

A Simple Circuit for Driving Microcontroller Friendly PWM Generators

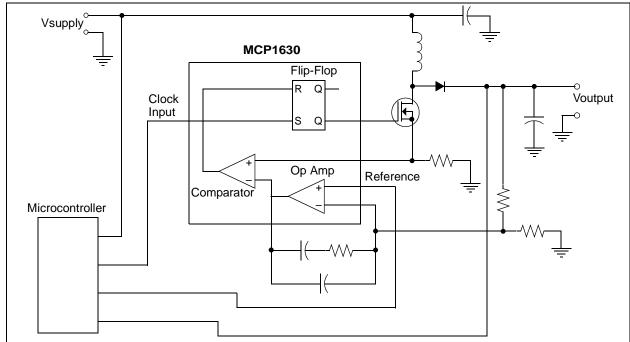
Author: Keith Curtis

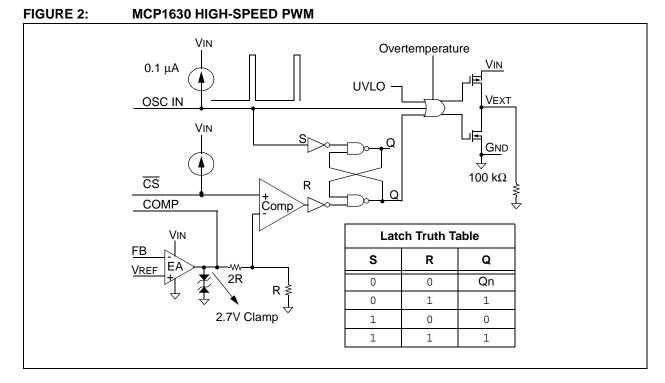
Microchip Technology Inc.

INTRODUCTION

The recent interest in intelligent power supplies has driven the development of a new class of microcontroller friendly PWM generators. These PWM generators are the mixed signal control blocks for Switch mode power supplies. One such device is the MCP1630. The MCP1630 contains the 3 main elements for designing a switching power supply as a peripheral to a microcontroller: a set/reset flip-flop, a high-speed voltage comparator and an op amp to implement the error amplifier (see Figure 1).

The microcontroller controls the MCP1630 through its clock input. The frequency of the clock determines the pulse frequency of the PWM output, and the duty cycle of the clock limits the maximum PWM duty cycle of the output. Control of the duty cycle between 0 and the maximum set by the clock input is determined by the current feedback to the comparator and the output of the error amplifier (see Figure 2).


Because the MCP1630 does not contain an on-chip oscillator, its application in non-intelligent or dumb power supply designs, is limited. However, marrying the MCP1630 with a small pin-count microcontroller solves the oscillator problem and opens up possibilities for other features such as:


- · Variable pulse frequency soft-start
- · External shutdown control
- · Under-voltage lockout
- · Over temperature shutdown

THEORY OF OPERATION

This technical brief will examine a design which combines the PIC10F206, a 6-pin SOT-23 microcontroller, with the MCP1630. The power supply design presented is a full proportional-feedback continuous inductor current, current-mode, boost power supply generating 15V out at .25 amps from a 9 VDC input. The PIC10F206 generates the clock for the MCP1630 and through that control, implements the previous list of features.

FIGURE 1: TYPICAL SWITCH MODE POWER SUPPLY BLOCK DIAGRAM

HARDWARE

The PIC10F206 is well suited for this function. It has an on-chip voltage comparator for the under-voltage detect and it has sufficient I/O to control the MCP1630 and monitor the external inputs.

The microcontroller monitors the inputs and generates the 250 kHz clock, all in software. Because the controls are simple, the control circuit only needs the microcontroller and a few components to implement all the control functions. Figure 3 shows the resulting schematic.

Microcontroller inputs are connected to a divided supply voltage, a digital temperature sensor and the shutdown input. The remaining output is the output driving the MCP1630 clock input.

For under-voltage detection, the divided supply voltage is routed to the non-inverting input of the comparator. The inverting input is tied internally to the on-chip 0.6V reference. The software then monitors the comparator output to detect an under-voltage condition.

The temperature sensor is implemented using a digital output device that pulls its output low when the threshold temperature is exceeded. The software monitors the input to detect an over-temperature condition and shuts down the pulse output if the temperature goes to high. When the temperature falls back below the threshold temperature, the sensor output returns high and the software soft-starts the pulse output. Hysteresis built in the temperature sensor prevents chattering and the sensor's trip temperature is preset when the sensor is manufactured.

