
 
 
 

 

APPLICATION NOTE 

Atmel AT02971: Use of Ethernet on SAM4E-EK 

Atmel 32-bit Microcontroller 

Features 

• AT91SAM4E16E Ethernet MAC (GMAC) module 
• Compatible with IEEE® 802.3 Standard 
• 10/100Mbps operation 
• MII Interface to the physical layer 
• Direct Memory Access (DMA) interface to external memory 

• Ethernet network introduction 

• LwIP stack and porting on SAM4E-EK 

• PHY (KSZ8051MNL) implementation on SAM4E-EK 

• GMAC demo 
• Web server 
• Trivial File Transfer Protocol (TFTP) server 

Introduction 

This application note helps users to get familiar with the GMAC interfaces and 
software stack on SAM4E. Brief introduction and feature highlights of GMAC are 
given. Some backgrounds of Ethernet network standards are discussed before we go 
deep into PHY implementation on SAM4E-EK and the lwIP stack. A GMAC demo 
with features of web and TFTP server, which are implemented under Atmel® Software 
Framework (ASF), is described, by running the demo application; users could quickly 
understand Ethernet related applications and GMAC usage on SAM4E. 
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1. Introduction 
This is an introduction to the Ethernet protocols, LwIP (Lightweight IP) TCP/IP stack, and lwIP on SAM4E, PHY 
component of KSZ8051MNL and the GMAC demo on SAM4E-EK. 

The Atmel SAM4E serial of flash microcontrollers features a 10/100Mbps Ethernet MAC compatible with the Institute of 
Electrical and Electronics Engineers (IEEE) 802.3 standard. The GMAC stack provided in the Atmel Software 
Framework (ASF) simplifies the usage of the GMAC module. The lwIP TCP/IP stack on top of the GMAC stack, which is 
used for communicating over the Ethernet, is also provided in the ASF to accelerate the Ethernet application 
development on SAM4E. 

Figure 1-1 shows the GMAC implementation on SAM4E compared with Open Systems Interconnection (OSI) layers, 
which is a widely used networking technology introduced in Ethernet Networking Layers. 

Figure 1-1. GMAC Implementation on SAM4E. 

 

1.1 SAM4E Device Overview 
The Atmel SAM4E series of flash microcontrollers is based on the high performance ARM® Cortex™-M4 processor up 
to a maximum speed of 120MHz with Floating Point Unit (FPU). SAM4E offers a rich set of advanced peripherals 
including GMAC, dual CAN, USB, and HSMCI which make the SAM4E an ideal solution for wide range of industrial 
applications. 

Key features: 

• High performance 
ARM Cortex-M4 core-based MCU running at 120MHz with integrated FPU and 2KB of cache memory. 

• Connectivity 
10/100Mbps Ethernet MAC supporting IEEE 1588, dual CAN, full-speed USB device and a full range of high-
speed serial peripherals for fast data transfer. 
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• Advanced analog 
Dual 1Msps, 16-bit ADCs of up to 24 channels with analog front end, offering offset error correction and gain 
control. Also includes 2-channel, 1Msps, 12-bit DAC. 

• Design support 
Reduce development time and cost with Atmel Studio integrated development platform, which includes ASF, 
a complete library of source code, project examples, drivers and stacks. 

1.2 GMAC on SAM4E 
The GMAC module implemented on SAM4E includes the following characteristics: 

• Compatible with IEEE 802.3 Standard 

• 10/100Mbps operation 

• Full and half duplex operation at all three speeds of operation 

• Statistics Counter Registers for RMON/MIB 

• MII interface to the physical layer 

• Integrated physical coding 

• Direct Memory Access (DMA) interface to external memory 

• Programmable burst length and endianism for DMA 

• Interrupt generation to signal receive and transmit completion, or errors 

• Automatic pad and cyclic redundancy check (CRC) generation on transmitted frames 

• Automatic discard of frames received with errors 

• Receive and transmit IP, TCP and UDP checksum offload. Both IPv4 and IPv6 packet types supported 

• Address checking logic for four specific 48-bit addresses, four type IDs, promiscuous mode, hash matching of 
unicast and multicast destination addresses and Wake-on-LAN 

• Management Data Input/Output (MDIO) interface for physical layer management 

• Support for jumbo frames up to 10240 bytes 

• Full duplex flow control with recognition of incoming pause frames and hardware generation of transmitted 
pause frames 

• Half duplex flow control by forcing collisions on incoming frames 

• Support for 802.1Q Virtual Local Area Network (VLAN) tagging with recognition of incoming VLAN and priority 
tagged frames 

