AVR277: On-The-Go (OTG) add-on to USB
Software Library

1. Introduction

This document describes the new features brought by the OTG working group and
how they are integrated in the AT90USBxxx USB software library, illustrating how to
develop customizable USB OTG applications.

1.1 Intended Audience

This document is written for the software developers to help in the development of the
OTG applications for the AT90USBxxx. It assumes that readers are familiar with the
AT90USBxxx architecture and its USB Software library (not OTG but including Host
and Device mode). A minimum knowledge of the USB specifications is also required
to understand the content of this document.

1.2 Overview

The AT90USBxxx software library has been designed to minimize the complexity of
USB development (and especially enumeration stage) from software designers.

The aim of this document is to present the integration of the OTG features in this
library. It describes the main files and explain how to customize the firmware for the
user to build his own application.

This software package also provides an OTG application example (template demon-
stration sofware) to illustrate the usage of this library. Note that this firmware is ready
to pass the USB Device and/or OTG compliance tests.

1.3 References

- USB Specification : http://www.usb.org/developers/docs/
- OTG Supplement and Errata : http://www.usb.org/developers/onthego/
- OTG Compliance Plan : http://www.usb.org/developers/onthego/

ATMEL

Y ()

8-bit AVR"

Microcontrollers

ATI90USB647
AT90USB1287

Application
Note

7719A-USB-07/07

ATMEL

2. About OTG

2.1 Overview

2141 Need
USB has become a popular interface to exchange data between a Host PC and peripherals.
Due to its low cost and high speed, a large number of portable devices have a peripheral USB
port. Although communications between two portable devices would sometimes be useful, the
original USB specification only allowed communications between a host and a peripheral port.

For this reason, the On-The-Go supplement has been developped. It enables USB connectivity
between portable devices by specifying smaller connectors, embedded host capability for porta-
ble devices, low power features, etc.

2.1.2 Main Features

What's new with OTG ? Just look at the list:
» Embedded Host capability
* Full-Speed (12Mbits/s) operation as a Peripheral, High-Speed (480Mbits/s) optional
* Full-Speed operation as an Host, Low-Speed (1.5Mbits/s) and High-Speed optional
* Targeted Peripheral List
+ Session Request Protocol
* Host Negociation Protocol
» One and only one on-board receptacle (for one OTG port) : Micro-AB (Mini-AB is obsolete)
» Low power Vbus features
» Means for communicating messages to user

Be aware that High Speed operation is not supported by our AT90USBxxx products.

21.3 Terminology
To facilitate understanding of this document, it is advised to get informed about the minimum
required terminology given below :

* Device : since OTG concerns only dual-role-devices, the word “Device” must not be
employed to indicate a role in a connection. “Device” is simply a general purpose name for
the application (a PDA for example)

* Host : this is one role that can have an OTG device

« Peripheral : this is the other role that can have an OTG device

» Micro-AB : the OTG has introduced the Micro-AB receptacle, able to accept both Micro-A
and Micro-B plugs. Standards A and B receptacles/plugs are not supported by OTG

« Mini-AB : these connectors have been introduced before Micro-AB, but have been declared
as obsolete after the Micro-AB introduction. However, this notation can remain in some
documents.

« ID : fifth pin of the Micro-AB receptacle, that makes the user able to identify the plug inserted
(Micro-A or Micro-B, that also include this signal)

» A-Device : device with a Micro-A plug inserted into its Micro-AB receptacle. By default (at
start-up) it becomes Host (A-Host state)

2 AV R 27 7 e ——

» B-Device : device with a Micro-B plug inserted into its Micro-AB receptacle. By default (at
start-up) it becomes Peripheral (B-Peripheral state)

* Vbus : power line of the USB / OTG bus. Several requirements have been specified for it

+ Session : defined by the period of time that Vbus is above the session valid threshold
specified by the OTG supplement

» SRP : Session Request Protocol ; initiated by the B-Device when a session is closed, that
allows it to request the opening of a new session

» HNP : Host Negociation Protocol ; initiated by A-Device, that allows the two devices to invert
their role “on the go”, i.e. without any hardware action. After this event, the A-Host becomes
A-Peripheral, and the B-Peripheral becomes B-Host.

