
AN3399
Safeguarding Flash Memory Self-Write Operations
INTRODUCTION
Many microcontrollers provide the ability to reprogram
their own Flash memory at run time. This capability
allows field updates of program memory through a boot-
loader utility and storage of data in nonvolatile memory.
The following discussions and examples are based on
the dsPIC33 and PIC24 products; however, many of
the techniques and considerations can be applied to
any microcontroller. Flash program memory can be
programmed in one of two ways: In-Circuit Serial
Programming™ (ICSP™) with an external hardware pro-
grammer and Run-Time Self-Programming (RTSP). The
following discussions are targeted for self-erase/write
(RTSP), which is implemented in firmware.
The purpose of this application note is to provide
guidance and best practices on how to prevent
unintended Flash writes or erasures that can cause
minor to catastrophic field failures. Adding Flash
programming safeguards to the firmware will reduce
the risk of problems and ensure robust field updates.
The following material increases firmware robustness
through understanding of the potential issues and
provides methods to prevent them.

UNDERSTANDING POTENTIAL RISKS
In order to protect against unintentional erasure or write
corruption, an understanding of how these types of
problems can occur in an application is needed. Most
issues are typically caused by the following:
• Hardware Issues/Instruction Misexecution
• Operational Specification Violations
• Conceptual and Architectural Weaknesses
This application note will address hardware issues
that can lead to out-of-specification operation, and
conceptual and architectural issues. Although
software/code bugs may also contribute to self-write
problems, general good coding practices are beyond the
scope of this document.

HARDWARE ISSUES
All electronic designs are susceptible to hardware
related issues that can be brought on by a variety of
sources. The focus of this discussion is preventing
instruction misexecution caused by power supply and
clocking circuits.

Author: Justin O’Shea
Microchip Technology Inc.
 2020 Microchip Technology Inc. DS00003399A-page 1

AN3399

Instruction Misexecution
Instruction misexecution occurs when signal timing is
not met inside the microcontroller core during program
instruction fetch from Flash memory. This is most
typically caused from a low-voltage condition or an out
of specification clock pulse. For example, consider the
case when executing the RETURN instruction at the end
of a common C function. In the dsPIC33 and PIC24
architectures, the RETURN instruction is encoded as
‘0000 0110 0000 0000 0000 0000’. If a timing
violation occurs during the instruction fetch from Flash
memory, the RETURN instruction could be misinterpreted
as ‘0100 0110 0000 0000 0000 0000’. Although
the value varies by only one bit, it profoundly changes
the meaning of the instruction into the ADD instruction.

In a C program, if an ADD or other instruction opcode is
executed in place of an intended RETURN instruction,
the result can be one C function effectively flowing into
the next that follows it in Flash memory. As shown in
Example 1, unintended code flow scenarios can allow
C functions, such as a Flash memory erase function, to
get unintentionally called.
In addition to a RETURN instruction, CALL, GOTO or other
Program Counter-relative branching instructions also
appear in code frequently and can allow unexpected
code to be reached. If the target address suffers a bit flip
during read from Flash or decode and execution, the
Program Counter may still point to implemented Flash
memory, but not the intended address.

EXAMPLE 1: CODE FLOW
void ExampleFunction(void)
{

//...some code here..
} //Compiler will place a RETURN instruction here. If this gets mis-fetched, program flow will

continue to the next flash location which may be the UnlockAndProg() function

void UnlockAndProg(void)
{

__builtin_write_NVM(); //Note: This function executes the unlock and program sequence
}

DS00003399A-page 2  2020 Microchip Technology Inc.

AN3399

Power Supply Considerations
To avoid instruction misexecution, microcontrollers need
to be supplied power within their respective electrical
specifications to operate properly. There are many
factors that can cause issues, including:
• Mechanical Contact Bounce on Switches/Buttons,

Battery Contacts, Relays and Power Cables
Interrupting VDD

• Voltage Regulator Tolerances
• Temperature, Environmental and Mechanical

Aging Induced Variations
• Poor Circuit Board Layout Practices
• High Supply Noise due to Poor Isolation or

EMI Susceptibility

In addition to steady-state (normal) operation, the micro-
controller must be able to properly handle power-up and
power-down events. These transient conditions may
create violations to the voltage and frequency timing
requirement associated with it. Figure 1 shows a typical
voltage-frequency graph. To operate at a given speed
over temperature, a certain supply voltage must be
provided. Consider the scenario where the system’s
power supply has not fully reached its nominal value, but
the microcontroller has been configured to run at full
speed. This low-voltage condition can lead to signal
timing violations in the microcontroller and instruction
misexecution. The same scenario can occur during
power-down when the microcontroller is at full speed
and supply voltage decays.

