Interrupt flag and toggles the LED0 (this will happen with Timer2 Period
frequency).

static void TMR2_Interrupt(void)
{
 /* Clear the TMR2 interrupt flag */
 PIR4bits.TMR2IF = 0;
 /* Toggle LED0 at the Timer2Period frequency */
 LATEbits.LATE0 = ~LATEbits.LATE0;
}

The void main function contains only the initialization functions:

void main(void)
{
 /* Initialize the device */
 CLK_Initialize(); /* Oscillator Initialize function */
 PPS_Initialize(); /* Peripheral select Initialize function */
 PORT_Initialize(); /* Port Initialize function */
 TMR2_Initialize(); /* TMR2 Initialize function */
 TMR4_Initialize(); /* TMR4 Initialize function */
 INTERRUPT_Initialize(); /* Interrupt Initialize function */

 while (1)
 {
 ;/* Add your application code */
 }
}

If the RC7 pin is pulled to GND for more than the Timer4 Period (500 ms), TMR4 will trigger TMR2 to stop and act as
a one-shot Reset.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR4 in One-Shot Mode with External ...

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 38

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-ONE-SHOT-RESET-BARE

10. Using TMR4 as HLT to Generate an Interrupt
This example will present how to use the TMR4 as a Hardware Limit Timer (HLT) in order to generate an interrupt
and stop TMR2 that also stops the ADCC auto-conversion.

This application will blink the LED0 with Timer2 Period (100 ms), if the potentiometer value is below a desired
threshold, and will keep the LED in an ON state constantly if the potentiometer value is above that value. If the ADCC
read value is above the maximum threshold and the RC7 pin is pulled to GND for more than Timer4 Period (500 ms),
TMR4 will stop TMR2 and LED0 will blink with a 500 ms period for as long as RC7 is tied to GND.

One practical use for this code example is in a motor control application where the ADCC reads the shunt current at a
fixed frequency. The user needs to compare that value with a maximum current and, if it is above for more than a
period, then the user will stop the motor since it is consuming too much power.

This example uses the PIC18F47Q10 Curiosity Nano board with a POT Click, both inserted into a Curiosity Nano
adapter.

To achieve the functionality described by this use case, the following actions will have to be performed:
• System clock initialization
• Port initialization
• PPS initialization
• ADCC initialization
• Timer2 initialization
• Timer4 initialization
• Interrupts handling and initialization

10.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here).
3. Go to Project Resources → System → System Module and make the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 1 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
– In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR2, TMR4, ADCC and do the following configurations:
Timer2 Configuration:

– Enable Timer: checked
– Control Mode: Roll over pulse
– Ext. Reset Source: TMR4_postscaled
– Start/Reset Option: Starts at T2ON = 1 and TMR2_ers = 0
– Timer Clock tab

• Clock Source: LFINTOSC
• Clock Prescaler: 1:64
• Postscaler: 1:1

– Set 100 ms period in the Timer Period tab

Timer4 Configuration:

– Enable Timer: checked
– Control Mode: Roll over pulse
– Ext. Reset Source: T4INPPS

 TB3285
Using TMR4 as HLT to Generate an Interrupt

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 39

https://microchipdeveloper.com/install:mcc

– Start/Reset Option: Resets at TMR4_ers = 1
– Timer Clock tab

• Clock Source: LFINTOSC
• Clock Prescaler: 1:64
• Postscaler: 1:1

– Set 500 ms period in the Timer Period tab
– Enable Timer Interrupt: checked

ADCC Configuration:

– Enable ADC: Checked
– Operating: Basic mode
– • In the ADC tab, check the following options:

– ADC Clock → Clock Source: Select FRC
– Auto-conversion Trigger: Select TMR2

• CVD Features tab:
– Enable ADC Interrupt: checked

5. Open Pin Manager → Grid View window, select UQFN40 in the MCU package field, and select the I/O pins
outputs to enable the internal signal access to the I/O.
Figure 10-1. Pin Mapping

6. Go to Project Resources → Pin Module → RA0(ANA0) and select only the Analog box. For the RC7 pin,
select WPU, rename IO_RE0 to LED0 and select Output box .