» SOF : Start Of Frame ; short packet sent by the Host over the bus every time a new frame
begins (every 1ms at Full-Speed, every 125us at High-Speed)

» Suspend : bus condition defined by an idle state on the bus during more than 3ms.

» USB-IF : USB Implementers Forum : consortium of companies that have founded the USB
specifications, and that define the compliance tests.

» TPL : Targeted Peripheral List : list of the VID/PID of the peripherals supported by the Host

2.2 Features description
Below are described the OTG features as specified in the OTG supplement. The way they have
been coded and customized in the Atmel USB OTG firmware will be described in the next
section.

2.21 Targeted Peripheral List
When acting as a Host (embedded), an OTG device is only required to support a specified list of
devices that are identified by their VID/PID values. This is the “Targeted Peripheral List” (TPL),
and it can contain only one device.

The TPL shall not use USB classes (with no specific VID/PID) or “similar devices” as selection
mean to accept a device connection (for example, if an Host supports HID mice, it must only
accept the mice with a VID/PID that matches the TPL).

During compliance tests, the laboratory will test inter-operability with all the devices of the Tar-
geted Peripheral List.

2.2.2 Power considerations
Several requirements have been specified for the power delivery and threshold voltages.

A primary rule is that Vbus is always supplied by the A-Device, even if the role is being inverted
(and that the A-Device is in the A-Peripheral state).

2221 Delivery conditions
An A-Device has different possibilities for supplying Vbus :

* Insertion based Vbus : Vbus is turned ON continuously as long as a Micro-A plug is inserted
into the receptacle

» Usage based Vbus : Vbus is turned ON on request (even if both devices are physically
connected together) : user can request Vbus delivery on the A-Device side (by a software
feature), but the B-Device can also request Vbus from A-Device by itself (or by user action),
by initiating a SRP (See 2.2.3).

ATMEL ;

7719A-USB-07/07

2222

2223

223

224

4

Voltage

Current

SRP

HNP

ATMEL

A session is valid for an A-Device when Vbus is above Va_sess_vid (threshold between 0.8 and
2.0V). For a B-Device this threshold is Vb_sess_vid, that can be between 0.8 and 4.0V. That
means that a B-Device must connect (i.e. enable its pull-up) before Vbus is greater than
Vb_sess vid(max) (4.0V).

To ensure correct bus powering, the A-Device must consider that Vbus is valid (that means no
delivery problems, no current overload) if Vbus is above Va_vbus_vid threshold (4.4V).

The A-Device must be able to supply at least 8mA.
Any B-Device in unconfigured state must not draw more than 150pA.

Any OTG device must have a capacitance on its Vbus line between 1puF and 6.5uF, to limit
inrush currents but ensure power stability.

An OTG device should have a mean to know if, while it is in Host mode, the Peripheral is draw-
ing more current than available. This may be an “Overcurrent” signal from the power supply
block.

When two devices are connected together, and the A-Device does not supply Vbus (or has
stopped to supply Vbus), the B-Device can still request it to (re-)enable Vbus in order to start a
new session. This is done through the SRP protocol, that is very simple. This consists in two
pulses that are sent over the bus lines in order to be detected by the A-Device.

The B-Device may first send a pulse on the D+ line by powering its pull-up. This pulse must have
a duration between 5 and 10ms. After that, if there is no reaction from the A-Device (Vbus OFF),
the B-Device may send a pulse on the Vbus line (through a resistor), that must rise higher than
Vb_otg outlevel (2.1V).

The B-Device is required to wait for at least 6 seconds before considering that the A-Device has
not responded. Conversely, once the A-Device has detected the SRP, it has 5 seconds to
deliver Vbus supply, and once Vbus is turned ON, it must keep it available during at least 1 sec-
ond, waiting for the B-Device to connect.

The Micro-AB receptacle allows any OTG device to be a Peripheral or a Host by default, since
both Micro-A plug or Micro-B plug can fit into this receptacle. But some applications shall require
to exchange this role (either if the user default connection is wrong, or if the application needs to
exchange role for any reason at any moment).