FIGURE 1: VOLTAGE-FREQUENCY CONSTRAINT

Special care and analysis are recommended for
power-up and power-down behavior of the application.
The power-up and power-down ramps may be short in
human terms (microseconds to milliseconds), but can
allow hundreds of thousands of instructions to execute.

Mechanical components, such as switches and connec-
tors, can pose potential issues to the microcontroller’s
power supply. Contact bounce can force the power-up
and power-down ramps to be repeated many times in
quick succession for a single intended power-up state if
on-board supply or VDD capacitors are unable to
sufficiently filter them. Compounding this problem,

mechanical systems exhibit quite different electrical
properties when new versus after being deployed in the
field for several years and actuated a high number of
times. If left idle for extended periods of time, surface
oxides and contaminants might accumulate and further
degrade behavior. When employing mechanical
systems intended to disconnect power, capacitors
placed after the switching element can reduce VDD
instability seen by the microcontroller, but an evaluation
should also be done to ensure peak inrush current at
switch turn-on does not exceed component ratings or
prematurely wear out the contacting element.

Frequency (MHz)

Vo
lta

ge
 (V

D
D

)

1.80V

32 MHz

3.60V 3.60V

8 MHz

3.00V

0

 2020 Microchip Technology Inc. DS00003399A-page 3

AN3399

BROWN-OUT RESET (BOR)

dsPIC33 and PIC24 microcontrollers feature a BOR
circuit to mitigate undervoltage conditions and place the
CPU in Reset to prevent unintended actions. While able
to guard against typical VDD transients that would other-
wise produce instruction misexecution, a BOR circuit
should not be regarded as a solution that can protect
against everything.

BOR hardware is implemented using analog circuits that
must produce their own internal voltage reference using
the unknown, and possibly unstable VDD, to power
themselves. They also have to balance the needs of
precise voltage sensing, fast response time and low
quiescent power consumption while the microcontroller
is in Sleep mode.
To handle competing requirements, most BOR designs
implement multiple modes of operation. For example
the BOR holds the system in Reset while VDD is rising,
then enters a more precise, faster response mode as
VDD approaches the BOR release threshold. It then
reverts to a lower current state after the system begins
executing and VDD drifts far enough away from the
BOR trip point. It may then reverse the state transitions
while VDD is decaying or possibly enters an even lower
current state for operation during Sleep. The BOR can
detect power loss in every state, but as each mode has
some settling delay, the exact trigger voltage and
response latency may vary if VDD oscillates rapidly up
and down through the trip point of the BOR.
Additionally, BOR only guards against low-voltage
conditions. It cannot detect or prevent excessively fast
clocking configurations from being selected or used
near the BOR limit. Power events often coincide with
extra or unusual electrical noise being generated in
some circuits. For example, if VDD is supplied by a

DC-DC Switching Mode Power Supply (SMPS), turning
the supply on could entail charging all of the capacitors
on VDD over the course of a handful of milliseconds.
This implies VDD will be high enough for the BOR to
release the system for operation, meanwhile the power
supply is still switching at high current levels to charge
all of the VDD capacitors. This is an opportunity to exe-
cute many thousands of instructions, yet a very noisy
and undesirable time to risk letting your RTSP code
potentially execute.
Starting the microcontroller at a slower speed (such as
FRC) and later clock switching to a high-speed clock
can increase robustness by reducing peak current
needs at start-up and simultaneously reducing the
number of instructions that will execute prior to VDD
reaching a steady state.

EXTERNAL VOLTAGE SUPERVISOR
An external voltage supervisor provides additional
protection against undervoltage and out-of-specification
conditions. They sense the power supply voltage and
can place the microcontroller in Reset by controlling the
MCLR pin. An external supervisor is especially useful for
systems that have power supplies that can allow
out-of-specification operation, such as voltage dips that
do not go all the way to zero volts. When the power supply
decays to sub-threshold voltages between 0.1 and
0.7 volts, some BOR and POR circuits internal to the
microcontroller may not produce a known output, given
insufficient voltage for itself to operate. Some devices
specify that this condition is out-of-specification, and
require VDD to return to 0V before ramping back up to
the minimum VDD level. Refer to the device-specific
data sheet’s electrical specifications for details and
restrictions. This can be especially problematic in
battery-powered applications.
DS00003399A-page 4  2020 Microchip Technology Inc.

