VSC8491

Hardware Design Checklist

1.0 INTRODUCTION

This document provides a hardware design checklist for the Microchip VSC8491 product family. It is meant to help customers achieve first-pass design success.

There is only one member of the VSC8491 family, namely the VSC8491-17. The VSC8491 must be configured after power-up, even for basic bring-up purposes. Use the Microchip supplied API and reference the sample application for examples of API calls.

These checklist items should be followed when utilizing the VSC8491 in a new design. A summary of these items is provided in Section 9.0, "Hardware Checklist Summary". Detailed information on these subjects can be found in the corresponding sections:

- · Section 2.0, "General Considerations"
- · Section 3.0, "Power"
- · Section 4.0, "Thermal Considerations"
- · Section 5.0, "Media SerDes Interface"
- · Section 6.0, "Host Interface (XAUI, RXAUI, and SGMII)"
- Section 7.0, "Reference Clocks"
- · Section 8.0, "Miscellaneous"

2.0 GENERAL CONSIDERATIONS

2.1 Required References

The VSC8491 implementor should have the following documents on hand:

· VSC8491-17 Data Sheet

This document can be found at www.microchip.com/VSC8491.

2.2 Pin Check

Check the pinout of the part against the data sheet. Ensure that all pins match the data sheet and are configured
as inputs, outputs or bidirectional for error checking.

2.3 Ground

 A single ground reference is used for all ground pins. Use one or more continuous ground planes to ensure a low impedance ground path and a continuous ground reference for all signals. Section 4.0, "Thermal Considerations" also explains the importance of grounds for thermal dissipation.

3.0 POWER

Table 3-1 shows the power supply pins for VSC8491.

TABLE 3-1: POWER SUPPLY PINS

Name	Pin Number	Description	Comment
VDDAH	G4	1.0V power supply for host-side analog	
VDDAH	G5	1.0V power supply for host-side analog	Analog was farrita haad
VDDAH	J4	1.0V power supply for host-side analog	Analog, use ferrite bead
VDDAH	J5	1.0V power supply for host-side analog	
VDDAL	F7	1.0V power supply for line-side analog	
VDDAL	G7	1.0V power supply for line-side analog	
VDDAL	G9	1.0V power supply for line-side analog	Analog, use ferrite bead
VDDAL	H9	1.0V power supply for line-side analog	
VDDAL	J7	1.0V power supply for line-side analog	
VDDHSL	F9	1.2V power supply for line-side I/Os	
VDDHSL	F10	1.2V power supply for line-side I/Os	
VDDHSL	G10	1.2V power supply for line-side I/Os	Analog was farrita haad
VDDHSL	H10	1.2V power supply for line-side I/Os	Analog, use ferrite bead
VDDHSL	J9	1.2V power supply for line-side I/Os	
VDDHSL	J10	1.2V power supply for line-side I/Os	
VDDL	H4	1.0V power supply for chip core	
VDDL	H5	1.0V power supply for chip core	Digital, no ferrite bead
VDDL	H7	1.0V power supply for chip core	
VDDMDIO	C7	2.5V power supply for MDIO I/Os	Digital, no ferrite bead
VDDTTL	C3	2.5V power supply for non-MDIO digital I/Os	
VDDTTL	C9	2.5V power supply for non-MDIO digital I/Os	Digital, no ferrite bead
VDDTTL	M6	2.5V power supply for non-MDIO digital I/Os	

3.1 Current Requirements

Ensure that the voltage regulators and power distribution are designed to adequately support these current requirements for each power rail. (See Table 3-2.) Note that the 1.0V maximum current values in this table include margins, so they sum to more than the maximum 1.0V current specification in the data sheet. The data sheet value is correct for overall power.

TABLE 3-2: MAXIMUM RAIL CURRENTS

Power Rail	Voltage	Maximum Current
VDDAH	1.0V	1000 mA
VDDAL	1.0V	900 mA
VDDL	1.0V	2000 mA
VDDHSL	1.2V	150 mA
VDDMDIO + VDDTTL	2.5V	50 mA

3.2 Power Supply Planes

- VSC8491 requires three power rails: 2.5V, 1.2V, and 1.0V. The filtered analog 1.0V and 1.2V supplies should not be shorted to any other digital supply at the package or PCB level. See Section 3.3, "Analog Power Plane Filtering".
- · The most important PCB design and layout considerations are as follows:

- Ensure that the return plane is adjacent to the power plane (without a signal layer in between).
- Ensure that a single plane is used for voltage reference with splits for individual voltage rails within that plane. Try to maximize the area of each power split on the power plane based on corresponding via coordinates for each rail to maximize coupling between each voltage rail and the return plane.
- Minimize resistive drop while efficiently conducting away heat from the device using one-ounce copper cladding.
- Four-layer PCBs with only one designated power plane must adhere to proper design techniques to prevent random system events, such as CRC errors. Each power supply requires the lowest resistive drop possible to power pins of the device with correctly positioned local decoupling. For more information, see Section 3.4, "Decoupling Capacitors".
- Ferrite beads should be used over a series inductor filter whenever possible, particularly for high-density or high-power devices.

3.3 Analog Power Plane Filtering

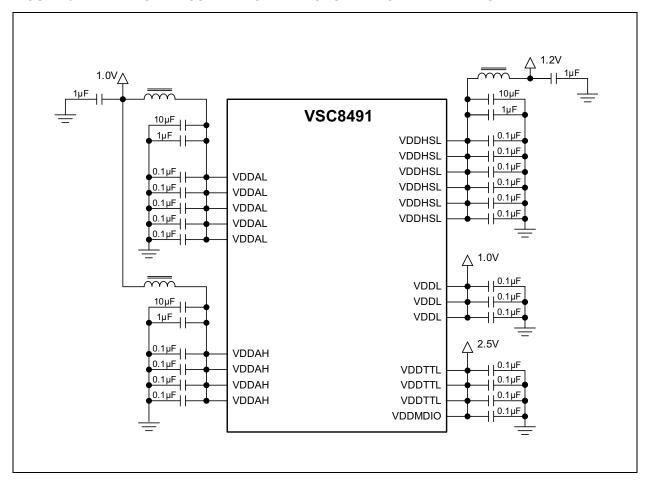

- · The analog power supplies are:
 - VDDAH
 - VDDAL
 - VDDHSL
- A ferrite bead should be used to isolate each analog supply from the rest of the board. The bead should be placed in series between the bulk decoupling capacitors and local decoupling capacitors.
- Because all PCB designs yield unique noise coupling behavior, not all ferrite beads or decoupling capacitors may
 be needed for every design. It is recommended that system designers provide an option to replace the ferrite
 beads with 0Ω resistors once a thorough evaluation of system performance is completed.
- Ferrite beads are not recommended on the digital supplies VDDL, VDDTTL and VDDMDIO.
- The chosen ferrite beads should have the impedance of 80Ω to 120Ω at 100 MHz, and the characteristics are specified in Table 3-3.

