

SMART ARM-Based Microcontroller

AT10764: Software Library for AES-128 Encryption and

Decryption

Application Note

Introduction

Advanced Encryption Standard (AES) is a specification for encryption of electronic

data established by National Institute of Standards and Technology (NIST) in 2001

as Federal Information Processing Standards (FIPS) 197. This is a symmetric

block cipher algorithm used for the encryption and decryption of electronic data.

This application note explains the C implementation of AES encryption and

decryption algorithm.

Features

The application note covers the following features.

 Compliant with FIPS Publication 197, Advanced Encryption Standard (AES)

 AES encryption and decryption algorithm

 128 bit cryptographic key supported

 Five confidentiality modes of operation of AES specified in FIPS

– Electronic Codebook mode (ECB)

– Cipher Block Chaining mode(CBC)

– Cipher Feedback mode (CFB)

– Output Feedback mode (OFB)

– Counter mode (CTR)

 8, 16, 32, 64, and 128-bit data sizes possible in CFB mode

Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

Table of Contents

Introduction ... 1

Features ... 1

1 Glossary ... 4

2 Hardware and Software Setup .. 4

3 AES Algorithm .. 5

3.1 AES Encryption ... 5

3.1.1 AddRoundKey Transformation .. 6

3.1.2 SubBytes Transformation.. 7

3.1.3 ShiftRows Transformation ... 8

3.1.4 MixColumns Transformation ... 8

3.1.5 C Implementation .. 8

3.2 Key Expansion .. 9

3.2.1 C implementation .. 9

3.3 AES Decryption ... 9

3.3.1 Inverse of AddRoundKey .. 10

3.3.2 Inverse SubBytes Transformation ... 10

3.3.3 Inverse ShiftRows Transformation .. 11

3.3.4 Inverse MixColumns Transformation .. 11

3.3.5 C Implementation .. 12

4 Block Cipher Modes of Operation ... 12

4.1 Electronic Codebook Mode ... 12

4.1.2 C Implementation of ECB mode .. 13

4.2 The Cipher Block Chaining Mode (CBC) ... 13

4.2.1 CBC Encryption .. 13

4.2.2 CBC Decryption .. 14

4.2.3 C Implementation of CBC mode ... 14

4.3 Cipher Feedback mode ... 15

4.3.1 CFB Encryption ... 15

4.3.2 CFB Decryption ... 16

4.3.3 C Implementation .. 16

4.4 Output Feedback mode ... 19

4.4.1 OFB Encryption ... 19

4.4.2 OFB Decryption .. 19

4.4.3 C Implementation .. 20

4.5 The Counter Mode (CTR) .. 21

4.5.1 CTR Encryption ... 21

4.5.2 CTR Decryption .. 22

4.5.3 Generation of counter blocks .. 22

4.5.4 C Implementation of CTR mode .. 22

5 AES -128 Example Implementation ... 25

6 Execution of Example in Atmel Studio ... 26

7 References ... 28

7.1 FIPS – 197 Advanced Encryption Standard (AES) ... 28

7.2 FIPS SP 800-38A Recommendation for Block Cipher Modes of Operation 28

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

3

3

7.3 SAM D Device Datasheet .. 28

7.4 Hardware Tools User Guide .. 28

7.5 Atmel Studio .. 28

8 Revision History ... 29

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

1 Glossary

The following terms are used throughout this application note document:

Table 1-1. Glossary

Glossary Description

AES Advanced Encryption Standard

Cipher Series of transformations that convert plain text to cipher text using the Cipher Key

Cipher Key Secret cryptographic key that is used by the Key Expansion Routine to generate a set of

Round Keys

Cipher Text Data output from the Cipher or input to the Inverse Cipher

Inverse Cipher Series of transformations that converts cipher text to plain text using the Cipher Key

Key Expansion Routine used to generate a series of Round Keys from the Cipher Key

Nk Number of 32-bit words comprising the Cipher Key. For AES-128, Nk = 4.

Plain Text Data input to the Cipher or output from the Inverse Cipher

Round Key Values derived from the Cipher Key using the Key Expansion Routine

State Intermediate Cipher result

S-box Non-linear substitution table used in several byte substitution transformation and in the

Key Expansion Routine to perform one-for-one substitution of a byte value.