AN3399

Clocking Considerations
A clean and in-specification clock is critical to proper
microcontroller operation. Runt pulses, skewed duty
cycles, noise and other anomalies that violate the
minimum clock width, even for one cycle, can cause
instruction misexecution. Oscillator start-up is a special
case and should be observed on an oscilloscope over
the full temperature range to ensure valid operation. It is
possible that the system can start using a clock before it

has reached sufficient amplitude and a stable period, as
shown in Figure 2. Starting the microcontroller on the
internal FRC and then switching to the external oscillator
after it has stabilized can help improve robustness. If
using a PLL to increase clock speed, ensure it is operat-
ing within its constraints and do not modify critical PLL
settings while in use. Refer to the device-specific data
sheet for details on PLL restrictions.

FIGURE 2: OSCILLATOR START-UP

A typical crystal or ceramic resonator circuit will have
semi-sinusoidal oscillator waveforms, which have
relatively slow edge slew rates compared to a square
wave. These slow rate edges are more vulnerable to
noise from external sources, potentially allowing a noise
impulse near a VDD/2 crossing to manifest as additional
unwanted clock edges. Additionally, because the oscilla-
tor waveform is essentially sinusoidal, precise duty cycle
and edge timing information would be destroyed if the
microcontroller converted the analog waveform into a
digital square wave clock using a Schmitt Triggered
input buffer.

Special care is recommended to ensure that the
oscillator input and output are free from externally gen-
erated noise sources, such as switching transients from
power MOSFETs in a power electronics application. This
can be mitigated at the PCB layout level by ensuring that
the oscillator nets/traces are kept physically separated
from any noise generating traces, and by adding
grounded shield traces surrounding the oscillator circuit.

Maximum VDD

VBOR

Device VDD

Crystal Start-up Time
 2020 Microchip Technology Inc. DS00003399A-page 5

AN3399

Protecting Against Instruction
Misexecution
Below is a summary of the actions that can be taken to
protect against instruction misexecution:
1. Start device on FRC and switch to the external

oscillator after allowing it to stabilize, or when
possible, implement all RTSP operations using
the internal FRC or FRC+PLL at a conservative
frequency to reduce IDD and increase VDD
decay time on power loss.

2. Add a software delay at start-up.
3. Enable BOR. If the voltage level is configurable,

set it to a high enough level to provide adequate
protection.

4. Ensure bypass capacitors are present and sized
appropriately according to the data sheet. Verify
that the supply voltage is free from oscillations at
power-up, run time and power-down.

5. For devices with a VCAP pin, ensure a properly
sized capacitor is present.

6. Use an external voltage supervisor to ensure the
microcontroller cannot execute code if VDD is
out-of-specification.

7. Ensure PLL initialization and run-time clock
switching code is implemented correctly.

8. Use ADC to verify sufficient supply voltage
before attempting a program or erase operation.

9. Validate oscillator circuits across temperature
on final PCB.

10. If configurable, enable and use the Power-up
Timer (PWRT).

CONCEPTUAL AND
ARCHITECTURAL CONSIDERATIONS
Application software that can perform RTSP operations
should be architected in such a manner to minimize risk
of unintended erase/write and Flash memory corruption.
The following sections discuss architectural concepts
and the methods to add safeguards. Architectural
concepts that can make an application less vulnerable to
unintended Flash erase/write corruption include:
1. Adding software delay at start-up.
2. Robust bootloader entry.
3. Use dynamic key for hardware unlock.
4. Single instance of unlock sequence.
5. Software unlock sequence.
6. Clearing the write enable bit.
7. Verify VDD is sufficient before erase/write

operations.
8. Validating erase/write addresses.
9. Park erase/write addresses to safe location.