TABLE 3-3: FERRITE BEAD PARAMETERS

VCC0404 Angles Supply	Ferrite Bead Requirements			
VSC8491 Analog Supply	Current	Maximum DC Resistance		
VDDAH	1000 mA	40 mΩ		
VDDAL	1000 mA	40 mΩ		
VDDHSL	150 mA	100 mΩ		

The power and ground connections are shown in Figure 3-1.

FIGURE 3-1: POWER SUPPLY CONNECTIONS AND LOCAL FILTERING

3.4 Decoupling Capacitors

- Bulk decoupling capacitors can be placed at any convenient position on the board. Local decoupling capacitors should be X5R or X7R ceramic and placed as close as possible to the VSC8491's power pins for every pin.
- If the VSC8491 device is on the top-side of the printed circuit board (PCB), the best location for local decoupling capacitors is on the bottom or underside of the PCB, directly under the device.

4.0 THERMAL CONSIDERATIONS

- For proper cooling, ensure efficient thermal dissipation by maximizing the number of via connections to the ground plane. Additional ground planes will enhance thermal dissipation and signal integrity performance.
- When connecting the thermal vias to ground planes, it is advisable to avoid thermal relief connection traces as shown on the left-hand side of Figure 4-1 as these are designed to prevent the flow of heat through the PCB. Instead, the thermal vias should have a solid connection to the traces and planes on each layer as shown on the right-hand side of Figure 4-1.
- PCB thermal vias should connect to the solid ground planes within the board to dissipate heat below the package. A minimum of one-ounce copper cladding is recommended. Figure 4-2 shows a cross-section of the thermal via.

FIGURE 4-1: THERMAL VIAS

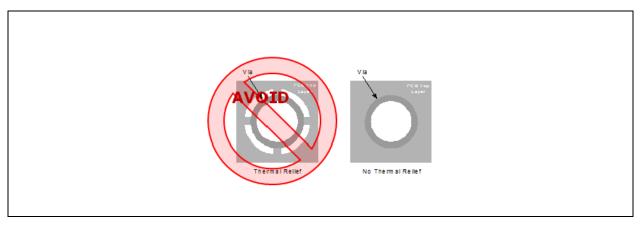
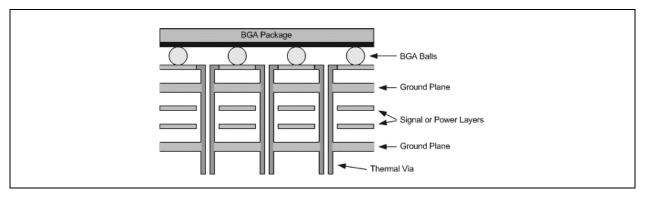



FIGURE 4-2: THERMAL GROUND PLANE CONNECTION

5.0 MEDIA SERDES INTERFACE

5.1 Media SerDes Design Rules

Table 5-1 shows information on Media SerDes Interface. Best performance is achieved when SerDes traces are placed using the following design rules:

- AC coupling capacitors are not needed for SFP+ and SFP applications because SFP+/SFP modules have AC coupling capacitors internally on both TX and RX signals.
- AC coupling with 0.1 μF capacitors should be used on RXIN and TXOUT for chip-to-chip applications. Place the capacitors at the receiving end of the signals.
- Traces should be routed as 50Ω (100Ω differential) controlled impedance transmission lines (microstrip or stripline).
- Traces should be of equal length (within 10 mils) on each differential pair to minimize skew.
- · Traces should be run adjacent to a single ground plane to match impedance and minimize noise.
- Spacing equal to five times the ground plane gap is recommended between adjacent tracks to reduce crosstalk between SerDes pairs. Minimum spacing of three times the ground plane gap is required.
- Traces should avoid vias and layer changes. If layer changes cannot be avoided, mode-suppression vias should be included next to the signal vias to reduce the strength of any radiating spurious fields.
- Guard vias should be placed no greater than one-quarter wavelength apart around the differential pair tracks.
- If a port is unused, both the RXIN and TXOUT pins can be left floating (no-connect).
- If the LOPC pins are not used, pull them to ground with a resistor.

TABLE 5-1: MEDIA SERDES INTERFACE PINS

Pin Name	Pin Number	Туре	Level	Description
RXIN0N	B13	I	CML	Receive channel 0 input data, complement
RXIN0P	B14	I	CML	Receive channel 0 input data, true
TXOUT0N	D14	0	CML	Transmit channel 0 output data, complement
TXOUT0P	D13	0	CML	Transmit channel 0 output data, true
LOPC0	D6	I	LVTTL	Loss of optical carrier, channel 0. Internally pulled high.

5.2 Connecting to 10G SFP+ or 1G SFP

- Follow the succeeding guidelines for connecting the differential SerDes data pins to the SFP+/SFP (also referred to as SFP):
 - Connect the VSC8491 TXOUT pins directly to the TD input pins of the SFP.
 - Connect the VSC8491 RXIN pins directly to the RD output pins of the SFP.
 - External termination resistors and AC coupling capacitors are not needed on the PCB.
- · Connection and use of the other SFP signals are at the discretion of the user.
- The RX LOS output of the SFP can drive the LOPC input of the VSC8491 and/or the host device.
- VSC8491 GPIO pins can be configured as 2-wire masters for accessing SFP registers via SDA and SCL. However, since this adds an additional layer of software complexity to manage these signals, it is extremely common for the SFP 2-wire interface to be managed directly from the switch/MAC/ASIC host device. GPIO assignments are given in Table 5-2 and Table 5-3.
- VSC8491 GPIO pins can also be assigned as inputs for the MOD ABS (module absent) output of the SFP.
- All other SFP signals, if used, should be connected to the switch/MAC/ASIC host device and not to the VSC8491.
- All single-ended SFP outputs are open drain and require a pull-up resistor to 3.3V when used.
- All VSC8491 GPIO outputs are open drain and require a pull-up resistor. When connected to an SFP, the pull-up voltage must be 3.3V and not 2.5V.

GPIO pin assignments are specified in Table 5-2 and Table 5-3.

TABLE 5-2: GPIO ASSIGNMENTS FOR 2-WIRE MASTER

Channel	VSC8491 Pin	SFP+ Pin
Channel 0	GPIO_6 (pin K4)	SDA, pin 4
Channel 0	GPIO_7 (pin K5)	SCL, pin 5

TABLE 5-3: GPIO ASSIGNMENTS FOR MOD_ABS INPUTS

Channel	VSC8491 Pin	SFP+ Pin
Channel 0	PHY GPIO_0 (pin D4) or GPIO_8 (pin K6)	MOD_ABS, pin 6

• Figure 5-1 and Figure 5-2 illustrate VSC8491 to SFP+ connections. Figure 5-1 shows a typical scenario wherein most SFP signals are connected to the switch/MAC/ASIC host device rather than the VSC8491. Conversely, Figure 5-2 shows a less common scenario wherein the maximum number of SFP signals are connected to the VSC8491.