2 Hardware and Software Setup

The application note has been tested in the following test setup:

 SAM D21 Xplained Pro Board

 Atmel Studio 6.2 SP2 build 1563

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

5

5

3 AES Algorithm

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National Institute of

standards and Technology (NIST). The Advanced Encryption Standard Algorithm (AES) specifies the FIPS

approved (FIPS Pub. 197) cryptographic algorithm that can be used to protect electronic data.

AES is a symmetric key algorithm that operates on 128-bit block of input data for a specified number of times.

The symmetric key means that same key is used for both encryption and decryption. Encryption process

converts the data to unintelligible form called cipher text. Decryption process converts the data back to its

original form called plain text from the cipher text.

The key size used for an AES encryption and decryption can be 128, 192, or 256 bits for a fixed input block

size of 128 bits. The size of the key determines the number of rounds to be performed on an input block of

data. The number of rounds of repetition is as follows:

 10 rounds of repetition for 128-bit keys

 12 rounds of repetition for 192-bit keys

 14 rounds of repetition for 256-bit keys

The following sections explains the AES encryption and decryption algorithm. For more details on the AES

standard, refer to the AES standard document.

3.1 AES Encryption

The AES-128 encryption process involves 10 rounds of encryption along with an initial round for the 128 bit

data encryption. To begin with, the 128-bit key is expanded into a set of eleven 128-bit round keys using the

Key expansion routine. Each of this keys is used for the rounds, finally resulting in the cipher text output.

The initial round in the AES Encryption comprises of the Add Round key step in which the plain text is XOR’ed

with the Cipher Key. The subsequent 9 rounds goes through four different byte oriented transformations as

listed below.

1. Byte substitution using S-box (Sub Byte)

2. Shifting rows of the state array by different offsets (Shift Rows)

3. Mixing the data within each column (Mix Columns)

4. Adding Round key to the state (Add Round Key)

In the 10th round, the above steps are repeated excluding the Mix Columns step. Following sections explain

each of them in detail. The overall process of AES encryption is illustrated in the figure below:

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

Figure 3-1. AES Encryption Block diagram

The 128-bit input block of data is processed byte-by-byte and mapped into a 4x4 byte matrix for processing

convenience as per the AES standard. Each block of input and the intermediate inputs between the different

rounds is mapped into a 4x4 state matrix as shown in the figure below:

Figure 3-2.

3.1.1 AddRoundKey Transformation

In this transformation, the Round key is added to the State by bitwise XOR operation. The Round key for each

round has to be generated from the Key Expansion which is explained in the coming sections.

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

7

7

Figure 3-3. AddRoundKey Transformation

3.1.2 SubBytes Transformation

The SubBytes Transformation is a non-linear byte substitution that operates independently on each byte of the

state using a substitution table(S-Box). The figure below illustrates the S-Box transformation of a matrix of

bytes.

Figure 3-4. SubBytes Transformation

The SubBytes transformation applies S-Box to each byte in the state. Figure shows the S-Box substitution

values for the AES-128 Encryption.

Figure 3-5. S-Box for AES Encryption

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

3.1.3 ShiftRows Transformation

In this transformation, the bytes in the last three rows of the state are cyclically shifted left over different offsets.

The elements in the first row are not shifted. The below representation demonstrates the ShiftRows

transformation applied on the state array.

Figure 3-6. ShiftRows Transformation

3.1.4 MixColumns Transformation

MixColumns transformation operates column by column on the state matrix applying polynomial transformation

on each column. The columns are considered as four-term polynomials over GF(28) and multiplied modulo

x4+1 with a fixed polynomial a(x), given by:

a(x) = {03}x3 + {01}x2 + {01}x + {02}

Figure 3-7. MixColumns Transformation

3.1.5 C Implementation

The AES Encryption is implemented in the function aes_cipher() in the aes.c. The steps SubBytes and

ShiftRows are combined in a single function to optimize the code.

To begin with, one block of the plain text is copied into an intermediate State array. In Round 0, the state array

is XOR-ed with the Round key 0. The subsequent 9 Rounds are implemented as in the below code snippet:

The final round is performed excluding the MixColumns step to give the Cipher text output.

