
7719A–USB–07/07

8-bit

Microcontrollers

AT90USB647

AT90USB1287

Application

Note
AVR277: On-The-Go (OTG) add-on to USB
Software Library

1. Introduction
This document describes the new features brought by the OTG working group and

how they are integrated in the AT90USBxxx USB software library, illustrating how to

develop customizable USB OTG applications.

1.1 Intended Audience

This document is written for the software developers to help in the development of the

OTG applications for the AT90USBxxx. It assumes that readers are familiar with the

AT90USBxxx architecture and its USB Software library (not OTG but including Host

and Device mode). A minimum knowledge of the USB specifications is also required

to understand the content of this document.

1.2 Overview

The AT90USBxxx software library has been designed to minimize the complexity of

USB development (and especially enumeration stage) from software designers.

The aim of this document is to present the integration of the OTG features in this

library. It describes the main files and explain how to customize the firmware for the

user to build his own application.

This software package also provides an OTG application example (template demon-

stration sofware) to illustrate the usage of this library. Note that this firmware is ready

to pass the USB Device and/or OTG compliance tests.

1.3 References

- USB Specification : http://www.usb.org/developers/docs/

- OTG Supplement and Errata : http://www.usb.org/developers/onthego/

- OTG Compliance Plan : http://www.usb.org/developers/onthego/

2. About OTG

2.1 Overview

2.1.1 Need

USB has become a popular interface to exchange data between a Host PC and peripherals.

Due to its low cost and high speed, a large number of portable devices have a peripheral USB

port. Although communications between two portable devices would sometimes be useful, the

original USB specification only allowed communications between a host and a peripheral port.

For this reason, the On-The-Go supplement has been developped. It enables USB connectivity

between portable devices by specifying smaller connectors, embedded host capability for porta-

ble devices, low power features, etc.

2.1.2 Main Features

What’s new with OTG ? Just look at the list:

• Embedded Host capability

• Full-Speed (12Mbits/s) operation as a Peripheral, High-Speed (480Mbits/s) optional

• Full-Speed operation as an Host, Low-Speed (1.5Mbits/s) and High-Speed optional

• Targeted Peripheral List

• Session Request Protocol

• Host Negociation Protocol

• One and only one on-board receptacle (for one OTG port) : Micro-AB (Mini-AB is obsolete)

• Low power Vbus features

• Means for communicating messages to user

Be aware that High Speed operation is not supported by our AT90USBxxx products.

2.1.3 Terminology

To facilitate understanding of this document, it is advised to get informed about the minimum

required terminology given below :

• Device : since OTG concerns only dual-role-devices, the word “Device” must not be

employed to indicate a role in a connection. “Device” is simply a general purpose name for

the application (a PDA for example)

• Host : this is one role that can have an OTG device

• Peripheral : this is the other role that can have an OTG device

• Micro-AB : the OTG has introduced the Micro-AB receptacle, able to accept both Micro-A

and Micro-B plugs. Standards A and B receptacles/plugs are not supported by OTG

• Mini-AB : these connectors have been introduced before Micro-AB, but have been declared

as obsolete after the Micro-AB introduction. However, this notation can remain in some

documents.

• ID : fifth pin of the Micro-AB receptacle, that makes the user able to identify the plug inserted

(Micro-A or Micro-B, that also include this signal)

• A-Device : device with a Micro-A plug inserted into its Micro-AB receptacle. By default (at

start-up) it becomes Host (A-Host state)
 2

7719A–USB–07/07

AVR277

 AVR277
• B-Device : device with a Micro-B plug inserted into its Micro-AB receptacle. By default (at

start-up) it becomes Peripheral (B-Peripheral state)

• Vbus : power line of the USB / OTG bus. Several requirements have been specified for it

• Session : defined by the period of time that Vbus is above the session valid threshold

specified by the OTG supplement

• SRP : Session Request Protocol ; initiated by the B-Device when a session is closed, that

allows it to request the opening of a new session

• HNP : Host Negociation Protocol ; initiated by A-Device, that allows the two devices to invert

their role “on the go”, i.e. without any hardware action. After this event, the A-Host becomes

A-Peripheral, and the B-Peripheral becomes B-Host.