FIGURE 5-1: SFP+ CONNECTIONS WITH 2-WIRE AND MOD_ABS TO THE SWITCH/MAC/ASIC

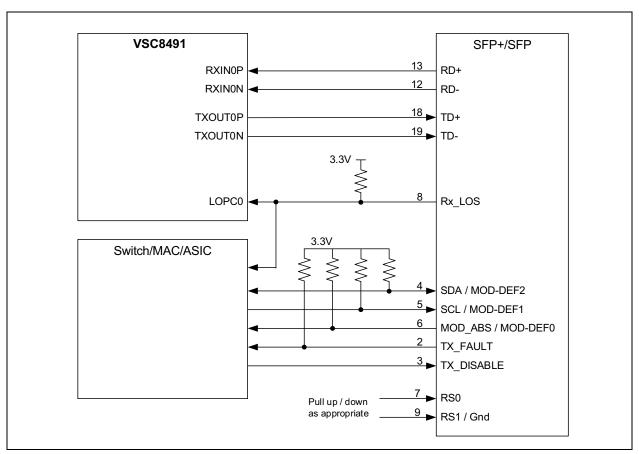
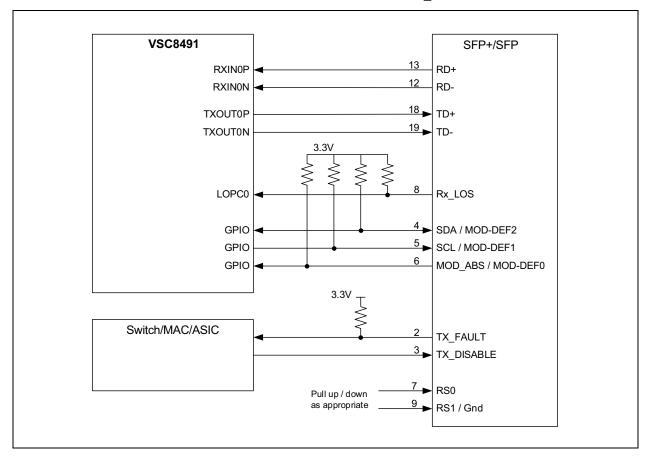



FIGURE 5-2: SFP+ CONNECTIONS WITH 2-WIRE AND MOD_ABS TO THE VSC8491

6.0 HOST INTERFACE (XAUI, RXAUI, AND SGMII)

Table 6-1 shows information on Host SerDes Interface.

TABLE 6-1: HOST SERDES INTERFACE PINS

IADLL 0-1.	11031 3ERDES INTERIACE FINS		I AOL I IIIO	
Pin Name	Pin Number	Туре	Level	Description
XRX0_0N	C2	I	CML	XAUI channel 0, RX path lane 0, serial data input, complement
XRX0_0P	C1	I	CML	XAUI channel 0, RX path lane 0, serial data input, true
XRX0_1N	D2	I	CML	XAUI channel 0, RX path lane 1, serial data input, complement
XRX0_1P	D1	I	CML	XAUI channel 0, RX path lane 1, serial data input, true
XRX0_2N	E2	I	CML	XAUI channel 0, RX path lane 2, serial data input, complement
XRX0_2P	E1	I	CML	XAUI channel 0, RX path lane 2, serial data input, true
XRX0_3N	F2	I	CML	XAUI channel 0, RX path lane 3, serial data input, complement
XRX0_3P	F1	I	CML	XAUI channel 1, RX path lane 3, serial data input, true
XRX1_0N	P2	Ι	CML	XAUI channel 1, RX path lane 0, serial data input, complement
XRX1_0P	N2	I	CML	XAUI channel 1, RX path lane 0, serial data input, true
XRX1_1N	P3	I	CML	XAUI channel 1, RX path lane 1, serial data input, complement
XRX1_1P	N3	I	CML	XAUI channel 1, RX path lane 1, serial data input, true
XRX1_2N	P4	I	CML	XAUI channel 1, RX path lane 2, serial data input, complement
XRX1_2P	N4	I	CML	XAUI channel 1, RX path lane 2, serial data input, true
XRX1_3N	P5	I	CML	XAUI channel 1, RX path lane 3, serial data input, complement
XRX1_3P	N5	I	CML	XAUI channel 1, RX path lane 3, serial data input, true
XTX0_0N	В6	0	CML	XAUI channel 0, TX path lane 0, serial data input, complement
XTX0_0P	A6	0	CML	XAUI channel 0, TX path lane 0, serial data input, true
XTX0_1N	B5	0	CML	XAUI channel 0, TX path lane 1, serial data input, complement
XTX0_1P	A5	0	CML	XAUI channel 0, TX path lane 1, serial data input, true
XTX0_2N	B4	0	CML	XAUI channel 0, TX path lane 2, serial data input, complement
XTX0_2P	A4	0	CML	XAUI channel 0, TX path lane 2, serial data input, true
XTX0_3N	В3	0	CML	XAUI channel 0, TX path lane 3, serial data input, complement
XTX0_3P	A3	0	CML	XAUI channel 0, TX path lane 3, serial data input, true
XTX1_0N	H2	0	CML	XAUI channel 1, TX path lane 0, serial data input, complement
XTX1_0P	H1	0	CML	XAUI channel 1, TX path lane 0, serial data input, true
XTX1_1N	J2	0	CML	XAUI channel 1, TX path lane 1, serial data input, complement
XTX1_1P	J1	0	CML	XAUI channel 1, TX path lane 1, serial data input, true
XTX1_2N	K2	0	CML	XAUI channel 1, TX path lane 2, serial data input, complement

TABLE 6-1: HOST SERDES INTERFACE PINS (CONTINUED)

Pin Name	Pin Number	Type	Level	Description
XTX1_2P	K1	0	CML	XAUI channel 1, TX path lane 2, serial data input, true
XTX1_3N	L2	0	CML	XAUI channel 1, TX path lane 3, serial data input, complement
XTX1_3P	L1	0	CML	XAUI channel 1, TX path lane 3, serial data input, true

6.1 Host Serial Interface Design

- The host interface may be XAUI, RXAUI or 1GbE/SGMII. It is recommended to use the same configuration for both channels 0 and 1.
 - XAUI (10G) uses all four TX path lanes and four RX path lanes per channel. (See Figure 6-1.)
 - RXAUI (10G) uses lanes 0 and 2. Lanes 1 and 3 can be left floating (no-connect). (See Figure 6-2.)
 - 1GbE (1.25 Gbps) or SGMII uses either lane 0 or 3 only. The other three lanes can be left floating (no-connect). (See Figure 6-3.)
- · Check the signal directions, so that the outputs of one device connect to the inputs of the other device.
- Use AC coupling with 0.1 µF capacitors. Capacitors are best located close to the destination.
- The AC coupling capacitors are not required in cases where the driver satisfies the Common-mode voltage requirements of the receiver.
- The VSC8491 has internal termination on the XRX inputs, so external termination resistors are not needed. The
 host typically has internal termination also. If it does not, then 100Ω termination resistors may be needed on the
 XTX signals at the host's end.
- Best performance results when SerDes traces are placed using the following design rules:
 - Traces should be routed as 50Ω (100Ω differential) controlled impedance transmission lines (microstrip or stripline).
 - Traces should be of equal length (within 30 mils) on each differential pair to minimize skew.
 - Traces should be run adjacent to a single ground plane to match impedance and minimize noise.
 - Spacing equal to five times the ground-plane gap between adjacent tracks is recommended to reduce cross-talk between SerDes pairs. A minimum spacing of three times the ground-plane gap is required.
 - Traces should avoid vias and layer changes. If layer changes cannot be avoided, mode-suppression vias should be included next to the signal vias to attenuate any radiating spurious fields.
 - Guard vias should be placed no greater than one-quarter wavelength apart around the differential pair tracks.