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

9

9

3.2 Key Expansion

The AES algorithm gets the Cipher Key from the user and uses the Key Expansion Routine to generate the Set

of Round keys known as the Key Schedule. For the AES-128 encryption and decryption, the Key Expansion

Routine generates a set of eleven 128-bit Round keys from the 128-bit Cipher Key.

The first 4 words (128 bits of first round key) of the expanded key schedule are kept same as the actual cipher

key. The remaining 40 words (for remaining 10 round keys) are calculated using the 3 operations – Rotate,

Rcon and S-Box.

Rotate In this step, elements in each column in the round key matrix rotated vertically clockwise by 1 byte.

Rcon: This step involves XOR with the Round constant for the words in the position of multiple of Nk.

S-Box: This takes the 4-byte input and applies the S-Box.

3.2.1 C implementation

The key expansion routine is implemented in the function KeyExpansion in the aes.c. The cipher key is

retained as the key for Round 0. The subsequent bytes in the key schedule are computed by using the Rotate,

Rcon and S-box transformations. The overall implementation of the Key expansion routine is as follows:

3.3 AES Decryption

The AES-128 decryption process involves similar number of rounds as the AES-128 Encryption process with

corresponding inverse transformations.

The initial round includes only the AddRoundKey step which is the same as in AES-128 Encryption.

The inverse transformations for the subsequent rounds are as below:

1. Inverse Shift Rows

2. Inverse SubBytes

3. Add Round Key

4. Inverse Mix Columns

In the 10th round, the above steps are repeated excluding the Mixcolumns step. The overall process of AES

decryption is illustrated in the figure below:

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

Figure 3-8. AES Decryption Block diagram

3.3.1 Inverse of AddRoundKey

This is same as the AddRoundKey transformation as this involves only XOR operation between an input and

output blocks.

3.3.2 Inverse SubBytes Transformation

This is the inverse of the SubBytes Transformation, in which the inverse S-Box is applied to each element in

the State. The inverse S-Box used in this transformation is as below:

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

1

1

11

Figure 3-9. Inverse S-Box

3.3.3 Inverse ShiftRows Transformation

This is the inverse of the ShiftRows transformation. The bytes in the last three rows are cyclically shifted to the

right over a different number of bytes.

Figure 3-10. Inverse ShiftRows Transformation

3.3.4 Inverse MixColumns Transformation

This is an inverse of MixColumns transformation. This operates on a column-by-column basis on the state

matrix applying polynomial transformation.

Figure 3-11. Inverse MixColumns Transformation

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

3.3.5 C Implementation

The AES decryption is implemented in the function aes_inverse_cipher() in the aes.c. The steps inverse

SubBytes and inverse ShiftRows are combined in a single function to optimize the code.

To begin with, one block of the cipher text is copied into an intermediate State array. In Round 0, the state array

is XOR-ed with the Round key 0. The subsequent 9 Rounds are implemented as in the below code snippet:

The final round is performed excluding the MixColumns step to give the plain text output.

4 Block Cipher Modes of Operation

In FIPS SP800-38A, NIST recommends five confidentiality modes of operation listed below for use with an

underlying symmetric key block cipher algorithm. Mode of operation is an algorithm that describes how to

repeatedly apply a cipher’s single-block operation to encrypt data larger than a block.

 Electronic Codebook mode (ECB)

 Cipher Block Chaining mode (CBC)

 Cipher Feedback mode (CFB)

 Output Feedback mode (OFB)

 Counter mode (CTR)

The following sections explain the algorithm of each modes and their C implementation in this application note.

The implementation is done in crypt.c/.h file.

The standard document (FIPS Pub 800-38A) should be referred for detailed description of mathematic

description of each modes.

4.1 Electronic Codebook Mode

In this mode, the input is divided in to separate block of 128 bits. Each block is encrypted/decrypted

independently. In ECB encryption, the cipher function is directly applied to each input block resulting in a cipher

text. In ECB decryption, the inverse cipher function is applied to each block to retrieve the plain text. It is

illustrated in the Figure 4-1.

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

1

3

13

Figure 4-1. Electronic Codebook Mode

ECB is the simplest mode of all. As it involves direct encryption of each block, it does not provide better

confidentiality and so it is not recommended for cryptographic protocols.