7. Click Generate in the Project Resources tab.
8. Add these lines into the main.c file:

#define DesiredThreshold 300 /* Desired threshold value */
#define MaxThreshold 500 /* Maximum threshold value */
volatile uint16_t adcVal;

void TMR4_interrupt(void)
{
 /* HLT trigger: if adcVal > MaxThreshold and pin RC7 pulled-down */
 if (adcVal > MaxThreshold)
 {
 /* Toggle LED0 at the Timer2Period frequency */
 LED0_Toggle();
 /* HLT will stop TMR2 that also stops ADCC */
 TMR2_Stop();
 }
}
void ADCC_interrupt(void)
{
 /* This will toggle at a rate of 10Hz if adcVal < DesiredThreshold */
 if (adcVal < DesiredThreshold)
 {
 LED0_Toggle();
 }
 adcVal = ADCC_GetConversionResult();

 TB3285
Using TMR4 as HLT to Generate an Interrupt

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 40

}

void main(void)
{
 // Initialize the device
 SYSTEM_Initialize();
 TMR4_SetInterruptHandler(TMR4_interrupt);
 ADCC_SetADIInterruptHandler(ADCC_interrupt);
 // Enable the Global Interrupts
 INTERRUPT_GlobalInterruptEnable();
 // Enable the Peripheral Interrupts
 INTERRUPT_PeripheralInterruptEnable();

 while (1)
 {
 if ((adcVal > DesiredThreshold)&&(adcVal < MaxThreshold))
 {
 LED0_SetLow();
 }
 }
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

10.2 Bare Metal Code
The application with bare metal code will have the same behavior as the MCC generated code.

The first step will be to configure the microcontroller to disable the Watchdog Timer (WDT) and to enable Low-
Voltage Programming (LVP).

#pragma config WDTE = OFF /*disable Watchdog*/
#pragma config LVP = ON /* Low voltage programming enabled, RE3 pin is MCLR */

Then, the following variables need to be defined:

#define Timer2Period 0x2F /* TMR2 Period is 100ms */
#define Timer4Period 0xF1 /* TMR4 Period is 500ms */
#define DesiredThreshold 300 /* Desired threshold value */
#define MaxThreshold 500 /* Maximum threshold value */
#define AnalogChannel 0x00 /* Use ANA0 as input for ADCC */
volatile uint16_t adcVal; /* ADCC global result value */

The CLK_Initialize function initializes the HFINTOSC internal oscillator:

static void CLK_Initialize(void)
{
 /* set HFINTOSC Oscillator */
 OSCCON1 = 0x60;
 /* set HFFRQ to 1 MHz */
 OSCFRQ = 0x00;
}

The PPS_Initialize function has the role to configure the RC7 peripheral select as input for TMR4:

static void PPS_Initialize(void)
{
 /* Set RC7 as input for TMR4 (T4IN) */
 T4INPPS = 0x17;
}

 TB3285
Using TMR4 as HLT to Generate an Interrupt

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 41

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-HLT-INTERRUPT-MCC

PORT_Initialize configures the RC7 digital input and RE0 output pins used for LED0:

static void PORT_Initialize(void)
{
 /* Set RC7 pin as digital */
 ANSELC = 0x7F;
 /* Set RE0 pin as output */
 TRISE = 0x06;
 /* Enable weak pull-up on pin RC7 */
 WPUC = 0x80;
}

ADCC_Initialize configures the TMR2 to be an auto-conversion trigger and enables the ADCC Interrupt flag:

static void ADCC_Initialize(void)
{
 /* ADACT Auto-Conversion Trigger Source is TMR2 */
 ADACT = 0x04;
 /* ADGO stop; ADFM right; ADON enabled; ADCONT disabled; ADCS FRC */
 ADCON0 = 0x94;
 /* Clear the ADCC interrupt flag */
 PIR1bits.ADIF = 0;
 /* Enabling ADCC interrupt flag */
 PIE1bits.ADIE = 1;
}