Adding Software Delay at Start-up
Some applications need to write data to nonvolatile
memory at the beginning of the application, however,
doing so can be dangerous and lead to unintended
actions. Perhaps the most effective RTSP safeguard is
to add a software delay at start-up. As soon as code
starts executing out of Reset, regardless of if RTSP
operations are planned or not, the right thing to do
instead is enter a software delay loop to hold off
primary execution for a few 10’s or 100’s of
milliseconds. This delay will allow all other components
on the PCB to reach a steady state, including VDD
capacitors which should reach their expected operating
voltage (ex: 3.3V) instead of their minimum operating
voltage (ex: 3.0V) in which the part has just barely
exceeded POR/BOR limits.
An additional benefit to ensuring software does nothing
for a while after starting, is that it can suppress inadver-
tent ICSP™ programming failures and apparent RTSP
erase/programming failures during development. When
first implementing RTSP code, a common thought is to
put an NVM erase and write testing routine directly in
main(), then attempt to do ICSP read-back of Flash to
see if the code executed as intended. A race condition
can arise in which the MPLAB® X IDE ICSP
programming tool reads DEVID, bulk erases the Flash,
programs the Hex contents and finally performs
read-back verification of Flash. Between the program-
ming and read-back steps, the ICSP tool may release
MCLR and allow the RTSP code to execute for a few
milliseconds. Without a software delay, this can cause
a false read-back verification failure in the IDE.
For software implemented using the MPLAB XC16
C Compiler, a predictable start up delay can be
created by calling the __delay32() function at the
start of the main() function. For further information
on the __delay32() function, refer to the “16-Bit
Language Tools Libraries Reference Manual”
(DS50001456) at www.microchip.com.
If fast start-up is required from Deep Sleep type Reset
events which do not relate to power-up/power loss, the
__delay32() call can be executed conditionally based
on the state of the POR or BOR status flags (normally
located in the RCON SFR). Typically, these bits must be
cleared in software after being tested and will only get
reset in hardware when a true power-oriented Reset
occurs.
DS00003399A-page 6  2020 Microchip Technology Inc.

AN3399

Robust Bootloader Entry
Besides holding off software execution after a power
event, robust bootloader entry methods are important for
safeguarding an application. Overly simple methods of
entry, such as detection of only a single UART byte, are
not recommended. A 32-bit or longer detection
sequence, containing a mix of ‘1’ and ‘0’ bits, is much
less likely to accidentally decode from random commu-
nication noise. It is also recommended to implement a
Flash memory unlock command in the bootloading
protocol instead of hard coding in application software.
The host application should be responsible for not only
sending the command to enter Bootloader mode, but
also a separate command to unlock erase/write opera-
tions before being allowed to send additional commands
that actually modify the Flash memory contents.

Dynamic Key for Hardware Unlock
It is recommended to use a dynamic key for the NVM
write/erase hardware unlock sequence. The specific
key needed to unlock the commands should be passed
in from the host and destroyed after it is used to further
prevent unintended actions. The typical hardware
unlock key for dsPIC33 and PIC24 devices is
0x55/0xAA, and should not be hard coded within the
write/erase routine itself. The unlock keys can be
stored in RAM during a secure bootloader entry
sequence to be used later in a write/erase routine.
Once the operation is complete, the keys should be
destroyed so no additional write/erase operation can
be done until the next secure bootloader entry is
attempted. This prevents unintended code flow from
performing the unlock sequence.
The XC16 compiler includes some built-in functions
for the unlock sequence. These functions write to the
NVMKEY register and set the Write bit to initiate a
write or erase sequence. Instead of using
the __builtin_write_NVM() function, it is
recommended to use the secure version,
__builtin_write_NVM_secure(). The secure
version supports passing dynamic keys into the function.
Care should also be taken to ensure the compiler does
not optimize the code by replacing variables with literal
values of 0x55 and 0xAA in the actual instructions
stored in Flash. Generally, this is prevented any time
the variable’s contents are read or derived from a
communications SFR and not explicitly specified as
any type of constant in code.