• SOF : Start Of Frame ; short packet sent by the Host over the bus every time a new frame

begins (every 1ms at Full-Speed, every 125µs at High-Speed)

• Suspend : bus condition defined by an idle state on the bus during more than 3ms.

• USB-IF : USB Implementers Forum : consortium of companies that have founded the USB

specifications, and that define the compliance tests.

• TPL : Targeted Peripheral List : list of the VID/PID of the peripherals supported by the Host

2.2 Features description

Below are described the OTG features as specified in the OTG supplement. The way they have

been coded and customized in the Atmel USB OTG firmware will be described in the next

section.

2.2.1 Targeted Peripheral List

When acting as a Host (embedded), an OTG device is only required to support a specified list of

devices that are identified by their VID/PID values. This is the “Targeted Peripheral List” (TPL),

and it can contain only one device.

The TPL shall not use USB classes (with no specific VID/PID) or “similar devices” as selection

mean to accept a device connection (for example, if an Host supports HID mice, it must only

accept the mice with a VID/PID that matches the TPL).

During compliance tests, the laboratory will test inter-operability with all the devices of the Tar-

geted Peripheral List.

2.2.2 Power considerations

Several requirements have been specified for the power delivery and threshold voltages.

A primary rule is that Vbus is always supplied by the A-Device, even if the role is being inverted

(and that the A-Device is in the A-Peripheral state).

2.2.2.1 Delivery conditions

An A-Device has different possibilities for supplying Vbus :

• Insertion based Vbus : Vbus is turned ON continuously as long as a Micro-A plug is inserted

into the receptacle

• Usage based Vbus : Vbus is turned ON on request (even if both devices are physically

connected together) : user can request Vbus delivery on the A-Device side (by a software

feature), but the B-Device can also request Vbus from A-Device by itself (or by user action),

by initiating a SRP (See 2.2.3).
 3

7719A–USB–07/07

2.2.2.2 Voltage

A session is valid for an A-Device when Vbus is above Va_sess_vld (threshold between 0.8 and

2.0V). For a B-Device this threshold is Vb_sess_vld, that can be between 0.8 and 4.0V. That

means that a B-Device must connect (i.e. enable its pull-up) before Vbus is greater than

Vb_sess_vld(max) (4.0V).

To ensure correct bus powering, the A-Device must consider that Vbus is valid (that means no

delivery problems, no current overload) if Vbus is above Va_vbus_vld threshold (4.4V).

2.2.2.3 Current

The A-Device must be able to supply at least 8mA.

Any B-Device in unconfigured state must not draw more than 150µA.

Any OTG device must have a capacitance on its Vbus line between 1µF and 6.5µF, to limit

inrush currents but ensure power stability.

An OTG device should have a mean to know if, while it is in Host mode, the Peripheral is draw-

ing more current than available. This may be an “Overcurrent” signal from the power supply

block.

2.2.3 SRP

When two devices are connected together, and the A-Device does not supply Vbus (or has

stopped to supply Vbus), the B-Device can still request it to (re-)enable Vbus in order to start a

new session. This is done through the SRP protocol, that is very simple. This consists in two

pulses that are sent over the bus lines in order to be detected by the A-Device.

The B-Device may first send a pulse on the D+ line by powering its pull-up. This pulse must have

a duration between 5 and 10ms. After that, if there is no reaction from the A-Device (Vbus OFF),

the B-Device may send a pulse on the Vbus line (through a resistor), that must rise higher than

Vb_otg_out level (2.1V).

The B-Device is required to wait for at least 6 seconds before considering that the A-Device has

not responded. Conversely, once the A-Device has detected the SRP, it has 5 seconds to

deliver Vbus supply, and once Vbus is turned ON, it must keep it available during at least 1 sec-

ond, waiting for the B-Device to connect.

2.2.4 HNP

The Micro-AB receptacle allows any OTG device to be a Peripheral or a Host by default, since

both Micro-A plug or Micro-B plug can fit into this receptacle. But some applications shall require

to exchange this role (either if the user default connection is wrong, or if the application needs to

exchange role for any reason at any moment).