The TMR2_Initialize function sets the clock source and the registers needed to generate an 100 ms period:

static void TMR2_Initialize(void)
{
 /* TMR2 Clock source, LFINTOSC (00100) has 31 kHz */
 T2CLKCON = 0x04;
 /* T2PSYNC Not Synchronized; T2MODE Starts at T2ON = 1 and TMR2_ers = 0; T2CKPOL Rising
Edge */
 T2HLT = 0x02;
 /* TMR2 external reset is TMR4_postscaled */
 T2RST = 0x02;
 /* TMR2 ON on; T2 CKPS Prescaler 1:64; T2 OUTPS Postscaler 1:1
 Minimum timer period is 31 kHz/64 = 2.064516 ms */
 T2CON = 0xE0;
 /* Set TMR2 period, PR2 to 100ms */
 T2PR = Timer2Period;
 /* Clear the TMR2 interrupt flag */
 PIR4bits.TMR2IF = 0;
}

The TMR4_Initialize function sets the clock source and the registers needed to generate a 500 ms period:

static void TMR4_Initialize(void)
{
 /* TMR4 Clock source, LFINTOSC (00100) has 31 kHz */
 T4CLKCON = 0x04;
 /* T4PSYNC Synchronized; T4MODE Resets at TMR4_ers = 1; T4CKPOL Rising Edge */
 T4HLT = 0x87;
 /* TMR4 External reset signal by T4INPPS pin */
 T4RST = 0;
 /* TMR4 ON on; T4 CKPS Prescaler 1:64; T4 OUTPS Postscaler 1:1
 Minimum timer period is 31 kHz/64 = 2.064516 ms */
 T4CON = 0xE0;
 /* Set TMR4 period, PR4 to 500ms */
 T4PR = Timer4Period;
 /* Clear the TMR4 interrupt flag */
 PIR4bits.TMR4IF = 0;
 /* Enabling TMR4 interrupt flag */
 PIE4bits.TMR4IE = 1;
}

 TB3285
Using TMR4 as HLT to Generate an Interrupt

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 42

The following initialization function will safely enable the Global and Peripherals interrupts, after all modules have
been initialized with proper settings:

static void INTERRUPT_Initialize(void)
{
 INTCONbits.GIE = 1; /* Enable Global Interrupts */
 INTCONbits.PEIE = 1; /* Enable Peripheral Interrupts */
}

This function handles the two interrupts, checks the status of the Interrupt flag, and then calls the TMR4_Interrupt
or ADCC_Interrupt functions:

static void __interrupt() INTERRUPT_manager (void)
{
 /* Interrupt handler */
 if (INTCONbits.PEIE == 1)
 {
 if (PIE4bits.TMR4IE == 1 && PIR4bits.TMR4IF == 1)
 {
 TMR4_Interrupt();
 }
 else if (PIE1bits.ADIE == 1 && PIR1bits.ADIF == 1)
 {
 ADCC_Interrupt();
 }
 }
}

The ADCC_Interrupt function first clears the Interrupt flag, toggles the LED0 (this will happen with Timer2 Period
frequency), and then reads the ANA0 analog channel.

static void ADCC_Interrupt(void)
{
 /* Clear the ADCC interrupt flag */
 PIR1bits.ADIF = 0;

 if (adcVal < DesiredThreshold)
 {
 /* Toggle LED0 at the Timer2Period frequency */
 LATEbits.LATE0 = ~LATEbits.LATE0;
 }
 /* Get the conversion result from ADCC AnalogChannel */
 adcVal = ADCC_ReadValue(AnalogChannel);
}

The ADCC read function only needs a parameter (the channel that needs to be read):
static uint16_t ADCC_ReadValue(uint8_t channel)
{
 ADPCH = channel; /* Set the input channel for ADCC */
 /* TMR2 is trigger source for auto-conversion for ADCC */
 return ((uint16_t)((ADRESH << 8) + ADRESL));
}

The TMR4_Interrupt function first clears the Interrupt flag (if the ADCC read value is above the maximum
threshold and if the RC7 pin is pulled to GND for more than 500 ms), TMR4 will stop TMR2 and LED0 will blink for a
500 ms period, as long as RC7 is tied to GND.