• Support for 802.1Qbb priority-based flow control 

• Programmable Inter Packet Gap (IPG) Stretch 

• Recognition of IEEE 1588 PTP frames 

• IEEE 1588 Time Stamp Unit (TSU) 

• Support for 802.1AS timing and synchronization 

 

The GMAC includes the following signal interfaces: 

• Media Independent Interface (MII) to an external PHY 

• MDIO interface for external PHY management 

• Slave APB interface for accessing GMAC registers 

• Master AHB interface for memory access 
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2. Ethernet Networking Layers 
Ethernet is a widely used computer networking technology for local area networks (LANs). The IEEE introduced the 
Ethernet standard as IEEE 802.3. 

The Ethernet standards comprise several wiring and signaling variants of the OSI physical layer in use with Ethernet. 
This chapter will give a brief introduction to the OSI mode for the Ethernet networking layers. 

2.1 OSI Model 
The OSI model (ISO/IEC 7498-1) is a product of the Open Systems Interconnection effort at the International 
Organization for Standardization. Seven layers are defined to characterize and standardize the functions of 
a communications system in terms of abstraction layer. 

Table 2-1 lists the functions of the seven layers. 

Table 2-1. OSI Layers. 

Layer Function 

Application Network interfaces to application 

Presentation Data representation, encryption and decryption, convert machine dependent data to machine 
independent data 

Session Start, managing and stop sessions between applications 

Transport Connection between two network users 

Network Logical Address and path determination 

Data link Physical addressing and Ethernet controller interfaces 

Physical Signal and binary transmission

The following sections give a brief introduction to these layers. As presentation and session layers are not involved in 
the GMAC stack, these two layers are not discussed. 

2.2 Layer 1: Physical Layer 
The physical layer defines electrical and physical specifications for devices. The major functions and services 
performed by the physical layer are: 

• Establish data channels between communication mediums 

• Transmit bit stream data 

2.3 Layer 2: Data Link Layer 
The data link layer provides the data link between network entities. It will detect and possibly correct errors that may 
occur in the physical layer. 

Following are the functions of data link layer: 

• Framing 

• Physical Addressing 

• Flow Control 

• Error Control 

• Access Control 

• Media Access Control (MAC) 

http://en.wikipedia.org/wiki/Computer_network�
http://en.wikipedia.org/wiki/Local_area_network�
http://en.wikipedia.org/wiki/Category:Ethernet_standards�
http://en.wikipedia.org/wiki/Physical_layer�
http://en.wikipedia.org/wiki/Open_Systems_Interconnection�
http://en.wikipedia.org/wiki/International_Organization_for_Standardization�
http://en.wikipedia.org/wiki/International_Organization_for_Standardization�
http://en.wikipedia.org/wiki/Communications_system�
http://en.wikipedia.org/wiki/Abstraction_layer�
http://en.wikipedia.org/wiki/Physical_layer�
http://en.wikipedia.org/wiki/Electrical�
http://en.wikipedia.org/wiki/Transmission_medium�
http://en.wikipedia.org/wiki/Data_link_layer�
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2.4 Layer 3: Network Layer 
The network layer defines interconnected network functions. The network layer is the lowest one in the OSI mode that is 
concerned with actually getting data from one network endpoints to another even if it is on a remote network. 

Following are the major functions of network layer: 

• Logical addressing 

• Routing 

• Datagram encapsulation 

2.5 Layer 4: Transport Layer 
The transport layer provides transparent transfer of data based on the lower layers, providing reliable data transfer 
services to the upper layers. It is designed to provide the necessary functions to enable communication between 
software application processes on different network users. 

Following are the major functions of network layer: 

• Keep track of data coming from the applications 

• Combine application data into a flow of data to send to the low layers 

• Lost transmission detection and handling 

• Manage the data transmit rate to avoid overwhelmed 

2.6 Layer 7: Application Layer 
The application layer is the actual layer that is used by the network applications. It provides services for user application 
to employ. 

Following are the major functions of network layer: 

• Issue the appropriate commands to make use of the services provided by the lower layers 

• Implement the functions needed by the network user 

http://en.wikipedia.org/wiki/Transport_layer�
http://en.wikipedia.org/wiki/Application_layer�
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3. LwIP Stack Overview 
LwIP is a free TCP/IP stack licensed under a modified Berkeley Software Distribution (BSD) license. The focus of the 
lwIP TCP/IP implementation is to reduce resource usage while still having a full scale TCP/IP stack. This makes lwIP 
widely used in embedded systems. 