FIGURE 6-1: XAUI CONNECTIONS

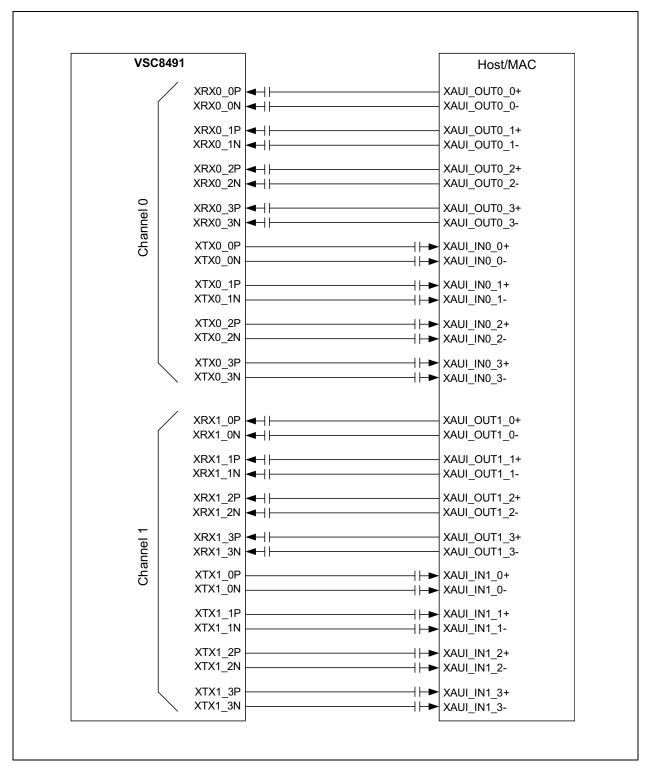


FIGURE 6-2: RXAUI CONNECTIONS

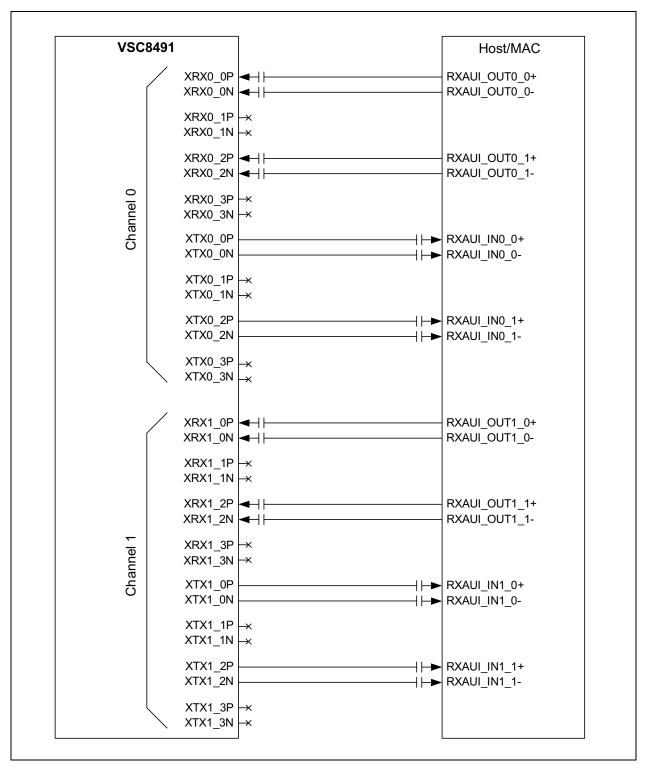
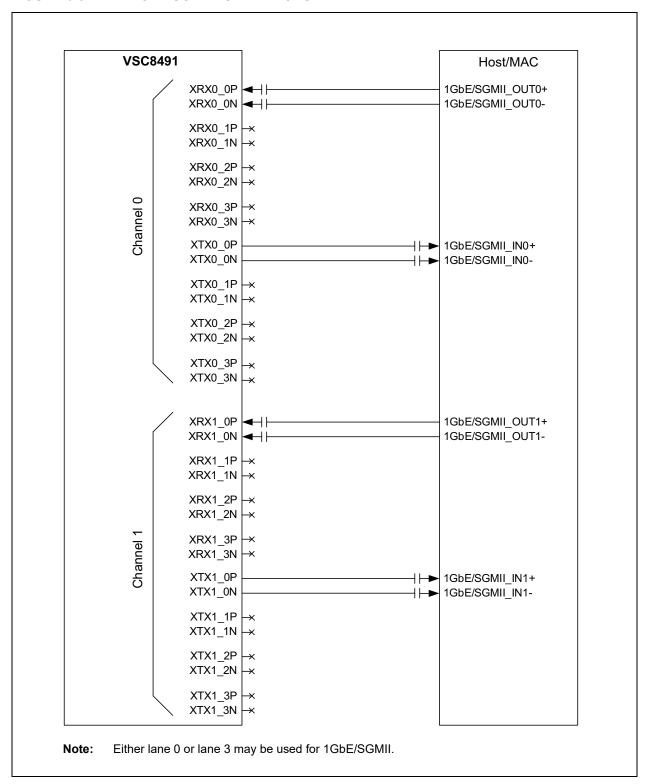



FIGURE 6-3: 1GBE/SGMII CONNECTIONS

7.0 REFERENCE CLOCKS

Table 7-1 shows information on reference clocks.

TABLE 7-1: REFERENCE CLOCKS

Pin Name	Pin Number	Туре	Level	Description
WREFCKN	J14	I	CML	WAN reference clock input, complement
WREFCKP	H14	I	CML	WAN reference clock input, true
XREFCKN	F14	I	CML	Reference clock input, complement
XREFCKP	F13	I	CML	Reference clock input, true
SREFCKN	J12	I	CML	SyncE reference clock input, complement
SREFCKP	H12	I	CML	SyncE reference clock input, true
MODE0	K11	I	LVTTL	Mode select input bit 0
MODE1	M9	I	LVTTL	Mode select input bit 1

7.1 Device Reference Clocks

The VSC8491 has three reference clock inputs: WREFCK, XREFCK and SREFCK. SyncE applications may use either one or two clocks, while non-SyncE applications use only XREFCK. Using all three reference clocks is unnecessary.