The HNP protocol allows the devices to exchange role without swapping the cable. This protocol
can be initiated only between devices that support it. The B-Device informs the A-Device about
its capabilities with the OTG descriptors (See 2.2.6). HNP can be divided in two protocols :

1. Hardware side : the role exchange protocol is mainly performed in hardware with spe-
cific lines states

2. Software side : the role exchange results of a preliminary software negociation

AV R 27 7 e ——

7719A-USB-07/07

2.2.4.1 Hardware side

First, the A-Host must let the bus in idle state (no activity, no SOF). After Ta_aidl_bdis(min) and
before Ta_aidl_bdis(max) (resp. 5 and 150ms) of idle state, the B-Peripheral must disconnect.
When the A-Host detects this disconnect, it connects its own pull-up. Now the roles are
exchanged ; and the B-Peripheral that has become B-Host must send a reset on the bus under
Tb_acon_se0 (1ms) after the A-Peripheral connection has been detected. Now the bus can be
used. Once the B-Host has finished using the bus, it lets it idle. After the Ta_aidl_bdis delay, the
A-Peripheral must release its pull-up and, if bus is not needed, release Vbus delivery. If Vbus is
still present, the B-Device has the possibility to turn on its pull-up if it needs to return to Periph-
eral state (otherwise the session will be closed by the A-Device).

2.2.4.2 Software side

2.2.5 Messaging

7719A-USB-07/07

As described previously, the Host initiates the HNP by setting the bus in idle state, but it is the
Peripheral that really starts the exchange by disconnecting itself. And this agreement must be
prepared by software... First, the Peripheral informs the Host of its HNP support, thanks to the
OTG descriptor (See 2.2.6). After that, the Host informs the Peripheral that it also supports the
HNP protocol, by sending a Set_Feature(a_hnp_support) command (See 2.2.7). If the Host sup-
ports the Peripheral, it will start using the bus, but the Peripheral is allowed to initiate an HNP
later. If the Host does not support the Device (not in targeted peripheral list), it must initiate the
HNP now. Once the decision is taken to start the HNP, and before stopping activity on bus, the
Host must send a Set_Feature(b_hnp_enable) to the Peripheral to enable it to respond to the
idle state by disconnecting its pull-up.

Several applications and special cases where HNP is needed are listed and tested in the OTG
compliance plan and the OTG supplement.

The “No Silent Failure” specification of the OTG supplement implies that an OTG compliant
device must support specific means for communicating error or warning messages to the user.

Several cases where messaging should be used are listed in the OTG supplement and in the
compliance plan documents. To be OTG compliant, a device must support at least the 3 follow-
ing messages :

— “Device Not Attached/Responding” : displayed by a device that detects that the
connected device does not work as expected, or does not respond to requests

— “Attached Device Unsupported” : displayed by a device when the connected
device does not comply with its requirements (not in the TPL, overcurrent condition,
etc.)

— “Unsupported Hub Topology” (see note below) : used when the A-Device is
connected to a hub and does not support it. Please note that this message should
not be required if the device does not support any hub in its targeted peripheral list,
but according to the USB-IF, hub recognition must be handled and this message
must be supported for compliance.

That means that an OTG device must provide at least 3 LEDs to differentiate the messages. A
LCD display remains the best solution, especially if one is already included in the application.

Additional messages can be used to help the user understand a failure.

ATMEL ;

2.2.6

2.2.7

6

ATMEL

OTG Descriptor

During the enumeration process, the host asks the device several descriptor values to identify it
and load the correct drivers. To be recognized by the host, each USB device should have at
least the following descriptors :

— Device descriptor

— Configuration descriptor

— Interface descriptor

— Endpoint descriptor

— String descriptor

— Class-specific descriptors

The OTG supplement introduces the OTG Descriptor. This descriptor is sent by the B-Device
after a Get_Descriptor(config) request (for example inserted between the configuration and the
first interface descriptors).