The HNP protocol allows the devices to exchange role without swapping the cable. This protocol

can be initiated only between devices that support it. The B-Device informs the A-Device about

its capabilities with the OTG descriptors (See 2.2.6). HNP can be divided in two protocols :

1. Hardware side : the role exchange protocol is mainly performed in hardware with spe-

cific lines states

2. Software side : the role exchange results of a preliminary software negociation
 4

7719A–USB–07/07

AVR277

 AVR277
2.2.4.1 Hardware side

First, the A-Host must let the bus in idle state (no activity, no SOF). After Ta_aidl_bdis(min) and

before Ta_aidl_bdis(max) (resp. 5 and 150ms) of idle state, the B-Peripheral must disconnect.

When the A-Host detects this disconnect, it connects its own pull-up. Now the roles are

exchanged ; and the B-Peripheral that has become B-Host must send a reset on the bus under

Tb_acon_se0 (1ms) after the A-Peripheral connection has been detected. Now the bus can be

used. Once the B-Host has finished using the bus, it lets it idle. After the Ta_aidl_bdis delay, the

A-Peripheral must release its pull-up and, if bus is not needed, release Vbus delivery. If Vbus is

still present, the B-Device has the possibility to turn on its pull-up if it needs to return to Periph-

eral state (otherwise the session will be closed by the A-Device).

2.2.4.2 Software side

As described previously, the Host initiates the HNP by setting the bus in idle state, but it is the

Peripheral that really starts the exchange by disconnecting itself. And this agreement must be

prepared by software... First, the Peripheral informs the Host of its HNP support, thanks to the

OTG descriptor (See 2.2.6). After that, the Host informs the Peripheral that it also supports the

HNP protocol, by sending a Set_Feature(a_hnp_support) command (See 2.2.7). If the Host sup-

ports the Peripheral, it will start using the bus, but the Peripheral is allowed to initiate an HNP

later. If the Host does not support the Device (not in targeted peripheral list), it must initiate the

HNP now. Once the decision is taken to start the HNP, and before stopping activity on bus, the

Host must send a Set_Feature(b_hnp_enable) to the Peripheral to enable it to respond to the

idle state by disconnecting its pull-up.

Several applications and special cases where HNP is needed are listed and tested in the OTG

compliance plan and the OTG supplement.

2.2.5 Messaging

The “No Silent Failure” specification of the OTG supplement implies that an OTG compliant

device must support specific means for communicating error or warning messages to the user.

Several cases where messaging should be used are listed in the OTG supplement and in the

compliance plan documents. To be OTG compliant, a device must support at least the 3 follow-

ing messages :

– “Device Not Attached/Responding” : displayed by a device that detects that the

connected device does not work as expected, or does not respond to requests

– “Attached Device Unsupported” : displayed by a device when the connected

device does not comply with its requirements (not in the TPL, overcurrent condition,

etc.)

– “Unsupported Hub Topology” (see note below) : used when the A-Device is

connected to a hub and does not support it. Please note that this message should

not be required if the device does not support any hub in its targeted peripheral list,

but according to the USB-IF, hub recognition must be handled and this message

must be supported for compliance.

That means that an OTG device must provide at least 3 LEDs to differentiate the messages. A

LCD display remains the best solution, especially if one is already included in the application.

Additional messages can be used to help the user understand a failure.
 5

7719A–USB–07/07

2.2.6 OTG Descriptor

During the enumeration process, the host asks the device several descriptor values to identify it

and load the correct drivers. To be recognized by the host, each USB device should have at

least the following descriptors :

– Device descriptor

– Configuration descriptor

– Interface descriptor

– Endpoint descriptor

– String descriptor

– Class-specific descriptors

The OTG supplement introduces the OTG Descriptor. This descriptor is sent by the B-Device

after a Get_Descriptor(config) request (for example inserted between the configuration and the

first interface descriptors).

Table 2-1. OTG Descriptor

Notes: 1. The HNP Support bit is set if the device supports HNP.