- WREFCK P/N may be used for one configuration of WAN plus SyncE as shown in Table 7-2.
- XREFCK_P/N is a required reference clock for all operating modes. The frequency may be either 125 MHz or 156.25 MHz. XREFCK may be an ordinary oscillator for non-SyncE applications or a hitless (DPLL) clock for SyncE applications. The clock speed is set by the MODE1 input. Users must take note of the following when setting the clock speed:
 - Pull MODE1 low for 156.25 MHz.
 - Pull MODE1 high for 125 MHz.
 - MODE0 must always be pulled low.
- SREFCK_P/N may be used for certain SyncE applications, but it is not required for SyncE. See Section 7.2, "Synchronous Ethernet" for more details.

Table 7-2 lists reference clock configurations for different modes.

TABLE 7-2: REFERENCE CLOCK CONFIGURATIONS

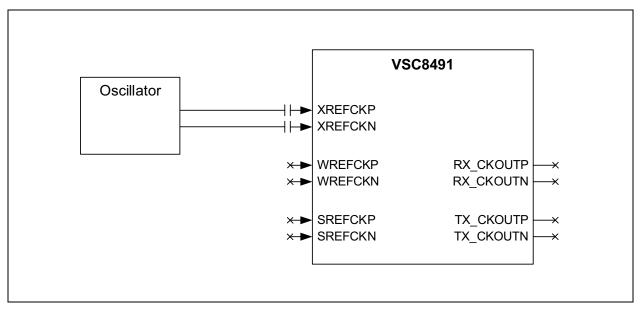

Mode	XREFCK	WREFCK	SREFCK	TX CMU REF	RX CMU REF
10.3125G LAN Single Reference	156.25 MHz	_	_	XREFCK	XREFCK
9.95328G WAN Single Reference	156.25 MHz	_	_	XREFCK	XREFCK
1.25G LAN Single Reference	156.25 MHz			XREFCK	XREFCK
10.3125G LAN Single Reference	125 MHz			XREFCK	XREFCK
9.95328G WAN Single Reference	125 MHz			XREFCK	XREFCK
1.25G LAN Single Reference	125 MHz			XREFCK	XREFCK
10.3125G SyncE LAN Single Reference	156.25 MHz (Hitless)			XREFCK	XREFCK
40.04050.0 ELAND.	156.25 MHz	_	161.13 MHz	SREFCK	XREFCK
10.3125G SyncE LAN Dual Reference	156.25 MHz	_	156.25 MHz	SREFCK	XREFCK
Reference	156.25 MHz		125 MHz	SREFCK	XREFCK
9.95328G SyncE WAN Single Reference	156.25 MHz (Hitless)	_	_	XREFCK	XREFCK
9.95328G SyncE WAN Dual Reference	156.25 MHz	_	155.52 MHz	SREFCK	XREFCK
9.95328G SyncE WAN Dual Reference	156.25 MHz	155.52 MHz	_	WREFCK	WREFCK

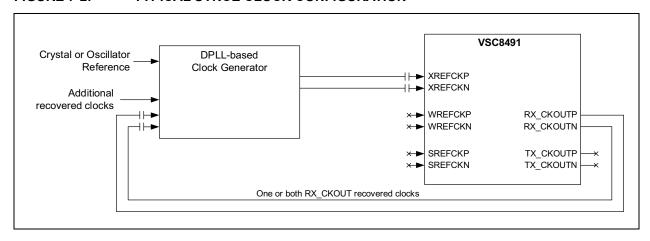
TABLE 7-2: REFERENCE CLOCK CONFIGURATIONS (CONTINUED)

Mode	XREFCK	WREFCK	SREFCK	TX CMU REF	RX CMU REF
1.25G SyncE LAN Single Reference	156.25 MHz (Hitless)	_	_	XREFCK	XREFCK

- · Users must ensure that the following are executed when using reference clocks:
 - Meet the jitter requirements from the data sheet.
- Meet the amplitude specifications given in the data sheet. Note that XREFCK_P/N and WREFCK_P/N are configurable for either high-swing or low-swing inputs. An API call is used to configure it. SREFCK_P/N has a single amplitude range.
- Traces are routed as 50Ω (100Ω differential) controlled impedance transmission lines (microstrip or stripline).
- Use AC coupling with 0.1 µF capacitors. Capacitors are best placed close to the reference clock input pins.
- For some clock drivers, make sure that termination resistors are placed on the clock driver side. Termination resistors are not typically needed on the VSC8491 side of the capacitors.
- All reference clocks must be free from glitches or must be hitless.
- Unused reference clocks can be left floating (no-connect). See Figure 7-1.

FIGURE 7-1: REFERENCE CLOCK FOR NON-SYNCE

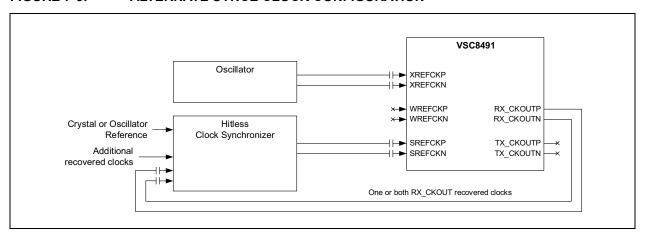
7.2 Synchronous Ethernet


There are multiple ways to implement clocking for Synchronous Ethernet. The two main ways are:

- SyncE with Single Reference Clock
- · SyncE with Non-Hitless XREFCK, LAN Mode

7.2.1 SYNCE WITH SINGLE REFERENCE CLOCK

In the Single Clock LAN, External Master configuration, a hitless (DPLL) clock chip drives **XREFCK**. The clock changes gradually to match an externally referenced synchronous Ethernet (SyncE) clock. The change must be hitless to avoid data corruption. One of the port recovered clocks, output on the **RXCKOUT** pins, can be used as reference to the clock chip. **WREFCK** and **SREFCK** are not used. See Figure 7-2.


FIGURE 7-2: TYPICAL SYNCE CLOCK CONFIGURATION

7.2.2 SYNCE WITH NON-HITLESS XREFCK, LAN MODE

In the Dual Clock LAN, External Master configuration, the **XREFCK** remains connected to the stable 156.25 MHz system clock. All the line-side transmits are then synchronized to **SREFCK**. The F to delta F block accepts the **SREFCK** clock from external synchronous Ethernet master and generates the lane Sync signal to effectively synchronize all the line-side **TX** to this external clock. **SREFCK** must be 156.25 MHz. See Figure 7-3.

FIGURE 7-3: ALTERNATE SYNCE CLOCK CONFIGURATION

7.3 Output Clocks

• The output clocks of this device are specified in Table 7-3.

TABLE 7-3: OUTPUT CLOCKS

Name	Number	Туре	Level	Description
RX0CKOUTN	A8	0	CML	Selectable clock output channel 0, complement. See register device 1, address A008.
RX0CKOUTP	B8	0	CML	Selectable clock output channel 0, true. See register device 1, address A008.
TX0CKOUTN	A10	0	CML	Selectable clock output channel 0, complement. See register device 1, address A009.
TX0CKOUTP	B10	0	CML	Selectable clock output channel 0, true. See register device 1, address A009.