Table 2-1. OTG Descriptor

Offset Field Size Description
0 bLength 1 Descriptor size (0x03)
1 bDescriptorType 1 OTG descriptor (0x09)
2 binterfaceNumber 1 Attribute fields :

D7...2 : reserved
D1 : HNP Support

DO : SRP Support

Notes: 1. The HNP Support bit is set if the device supports HNP.
2. The SRP Support bit is set if the device supports SRP.

Set_Feature commands

Here are described the three OTG cases with the Set_Feature() command.

Table 2-2. Set_Feature command
bmRequestType bRequest wValue | windex | wLength Data
SET FEATURE Feature
0x00 (0x03) Selector 0x00 0x00 None
Table 2-3. Feature Selector
Feature Selector Value
b_hnp_enable 3
a_hnp_support 4
a_alt_hnp_support 5

The two first features have been described in section 2.2.4. More precisions (special cases,
acceptance conditions) can be found in the OTG supplement.

The third feature a_alt_hnp_support will not be explained here because it concerns an Host that
have an alternate port that supports HNP (and AT90USBxxx products only have one port).

These features can only be cleared on a bus reset or when a session ends. Using a
Clear_Feature() command has no effect on them.

AV R 27 7 e ——

7719A-USB-07/07

3. Firmware Architecture

As shown in the figure below, the architecture of the USB firmware does not change with the
OTG add-on. This document assumes that the reader is familiar with this architecture.

Figure 3-1. AT90USBxxx USB OTG Firmware Architecture

[main.c |

C Config.h D
(_Conf_scheduler.h)

h ler.

<
/ \
/< Conf_usb.h)| usb_task.c | \ /l otg_user_task.c |\
ushAaskh_ | [otg_user_task.h |
/ \ C Config.h D)
| Usb_device_task.c | Usb_host task.c |
[Usb_device_task.h | Usb_host_task.h |
[Usb_standard_request.c | Usb_host_enum.c |
[Usb_standard_request.h | Usb_host_enum.h i

[Usb_specific_request.c |
[Usb_specific_request.h |

{ Usb_descriptors.c |
[Usb_descriptors.h |

Device Operating mode Host Operating moc

USB OTG high level device
\ USB Chapter9 management / \ application

N

Y \ 4

[Usb_drv.c |
[Usb_drv.h |

AT90USBxxx Low Level USB drivers (hardware registers)

The OTG features have been included with this firmware and all files have been impacted. Major
changes are detailed in the section 3.1.

3.1 OTG Upgrade Listing
The file architecture has not been modified in relation to the first USB library release. But
changes have been done on almost all the files, and on the state machine.

3.1.1 Requests
Several actions can be initiated at any moment for an OTG connection, like “Initiate a SRP”,
“Turn ON Vbus”, “Suspend Bus”, etc.

User can call the functions “Set_user_request_xxxx()”, where xxxx is the action requested. All
existing functions are defined in the file “usb_task.h”.

ATMEL 7

7719A-USB-07/07

3.1.2

3.1.3

3.1.4

8

Timings

ATMEL

The OTG supplement specifies several delays for events and failures management (for exam-
ple, the maximum time that a B-Device must wait for Vbus from A-Device after having sent an
SRP, before considering the operation as “aborted”). These timings are mandatory, and cannot
be handled by a simple SOF counter because several events must be timed without bus activity.

One 16 bits timer (one among two) has been reserved for this operation. It generates an inter-
rupt every 2ms, and each delay required is managed by a specific counter variable. See at the
end of “usb_task.c” for the function.

Peripheral mode

Host mode

In Peripheral mode, the OTG Device is managed by a state machine using the following states,
coded in the “usb_device task.c” file :

— B_IDLE : no session currently open, the device waits for Vbus to rise, or waits for a
SRP request from the user

— B_SRP_INIT : a SRP is being performed on the bus, software waits it has finished to
come back to B_IDLE (wait Host response)

— B_PERIPHERAL : a session is open, the device is connected. This state waits for
events (even if major events are interrupt-handled) or user requests

— B_HOST : state entered after a HNP success : the B-DEVICE has become Host ;
handle user requests

— B_END_HNP_SUSPEND : state entered when a role exchange ends (device is B-
HOST, and receives an user request to disconnect)

Be aware that almost all events are interrupt handled, in “usb_task.c”.