2. The SRP Support bit is set if the device supports SRP.

2.2.7 Set_Feature commands

Here are described the three OTG cases with the Set_Feature() command.

Table 2-2. Set_Feature command

Table 2-3. Feature Selector

The two first features have been described in section 2.2.4. More precisions (special cases,

acceptance conditions) can be found in the OTG supplement.

The third feature a_alt_hnp_support will not be explained here because it concerns an Host that

have an alternate port that supports HNP (and AT90USBxxx products only have one port).

These features can only be cleared on a bus reset or when a session ends. Using a

Clear_Feature() command has no effect on them.

Offset Field Size Description

0 bLength 1 Descriptor size (0x03)

1 bDescriptorType 1 OTG descriptor (0x09)

2 bInterfaceNumber 1 Attribute fields :

D7...2 : reserved

D1 : HNP Support

D0 : SRP Support

bmRequestType bRequest wValue wIndex wLength Data

0x00
SET FEATURE

(0x03)

Feature

Selector
0x00 0x00 None

Feature Selector Value

b_hnp_enable 3

a_hnp_support 4

a_alt_hnp_support 5
 6

7719A–USB–07/07

AVR277

 AVR277
3. Firmware Architecture
As shown in the figure below, the architecture of the USB firmware does not change with the

OTG add-on. This document assumes that the reader is familiar with this architecture.

Figure 3-1. AT90USBxxx USB OTG Firmware Architecture

The OTG features have been included with this firmware and all files have been impacted. Major

changes are detailed in the section 3.1.

3.1 OTG Upgrade Listing

The file architecture has not been modified in relation to the first USB library release. But

changes have been done on almost all the files, and on the state machine.

3.1.1 Requests

Several actions can be initiated at any moment for an OTG connection, like “Initiate a SRP”,

“Turn ON Vbus”, “Suspend Bus”, etc.

User can call the functions “Set_user_request_xxxx()”, where xxxx is the action requested. All

existing functions are defined in the file “usb_task.h”.

 A T90USBxxx Low Level USB dr ivers (hardware registers)

USB OTG high level devic e
applic ationUSB C hapter9 management

main.c

sc heduler.c

usb_task.c otg_user_task.c

Usb_drv.c
U sb _ d rv.h

C onf_usb.h

C onf_sc heduler.h
C onfig.h

o tg _ u se r_ ta sk .h

C onfig.h

Host Operating mode

Usb_host_task.c

Usb_host_enum.c
U sb _ h o s t_ e n u m .h

U sb _ h o s t_ ta sk .h

D evic e Operating mode

Usb_devic e_task.c

Usb_standard_request.c

Usb_spec if ic _request.c

Usb_desc r iptors.c
U sb _ d e scr ip to rs .h

U sb _ sp e cific_ re q u e s t.h

U sb _ s ta n d a rd _ re q u e s t.h

U sb _ d e vice _ ta sk .h

u sb _ ta sk .h

USB So ftwa re lib ra ry
 7

7719A–USB–07/07

3.1.2 Timings

The OTG supplement specifies several delays for events and failures management (for exam-

ple, the maximum time that a B-Device must wait for Vbus from A-Device after having sent an

SRP, before considering the operation as “aborted”). These timings are mandatory, and cannot

be handled by a simple SOF counter because several events must be timed without bus activity.

One 16 bits timer (one among two) has been reserved for this operation. It generates an inter-

rupt every 2ms, and each delay required is managed by a specific counter variable. See at the

end of “usb_task.c” for the function.

3.1.3 Peripheral mode

In Peripheral mode, the OTG Device is managed by a state machine using the following states,

coded in the “usb_device_task.c” file :

– B_IDLE : no session currently open, the device waits for Vbus to rise, or waits for a

SRP request from the user

– B_SRP_INIT : a SRP is being performed on the bus, software waits it has finished to

come back to B_IDLE (wait Host response)

– B_PERIPHERAL : a session is open, the device is connected. This state waits for

events (even if major events are interrupt-handled) or user requests

– B_HOST : state entered after a HNP success : the B-DEVICE has become Host ;

handle user requests

– B_END_HNP_SUSPEND : state entered when a role exchange ends (device is B-

HOST, and receives an user request to disconnect)

Be aware that almost all events are interrupt handled, in “usb_task.c”.