Figure 3-1 shows the lwIP stack implementation to the OSI layers. 

Figure 3-1. LwIP TCP/IP Stack Overview. 

 

3.1 Protocols 
LwIP TCP/IP stack includes the following protocols: 

• IP (Internet Protocol) including packet forwarding over multiple network interfaces 

• ICMP (Internet Control Message Protocol) for network maintenance and debugging 

• UDP (User Datagram Protocol) including experimental UDP-lite extensions 

• TCP (Transmission Control Protocol) with congestion control, RTT (Round-Trip Time) estimation and fast 
recovery/fast retransmit 

• DHCP (Dynamic Host Configuration Protocol) 

• PPP (Point-to-Point Protocol) 

• ARP (Address Resolution Protocol) for Ethernet Link and Network Protocols 

3.2 Application API Layers 
Several ways of using the TCP/IP services are provided by the lwIP TCP/IP stack. Netconn API and BSD socket API 
will be described in the next sections. Netconn API is used in the web server example and BSD socket API is used in 
the TFTP example. 
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3.2.1 Netconn API 
The netconn API is high-level sequential API which has a model of execution based on the blocking open-read-write-
close paradigm. An operating system is required as this API requires the use of threads. All Ethernet packets 
processing in the stack are done inside a dedicated thread while application runs in another or other threads. 

Table 3-1 provides a summary of the netconn API functions. 

Table 3-1. Netconn API Functions. 

API Function Description 

netconn_new Creates a new connection 

netconn_delete Deletes an existing connection 

netconn_bind Binds a connection to a local IP address and port 

netconn_connect Connects to a remote IP address and port 

netconn_send Sends data to the currently connected remote IP/port (not applicable for TCP connections) 

netconn_recv Receives data from a netconn 

netconn_listen Sets a TCP connection into a listening mode 

netconn_accept Accepts an incoming connection on a listening TCP connection 

netconn_write Sends data on a connected TCP netconn 

netconn_close Closes a TCP connection without deleting it 

3.2.2 Socket API 
LwIP offers the standard BSD socket API. This is a sequential API which is internally built on top of the netconn. 

Table 3-2 provides a summary of the main socket API functions. 

Table 3-2. Socket API Functions. 

API Function Description 

socket Creates a new socket 

bind Binds a socket to an IP address and port 

listen Listens for socket connections 

connect Connects a socket to a remote host IP address and port 

accept Accepts a new connection on a socket 

read Reads data from a socket 

write Writes data on a socket 

close Closes a socket 
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4. GMAC Stack Implementation on SAM4E 
The GMAC stack implemented on SAM4E includes PHY access interfaces and Ethernet application interfaces. The 
GMAC file organization and data structure will be introduced first and then the application interfaces will be described. 

Figure 4-1 shows the GMAC stack implementation on SAM4E in the OSI layers. 

Figure 4-1. GMAC Stack Implementation on SAM4E. 

 

4.1 GMAC Stack File Organization 
Table 4-1 presents the modules of GMAC Stack on the SAM4E-EK. 

Table 4-1. GMAC Stack on SAM4E-EK. 

Stack Layer File Description 

GMAC stack sam\drivers\gmac\gmac.c GMAC stack interfaces 

sam\drivers\gmac\gmac.h GMAC stack definitions, function 
prototypes 

PHY component sam\components\ethernet_phy\ksz8051mnl\ethernet_phy.c PHY interfaces implementation 

sam\components\ethernet_phy\ksz8051mnl\ethernet_phy.h PHY interface function prototypes 

4.2 GMAC Stack Data Structures 
This section gives a brief introduction to the data structures used in the GMAC stack. 

4.2.1 gmac_rx_descriptor 
The gmac_rx_descriptor used for receiving data is defined in the gmac.h file: 

typedef struct gmac_rx_descriptor { 

 union gmac_rx_addr { 

  uint32_t val; 

  struct gmac_rx_addr_bm { 

   uint32_t b_ownership:1, 

   b_wrap:1, 
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   addr_dw:30; 

  } bm; 

 } addr; 

 union gmac_rx_status { 

  uint32_t val; 

  struct gmac_rx_status_bm { 

   uint32_t len:13, 

   b_fcs:1, 

   b_sof:1, 

   b_eof:1, 

   b_cfi:1, 

   vlan_priority:3, 

   b_priority_detected:1, 

   b_vlan_detected:1, 

   b_type_id_match:2, 

   b_checksumoffload:1, 

   b_addrmatch:2, 

   b_ext_addr_match:1, 

   reserved:1, 

   b_uni_hash_match:1, 

   b_multi_hash_match:1, 

   b_boardcast_detect:1; 