Moreover, whatever the current state is executing, the Peripheral task checks if a request has
been received on the Control endpoint.

The current state machine has been enhanced, receiving five additional states :

— A_PERIPHERAL : state entered when the Device has entered Peripheral role after
an HNP. In this state, the program ends the session when a suspend condition is
detected (B-HOST finished its bus usage). Also ends the session on user request
(disconnect or Vbus toggle requests).

— A_INIT_HNP : device enters this state when user requested an HNP ; handles
SetFeature commands, failures...

— A_SUSPEND : A-HOST enters this state with a suspend condition detected after a
HNP request done (so waiting for Peripheral disconnection). Also detects HNP time-
out and upstream-resume signalling.

— A_END_HNP_WAIT_VFALL : this state is entered when the A-PERIPHERAL
detects a Suspend condition. In this case the OTG device does not come back into
the initial configuration (A-HOST), but ends the session by turning OFF Vbus

— A_TEMPO_VBUS_DISCHARGE : this state is entered when shutting down Vbus,
and when it has been detected under the Vbus_valid threshold. Here we wait for a
delay (that can be customized in “usb_host_task.h” as TA_VBUS_FALL, by multiple
of 2ms), because the OTG peripheral can remain attached while Vbus is decreasing.
If the attached delay is too long (i.e. falling time too slow) a SRP will be detected,
and the session will never be open again.

AV R 27 7 e ——

7719A-USB-07/07

Moreover, several OTG features and user requests have been implemented into the other states
of the machine (that were already existing without OTG).

3.2 About the sample application

The sample application does not reflect the OTG firmware complexity. Users must press a push-
button on the Peripheral side to toggle a LED located on the Host board.

These are the followings actions possible for the user :

» Host side

— turn ON/OFF Vbus by pushing HWB button : this is only possible from the device
that have the Micro-A plug inserted. That action turns OFF Vbus and closes the
current session.

— request for a HNP by pushing CENTER button : from the device that is in A-HOST
state, this will conduce to role exchange. Once the role exchanged (A-PERIPH and
B-HOST), pressing this key on the B-HOST side will lead to a session end (Vbus
OFF).

« Peripheral side

— send a SRP by pushing HWB button : only possible for a default Peripheral (Micro-B
plug inserted), and when Vbus is OFF. Note that the Host that receives the SRP is
required to exchange role immediately (using HNP). So sending a SRP from the
default Peripheral will conduce the A-HOST to become the Peripheral and the
default Peripheral to become the B-HOST.

— toggle LED by pushing CENTER button : only possible when enumeration is done,
but in any Peripheral mode (A-PERIPH or B-PERIPH).

This sample application uses a simple HID mouse USB configuration. This means that the
Peripheral only needs one INTERRUPT endpoint to send reports to the Host. The report struc-
ture is identical to a mouse report : the information that indicate that the user is pressing the
button is contained in the bitfield normally reserved to the “Left click” mouse event. Pushbutton
debouncing is automatically handled since the refresh rate (endpoint polling period) is 50ms.

3.21 Role exchanging

7719A-USB-07/07

The “role exchanged” state is deceptive, since the ID pin state does not change when the device
changes its role, whereas in the “usb_task.c” file the choice between usb_host_task() and
usb_device_task() is done in function of that ID level!

So on both sides (Peripheral / Host), a special state has been created to solve this problem. And
in each state, the program calls the alternate task...For example, for an A-Device, after an HNP,
the usb_task() still calls the usb_host task() function, and the state entered is A_ PERIPHERAL
(determined upon HNP success interrupt). But in that state, the program calls the
usb_device_task()....It's the same thing in B-Device mode, when the state is B_HOST, and
where a call is usb_host_task() is done.

ATMEL ;

ATMEL

4. Configuring the USB OTG software library

4.1 Global configuration
All common configuration parameters for the application are defined in the “config.h” file (XTAL
frequency, CPU type...). Modules specific parameters are defined in their respective configura-
tion files.