Moreover, whatever the current state is executing, the Peripheral task checks if a request has

been received on the Control endpoint.

3.1.4 Host mode

The current state machine has been enhanced, receiving five additional states :

– A_PERIPHERAL : state entered when the Device has entered Peripheral role after

an HNP. In this state, the program ends the session when a suspend condition is

detected (B-HOST finished its bus usage). Also ends the session on user request

(disconnect or Vbus toggle requests).

– A_INIT_HNP : device enters this state when user requested an HNP ; handles

SetFeature commands, failures...

– A_SUSPEND : A-HOST enters this state with a suspend condition detected after a

HNP request done (so waiting for Peripheral disconnection). Also detects HNP time-

out and upstream-resume signalling.

– A_END_HNP_WAIT_VFALL : this state is entered when the A-PERIPHERAL

detects a Suspend condition. In this case the OTG device does not come back into

the initial configuration (A-HOST), but ends the session by turning OFF Vbus

– A_TEMPO_VBUS_DISCHARGE : this state is entered when shutting down Vbus,

and when it has been detected under the Vbus_valid threshold. Here we wait for a

delay (that can be customized in “usb_host_task.h” as TA_VBUS_FALL, by multiple

of 2ms), because the OTG peripheral can remain attached while Vbus is decreasing.

If the attached delay is too long (i.e. falling time too slow) a SRP will be detected,

and the session will never be open again.
 8

7719A–USB–07/07

AVR277

 AVR277
Moreover, several OTG features and user requests have been implemented into the other states

of the machine (that were already existing without OTG).

3.2 About the sample application

The sample application does not reflect the OTG firmware complexity. Users must press a push-

button on the Peripheral side to toggle a LED located on the Host board.

These are the followings actions possible for the user :

• Host side

– turn ON/OFF Vbus by pushing HWB button : this is only possible from the device

that have the Micro-A plug inserted. That action turns OFF Vbus and closes the

current session.

– request for a HNP by pushing CENTER button : from the device that is in A-HOST

state, this will conduce to role exchange. Once the role exchanged (A-PERIPH and

B-HOST), pressing this key on the B-HOST side will lead to a session end (Vbus

OFF).

• Peripheral side

– send a SRP by pushing HWB button : only possible for a default Peripheral (Micro-B

plug inserted), and when Vbus is OFF. Note that the Host that receives the SRP is

required to exchange role immediately (using HNP). So sending a SRP from the

default Peripheral will conduce the A-HOST to become the Peripheral and the

default Peripheral to become the B-HOST.

– toggle LED by pushing CENTER button : only possible when enumeration is done,

but in any Peripheral mode (A-PERIPH or B-PERIPH).

This sample application uses a simple HID mouse USB configuration. This means that the

Peripheral only needs one INTERRUPT endpoint to send reports to the Host. The report struc-

ture is identical to a mouse report : the information that indicate that the user is pressing the

button is contained in the bitfield normally reserved to the “Left click” mouse event. Pushbutton

debouncing is automatically handled since the refresh rate (endpoint polling period) is 50ms.

3.2.1 Role exchanging

The “role exchanged” state is deceptive, since the ID pin state does not change when the device

changes its role, whereas in the “usb_task.c” file the choice between usb_host_task() and

usb_device_task() is done in function of that ID level!

So on both sides (Peripheral / Host), a special state has been created to solve this problem. And

in each state, the program calls the alternate task...For example, for an A-Device, after an HNP,

the usb_task() still calls the usb_host_task() function, and the state entered is A_PERIPHERAL

(determined upon HNP success interrupt). But in that state, the program calls the

usb_device_task()....It’s the same thing in B-Device mode, when the state is B_HOST, and

where a call is usb_host_task() is done.
 9

7719A–USB–07/07

4. Configuring the USB OTG software library

4.1 Global configuration

All common configuration parameters for the application are defined in the “config.h” file (XTAL

frequency, CPU type...). Modules specific parameters are defined in their respective configura-

tion files.