  } bm; 

 } status; 

} gmac_rx_descriptor_t; 

Structure items: 

• b_ownership: Ownership - needs to be zero for the GMAC to write data to the receive buffer. The GMAC sets 
this to 1 once it has successfully written a frame to memory. Software has to clear this bit before the buffer 
can be used again 

• b_warp: Wrap - marks last descriptor in receive buffer descriptor list 

• addr_dw: Address of beginning of buffer 

• len: These bits represent the length of the received frame which may or may not include FCS depending on 
whether FCS discard mode is enabled or not 

• b_fcs: This bit has a different meaning depending on whether jumbo frames and ignore FCS modes are 
enabled or not 

• b_sof: Start of frame - when set, the buffer contains the start of a frame. If both bits 15 and 14 are set, the 
buffer contains a whole frame 

• b_eof: End of frame - when set, the buffer contains the end of a frame. If end of frame is not set, the only valid 
status bit is start of frame (bit 14) 

• b_cfi: Canonical Format Indicator (CFI) bit (only valid if bit 21 is set) 
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• vlan_priority: VLAN priority - only valid if bit 21 is set 

• b_priority_detected: Priority tag detected - type ID of 0x8100 and null VLAN identifier. For packets 
incorporating the stacked VLAN processing feature, this bit will be set if the second VLAN tag has a type ID of 
0x8100 and a null VLAN identifier 

• b_vlan_detected: VLAN tag detected - type ID of 0x8100. For packets incorporating the stacked VLAN 
processing feature, this bit will be set if the second VLAN tag has a type ID of 0x8100 

• b_type_id_match: This bit has a different meaning depending on whether RX checksum offloading is enabled 
or not 

• b_checksumoffload: This bit has a different meaning depending on whether RX checksum offloading is 
enabled or not. More information could be referred in the datasheet 

• b_addrmatch: Specific Address Register match 

• b_ext_addr_match: Specific Address Register match found, bit 25 and bit 26 indicate which Specific Address 
Register causes the match 

• b_uni_hash_match: Unicast hash match 

• b_multi_hash_match: Multicast hash match 

• b_boardcast_detect: Global all ones broadcast address detected 

4.2.2 gmac_tx_descriptor 
The gmac_tx_descriptor used for transmitting data is defined in the gmac.h file: 

typedef struct gmac_tx_descriptor { 

 uint32_t addr; 

 union gmac_tx_status { 

  uint32_t val; 

  struct gmac_tx_status_bm { 

   uint32_t len:14,  

   reserved:1, 

   b_last_buffer:1, 

   b_no_crc:1, 

   reserved1:3, 

   b_checksumoffload:3, 

   reserved2:3, 

   b_lco:1, 

   b_exhausted:1, 

   b_underrun:1, 

   b_error:1, 

   b_wrap:1, 

   b_used:1; 

  } bm; 

 } status; 

} gmac_tx_descriptor_t; 
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Structure items: 

• Len: Length of buffer 
• b_last_buffer: Last buffer, when set this bit will indicate that the last buffer in the current frame has been 

reached 
• b_no_crc: No CRC to be appended by MAC 
• b_checksumoffload: Transmit IP/TCP/UDP checksum generation offload errors 
• b_lco: Late collision, transmit error detected 
• b_exhausted: Transmit frame corruption due to AHB error 
• b_underrun: Transmit underrun 
• b_error: Retry limit exceeded, transmit error detected 
• b_wrap: Wrap - marks last descriptor in transmit buffer descriptor list 
• b_used: Used - must be zero for the GMAC to read data to the transmit buffer 
• addr: Byte address of buffer 

4.2.3 gmac_options 
The gmac_options used for GMAC stack configuration is defined in the gmac.h file: 

typedef struct gmac_options { 

 uint8_t uc_copy_all_frame; 

 uint8_t uc_no_boardcast; 

 uint8_t uc_mac_addr[GMAC_ADDR_LENGTH]; 

} gmac_options_t; 

Structure items: 