4.2 Scheduler configuration
The sample application provides a simple tasks scheduler that allows the user to create and add
applicative tasks without modifying the global application architecture and organisation. This
scheduler just calls all predefined tasks in a predefined order without any pre-emption. A task is
executed until its finished, then the scheduler calls the next task.

The scheduler tasks are defined in the “conf_scheduler.h” file, where the user can declare its
tasks functions.

For the sample USB dual role application the following scheduler configuration parameters are
used:

#define Scheduler_task_1_init usb_task_init

#define Scheduler_task_1 usb_task
#define Scheduler_task_2_init otg_user_task_init
#define Scheduler_task_2 otg_user_task

The Scheduler_task_X_init functions are executed only once upon scheduler startup whereas
the Scheduler_task_X functions are executed in an infinite loop.

4.3 USB library configuration
The USB library can be configured thanks to the “conf_usb.h” file. This file contains both USB
modes configuration parameters for device and host. The configuration file is split into tree sec-
tions for device, host, and now also OTG configuration parameters.

4.3.1 Peripheral configuration
All the parameters of the USB Device part remain unchanged, please refer to the USB Library
description document for more details. Below are the main points to verify :
— In OTG mode, the USB_DEVICE_FEATURE must be enabled.

— The user application can still execute specific functions upon events thanks to the
user defined actions of the “conf_usb.h” file.

— User must also define the endpoints used by the configuration of the Peripheral.
— Finally, the “usb_descriptors.h” file must be correctly updated.

4.3.2 Host configuration
Same remark that for the USB Device side, ensure that :

— The USB_HOST_FEATURE must be enabled in OTG mode.

— The HOST _STRICT _VID PID_TABLE must be enabled in OTG mode, since the
Targeted Peripheral List does not allow connexion acceptance based on Class, but
only on VID and PID knowledge. Just fill in the VID_PID_TABLE with the devices
that your application supports.

10 AV R 27 7 e ——

— The user application can execute specific functions upon events thanks to the user
defined actions of the “conf_usb.h” file.

— All other parameters can be used as indicated in the USB Library description.

4.3.3 OTG configuration

4.3.3.1 Descriptor

User is free to modify the “usb_descriptors.h” file that contains as well device general informa-
tion than class specific specifications.

Moreover the OTG has brought a new descriptor, which contains one efficient byte field, bmAt-
tributes. For an OTG compliant device this descriptor OTG_BMATTRIBUTES should be equal to
(HNP_SUPPORT | SRP_SUPPORT). But user can choose to disable HNP to make a simple
“SRP Capable” Peripheral.

4.3.3.2 Mode configuration

7719A-USB-07/07

The following parameters concern new features brought by OTG. For almost all parameters, you
have to choose between ENABLED and DISABLED. Others cases are specified. All are
included in the “conf_usb.h” file of the project.

+ USB_OTG_FEATURE : must be set to ENABLED for OTG mode support
+ OTG_VBUS_AUTO_WHEN_A_PLUG :
— setto ENABLED if user wants a “Insertion Based Vbus Supply”, that means that the
A-Device will keep VBUS turned ON continuously, while the A-plug is inserted.

— the DISABLED value codes for “Usage Based Vbus Supply”, that means that Vbus
is supplied on user request : either on a SRP received from the B-PERIPH, or from a
software request on the A-HOST side (pushbutton, etc.).

* OTG_MESSAGING_OUTPUT : defines the messaging method used on Device :

— setto OTGMSG_ALL if all programmed messages are needed (both events
messages like “Device connected” and mandatory failure messages like
“Unsupported Device”. In this case, 5 functions that are called by the OTG library
must be defined by the user : Initialisation function, Display/Clear message (event,
failure) functions. In the OTG library, messages are identified thanks to an ID
number, that are available in the file “usb_task.h”.

— setto OTGMSG_FAIL if only failure messages are required. The same functions that
for OTGMSG_ALL have to be defined except those that concern event messages...

— setto OTGMSG_NONE if messages are not required in this application. In this case
the device is not OTG compliant. Nothing else has to be done.

» OTG_USE_TIMER : defines which 16 bits timer will be used by the OTG library : must be
either TIMER16_1 or TIMER16_3.