4.2 Scheduler configuration

The sample application provides a simple tasks scheduler that allows the user to create and add

applicative tasks without modifying the global application architecture and organisation. This

scheduler just calls all predefined tasks in a predefined order without any pre-emption. A task is

executed until its finished, then the scheduler calls the next task.

The scheduler tasks are defined in the “conf_scheduler.h” file, where the user can declare its

tasks functions.

For the sample USB dual role application the following scheduler configuration parameters are

used:

#define Scheduler_task_1_init usb_task_init

#define Scheduler_task_1 usb_task

#define Scheduler_task_2_init otg_user_task_init

#define Scheduler_task_2 otg_user_task

The Scheduler_task_X_init functions are executed only once upon scheduler startup whereas

the Scheduler_task_X functions are executed in an infinite loop.

4.3 USB library configuration

The USB library can be configured thanks to the “conf_usb.h” file. This file contains both USB

modes configuration parameters for device and host. The configuration file is split into tree sec-

tions for device, host, and now also OTG configuration parameters.

4.3.1 Peripheral configuration

All the parameters of the USB Device part remain unchanged, please refer to the USB Library

description document for more details. Below are the main points to verify :

– In OTG mode, the USB_DEVICE_FEATURE must be enabled.

– The user application can still execute specific functions upon events thanks to the

user defined actions of the “conf_usb.h” file.

– User must also define the endpoints used by the configuration of the Peripheral.

– Finally, the “usb_descriptors.h” file must be correctly updated.

4.3.2 Host configuration

Same remark that for the USB Device side, ensure that :

– The USB_HOST_FEATURE must be enabled in OTG mode.

– The HOST_STRICT_VID_PID_TABLE must be enabled in OTG mode, since the

Targeted Peripheral List does not allow connexion acceptance based on Class, but

only on VID and PID knowledge. Just fill in the VID_PID_TABLE with the devices

that your application supports.
 10

7719A–USB–07/07

AVR277

 AVR277
– The user application can execute specific functions upon events thanks to the user

defined actions of the “conf_usb.h” file.

– All other parameters can be used as indicated in the USB Library description.

4.3.3 OTG configuration

4.3.3.1 Descriptor

User is free to modify the “usb_descriptors.h” file that contains as well device general informa-

tion than class specific specifications.

Moreover the OTG has brought a new descriptor, which contains one efficient byte field, bmAt-

tributes. For an OTG compliant device this descriptor OTG_BMATTRIBUTES should be equal to

(HNP_SUPPORT | SRP_SUPPORT). But user can choose to disable HNP to make a simple

“SRP Capable” Peripheral.

4.3.3.2 Mode configuration

The following parameters concern new features brought by OTG. For almost all parameters, you

have to choose between ENABLED and DISABLED. Others cases are specified. All are

included in the “conf_usb.h” file of the project.

• USB_OTG_FEATURE : must be set to ENABLED for OTG mode support

• OTG_VBUS_AUTO_WHEN_A_PLUG :

– set to ENABLED if user wants a “Insertion Based Vbus Supply”, that means that the

A-Device will keep VBUS turned ON continuously, while the A-plug is inserted.

– the DISABLED value codes for “Usage Based Vbus Supply”, that means that Vbus

is supplied on user request : either on a SRP received from the B-PERIPH, or from a

software request on the A-HOST side (pushbutton, etc.).

• OTG_MESSAGING_OUTPUT : defines the messaging method used on Device :

– set to OTGMSG_ALL if all programmed messages are needed (both events

messages like “Device connected” and mandatory failure messages like

“Unsupported Device”. In this case, 5 functions that are called by the OTG library

must be defined by the user : Initialisation function, Display/Clear message (event,

failure) functions. In the OTG library, messages are identified thanks to an ID

number, that are available in the file “usb_task.h”.

– set to OTGMSG_FAIL if only failure messages are required. The same functions that

for OTGMSG_ALL have to be defined except those that concern event messages...

– set to OTGMSG_NONE if messages are not required in this application. In this case

the device is not OTG compliant. Nothing else has to be done.