static void TMR4_Interrupt(void)
{
 /* Clear the TMR4 interrupt flag */
 PIR4bits.TMR4IF = 0;
 /* HLT trigger condition: if adcVal > MaxThreshold and pin RC7 is pulled-down */
 if (adcVal > MaxThreshold)
 {
 /* Toggle LED0 at the Timer4Period frequency */
 LATEbits.LATE0 = ~LATEbits.LATE0;
 /* HLT will stop TMR2 that also stops ADCC */
 /* Stop the Timer by writing to TMRxON bit */
 T2CONbits.TMR2ON = 0;

 TB3285
Using TMR4 as HLT to Generate an Interrupt

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 43

 }
}

The next code in the void main function, is an infinite loop (using a while(1)) to check for the ADCC value, using
an “if” statement.

void main(void)
{
 /* Initialize the device */
 CLK_Initialize(); /* Oscillator Initialize function */
 PPS_Initialize(); /* Peripheral select Initialize function */
 PORT_Initialize(); /* Port Initialize function */
 ADCC_Initialize(); /* ADCC Initialize function */
 TMR2_Initialize(); /* TMR2 Initialize function */
 TMR4_Initialize(); /* TMR4 Initialize function */
 INTERRUPT_Initialize(); /* Interrupt Initialize function */

 while (1)
 {
 if ((adcVal > DesiredThreshold)&&(adcVal < MaxThreshold))
 {
 /* turn LED0 ON by writing pin RE0 to low */
 LATEbits.LATE0 = 0;
 }
 }
}

This will check if the read value from the Potentiometer (POT Click) is between two values. If so, the LED0 will turn
on without blinking with a frequency. The ADCC interrupt is triggered by TMR2 to complete a conversion at a
frequency determined by the Timer2 Period.

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR4 as HLT to Generate an Interrupt

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 44

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-HLT-INTERRUPT-BARE

11. Using TMR2 as Alternate SPI Clock
The Timer 2 peripheral can be used as an alternative clock for the MSSP peripheral and can be used in the SPI clock
configuration.

For example, to create a 10 kHz SPI clock, modify the Timer Period to 50 µs. This corresponds to 20 kHz since the
SPI uses TMR2output/2 as clock, meaning that 20 kHz / 2 = 10 kHz frequency.

The following code examples will present how to set up the TMR2 peripheral and be used as clock source for the SPI
configured as Master communicating to two Slave devices, alternatively.

To achieve the functionality described by the use case, the following actions will have to be performed:
• System clock initialization
• TMR2 initialization
• SPI1 initialization
• PPS initialization
• Port initialization
• Slave control functions
• Data exchange function

11.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC) the next steps need to be followed:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open the MCC from the toolbar (information about how to install the MCC plug-in can be found here).
3. Go to Project Resources → System → System Module and make the following configurations:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 4 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in the WWDT tab, WDT Disabled has to be selected
– In the Programming tab, Low-Voltage Programming Enable has to be checked

4. From the Device Resources window, add TMR2, MSSP1 and make the following configurations:
Timer2 Configuration:

– Enable Timer: checked
– Timer Clock tab

• Clock Source: HFINTOSC
• Clock Prescaler: 1:64
• Postscaler: 1:1

– Set 50 µs period in the Timer Period tab

MSSP1 Configuration:

– Serial Protocol: SPI
– Mode: Master
– SPI Mode: SPI Mode 0
– Input Data Sampled At: Middle
– Clock Source Selection: TMR2/2
– Actual Clock Frequency (Hz): 10000.00

5. Open Pin Manager → Grid View window, select UQFN40 in the MCU package field, and make the following
pin configurations:

– Set Port C pin 6 (RC6) as output for Slave Select 1 (SS 1)
– Set Port C pin 7 (RC7) as output for Slave Select 2 (SS 2)

The SCK, SDO and SDI pins appear alongside the MSSP1 peripheral and have their direction preset.