+ USE_TIMER16 : defines if the global application uses another timer or not :

— setto BOTH_TIMER16 if your application uses the other 16 bits timer for a general
purpose application

— setto OTG_USE_TIMER if the remaining 16 bits timer is not used by user
* OTG_ENABLE_HNP_AFTER_SRP:

— if ENABLED, the A-Device will automatically initiate a HNP (and become A-PERIPH)
if the B-Device has sent a SRP and has connected within the correct delay once
Vbus has been supplied. Default (and OTG compliant) value is ENABLED.

ATMEL y

4.3.3.3

ATMEL

— if DISABLED, the A-Device will start a normal session (supply Vbus and be A-
HOST) when it will receive a SRP from the B-Device

* OTG_ADEV_SRP_REACTION : defines the SRP pulse for which the A-Device will react and
turn ON Vbus. Possible values are : VBUS PULSE or DATA_ PULSE.

Power
» An OTG compliant device should have a power circuitry able to inform the Host of
overcurrent conditions. If your board has such a system, you must define in “conf_usb.h” the
macro Is_vbus_overcurrent() that returns TRUE or FALSE according to the situation.

* As explained at the section 3.1.4, a session closing failure may happen if the VBUS falling
time is too slow, and that the Host detects the end of the session before the Peripheral that
remains attached. This may lead to a false SRP detection, that will open a new session
automatically...To prevent that the Host waits for a specified delay between the Vbus OFF
detection and releasing the USB macro and enabling it to detect new SRP. This delay is
100ms by default, and should only be modified in case of failure. It is specified by
TA_VBUS_FALL (16 bits constant, where 1 unit = 2ms) in the “usb_host_task.h” file.

5. Using the OTG software library within high level USB OTG applications

5.1

5.2

5.21

5.2.1.1

12

Standard functions

The high-level library management keeps all the properties of the previous USB release (see
appnote AVR329).

So all functions and features described remain available, and have the same effect and
behavior.

Developping an OTG applications is not so different than an application that supports both
embedded Host and Peripheral mode, since the OTG supplement mainly concerns the role
exchange and the session control.

OTG functions

User Requests
Additionnaly, this library introduces the notion of user request. Such a request does not have a
direct effect on the USB macro but this event is saved and will be processed as soon as possi-
ble. It allows user to modify bus or session state, or device role, without care for low-level
management, that will be handled by the library.

Set _user_request_vbus()
In A-Device mode, this request controls Vbus delivery. If the configuration word
OTG_VBUS_AUTO_WHEN_A_PLUG is enabled (continuous Vbus supply while A-plug
inserted), this request has only an effect in A-PERIPHERAL state, to close the current session
(and stop Vbus for a short time). If OTG_VBUS_AUTO_WHEN_A_PLUG is disabled, this
request can be used to toggle Vbus state (and close session) at any moment.

This request has no effect in Peripheral mode.

AV R 27 7 e ——

52.1.2 Set _user _request _hnp()
In A-HOST mode, this request will make the Host initiate a HNP (if supported by the B-Device),
that means that firmware will send Set_Feature(b_hnp_enable) command, put bus into Idle state
and handle failure cases or role exchange in case of success.

In B-HOST mode, this request conduces to a new role exchange that will lead in the current ver-
sion of firmware to a session closure.

52.1.3 Set_user_request_suspend()
On A-HOST or B-HOST, this request has the same effect than Set _user_request _hnp(),
because the Idle state (bus Suspended) is not really used on OTG devices. Either a Suspend
condition leads to an HNP, or it must be advantageously replaced by a Session shut-down, that
saves more power, since Vbus is OFF and OTG B-Device will only need to send a SRP to restart
a session, instead of an upstream resume (remote wake-up).

However, in “usb_task.c” file, an explanation is given to implement an upstream resume in
Peripheral mode (that can also be used in a non-OTG application).

52.1.4 Set user _request _disc()
In B-PERIPHERAL state, this request makes the Device disconnect.

In A-PERIPHERAL state, this request leads to session closure (like a vbus request).

In B-HOST state, this request leads also to session closure.