Single Instance of Unlock Sequence
dsPIC33 and PIC24 microcontrollers incorporate an
unlock sequence before allowing Flash memory
erase/write operations. It is possible for the application
code to be structured such that the unlock sequence is
hard coded and duplicated in multiple different software
functions for different types of operations, including
page erase, word write and row write.
If dynamic keys are not used, the hardware unlock
sequence should only be executed in one location as part
of a dedicated function. Since the hardware unlock keying
and NVM operation can brick the device if unintentionally
executed, code should instead be organized such that the
unlock keying and NVM operation start code appear in
only a single function and without any duplication any-
where else in the project. This function should receive the
NVM operation value as a parameter, such that if the
Program Counter ever reaches the unlock keying code
accidentally through instruction misexecution, then the
parameter will be invalid and no harm will occur. By isolat-
ing the unlock sequence code into a single location, only
a single set of additional protection codes is needed,
reducing vulnerability.

Software Unlock Sequence
The concept of having an unlock key or sequence to
prevent unintended actions can also be applied to the
application code. Any function that either directly
erase/writes Flash memory, or calls a function that
does, should have an unlock key input parameter to be
passed to it. It is recommended that the software
unlock key be implemented with a 32-bit or larger vari-
able for best protection. Example 2 below provides
some code that implements this concept, in addition to
an address and VDD check.
 2020 Microchip Technology Inc. DS00003399A-page 7

AN3399

EXAMPLE 2: USING A SOFTWARE UNLOCK KEY
#define SOFTWARE_UNLOCK_KEY_VALUE (uint32_t)0x600D92FE
#define NVM_MIN_WRITEABLE_ADDRESS (uint32_t)0x4000 //Application specific value, change this in your code.
#define NVM_MAX_WRITEABLE_ADDRESS (uint32_t)0x4FFF //Application specific value, change this in your code.
#define NVM_MIN_VOLTAGE_MILLIVOLTS (uint16_t)3100 //Application specific value, change this in your code.

bool NVM_OpStart(uint32_t address, uint32_t softwareUnlockKey, uint16_t key1, uint16_t key2)
{

uint16_t VDDMilliVolts;

//Check to make sure the softwareUnlockKey passed to this function is correct
if(softwareUnlockKey != SOFTWARE_UNLOCK_KEY_VALUE)
{

//Error! The caller didn't pass the correct parameter to this function.
return false;

}

//Make sure the address pointed to is valid for erase/write operations.
if((address < NVM_MIN_WRITEABLE_ADDRESS) || (address > NVM_MAX_WRITEABLE_ADDRESS))
{

//The address was out of bounds.
return false;

}

//Make sure the VDD has enough margin to do safe erase/write
VDDMilliVolts = ADC_MeasureVDD();
if(VDDMilliVolts < NVM_MIN_VOLTAGE_MILLIVOLTS)
{

return false;
}

//All the checks passed, initiate the erase/write operation.
__builtin_write_NVM_secure(key1, key2);

return true;

}

DS00003399A-page 8  2020 Microchip Technology Inc.

AN3399

Safe Handling of the Write Enable Bit
The microcontroller hardware typically implements
some kind of write enable bit (i.e., WREN), which must
be set prior to executing an unlock sequence to erase
or write Flash memory. Common practice is to set
WREN immediately before needing it and clear it as
soon as the erase or programming operation is done.
The rationale is that minimizing the duration that a
hardware interlock is disengaged, the lower the proba-
bility that an accident can occur. This, however, has the
unintended side effect of making the code that
performs an erase or programming operation behave
as an atomic unit, where any inadvertent entry into the
earlier erase/programming preparation code chain can
continue along and carry out a real NVM erase/
program operation. This is undesirable as it makes all
code in the entire RTSP reprogramming chain risky
and unpredictable if the Program Counter ever jumps
or falls into any link on the chain. The WREN interlock
essentially provides no added protection when
disengaged on immediate demand.
To make WREN provide actual protection, a strategy
should be adopted where WREN is set exactly once
and only from a code location outside of all iterative
code loops that make up the RTSP reprogramming
chain. For example, set WREN only when VDD is good
and a valid, 32-bit or longer bootloader “Hello” is
received from the communications partner or a user
input is physically commanded from a menu selection.
WREN should then be cleared from multiple places in
code, wherever a non-recoverable error is detected or
ordinary RTSP code termination occurs. For example,
clear WREN if a communications time-out or corruption
event occurs, clear WREN when the bootloader has
finished programming a complete application image to
Flash, clear WREN in all trap handlers and clear
WREN anytime a boodloader hands off execution to an
existing application. In all other cases, WREN’s state
should be retained unchanged. This paradigm will sup-
press unintended entry into the RTSP’s algorithmic
chain from having any permanent consequences,
regardless of where in the chain unintended entry
occurred.