The shutdown input, GP1, is tied to whatever remote start-up logic is desired. The software polls the input to determine if a shutdown is requested and terminates the pulse output if the input is low. Raising the input restarts the supply.

SWITCH MODE POWER SUPPLY SCHEMATIC FIGURE 3: 15 VDC Output R6 2.4K 3 B2: Q1 | RLML2502 | 2 R8 0.56 76+√ C12 1500 pF \$\$\$ C6 0.1 μF **∆**+5∨ 220 μF C10 C7 |0.1 μF DRVR CFB 5 1 2 1 3 4 5 4 5 5 7 .1 μF .033 μF U5 LM3480-5 U2 MCP1630 C5 0.1 µF COMP VREF OSC C9 _ 1 μF _ C1 0.1 μF VDD GP2/T0CKI/CO GP3/MCLR C3 100 pF U4 1 TC6501 Vss V+2N U1 PIC10F206 GP0/C+ GP1/C-GND C2 1000 pF **∆**+5∨ -₩-25, R2 8.2K -W-&¥ **√**06+ 0 3 0

© 2004 Microchip Technology Inc.

SOFTWARE

The software monitors the inputs and generates the output pulse using a simple bit-set/bit-clear loop, expanded to interleave all the input testing. By keeping the bit-set to bit-set time to 4 cycles, the output duty cycle is locked to 25% for a 250 kHz clock. The latency time for a shutdown is 16 cycles. Figure 4 shows the code listing.

FIGURE 4: CODE LISTING 1

loop		
BSF	PWM	
BCF	PWM	;generate a pulse
BTFSS	CMPOUT	test 4 low Vin
GOTO	Low_volt	if low shutdown
BSF	PWM	
BCF	PWM	;generate a pulse
BTFSS	GP1	test 4 hi temp
GOTO	High_temmp	if hi shutdown
BSF	PWM	
BCF	PWM	;generate a pulse
BTFSS	GP3	itest 4 shutdown
GOTO	shtdwn	if shutdown;
BSF	PWM	
BCF	PWM	;generate a pulse
GOTO	loop	;infinate loop

The **soft-start** function is generated by ramping up the number of output pulses. At start-up, a single pulse is followed by a long delay. Next, 2 pulses are followed by a shorter delay, then 3, 4 and so on until the pulse chain is continuous.

The soft-start code is implemented as a table of bit-set/bit-clear/delay instructions, similar to code listing 1 with a delay and control section. Figure 5 shows the timing of soft-start and Figure 6 is an excerpt from the actual code.

FIGURE 5: PWM CLOCK

FIGURE 6: CODE LISTING 2

FIGURE 0	. CODE	LISTING 2
Soft_Star	t	
MOVLW	.32	;table of 32
MOVWF	counter	
MOVLW	Last-Table	;set to last
MOVWF	pointer	
Loop		
MOVF	counter,w	;reload delay
MOVWF	count	
Delay		;generate delay
NOP		
DECFSZ	count,f	decrement count
GOTO	Delay	repeat til done;
MOVF	pointer,w	;get pntr 4 jump
ADDWF	PCL,f	;jump
Table		
BSF	PWM	
BCF	PWM	;32 pulse
GOTO	\$+1	;2 cycle delay
	;29 copies	of pulse + delay
BSF	PWM	
BCF	PWM	;2nd pulse
GOTO	\$+1	
Last		
BSF	PWM	
BCF	PWM	
GOTO	\$+1	
	pointer,f	;add a pulse
DECF	pointer,f	
	pointer,f	
		;decrease delay
GOTO	-	;if 10, continue
loop_for	rever	;if 0, goto main

CONCLUSION

Using a combination of software and simple hardware, an efficient control for a PWM generator is implemented with many of the features found in more complex controllers. The result is a modular building-block style design with many advanced features that can be easily customized for a customer's needs.

TABLE 1: MEMORY USAGE

GPR	3 bytes
Program	153 words

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westford, MA Tel: 978-692-3848 Fax: 978-692-3821

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Qingdao

Tel: 86-532-502-7355 Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

Japan - Kanagawa

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

- · · · · ·

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Taiwan - Hsinchu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Ballerup

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Massy

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Ismaning

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340 **England - Berkshire** Tel: 44-118-921-5869

Fax: 44-118-921-5820