5.2.1.5 Set user _request _srp()
In Peripheral mode, this request must be used only if no session is currently open (Vbus = OFF).
When reading this request, the OTG firmware will initiate a SRP, waits for Vbus delivery, and
also handle failure cases (delays, no response...).

This request has no effect in Host mode.

5.2.2 Device information
OTG supplement adds some device specific features, that can be considered as “device infor-
mation”, since they are integrated into the descriptors, such as HNP or SRP support.

Some pieces of information are available for user :

» Host mode

— Is_peripheral_otg_device() : returns TRUE if the connected device is an OTG device
(has an OTG descriptor), else return FALSE

— Is_host_session_started_srp() : returns TRUE if the current session has been
initiated by B-Device with a SRP, else returns FALSE

e Peripheral mode

— Is_host_requested_hnp() : returns TRUE if A-Device has sent a
Set_Feature(b_hnp_enable), else returns FALSE.

ATMEL z

7719A-USB-07/07

6. Coding Style

ATMEL

The coding style explained hereunder is important to understand the firmware:

* Defined contants use caps letters.
#define FOSC 8000
» Macros Functions use the first letter as cap
#define Is_usb_sof () ((UDINT & MSK_SOFTI) ? TRUE: FALSE)
» The user application can execute its own specific instructions upon each usb events thanks
to hooks defined as following in usb_conf.h.
#define Usb_sof_action () sof_action ()
Note: The hook function should perform only short time requirement
operations !
» Usb_unicode() macro function should be used everywhere (String descriptors...) an unicode
char is exchanged on the USB protocol.

14 AV R 27 7 e ——

7719A-USB-07/07

AIMEL

I 7

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

RF/Automotive

Theresienstrasse 2
Postfach 3535

74025 Heilbronn, Germany
Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

Chinachem Golden Plaza Fax: (33) 4-76-58-34-80
77 Mody Road Tsimshatsui
East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369
1150 East Cheyenne Mtn. Blvd.
Japan Colorado Springs, CO 80906, USA

9F, Tonetsu Shinkawa Bldg. Tel: 1(719) 576-3300
1-24-8 Shinkawa Fax: 1(719) 540-1759

Chuo-ku, Tokyo 104-0033 ' .
Japan Scottish Enterprise Technology Park

Tel: (81) 3-3523-3551 Maxwell Building

Fax: (81) 3-3523-7581 East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of

Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

@ Printed on recycled paper.

7719A-USB-07/07

	1. Introduction
	1.1 Intended Audience
	1.2 Overview
	1.3 References

	2. About OTG
	2.1 Overview
	2.1.1 Need
	2.1.2 Main Features
	2.1.3 Terminology

	2.2 Features description
	2.2.1 Targeted Peripheral List
	2.2.2 Power considerations
	2.2.2.1 Delivery conditions
	2.2.2.2 Voltage
	2.2.2.3 Current

	2.2.3 SRP
	2.2.4 HNP
	2.2.4.1 Hardware side
	2.2.4.2 Software side

	2.2.5 Messaging
	2.2.6 OTG Descriptor
	2.2.7 Set_Feature commands

	3. Firmware Architecture
	3.1 OTG Upgrade Listing
	3.1.1 Requests
	3.1.2 Timings
	3.1.3 Peripheral mode
	3.1.4 Host mode

	3.2 About the sample application
	3.2.1 Role exchanging

	4. Configuring the USB OTG software library
	4.1 Global configuration
	4.2 Scheduler configuration
	4.3 USB library configuration
	4.3.1 Peripheral configuration
	4.3.2 Host configuration
	4.3.3 OTG configuration
	4.3.3.1 Descriptor
	4.3.3.2 Mode configuration
	4.3.3.3 Power

	5. Using the OTG software library within high level USB OTG applications
	5.1 Standard functions
	5.2 OTG functions
	5.2.1 User Requests
	5.2.1.1 Set_user_request_vbus()
	5.2.1.2 Set_user_request_hnp()
	5.2.1.3 Set_user_request_suspend()
	5.2.1.4 Set_user_request_disc()
	5.2.1.5 Set_user_request_srp()

	5.2.2 Device information

	6. Coding Style