Verify VDD is Sufficient Before
Erase/Write Operations
The microcontroller should not be reset while an erase
or write operation is already in progress. Most
microcontrollers will complete an already started NVM
operation if Reset does occur due to a MCLR event,
clock monitor failure, etc., so individual Flash words
rarely ever see an intermediate, not-fully-erased/
not-fully-programmed state. The risk of a Reset due to
a low-voltage condition, such as a BOR, however, will
cause immediate erase/write termination and should
be algorithmically avoided by measuring VDD just prior
to an erase or write operation. This can be accom-

plished by implementing code just prior to the Flash
erase/write unlock sequence, which measures the
application VDD, as shown in Example 2. If the VDD is
too low, the code should avoid starting an erase/write
operation. Select dsPIC and PIC24 microcontrollers
implement an ADC channel tied to a band gap refer-
ence. This can be used to back compute the present
run-time VDD level. Some microcontrollers also
implement a High/Low-Voltage Detect (HLVD or LVD)
module which may also be useful for measuring the
application VDD level at run time.

Validating Erase/Write Addresses
Prior to executing the unlock function to initiate an
erase or write operation, it is recommended to always
check the intended target erase/write address. This is
to ensure it is pointing to a valid region reserved by the
application for erase/write operations. Bootloaders, for
example, should normally check to make sure that the
bootloader is not attempting to erase part of itself
(unless explicitly designed to do so) and EEPROM
emulation code should verify that the erase/write region
only includes the Flash memory assigned for the
emulated EEPROM. The check should be structured
such that only legal target addresses are allowed and
not left open-ended. For example, rather than check
that the target is “above the bootloader”, instead check
that the requested erase/write target address is above
the bootloader, below the first unimplemented program
memory address and has Least Significant alignment
bits zeroed to match the hardware erase/write address-
ing granularity appropriate to the requested operation.
Any deviation should be treated as a sustained lockout
condition that clears WREN and/or other enabling
criteria.

Park NVM Erase/Write Address to Safe
Location
Some level of decoupling will always exist between the
code that sets up for an erase/write operation, and the
code which does unlock keying and final triggering of
the NVM operation. Part of the setup sequence will
typically write to an NVMADR register to indicate the
target of the upcoming erase/programming operation.
Harm from unintended entry onto the execution path
between these two code sequences can be prevented
by simply parking NVMADR at an unimplemented
target address. If an unintended erase/write occurs
with an invalid address, hardware will ignore it and no
changes to memory will result. This can be accom-
plished by setting NVMADR to any invalid address,
such as 0xFFFFFE, after Reset and after each
erase/write event.
 2020 Microchip Technology Inc. DS00003399A-page 9

AN3399

SUMMARY
There are many ways in which a self-write application
can protect itself from Flash memory corruption. When
designing an application that will incorporate self-write
capability, it is recommended to analyze the hardware
design and the software implementation to ensure
that they are following the best practices and
recommendations outlined in this document.
DS00003399A-page 10  2020 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2020 Microchip Technology Inc.

For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.
Trademarks
The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA
are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company,
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.
All other trademarks mentioned herein are property of their
respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5843-2
DS00003399A-page 11

www.microchip.com/quality
www.microchip.com/quality

DS00003399A-page 12  2020 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

05/14/19

http://support.microchip.com
http://www.microchip.com

	Introduction
	Understanding Potential Risks
	Hardware Issues
	Instruction Misexecution
	EXAMPLE 1: Code Flow

	Power Supply Considerations
	FIGURE 1: Voltage-Frequency Constraint
	Brown-out Reset (BOR)
	External Voltage Supervisor

	Clocking Considerations
	FIGURE 2: Oscillator Start-up

	Protecting Against Instruction Misexecution

	Conceptual and Architectural Considerations
	Adding Software Delay at Start-up
	Robust Bootloader Entry
	Dynamic Key for Hardware Unlock
	Single Instance of Unlock Sequence
	Software Unlock Sequence
	EXAMPLE 2: Using a Software Unlock Key

	Safe Handling of the Write Enable Bit
	Verify Vdd is Sufficient Before Erase/Write Operations
	Validating Erase/Write Addresses
	Park NVM Erase/Write Address to Safe Location

	Summary
	Worldwide Sales and Service