- RX0CKOUT can be used to output the line-side RX recovered clock. Alternatively, they can output the line-side TX clock or host-side RX recovered clock.
- TX0CKOUT can be used to output the line-side TX clock. Alternatively, they can output the line-side RX recovered clock or the host-side RX recovered clock.
- For 10G LAN mode, the only available output frequency is 161.1328125 MHz. For 10G WAN mode, the only available frequency is 155.52 MHz. For 1G mode, the only available output frequency is 125 MHz. Take note of the following guidelines:
 - Traces should be routed as 50Ω (100Ω differential) controlled impedance transmission lines (microstrip or stripline).
 - Use AC coupling with 0.1 µF capacitors. Capacitors are best placed close to the reference clock input pins.
 - Any unused output clocks can be left floating (no-connect).

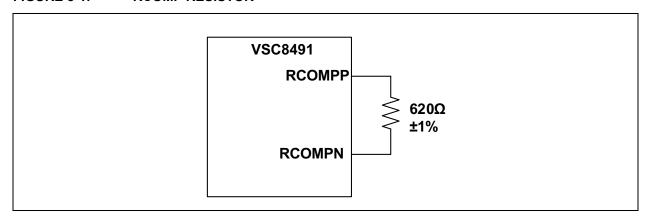
8.0 MISCELLANEOUS

8.1 Reset

The VSC8491 must be reset at power-up. One option is to hold **RESETN** low for a minimum 1 ms after all power rails are up, control pins are stable and clocks are active. Another option is to pulse **RESETN** low for a minimum 1 ms after power-up. **RESETN** is typically driven by a voltage monitor device or by the management processor or FPGA. See Table 8-1 for more information on the reference clocks.

TABLE 8-1: RESET PIN

Pin Name	Pin Number	Туре	Level	Description
RESETN	C6	1	LVTTL	Reset. Low = Reset. Internally pulled high.


8.2 Reference Resistor

Connect a 620Ω ±1% resistor between RCOMPN and RCOMPP as shown in Figure 8-1. Refer to Table 8-2 for additional details on the pins.

TABLE 8-2: REFERENCE RESISTORS

Pin Name	Pin Number	Туре	Level	Description
RCOMPN	M11	_	Analog	Resistor comparator, complement
RCOMPP	L11	_	Analog	Resistor comparator, true

FIGURE 8-1: RCOMP RESISTOR

8.3 Serial Management Interfaces (SMI)

- The VSC8491 has SPI and MDIO management interfaces. Only one can be used at a time.
- SPI has the advantage of higher bandwidth and native addressing for 32-bit registers. (MDIO uses 16-bit data transfers, but the registers are 32 bits.)
- SPI is considered essential for MACSec or two-step 1588 due to performance reasons. MDIO performance is suitable for one-step 1588.
- Make sure to wait at least 105 ms after the rising edge of RESETN before initiating an SMI activity.
- A 2-Wire (I²C) management interface is also available via GPIO_2 and GPIO_3 pins. However, it is not supported
 in the software API and is not recommended.

8.3.1 SPI MANAGEMENT INTERFACE

The SPI interface is the recommended interface for managing the VSC8491, especially for two-step IEEE 1588 and MACSec applications. See the Design Considerations section of the data sheets specified in Section 2.1, "Required References" for the maximum SPI frequency. This interface operates at 2.5V but is 3.3V tolerant. Refer to Table 8-3 for pin information.

• If the SPI interface is unused, pull the input pins to VDDTTL.

TABLE 8-3: SPI MANAGEMENT PINS

Pin Name	Pin Number	Туре	Level	Description
MISO	E11	0	LVTTL	SPI slave data output
MOSI	E9	I	LVTTL	SPI slave data input
SCK	D11	I	LVTTL	SPI slave clock input
SSN	D9	I	LVTTL	SPI slave chip select input

8.3.2 MDIO MANAGEMENT INTERFACE

- The maximum MDIO frequency is 2.5 MHz. This interface operates at 2.5V but is 3.3V-tolerant.
- A pull-up resistor (~2 kΩ) is required on MDIO. Depending on the master device, a pull-up may also be needed on MDC.
- If multiple devices are on this bus, ensure that each device has a unique MDIO address as determined by the PADDR[4:1] pins.
- If the MDIO interface is unused, the pins can be left floating (no-connect). Refer to Table 8-4 for detailed information on MDIO pins.

TABLE 8-4: MDIO MANAGEMENT

Pin Name	Pin Number	Туре	Level	Description
MDC	D7	I	LVTTL	MDIO clock input
MDIO	E7	В	LVTTLOD	MDIO data I/O
PADDR1	D10	I	LVTTL	MDIO port address bit 1. Internally pulled low.
PADDR2	C8	I	LVTTL	MDIO port address bit 2. Internally pulled low.
PADDR3	E10	I	LVTTL	MDIO port address bit 2. Internally pulled low.
PADDR4	E6	I	LVTTL	MDIO port address bit 2. Internally pulled low.

8.4 IEEE 1588 Signals

• The VSC8491-17 supports IEEE 1588. See Table 8-5 for pin information.

TABLE 8-5: IEEE 1588 SIGNALS

Pin Name	Pin Number	Туре	Level	Description
CLK1588N	E8	I	CML	1588 logic clock input, complement
CLK1588P	D8	I	CML	1588 logic clock input, true
SPI_CLK	K7	0	LVTTL	Push-out SPI clock output for 1588 timestamp
SPI_CS	L10	0	LVTTL	Push-out SPI chip select output for 1588 time- stamp
SPI_DO	L7	0	LVTTL	Push-out SPI data output for 1588 timestamp

8.4.1 1588 LOGIC CLOCK

- The CLK1588_P/N input clock is used in most IEEE 1588 applications to clock the Local Time Counter (LTC). While it is also possible for the LTC to reference a data path clock or the host-side PLL instead of CLK1588_P/N, these options are not typically used.
- Design guidelines for CLK1588_P/N are as follows:
 - CLK1588 P/N supported frequencies are 125 MHz, 156.25 MHz, 200 MHz and 250 MHz.
 - For 1588 boundary clock applications, CLK1588 is typically supplied by a PLL-based reference.
 - For 1588 transparent clock applications, CLK1588 should be sourced from a frequency locked clock that is common to all other timestamping interfaces.

- Traces should be routed as 50Ω (100Ω differential) controlled impedance transmission lines (microstrip or stripline).
- Use AC coupling with 0.1 μF capacitors. Capacitors are best located close to the destination.
- The clock inputs are internally terminated, so external resistors are not needed.
- If CLK1588 P/N are unused, they can be left floating (no-connect).