• uc_copy_all_frame: Enable/disable CopyAllFrame 

• uc_no_boardcast: Enable/disable NoBroadCast 

• uc_mac_addr: MAC address 

4.2.4 gmac_device 
The gmac_device used a generic GMAC stack device is defined in the gmac.h file: 

typedef struct gmac_device { 

 Gmac *p_hw; 

 uint8_t *p_tx_buffer; 

 uint8_t *p_rx_buffer; 

 gmac_rx_descriptor_t *p_rx_dscr; 

 gmac_tx_descriptor_t *p_tx_dscr; 

 gmac_dev_tx_cb_t func_rx_cb; 

 gmac_dev_wakeup_cb_t func_wakeup_cb; 

 gmac_dev_tx_cb_t *func_tx_cb_list; 

 uint16_t us_rx_list_size; 

 uint16_t us_rx_idx; 

 uint16_t us_tx_list_size; 

 uint16_t us_tx_head; 

 uint16_t us_tx_tail; 
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 uint8_t uc_wakeup_threshold; 

} gmac_device_t; 

Structure items: 

• p_hw: Pointer to HW register base 

• p_tx_buffer: Pointer to allocated TX buffer 

• p_rx_buffer: Pointer to allocated RX buffer 

• p_rx_dscr: Pointer to Rx TDs (must be 8-byte aligned) 

• p_tx_dscr: Pointer to Tx TDs (must be 8-byte aligned) 

• func_rx_cb: Optional callback to be invoked once a frame has been received 

• func_wakeup_cb: Optional callback to be invoked once several TDs have been released 

• func_tx_cb_list: Optional callback list to be invoked once TD has been processed 

• us_rx_list_size: RX TD list size 

• us_rx_idx: RX index for current processing TD 

• us_tx_list_size: TX TD list size 

• us_tx_head: Circular buffer head pointer by upper layer (buffer to be sent) 

• us_tx_tail: Circular buffer tail pointer incremented by handlers (buffer sent) 

• uc_wakeup_threshold: Number of free TD before wakeup callback is invoked 

4.3 PHY Access Interfaces 
There are two interfaces provided in the GMAC stack to access the PHY components, which are listed in Table 4-2. 

Table 4-2. GMAC PHY Access Interfaces. 

Function Name Description 

gmac_phy_read Read the PHY register 

gmac_phy_write Write the value to the PHY register 

4.4 Ethernet Application Interfaces 
Table 4-3 lists the functions of the Ethernet application interfaces. Through these application interfaces the user can use 
the GMAC features without implementing the detail of the GMAC stack. 

Table 4-3. Ethernet Application Interfaces. 

Function Name Description 

gmac_dev_init Initialize the GMAC driver 

gmac_dev_read Frames can be read from the GMAC in multiple sections 

gmac_dev_write Send bytes from TX buffers 

gmac_dev_get_tx_load Get current load of transmit 

gmac_dev_set_rx_callback Register/Clear RX callback. Callback will be invoked after the next received frame 

gmac_dev_set_tx_wakeup_callback Register/Clear TX wakeup callback 

gmac_dev_reset Reset TX & RX queue & statistics 

gmac_handler GMAC interrupt handler 
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5. PHY Implementation 
The PHY component of KSZ8051MNL is used in the SAM4E-EK. This chapter gives a brief introduction to the KSZ8051 
implementations. 

5.1 KSZ8051MNL Introduction 
There is a standard PHY access interfaces defined in the ASF, Table 5-1 lists these interfaces. 

Table 5-1. Ethernet Application Interfaces. 

Function Name Description 

ethernet_phy_init Perform a HW initialization to the PHY and set up clocks 

ethernet_phy_set_link Get the Link & speed settings, and automatically set up the GMAC with the settings 

ethernet_phy_auto_negotiate Issue an auto negotiation of the PHY 

ethernet_phy_reset Issue a SW reset to reset all registers of the PHY 

For SAM4E-EK the PHY component interfaces are implemented in the file: 
sam\components\ethernet_phy\ksz8051mnl\ethernet_phy.c. 

5.2 Initializing KSZ8051MNL 
Based on the GMAC stack on SAM4E, the procedures to initialize the KSZ8051 is simplified to three steps: 

• Initialize the PHY 

• Enabling PHY auto-negotiation mode or manually selecting the mode of operation (Full-speed/Low-speed, 
Half-duplex/Full-duplex) 

• If PHY auto-negotiation mode is selected, the application needs to poll the PHY or use a PHY interrupt in order 
to obtain the result of auto-negotiation (speed, duplex mode) 

Figure 5-1. KSZ8051MNL Initializing Procedures. 