 TB3285
Using TMR2 as Alternate SPI Clock

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 45

https://microchipdeveloper.com/install:mcc

Figure 11-1. Pin Mapping

6. Click Pin Module in the Project Resources and set the custom names SS pins:
– Rename RC6 to Slave1
– Rename RC7 to Slave2

7. Click Generate in the Project Resources tab.
8. In the main.c file generated by MCC, add the following code:

– Control of Slave devices
– Data transmission

uint8_t writeData = 1; /* Data that will be transmitted */
uint8_t receiveData; /* Data that will be received */

void main(void)
{
 // Initialize the device
 SYSTEM_Initialize();

 while (1)
 {
 SPI1_Open(SPI1_DEFAULT);
 Slave1_SetLow();
 receiveData = SPI1_ExchangeByte(writeData);
 Slave1_SetHigh();
 SPI1_Close();

 SPI1_Open(SPI1_DEFAULT);
 Slave2_SetLow();
 receiveData = SPI1_ExchangeByte(writeData);
 Slave2_SetHigh();
 SPI1_Close();
 }
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

11.2 Bare Metal Code
The first step will be to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming (LVP).

/* WDT operating mode->WDT Disabled */
#pragma config WDTE = OFF
/* Low voltage programming enabled, RE3 pin is MCLR */
#pragma config LVP = ON

 TB3285
Using TMR2 as Alternate SPI Clock

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 46

HTTPS://GITHUB.COM/MICROCHIP-PIC-AVR-EXAMPLES/PIC18F47Q10-CNANO-TMR2-SPI-CLOCK-MCC

The internal oscillator has to be set to the desired value. This example uses the HFINTOSC with a frequency of 4
MHz. This translates in the following function:

static void CLK_init(void)
{
 OSCCON1 = 0x60; /* set HFINTOSC Oscillator */
 OSCFRQ = 0x02; /* set HFFRQ to 4 MHz */
}

The following function initializes the Timer2 peripheral with the HFINTOSC clock:

static void TMR2_Initialize(void)
{
 /* TMR2 Clock source, HFINTOSC (00011) */
 T2CLKCON = 0x03;
 /* T2PSYNC Not Synchronized, T2MODE Software control, T2CKPOL Rising Edge */
 T2HLT = 0x00;
 /* TMR2ON on; T2CKPS Prescaler 1:1; T2OUTPS Postscaler 1:1 */
 T2CON = 0x80;
 /* Set TMR2 period, PR2 to 199 (50us) */
 T2PR = Timer2Period;
 /* Clear the TMR2 interrupt flag */
 PIR4bits.TMR2IF = 0;
}

The SPI1_Initialize function will configure the SPI clock source to be TMR2 Output/2:

static void SPI1_Initialize(void)
{
 /* SSP1ADD = 1 */
 SSP1ADD = 0x01;
 /* Enable module, SPI Master Mode, TMR2 as clock source */
 SSP1CON1 = 0x23;
}

Therefore, the SPI pins can be relocated using the SSPxCLKPPS, SSPxDATPPS, SSPxSSPPS registers for the
input channels and by using the RxyPPS registers for output channels.

The method to configure the location of the pins is independent of the application purpose and the SPI mode. Each
microcontroller has its own default physical pin position for peripherals, but they can be changed using the Peripheral
Pin Select (PPS).

For SPI1 in Master mode, only the SDI pin needs to be input so it is used with its default location RC4. SCK was
mapped to RC3 and SDO was mapped to RC5. This translates into the following code:

static void PPS_Initialize(void)
{
 RC3PPS = 0x0F; /* SCK channel on RC3 */
 SSP1DATPPS = 0x14; /* SDI channel on RC4 */
 RC5PPS = 0x10; /* SDO channel on RC5 */
}

Since this example has the Master sending data to two Slave devices, two SS pins are needed (SS1 and SS2). For
both, a General Purpose Input/Output (GPIO) pin was used (RC6 for SS1 and RC7 for SS2).

Table 11-1. SPI Pin Locations

Channel Pin

SCK RC3

SDI RC4

SDO RC5

SS1 RC6

SS2 RC7

 TB3285
Using TMR2 as Alternate SPI Clock

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 47

Since the Master devices control and initiate transmissions, the SDO, SCK and SS pins must be configured as output
while the SDI channel will keep its default direction as input. The following example is based on the relocation of the
SPI1 pins made above:

static void PORT_Initialize(void)
{
 ANSELC = 0x07; /* Set RC6 and RC7 pins as digital */
 TRISC = 0x17; /* Set SCK, SDO, SS1, SS2 as output and SDI as input */
}

A Master will control a Slave by pulling low the SS pin. If the Slave has set the direction of its SDO pin to output
(when the SS pin is low), the SPI driver of the Slave will take control of the SDI pin of the Master, shifting data out
from its Transmit Buffer register.