• OTG_USE_TIMER : defines which 16 bits timer will be used by the OTG library : must be

either TIMER16_1 or TIMER16_3.

• USE_TIMER16 : defines if the global application uses another timer or not :

– set to BOTH_TIMER16 if your application uses the other 16 bits timer for a general

purpose application

– set to OTG_USE_TIMER if the remaining 16 bits timer is not used by user

• OTG_ENABLE_HNP_AFTER_SRP :

– if ENABLED, the A-Device will automatically initiate a HNP (and become A-PERIPH)

if the B-Device has sent a SRP and has connected within the correct delay once

Vbus has been supplied. Default (and OTG compliant) value is ENABLED.
 11

7719A–USB–07/07

– if DISABLED, the A-Device will start a normal session (supply Vbus and be A-

HOST) when it will receive a SRP from the B-Device

• OTG_ADEV_SRP_REACTION : defines the SRP pulse for which the A-Device will react and

turn ON Vbus. Possible values are : VBUS_PULSE or DATA_PULSE.

4.3.3.3 Power

• An OTG compliant device should have a power circuitry able to inform the Host of

overcurrent conditions. If your board has such a system, you must define in “conf_usb.h” the

macro Is_vbus_overcurrent() that returns TRUE or FALSE according to the situation.

• As explained at the section 3.1.4, a session closing failure may happen if the VBUS falling

time is too slow, and that the Host detects the end of the session before the Peripheral that

remains attached. This may lead to a false SRP detection, that will open a new session

automatically...To prevent that the Host waits for a specified delay between the Vbus OFF

detection and releasing the USB macro and enabling it to detect new SRP. This delay is

100ms by default, and should only be modified in case of failure. It is specified by

TA_VBUS_FALL (16 bits constant, where 1 unit = 2ms) in the “usb_host_task.h” file.

5. Using the OTG software library within high level USB OTG applications

5.1 Standard functions

The high-level library management keeps all the properties of the previous USB release (see

appnote AVR329).

So all functions and features described remain available, and have the same effect and

behavior.

Developping an OTG applications is not so different than an application that supports both

embedded Host and Peripheral mode, since the OTG supplement mainly concerns the role

exchange and the session control.

5.2 OTG functions

5.2.1 User Requests

Additionnaly, this library introduces the notion of user request. Such a request does not have a

direct effect on the USB macro but this event is saved and will be processed as soon as possi-

ble. It allows user to modify bus or session state, or device role, without care for low-level

management, that will be handled by the library.

5.2.1.1 Set_user_request_vbus()

In A-Device mode, this request controls Vbus del ivery. If the conf igurat ion word

OTG_VBUS_AUTO_WHEN_A_PLUG is enabled (continuous Vbus supply while A-plug

inserted), this request has only an effect in A-PERIPHERAL state, to close the current session

(and stop Vbus for a short time). If OTG_VBUS_AUTO_WHEN_A_PLUG is disabled, this

request can be used to toggle Vbus state (and close session) at any moment.

This request has no effect in Peripheral mode.
 12

7719A–USB–07/07

AVR277

 AVR277
5.2.1.2 Set_user_request_hnp()

In A-HOST mode, this request will make the Host initiate a HNP (if supported by the B-Device),

that means that firmware will send Set_Feature(b_hnp_enable) command, put bus into Idle state

and handle failure cases or role exchange in case of success.

In B-HOST mode, this request conduces to a new role exchange that will lead in the current ver-

sion of firmware to a session closure.

5.2.1.3 Set_user_request_suspend()

On A-HOST or B-HOST, this request has the same effect than Set_user_request_hnp(),

because the Idle state (bus Suspended) is not really used on OTG devices. Either a Suspend

condition leads to an HNP, or it must be advantageously replaced by a Session shut-down, that

saves more power, since Vbus is OFF and OTG B-Device will only need to send a SRP to restart

a session, instead of an upstream resume (remote wake-up).

However, in “usb_task.c” file, an explanation is given to implement an upstream resume in

Peripheral mode (that can also be used in a non-OTG application).

5.2.1.4 Set_user_request_disc()

In B-PERIPHERAL state, this request makes the Device disconnect.