 

Three interfaces should be called to initialize the KSZ8051MNL component: 

• ethernet_phy_init() is used to initialize the PHY, including setting the clock and the address 

• ethernet_phy_auto_negotiate() is used to do the auto negotiation and get link parameters 

• ethernet_phy_set_link() to set the link parameters 
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6. GMAC Demo on SAM4E-EK 
The GMAC demo includes two applications for the usage of GMAC and lwIP stack on SAM4E, i.e., the web server 
example and TFTP example. Figure 6-1 shows the GMAC demo diagram. 

Figure 6-1. GMAC Demo Overview. 

 

6.1 GMAC Demo File Organization 
The GMAC demo code is located in the folder: thirdparty/freertos/demo/lwip_sam_example. Table 6-1 lists the files 
used in the GMAC demo. 

Table 6-1. GMAC Demo Used Files. 

Function Name Description 

main.c Main routine of the example 

lwipopts.h LwIP configurations 

FreeRTOSConfig.h FreeRTOS configurations 

Network/ethernet.c Ethernet management 

Network/ethernet.h Header files for Ethernet management 

Partest/PartTest.c LED management 

The web server and TFTP server code are located in the thirdparty/freertos/demo/lwip_avr32_uc3_example/network 
folder. 
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Function Name Description 

Basictftp/BasicTFTP.c TFTP server implementation 

Basictftp/BasicTFTP.h TFTP server application interfaces 

Basicweb/BasicWEB.c Web server implementation 

Basicweb/BasicWEB.h Web server application interfaces 

6.2 GMAC Demo Requirements 
A router which provides the IP address is required to connect the SAM4E-EK and the computer. Figure 6-2 shows the 
hardware diagram of this example. 

Figure 6-2. GMAC Demo Diagram. 

 

For the TFTP usage, a TFTP client should be installed on the computer. 

6.3 LwIP Porting on SAM4E 
Two parts are involved in the porting of lwIP on SAM4E, the lwIP low level drivers and lwIP configuration. 

6.3.1 Initializing LwIP 
The ethernet_if.c file in the thirdparty/lwip/lwip-port-1.4.0/sam/netif folder is used to link the lwIP stack to the GMAC 
Ethernet network interface. Table 6-2 lists the interfaces used for this link. 

Table 6-2. LwIP TCP/IP Stack Low Level Drivers. 

Function Name Description 

low_level_init Calls the Ethernet driver functions to initialize the GMAC Ethernet peripheral 

low_level_output Calls the Ethernet driver functions to send an Ethernet packet 

low_level_input Should allocate a buffer and transfer the bytes of the incoming packet from the 
interface into the buffer 

ethernetif_init Calls low_level_init() to set up the network interface 

ethernet_input Calls low_level_input to receive a packet and provide it to the lwIP stack 

In the case of the RTOS implementation, an additional file is required; sys_arch.c. This file implements an emulation 
layer for the RTOS services. The implementation can be found in thirdparty/lwip/lwip-port-1.4.0/sam/sys_arch.c. 
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6.3.2 Configuring LwIP 
The lwipopt.h file in the thirdparty/freertos/demo/lwip_sam_example folder is used to configure the lwIP TCP/IP 
stack. Table 6-3 lists the major configuration items. 

Table 6-3. LwIP Configurations. 

Function Name Description 

LWIP_DHCP Enable/disable DHCP 

MEM_SIZE LwIP heap memory size: used for all lwIP dynamic memory allocations 

MEMP_NUM_PBUF Total number of MEM_REF and MEM_ROM pbufs 

MEMP_NUM_TCP_PCB Total number of TCP PCB structures 

MEMP_NUM_TCP_PCB_LISTEN Total number of listening TCP PCBs 

MEMP_NUM_TCP_SEG The maximum number of simultaneously queued TCP segments 

PBUF_POOL_SIZE The total number of pbufs of type PBUF_POOL 

PBUF_POOL_BUFSIZE Size of a pbuf of type PBUF_POOL 

TCP_MSS TCP maximum segment size 

TCP_SND_BUF TCP send buffer space for a connection 

TCP_SND_QUEUELEN Maximum number of pbufs in the TCP send queue 

TCP_WND Advertised TCP receive window size 

6.4 FreeRTOS Introduction 
As mentioned in the netconn API, an Operation System (OS) is required to provide the thread services. The FreeRTOS 
is used in the GMAC demo. 

FreeRTOS is a scaleable realtime kernel designed for embedded systems, with small memory cost and full function of 
thread support. For more information about FreeRTOS, see www.freertos.org. 

In the GMAC demo the TCP/IP task is created by lwIP stack. It’s an internal task and all the TCP/IP stack functions are 
processed through this task. 