4.1.2 C Implementation of ECB mode

As mentioned, the implementation is very direct that input is divided into each block of 128 bits. The number of

input blocks (input_block_size) are calculated from the size of the input plain text. Forward and inverse cipher

function is applied to them to get the cipher text and plain text respectively as below in the loop for the

input_block_size.

4.2 The Cipher Block Chaining Mode (CBC)

As the name implies, this mode features chaining of plain text with previous cipher text blocks. This mode

requires an Initialization Vector (IV) to combine with the first block. The IV is not secret but should be

unpredictable. I.e. for any given plaintext, it must not be possible to predict the IV that will be associated to the

plaintext in advance of the generation of the IV. Various methods of generation of Initialization vector is

explained in Appendix C of FIPS Pub 800-38A.

4.2.1 CBC Encryption

In the CBC Encryption, the first block of plain text is XOR-ed with IV. This forms the input block for cipher

function which results in the first cipher text block. This cipher text then XOR-ed with the next plain text block

and goes through forward cipher to form the second cipher text. Thus further cipher text blocks are formed by

applying forward cipher after XOR-ing the respective block of plain text with the previous block’s cipher text.

Because of this chaining, one bit change in the plain text or IV could affect all following cipher text blocks.

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

Figure 4-2. CBC Encryption

4.2.2 CBC Decryption

In CBC decryption, the inverse cipher is applied over input cipher text and the resulting output block is XOR-ed

with IV to get the first block of plain text. The second cipher text block goes through inverse cipher function and

the resulting output block is XOR-ed with previous cipher text block to get the second plain text block. Further

plain text blocks are retrieved by applying inverse cipher over respective cipher text block and then XOR-ed the

resulting output block with its previous cipher text block.

Figure 4-3. CBC Decryption

4.2.3 C Implementation of CBC mode

For encryption:

The input_block_size is calculated to get the number of input blocks. The initials input block is formed by XOR

between IV and plain text as below

Forward cipher is applied to the input block to get the corresponding cipher text.

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

1

5

15

The next input block is formed by XOR of next block of plain text with the previously formed cipher text. This is

done until last block is reached.

For Decryption:

To retrieve the first plain text block, the inverse cipher function is applied to the first block of cipher text. The

first block of plain text is formed by XOR of resulting output block with IV as below

The further plain texts are formed by XOR of resulting output block with previous cipher text for specified

number of blocks.

4.3 Cipher Feedback mode

The Cipher Feedback mode features the feedback of the successive cipher text elements into the input block

of the forward cipher function to generate output blocks that are XOR-ed with the plain text to produce the

cipher text.

This mode requires a unique Initialization vector in addition to the plaintext and cipher key. The CFB mode also

needs an integer parameter s, where s should be less than or equal to 128 bits. In the CFB mode, each plain

text and cipher text block contain s bits. Correspondingly the modes are named as 1-bit CFB, 8-bit CFB, 64-bit

CFB, 128-bit CFB, etc.

4.3.1 CFB Encryption

This Initialization vector (IV) is passed as the first input block to the AES Forward Cipher function to produce

the first output block. To generate the cipher text output, the first s bits in the plain text are XOR-ed with the

first s bits in the output block. The remaining b-s bits in the output block are discarded (b=128).

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

To generate the second input block, the b-s LSBs in the IV are concatenated with the s bits from the cipher text

output of the first block. The process is repeated with successive input blocks until the entire plaintext is

converted into cipher text output. The encryption process of the CFB mode can be illustrated as below:

Figure 4-4. CFB Encryption

4.3.2 CFB Decryption

In CFB Decryption, the Initialization vector if given as first input block, and subsequent input blocks are

generated by concatenating b-s bits of IV with s bits from the cipher text. The input block is applied to the

forward cipher function to obtain the output block. Then the s bits of the cipher text are XOR-ed with s bits of

the ciphertext. The Decryption process of the CFB mode can be illustrated as below.

Figure 4-5. CFB Decryption

4.3.3 C Implementation

The CFB encryption and the decryption functions have been implemented in the crypt.c.

Encryption:

The encryption function takes the plaintext, array for cipher text, initialization vector, CFB mode in bits and size

of the plain text as inputs. To start with, the number of input blocks is calculated from the size parameter. Also,

the cfb_byte is calculated from the CFB mode. This is because all the operations are performed in byte level

throughout the code.