In A-PERIPHERAL state, this request leads to session closure (like a vbus request).

In B-HOST state, this request leads also to session closure.

5.2.1.5 Set_user_request_srp()

In Peripheral mode, this request must be used only if no session is currently open (Vbus = OFF).

When reading this request, the OTG firmware will initiate a SRP, waits for Vbus delivery, and

also handle failure cases (delays, no response...).

This request has no effect in Host mode.

5.2.2 Device information

OTG supplement adds some device specific features, that can be considered as “device infor-

mation”, since they are integrated into the descriptors, such as HNP or SRP support.

Some pieces of information are available for user :

• Host mode

– Is_peripheral_otg_device() : returns TRUE if the connected device is an OTG device

(has an OTG descriptor), else return FALSE

– Is_host_session_started_srp() : returns TRUE if the current session has been

initiated by B-Device with a SRP, else returns FALSE

• Peripheral mode

– Is_host_requested_hnp() : returns TRUE if A-Device has sent a

Set_Feature(b_hnp_enable), else returns FALSE.
 13

7719A–USB–07/07

6. Coding Style
The coding style explained hereunder is important to understand the firmware:

• Defined contants use caps letters.

#define FOSC 8000

• Macros Functions use the first letter as cap

#define Is_usb_sof() ((UDINT & MSK_SOFI) ? TRUE: FALSE)

• The user application can execute its own specific instructions upon each usb events thanks

to hooks defined as following in usb_conf.h.

#define Usb_sof_action() sof_action()

Note: The hook function should perform only short time requirement

operations !

• Usb_unicode() macro function should be used everywhere (String descriptors...) an unicode

char is exchanged on the USB protocol.
 14

7719A–USB–07/07

AVR277

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl

Route des Arsenaux 41

Case Postale 80

CH-1705 Fribourg

Switzerland

Tel: (41) 26-426-5555

Fax: (41) 26-426-5500

Asia

Room 1219

Chinachem Golden Plaza

77 Mody Road Tsimshatsui

East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Memory

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France

Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle

13106 Rousset Cedex, France

Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.

Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Scottish Enterprise Technology Park

Maxwell Building

East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000

Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2

Postfach 3535

74025 Heilbronn, Germany

Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.

Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00

Fax: (33) 4-76-58-34-80

Literature Requests

www.atmel.com/literature

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of

Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
 Printed on recycled paper.

7719A–USB–07/07

	1. Introduction
	1.1 Intended Audience
	1.2 Overview
	1.3 References

	2. About OTG
	2.1 Overview
	2.1.1 Need
	2.1.2 Main Features
	2.1.3 Terminology

	2.2 Features description
	2.2.1 Targeted Peripheral List
	2.2.2 Power considerations
	2.2.2.1 Delivery conditions
	2.2.2.2 Voltage
	2.2.2.3 Current

	2.2.3 SRP
	2.2.4 HNP
	2.2.4.1 Hardware side
	2.2.4.2 Software side

	2.2.5 Messaging
	2.2.6 OTG Descriptor
	2.2.7 Set_Feature commands

	3. Firmware Architecture
	3.1 OTG Upgrade Listing
	3.1.1 Requests
	3.1.2 Timings
	3.1.3 Peripheral mode
	3.1.4 Host mode

	3.2 About the sample application
	3.2.1 Role exchanging

	4. Configuring the USB OTG software library
	4.1 Global configuration
	4.2 Scheduler configuration
	4.3 USB library configuration
	4.3.1 Peripheral configuration
	4.3.2 Host configuration
	4.3.3 OTG configuration
	4.3.3.1 Descriptor
	4.3.3.2 Mode configuration
	4.3.3.3 Power

	5. Using the OTG software library within high level USB OTG applications
	5.1 Standard functions
	5.2 OTG functions
	5.2.1 User Requests
	5.2.1.1 Set_user_request_vbus()
	5.2.1.2 Set_user_request_hnp()
	5.2.1.3 Set_user_request_suspend()
	5.2.1.4 Set_user_request_disc()
	5.2.1.5 Set_user_request_srp()

	5.2.2 Device information

	6. Coding Style