Two application tasks are created for the Ethernet usage: web server and TFTP tasks. The implementations of these 
two tasks will be discussed in the next sections. 

 /* Create the WEB server task. This uses the lwIP RTOS abstraction layer. */ 

 sys_thread_new("WEB", vBasicWEBServer, (void *)NULL, 

   lwipBASIC_WEB_SERVER_STACK_SIZE, 

   lwipBASIC_WEB_SERVER_PRIORITY); 

 

  /* Create the TFTP server task. This uses the lwIP RTOS abstraction layer. */ 

 sys_thread_new("TFTP", vBasicTFTPServer, (void *)NULL, 

   lwipBASIC_TFTP_SERVER_STACK_SIZE, 

   lwipBASIC_TFTP_SERVER_PRIORITY); 

 

 

http://www.freertos.org/�
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6.5 Web Server Implementation 
The following code is the main routine for the web server example. 

{ 

struct netconn *pxHTTPListener, *pxNewConnection; 

 

 /* Create a new tcp connection handle */ 

 pxHTTPListener = netconn_new(NETCONN_TCP); 

 netconn_bind(pxHTTPListener, NULL, webHTTP_PORT); 

 netconn_listen(pxHTTPListener); 

 

 /* Loop forever */ 

 for( ;; ) 

 { 

        while(netconn_accept(pxHTTPListener, &pxNewConnection) != ERR_OK) 

        { 

            vTaskDelay(webSHORT_DELAY); 

  } 

  vParTestSetLED(webCONN_LED, pdTRUE); 

 

  if(pxNewConnection != NULL) 

  { 

   prvweb_ParseHTMLRequest(pxNewConnection); 

  }/* end if new connection */ 

 

  vParTestSetLED(webCONN_LED, pdFALSE); 

 

 } /* end infinite loop */ 

} 

Example description: 

• Function netconn_new(NETCONN_TCP) is called to create a new networking connection. Hypertext transfer 
protocol (HTTP) protocol is based on TCP, so TCP protocol, defined as NETCONN_TCP, is used 

• Bind the net connection to the IP address and port. It is used for web server purpose, the address is left empty 
and the port number should be 80. 
netconn_bind(pxHTTPListener, NULL, webHTTP_PORT)) 

• Listen for the web client request 
netconn_listen(pxHTTPListener) 
Then the web server is initialized to waiting for web client request. 

• netconn_accept() to accept a connection 

• prvweb_ParseHTMLRequest() is used to handle the http request 
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6.6 TFTP Server Implementation 
The following code is the main routine for the TFTP server example. 

{      

   // Create socket 

        lSocket = socket(AF_INET, SOCK_DGRAM, 0); 

        if (lSocket < 0) { 

            return; 

        } 

        memset((char *)&sLocalAddr, 0, sizeof(sLocalAddr)); 

        sLocalAddr.sin_family = AF_INET; 

        sLocalAddr.sin_len = sizeof(sLocalAddr); 

        sLocalAddr.sin_addr.s_addr = htonl(INADDR_ANY); 

        sLocalAddr.sin_port = htons(TFTP_PORT); 

 

        if (bind(lSocket, (struct sockaddr *)&sLocalAddr, sizeof(sLocalAddr)) < 0) { 

            // Problem setting up my end 

            close(lSocket); 

            return; 

        } 

        lRecvLen = sizeof(cData); 

        lFromLen = sizeof(sFromAddr); 

        lDataLen = recvfrom(lSocket, sHdr, lRecvLen, 0, 

                            (struct sockaddr *)&sFromAddr, &lFromLen); 

        vParTestSetLED( TFTP_LED , pdTRUE ); 

        close(lSocket); // so that other servers can bind to the TFTP socket 

 

  switch (ntohs(sHdr->th_opcode)) { 

            case WRQ: 

                tftpd_write_file(sHdr, &sFromAddr, lFromLen); 

                vParTestSetLED( TFTP_LED , pdFALSE ); 

                break; 

            case RRQ: 

                tftpd_read_file(sHdr, &sFromAddr, lFromLen); 

                vParTestSetLED( TFTP_LED , pdFALSE ); 

                break; 

            case ACK: 

            case DATA: 
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            case ERROR: 

                vParTestSetLED( TFTP_LED , pdFALSE ); 

                // Ignore 

                break; 

} 

Example description: 

• Function socket (AF_INET, SOCK_DGRAM, 0) is called to create a new socket. The socket is using the type 
SOCK_DGRAM and protocol AF_INET. In the Internet domain, the SOCK_DGRAM socket type is 
implemented on the User Datagram Protocol/Internet Protocol (UDP/IP) protocol. AF_INET means the socket 
is IP address and port number. 