All Slave devices can receive a message, but only those with the SS pin pulled low can send data back. It is not
recommended to enable more than one Slave in a typical connection since all of them will try to respond to the
message and the Master has only one SDI channel. Therefore, the transmission will result in a write collision.

Before sending data, the user must pull low one of the configured SS signals to let the correspondent Slave device
know it is the recipient of the message.

static void SPI1_slave1Select(void)
{
 LATCbits.LATC6 = 0; /* Set SS1 pin value to LOW */
}

Once the user writes new data into the Buffer register, the hardware starts a new transfer, generating the clock on the
line and shifting out the bits. The bits are shifted out starting with the Most Significant bit (MSb).

When the hardware finishes shifting all the bits, it sets the Buffer Full Status bit. The user must check the state of the
flag before writing new data into the register by constantly reading the value of the bit (or polling), or else a write
collision will occur.

static uint8_t SPI1_exchangeByte(uint8_t data)
{
 SSP1BUF = data;

 while(!PIR3bits.SSP1IF) /* Wait until data is exchanged */
 {
 ;
 }
 PIR3bits.SSP1IF = 0;

 return SSP1BUF;
}

The user can pull the SS channel high if there is nothing left to transmit.

static void SPI1_slave1Deselect(void)
{
 LATCbits.LATC6 = 1; /* Set SS1 pin value to HIGH */
}

The following function is the int_main(void) and begins peripheral initialization before the SPI commands are run
in a infinite loop while(1):

int main(void)
{
 CLK_Initialize();
 PPS_Initialize();
 PORT_Initialize();
 TMR2_Initialize();
 SPI1_Initialize();

 while(1)
 {
 SPI1_slave1Select();
 receiveData = SPI1_exchangeByte(writeData);
 SPI1_slave1Deselect();

 TB3285
Using TMR2 as Alternate SPI Clock

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 48

 SPI1_slave2Select();
 receiveData = SPI1_exchangeByte(writeData);
 SPI1_slave2Deselect();
 }
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3285
Using TMR2 as Alternate SPI Clock

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 49

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-tmr2-spi-clock-bare

12. References
1. MPLAB Code Configurator User’s Guide
2. Getting Started with Writing C-Code for PIC16 and PIC18 Tech Brief

 TB3285
References

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 50

http://ww1.microchip.com/downloads/en/devicedoc/40001725b.pdf
https://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en1002117

13. Revision History
Document Revision Date Comments

A 05/2020 Initial document release

 TB3285
Revision History

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 51

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

 TB3285

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 52

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6546-1

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 TB3285

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 53

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. Technical Brief DS90003285A-page 54

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Peripheral Overview
	2. Using TMR0 in 8-bit Mode with Periodic Interrupt
	2.1. MCC Generated Code
	2.2. Bare Metal Code

	3. Using and Operating TMR0 in 16-bit Mode while the Microcontroller is in Sleep
	3.1. MCC Generated Code
	3.2. Bare Metal Code

	4. Using TMR0 in 8-bit Mode and to Generate an Output Signal
	4.1. MCC Generated Code
	4.2. Bare Metal Code

	5. Using TMR1 Gate to Measure Frequency
	5.1. MCC Generated Code
	5.2. Bare Metal Code

	6. Using TMR1 to Trigger a Special Event
	6.1. MCC Generated Code
	6.2. Bare Metal Code

	7. Using TMR1 Gate to Measure Short vs. Long Button Press
	7.1. MCC Generated Code
	7.2. Bare Metal Code

	8. Using TMR2 for Auto-Conversion Trigger for the ADCC Module
	8.1. MCC Generated Code
	8.2. Bare Metal Code

	9. Using TMR4 in One-Shot Mode with External Signal as Reset
	9.1. MCC Generated Code
	9.2. Bare Metal Code

	10. Using TMR4 as HLT to Generate an Interrupt
	10.1. MCC Generated Code
	10.2. Bare Metal Code

	11. Using TMR2 as Alternate SPI Clock
	11.1. MCC Generated Code
	11.2. Bare Metal Code

	12. References
	13. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