The initialization vector is given to the aes_cipher function for generating the first output block. Then,

depending upon the CFB mode, certain number (cfb_byte) of bytes in the plain text are XOR-ed with the output

block to get the cipher text output. The implementation of the first encryption block is as below:

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

1

7

17

For the subsequent blocks, the input block (init_vector_temp) is generated by concatenating the bits from the

IV and the cipher text and given to the forward cipher function. Then the cipher text is generated by XOR-ing

the bytes of plain text and output block. The implementation of the encryption is as follows:

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

Decryption:

The decryption process is similar to the encryption where the first step is to generate the input block from the

initialization vector and the cipher text array. Then the input block is applied to the forward cipher function to

get the output block. The s bits of the output block are then XOR-ed with the cipher text to get the plain text

output. The implementation of the decryption function is as follows:

Decryption of first block:

Decryption of remaining blocks:

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

1

9

19

4.4 Output Feedback Mode

The Output Feedback mode features the feedback of the output blocks of the forward cipher function in each

block into the input block of the forward cipher function of the successive blocks. Like the CFB and CBC mode,

this mode also requires a unique Initialization vector in addition to the plaintext and cipher key. In addition, the

OFB mode requires that the IV is a nonce, that is, the IV must be unique for each execution of the mode with

the given key.

4.4.1 OFB Encryption

As in the CFB mode, the IV is given as the first input block. This is applied to the forward cipher function to

generate the first output block. The output block is XOR-ed with the plain text to generate the first block of

cipher text output.

The first output block is then given to the forward cipher function to generate the second output block, which is

then XOR-ed with the plain text to generate the cipher text second block. The second output block is then

applied to the forward cipher function to generate the third output block and so on. This can be represented as

in the block diagram below.

Figure 4-6. OFB Encryption

4.4.2 OFB Decryption

In OFB Decryption, the IV is given as the first input block to the forward cipher function to generate the first

output block. The first output block is XOR-ed with the cipher text to generate the first plain text block. The first

output block is given to the Forward cipher function to generate the second output block, then XOR-ed with the

cipher text to generate the second block in plain text and so on. The OFB decryption can be illustrated as

below.

Figure 4-7. OFB Decryption

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

The OFB mode requires a unique IV for every message that is ever encrypted under the given key. If the same

IV is used for the encryption of more than one message, then the confidentiality of those messages may be

compromised.

4.4.3 C Implementation

The OFB mode has been implemented in the crypt.c file.

The OFB encryption function takes the plain text array, array for the cipher text, initialization vector, and the

size as inputs. The number of blocks in the input plain text data is calculated from the size parameter.

For the encryption of the first block, the initialization vector is applied to the aes_cipher function to obtain the

first output block, which is then XOR-ed with the plain text to generate the cipher text.

Similar process is applicable for the decryption. The implementation of OFB encryption and decryption is as

follows:

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

2

1

21

4.5 The Counter Mode (CTR)

The Counter (CTR) mode is a confidentiality mode that features the application of the forward cipher to a set of

input blocks, called counters, to produce a sequence of output blocks that are exclusive-ORed with the

plaintext to produce the ciphertext, and vice versa.

In both CTR encryption and CTR decryption, the forward cipher functions can be performed in parallel.

Similarly, the plaintext block that corresponds to any particular ciphertext block can be recovered

independently from the other plaintext blocks if the corresponding counter block can be determined. Moreover,

the forward cipher functions can be applied to the counters prior to the availability of the plaintext or ciphertext

data. The sequence of counters must have the property that each block in sequence is different from every

other block. Various methods of counter generation are explained in Appendix B of FIPS Pub 800-38A.

4.5.1 CTR Encryption

Encryption involves the application of forward cipher over a block of data called counters which is then XOR-ed

with plain text to generate the respective cipher text.

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

Figure 4-8. Counter mode Encryption

4.5.2 CTR Decryption

For decryption, the forward cipher is applied over counters as in encryption. Then the cipher text is XOR-ed

with resulting output block to retrieve the plain text.