• Set the IP address properties by the code: 
memset((char *)&sLocalAddr, 0, sizeof(sLocalAddr)); 
sLocalAddr.sin_family = AF_INET; 
sLocalAddr.sin_len = sizeof(sLocalAddr); 
sLocalAddr.sin_addr.s_addr = htonl(INADDR_ANY); 
sLocalAddr.sin_port = htons(TFTP_PORT); 

• Bind the socket to the IP address and port: 
bind(lSocket, (struct sockaddr *)&sLocalAddr, sizeof(sLocalAddr)) 

• Get the TFTP request from remote: 
recvfrom(lSocket, sHdr, lRecvLen, 0, (struct sockaddr *)&sFromAddr, &lFromLen); 

• Close the socket so that other servers can bind to the TFTP socket: 
close(lSocket); 

• Handle TFTP requests according to the opcode: switch (ntohs(sHdr->th_opcode)) 

• Call tftpd_write_file(sHdr, &sFromAddr, lFromLen) to handle write in case of write request 

• Call tftpd_read_file(sHdr, &sFromAddr, lFromLen) to handle read in case of read request 

6.7 Getting Started Using GMAC Demo 

6.7.1 GMAC Demo Kit 
The kit used for GMAC demo is the SAM4E-EK. The SAM4E-EK is an evaluation kit featuring the SAM4E16 device 
BGA144 package with optional socket footprint, on board 12MHz and 32.768kHz crystal, a 2.8” TFT color LCD display 
with touch panel and backlight, one Ethernet physical transceiver layer with RJ45 connector, CAN port with driver, 
mono/stereo headphone jack output, QTouch® interfaces, full speed USB device port, Serial Flash memory, NAND 
Flash memory, SD/MMC interface, LEDs, push buttons, BNC connector for ADC input and DAC output, JTAG/ICE port, 
UART port with RS232 driver, USART port with RS232 driver multiplexed with RS485 function with driver. For more 
information about SAM4E-EK, see www.atmel.com/tools/SAM4E-EK.asfpx. 

6.7.2 Tools for GMAC Demo Software 
The GMAC demo is developed based on the Atmel Studio 6. The following tools are required for the startup of the 
GMAC demo: 

• Atmel Studio 6.1 (or above) installed 

• Segger J-Link (the latest version) installed 

A SAM-ICE™ is required for programming and debugging purpose. If programming the GMAC demo only, the Atmel 
SAM-BA® software can be used instead of the SAM-ICE. For more information about SAM-BA usage, 
see www.atmel.com/tools/ATMELSAM-BAIN-SYSTEMPROGRAMMER.aspx. 

http://www.atmel.com/tools/SAM4E-EK.asfpx�
http://www.atmel.com/atmelstudio�
http://www.atmel.com/tools/atmelsam-ice.aspx?tab=overview�
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6.7.3 GMAC Demo Board Connections 
The GMAC demo uses DHCP by default, so it is required to connect the SAM4E-EK to the debug console. Figure 6-3 
shows the typical connection of SAM4E-EK. 

• Build and program the demo code into the SAM4E flash memory 

• Be sure the debug port of SAM4E-EK has been connected to the computer 

Figure 6-3. SAM4E-EK Board Connections. 

 

6.7.4 Load GMAC Demo 
• Download the zipped file of GMAC demo code at the same web page of this application note 

• Unzip the file and double click the GMAC_Demo.cproj. Then the Atmel Studio will open the demo 

• Build the project: Build → Build Solution 

• Load the code in SAM4E and start debugging: Debug → Start Debugging and Break 

Now the GMAC demo has been programmed and the debugger stops at the beginning of main(). To execute it, click on 
Debug → Continue. 

6.7.5 GMAC Demo Execution 
• Get the IP address assigned by DHCP. If failed, the address will not appear in the console. Figure 6-4 shows 

the sample screen of DHCP assignment, 192.168.0.100 is assigned to the board for example. 

Figure 6-4. DHCP Address Assignment. 
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• Open a web client, such as Internet Explorer, and type the board’s IP address in the web browser; the 
statistics of the board will be shown in the browser, as shown in Figure 6-5 

Figure 6-5. SAM4E-EK Statics in the Web Browser. 

 

• Open the TFTP client and type the TFTP commands to exchange. Figure 6-6 shows a sample file transfer of 
the TFTP server 

Figure 6-6. TFTP File Transfer Example. 
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