8.4.2 PUSH OUT SPI MASTER INTERFACE

Serial timestamps can be pushed out on the SPI_CLK, SPI_CS and SPI_DO output pins. This interface is more often used in two-step 1588 mode because of the higher rate of timestamps needing to be processed by the external processor or FPGA. For applications such as one-step transparent clock, it is typically not used. If unused, these pins can be left floating (no-connect). The signals are 2.5V LVTTL.

8.4.3 GPIO SIGNALS FOR 1588

Several GPIO pins may be configured for 1588-specific functions as summarized in Table 8-6.

TABLE 8-6: GPIO PINS FOR 1588 FUNCTIONS

Pin	Function	Requirements
GPIO_0	1588-1PPS channel 0	Open-drain output, pull-up required if used
GPIO_1	1588-load/save	Input
GPIO_4	1588-1PPS channel 1	Open-drain output, pull-up required if used
GPIO_5	1588-PPS RI	Input
GPIO_9	1588-1PPS channel 1	Open-drain output, pull-up required if used
GPIO_11	1588-1PPS channel 1	Open-drain output, pull-up required if used

8.5 GPIO Pins

- The VSC8491 has 16 GPIO pins that may be used for general purpose I/O (GPIO) or for dedicated functions. Refer to Table 8-7 and Table 8-8.
- When used as outputs, these pins are open-drain and require a 2 k Ω -to-10 k Ω pull-up resistor.
- · Any unused GPIO pins can be left floating (no-connect).
- When configured to an LED mode, a GPIO output is active low. Power for LEDs should be 3.3V, with a load resistor in series.

TABLE 8-7: GPIO PINS

Pin Name	Pin Number	Туре	Level	Description
GPIO_0	D4	В	LVTTLOD	General purpose I/O 0
GPIO_1	D5	В	LVTTLOD	General purpose I/O 1
GPIO_2	E4	В	LVTTLOD	General purpose I/O 2
GPIO_3	E5	В	LVTTLOD	General purpose I/O 3
GPIO_4	F4	В	LVTTLOD	General purpose I/O 4
GPIO_5	F5	В	LVTTLOD	General purpose I/O 5
GPIO_6	K4	В	LVTTLOD	General purpose I/O 6
GPIO_7	K5	В	LVTTLOD	General purpose I/O 7
GPIO_8	K6	В	LVTTLOD	General purpose I/O 8
GPIO_9	L4	В	LVTTLOD	General purpose I/O 9
GPIO_10	L5	В	LVTTLOD	General purpose I/O 10
GPIO_11	L6	В	LVTTLOD	General purpose I/O 11
GPIO_12	C10	В	LVTTLOD	General purpose I/O 12
GPIO_13	C11	В	LVTTLOD	General purpose I/O 13
GPIO_14	N11	В	LVTTLOD	General purpose I/O 14

TABLE 8-7: GPIO PINS (CONTINUED)

Pin Name	Pin Number	Туре	Level	Description
GPIO_15	P11	В	LVTTLOD	General purpose I/O 15

TABLE 8-8: GPIO FUNCTIONS

Pin	Configuration Registers	Function
GPIO_0	GPIO_0_Config_Status GPIO_0_Config2	Traditional I/O (default) Observed internal signals MOD_ABS_Channel_0 PMTICK ROSI frame pulse 0 TX Activity LED WIS_INTB 1588-1PPS channel 0 Leave unconnected when not used.
GPIO_1	GPIO_1_Config_Status GPIO_1_Config2	Traditional I/O (default) Observed internal signals ROSI_CLK_0 RX Activity LED WIS_INTA 1588-Load/Save Leave unconnected when not used.
GPIO_2	GPIO_2_Config_Status GPIO_2_Config2	Traditional I/O Observed internal signals Slave 2-Wire serial – SDA (default) ROSI_DATA_0 TX Activity LED WIS_INTB
GPIO_3 GPIO_3_Config_St GPIO_3_Config:		Traditional I/O Observed internal signals Slave 2-Wire serial – SCL (default) TOSI_FRAME_PULSE_0 RX Activity LED WIS_INTB
GPIO_4	GPIO_4_Config_Status GPIO_4_Config2	Traditional I/O (default) Observed internal signals TOSI_CLK_0 TX Activity LED WIS_INTB 1588-1PPS channel 1
GPIO_5	GPIO_5_Config_Status GPIO_5_Config2	Traditional I/O (default) Observed internal signals TOSI_INPUT_0 RX Activity LED WIS_INTA 1588-PPS RI Leave unconnected when not used.
GPIO_6	GPIO_6_Config_Status GPIO_6_Config2	Traditional I/O (default) Observed internal signals Ch0 SFP 12C SDA ROSI_FRAME_PULSE_1 TX Activity LED WIS_INTB

TABLE 8-8: GPIO FUNCTIONS (CONTINUED)

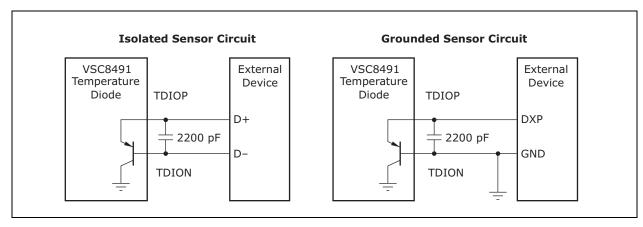
Pin	Configuration Registers	Function
GPIO_7	GPIO_7_Config_Status GPIO_7_Config2	Traditional I/O (default) Observed internal signals Ch0 SFP 12C SCL ROSI_CLK_1 RX Activity LED WIS_INTA
GPIO_8	GPIO_8_Config_Status GPIO_8_Config2	Traditional I/O (default) Observed internal signals MOD_ABS_Channel_0 PMTICK ROSI_DATA_1 TX Activity LED WIS_INTA
GPIO_9	GPIO_9_Config_Status GPIO_9_Config2	Traditional I/O (default) Observed internal signals MOD_ABS_Channel_1 PMTICK TOSI_FRAME_PULSE_1 RX Activity LED WIS_INTA 1588-1PPS channel 1
GPIO_10 GPIO_10_Config_Status GPIO_10_Config2		Traditional I/O (default) Observed internal signals Ch1 SFP 12C SDA TOSI_CLK_1 TX Activity LED WIS_INTB
GPIO_11	GPIO_11_Config_Status GPIO_11_Config2	Traditional I/O (default) Observed internal signals Ch1 SFP 12C SCL TOSI_INPUT_1 RX Activity LED WIS_INTA 1588-1PPS channel 1
GPIO_12	GPIO_12_Config_Status GPIO_12_Config2	Traditional I/O (default) Observed internal signals TX Activity LED WIS_INTA
GPIO_13	GPIO_13_Config_Status GPIO_13_Config2	Traditional I/O (default) Observed internal signals RX Activity LED WIS_INTA
GPIO_14	GPIO_14_Config_Status GPIO_14_Config2	Traditional I/O (default) Observed internal signals TX Activity LED WIS_INTA
GPIO_15 GPIO_15_Config_Status GPIO_15_Config2		Traditional I/O (default) Observed internal signals RX Activity LED WIS_INTA

8.6 JTAG

If JTAG is not used, TRSTB should be pulled low. The other pins may be left floating (no-connect). See Table 8-9 for JTAG pin information.