Figure 4-9. Counter mode Decryption

4.5.3 Generation of counter blocks

This section explain the counter generation method used in this application note. As mentioned earlier AES –

CTR requires unique value for each block and communicate this value for the decryption. This is more similar

to IV except that it keeps changing for each block. Counter is divided in to three field called

 Nonce – 32bit

 Initialization Vector – 64bit

 Counter block – 32bit

The counter is incremented for each block and concatenated with Nonce and IV to form 128 bit vector input for

subsequent blocks. As counter is 32-bit, the same key will be repeated after 232 bit rounds. So with 32 bit

counter 231 block of data can be encrypted effectively.

4.5.4 C Implementation of CTR mode

The counter block contains:

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

2

3

23

The IV, nonce and counter are concatenated to form the input block and applied to the forward cipher as

below:

For CTR mode, both encryption and decryption follows the same as explained earlier. So there is only one

function for both encryption and decryption.

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

2

5

25

5 AES -128 Example Implementation

The application note comes with the source containing the AES library and demo example. This section gives

short description about the demo application of AES-128 covering all 5 modes.

 AES-128 and five confidentiality modes are implemented at two levels. The AES algorithm explained in

chapter 3 of this application note is implemented in aes.c/aes.h file.

 The five confidentiality modes are implemented in crypt.c/crypt.h file

 The example is implemented in a way that 64 bytes (i.e. 16 input blocks) of plain text are encrypted and

decrypted using all modes separately

 The decrypting message can be viewed in the terminal window

 From the result if the decrypted data is same as the plain text, this conforms the working of each mode

 The modes can be independently enabled or disabled in conf_example.h as below. By default all the

modes are enabled

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

6 Execution of Example in Atmel Studio

The firmware corresponding to this application note comes with the Atmel Software Framework and it can be

imported from Atmel Studio as well. The steps below explain the execution of this application.

1. Import the example in Atmel Studio from “File → New → Example Project → AES Software Library

Demo – SAM D21 Xplained Pro”

2. To build the project, go to Atmel Studio -> Build -> Build Solution

3. Open Terminal window with EDBG COM port with configuration 115200, no parity, one stop bit and

hardware control none.

4. Go to ‘Tools -> Device Programming’ Window in Atmel Studio.

5. Read the device id after selection appropriate tools and device to ensure proper connection

6. Go to ‘Memories’ tab. Select the exe file and click program.

7. In the terminal window the decrypted and actual input message can be viewed.

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

2

7

27

8. The Application can be debugged or can downloaded without debugging using below shown options.

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

7 References

7.1 FIPS – 197 Advanced Encryption Standard (AES)

FIPS-197 published by NIST contains the mathematical calculation of AES-128 algorithm for Encryption and

Decryption. It can be availed from http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

7.2 FIPS SP 800-38A Recommendation for Block Cipher Modes of Operation

FIPS special publication 800-38A provides detailed description about the five modes of confidentiality. It also

explains the generation of Initialization vector and counter used in each modes. It is available at

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

7.3 SAM D Device Datasheet

The device datasheet contains the block diagrams of the peripherals and details about implementing firmware

for the device. It also contains the electrical specifications and expected characteristics of the device.

Datasheet is available on www.atmel.com in the Documents section of Atmel SAM D21 product page.

7.4 Hardware Tools User Guide

SAM D21 Xplained Pro board user Guide can be downloadable from http://www.atmel.com/tools/ATSAMD21-

XPRO.aspx.

7.5 Atmel Studio

The latest version of Atmel Studio can be downloaded from http://www.atmel.com/tools/atmelstudio.aspx.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://www.atmel.com/
http://www.atmel.com/tools/ATSAMD21-XPRO.aspx
http://www.atmel.com/tools/ATSAMD21-XPRO.aspx
http://www.atmel.com/tools/atmelstudio.aspx

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

2

9

29

8 Revision History

Doc Rev. Date Comments

42508A 08/2015 Initial document release.

Software Library for AES-128 Encryption and Decryption [APPLICATION NOTE]
Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42508A-AT10764-Software-Library-for-AES-128-Encryption-and-Decryption_ApplicationNote_08/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, b y estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND COND ITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON -INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT , EVEN IF ATMEL

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, auto motive applications. Atmel products are not intended,

authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in conne ction with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel

products are not designed nor intended for use in military or aerospace applications or environments unless specifically desi gnated by Atmel as military-grade. Atmel products are not

designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive -grade.

http://www.atmel.com/
http://community.arm.com/community/arm-partner-directory/partner-atmel
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