TABLE 8-9: JTAG PINS

Pin Name	Pin Number	Туре	Level	Description
TCK	K9	1	LVTTL	Boundary scan, test clock input Internally pulled high
TDI	L8	1	LVTTL	Boundary scan, test data input Internally pulled high
TDO	K8	0	LVTTL	Boundary scan, test data output
TMS	M5	1	LVTTL	Boundary scan, test mode select Internally pulled high
TRSTB	K10	I	LVTTL	Boundary scan, test Reset input Internally pulled high


8.7 Temperature Sensor Diode

- The temperature sensor diode pins provide access to an on-die diode and internal circuitry for monitoring die temperature. (See Table 8-10.) To use it, connect an external thermal sensor located on the board or in a stand-alone measurement kit.
- · The cathode is connected internally to ground, so the temperature sensor must be chosen accordingly.
- Temperature measurement using a thermal diode is very sensitive to noise. Figure 8-2 illustrates a generic application design.

TABLE 8-10: TEMPERATURE SENSOR PINS

Pin Name	Pin Number	Туре	Level	Description
TDION	B7	_	Analog	Temperature diode, negative (cathode)
TDIOP	A7	_	Analog	Temperature diode, positive (anode)

FIGURE 8-2: THERMAL DIODE CONNECTIONS

8.8 Unused Pins

Follow the instructions given for these unused pins in Table 8-11.

TABLE 8-11: UNUSED PINS

Pin Name	Pin Number	Туре	Level	Description
NC	L13	_	_	No-connect
NC	L14	_	_	No-connect
NC	M7	_	_	No-connect
NC	M8	_	_	No-connect
NC	N7	_	_	No-connect
NC	N9	_	_	No-connect
NC	N13	_	_	No-connect
NC	N14	_	_	No-connect
NC	P7	_	_	No-connect
NC	P9	_	_	No-connect
SCAN_EN	L9	I	LVTTL	Scan enable input, factory test purposes only. Keep connected to ground.

9.0 HARDWARE CHECKLIST SUMMARY

TABLE 9-1: HARDWARE DESIGN CHECKLIST

Section	Check	Explanation	٧	Notes
Section 2.0, "General Considerations"	Section 2.1, "Required References"	All necessary documents are on hand.		
	Section 2.2, "Pin Check"	The pins match the data sheet.		
	Section 2.3, "Ground"	All ground pins connect to a single ground. Solid ground planes should be used.		
Section 3.0, "Power"	Section 3.1, "Current Requirements"	Ensure that the power rails can supply adequate current.		
	Section 3.2, "Power Supply Planes"	Make sure that the analog planes are filtered with ferrite beads, while digital planes are not. Consider possible resistive voltage drop in distribution.		
	Section 3.3, "Analog Power Plane Filtering"	Check if each analog power rail has ferrite bead filtering, with bulk capacitors on both sides of the bead and one capacitor near each power pin. Ferrite beads must meet current and DC resistance requirements. Consider DC voltage drop across the ferrite beads.		
	Section 3.4, "Decoupling Capacitors"	Ensure that there is one decoupling capacitor near each power pin and at least a 10 µF bulk capacitor per rail. See Figure 3-1.		
Section 4.0, "Thermal Considerations"	Section 4.0, "Thermal Considerations"	Do not use thermal relief for ground vias.		
Section 5.0, "Media SerDes Interface"	Section 5.1, "Media SerDes Design Rules"	Unless Common-mode voltages are compatible, make sure to use AC coupling capacitors for non-SFP applications. SFP modules include AC coupling. Follow good differential signal layout practices. Pull unused LOPC inputs low.		
	Section 5.2, "Connecting to 10G SFP+ or 1G SFP"	Take note that AC coupling capacitors are not needed. Connect TXOUT to TD of SFP and RXIN to RD. SFP single-ended outputs need pull-ups. Consider connecting the SFP 2-Wire and other controls to a host rather than the VSC8491. Other SFP status and control may also connect to the host.		
Section 6.0, "Host Interface (XAUI, RXAUI, and SGMII)"	Section 6.1, "Host Serial Interface Design"	Verify if XAUI uses all four lanes and RXAUI uses lanes 0 and 2. Check if 1GbE uses lane 0 (or 3). Make sure to leave unused lanes floating. Unless Common-mode voltage levels are compatible, use AC coupling. Follow good differential signal layout practices.		

VSC8491

TABLE 9-1: HARDWARE DESIGN CHECKLIST (CONTINUED)

Section	Check	Explanation	٧	Notes
Section 7.0, "Reference Clocks"	Section 7.1, "Device Reference Clocks"	Check Table 7-2 for clocking modes. XREFCK is required for all cases (125 MHz or 156.25 MHz). Usually WREFCK and SREFCK are not needed. Leave unused input clocks floating. Ensure jitter requirements are met.		
	Section 7.2, "Synchronous Ethernet"	Take note that the most common configurations use a hitless clock source for XREF. Recovered clocks on RX_CKOUT can be fed to the hitless clock source. Other configurations are possible and can use SREFCK.		
	Section 7.3, "Output Clocks"	The external receiver of the recovered clock for SyncE must be configured for the available output frequency: 10G LAN mode = 161.1328125 MHz, 10G WAN mode = 155.52 MHz and 1G mode = 125 MHz.		
Section 8.0, "Miscellaneous"	Section 8.1, "Reset"	Ensure that there is a rising edge on RESETN following power rails and clock being up.		
	Section 8.2, "Reference Resistor"	Make sure to connect a 620Ω ±1% resistor between RCOMPN and RCOMPP.		
	Section 8.3, "Serial Management Interfaces (SMI)"	Remember that among the three options (SPI, 2-Wire and MDIO), only one can be used at a time. SPI is strongly recommended. MDIO is suitable only if MACSec and two-step 1588 are not used.		
	Section 8.4, "IEEE 1588 Signals"	Make sure to supply a quality clock for CLK1588 input clock. The push-out SPI interface is only for outputting timestamps to the host processor. Some 1588 functions are available on GPIO pins.		
	Section 8.5, "GPIO Pins"	Take note that a variety of functions are available: interrupts, 1588, GPIO and so on. When output, they are open drain and require external pull-ups.		
	Section 8.6, "JTAG"	If JTAG is unused, TRSTB should be pulled low and the other JTAG pins can be left unconnected.		
	Section 8.7, "Temperature Sensor Diode"	If used, connect to an external temperature sensor device such as the MCP9902, with TDIOP connected to the positive node and TDION to the negative node.		
	Section 8.8, "Unused Pins"	Verify if pin L9 is connected to ground. Pin M8 should be left unconnected.		

APPENDIX A: REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision Level & Date	Section/Figure/Entry	Correction
DS00005008A (05-10-23)	Initial release	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON- INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAuthomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2445-5

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820