e
AtmeL APPLICATION NOTE

Atmel AT02971: Use of Ethernet on SAM4E-EK

Atmel 32-bit Microcontroller

Features

e AT91SAM4E16E Ethernet MAC (GMAC) module
e Compatible with IEEE® 802.3 Standard
e 10/100Mbps operation
e MIl Interface to the physical layer
e Direct Memory Access (DMA) interface to external memory
e Ethernet network introduction
e LwlIP stack and porting on SAM4E-EK
e PHY (KSZ8051MNL) implementation on SAM4E-EK

e GMAC demo
e Web server
e Trivial File Transfer Protocol (TFTP) server

Introduction

This application note helps users to get familiar with the GMAC interfaces and
software stack on SAMA4E. Brief introduction and feature highlights of GMAC are
given. Some backgrounds of Ethernet network standards are discussed before we go
deep into PHY implementation on SAM4E-EK and the IwIP stack. A GMAC demo
with features of web and TFTP server, which are implemented under Atmel® Software
Framework (ASF), is described, by running the demo application; users could quickly
understand Ethernet related applications and GMAC usage on SAM4E.

42134A-SAM4-05/2013

Table of Contents

1. INrOAUCTION ... 3

1.1 SAMAE DEVICE OVEIVIEW ...ooiiiiiiiiiiiiiie ettt e e naeeaaaeeas 3

1.2 GMAC ONSAMAE ...t 4

2. Ethernet Networking Layers............uueveeiiiiiiiiiiiiiiiieiiieiieiieiieeneenees 5

2t N © 15 T I 1Y o Yo 1 SRR 5

2.2 Layer 1: PhySiCal LAYer.....cooo it 5

2.3 Layer2:Data Link Layer........ooooiiiiiiiii 5

2.4 Layer 3: NetWork Layerot 6

2.5 Layer 4: TransSpOrt LAYErccooiuiiiiiiie et 6

2.6 Layer 7: Application Layer........cc.ueiiiiiiiiieeeee e 6

3. LWIP Stack OVEIVIEWooiiiiiiiiiiiieiii e 7

3.1 PrOtOCOIS ...t 7

3.2 ApPlication APILAYEIScooiiiiiieee ettt a e 7

3.2.1 NEtCONN AP ... 8

3.2.2 SOCKEE AP ... 8

4. GMAC Stack Implementation on SAM4E..................ccc . 9

4.1 GMAC Stack File Organizationcooceeeiiieeeiiee e 9

4.2 GMAC Stack Data StrUCIUIESeviiiiiiieeeie e 9

421 IMAC_IX_AESCIIPION ...iiiiiiiiiieei e 9

4.2.2 gMAC_tX_deSCIIPIOr ... 11

4.2.3 IMAC_OPLIONS ..ttt e e e 12

424 gMAC_AEVICE. ...ttt e e 12

4.3 PHY ACCeSS INtErfacesoooiiiiiiiiiiiii e 13

4.4 Ethernet Application INterfacesccooviiiiiiiieiiiiie e 13

5. PHY Implementation 14

5.1 KSZ805TMNL INtrodUCHONcccoiiiiiiieee e 14

5.2 Initializing KSZBOS5TMNLciiuiiiiiiiiie et 14

6. GMAC Demo on SAMAE-EK ... 15

6.1 GMAC Demo File Organization..............ccciiiiiiaiiiiie e 15

6.2 GMAC Demo ReQUIrEMENTSuuviiiieiiiiiiiiiiee e e 16

6.3 LWIP Porting on SAMAE ... 16

6.3.1 INItIANIZING LWIP ..o 16

6.3.2 Configuring LWIPoooiiiiiiiiiie e 17

6.4 FreeRTOS INtrOdUCHIONooeiiiiiiiiieee e 17

6.5 Web Server Implementation.............c.cooo 18

6.6 TFTP Server Implementationcoooiiiiiiiieiiiiiiieiiee e 19

6.7 Getting Started Using GMAC DemO...........coiiiiiiiiiiiiiieee e 20

6.7.1 GMAC DEMO Kit ...eeeiiiiieeciiie et 20

6.7.2 Tools for GMAC Demo SOftWarecccceeeeriiiiieiiiiie e 20

6.7.3 GMAC Demo Board CONNECHIONSccceeieiviiiiiieeeieciiiieee e 21

6.7.4 Load GMAC DEMO ...t 21

6.7.5 GMAC Demo EXECULIONoiiiiiiiiiiiiiiee e 21

7. ReVISION HIiSTOYooviiiiiiiiiiiiiiiiieeeeeeeee ettt eaneennnes 23

1 Atmel AT02971: Use of Ethernet on SAM4E-EK 2
Atmel

42134A-SAM4-05/2013

1. Introduction
This is an introduction to the Ethernet protocols, LwIP (Lightweight IP) TCP/IP stack, and IwIP on SAM4E, PHY
component of KSZ8051MNL and the GMAC demo on SAM4E-EK.
The Atmel SAMA4E serial of flash microcontrollers features a 10/100Mbps Ethernet MAC compatible with the Institute of
Electrical and Electronics Engineers (IEEE) 802.3 standard. The GMAC stack provided in the Atmel Software
Framework (ASF) simplifies the usage of the GMAC module. The IwIP TCP/IP stack on top of the GMAC stack, which is
used for communicating over the Ethernet, is also provided in the ASF to accelerate the Ethernet application
development on SAM4E.
Figure 1-1 shows the GMAC implementation on SAM4E compared with Open Systems Interconnection (OSI) layers,
which is a widely used networking technology introduced in Ethernet Networking Layers.
Figure 1-1. GMAC Implementation on SAM4E.
| demgo
WEB TFTP
eiea':;:e exan.'lple
A |
(-) HTTP TFTP
7. Application Layer service)| service
6. Presentation Layer
> X
5. Session Layer \\
4. Transport Layer)
s < IwlP TCP/IP stack
3. Network Layer)
> < I
2. Data link Layer [GMAC stack
(1. Physical Layer) [PHY componentdriver
tworki
SAMA4E
OSlLayers Implementation
1.1 SAMA4E Device Overview
The Atmel SAMA4E series of flash microcontrollers is based on the high performance ARM® Cortex™-M4 processor up
to a maximum speed of 120MHz with Floating Point Unit (FPU). SAM4E offers a rich set of advanced peripherals
including GMAC, dual CAN, USB, and HSMCI which make the SAM4E an ideal solution for wide range of industrial
applications.
Key features:
e High performance
ARM Cortex-M4 core-based MCU running at 120MHz with integrated FPU and 2KB of cache memory.
e Connectivity
10/100Mbps Ethernet MAC supporting IEEE 1588, dual CAN, full-speed USB device and a full range of high-
speed serial peripherals for fast data transfer.
® . _ 3
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

e Advanced analog
Dual 1Msps, 16-bit ADCs of up to 24 channels with analog front end, offering offset error correction and gain
control. Also includes 2-channel, 1Msps, 12-bit DAC.

e Design support
Reduce development time and cost with Atmel Studio integrated development platform, which includes ASF,
a complete library of source code, project examples, drivers and stacks.

1.2 GMAC on SAM4E

The GMAC module implemented on SAM4E includes the following characteristics:

e Compatible with IEEE 802.3 Standard

e 10/100Mbps operation

e Full and half duplex operation at all three speeds of operation

e Statistics Counter Registers for RMON/MIB

e Mll interface to the physical layer

e |Integrated physical coding

e Direct Memory Access (DMA) interface to external memory

e Programmable burst length and endianism for DMA

e |Interrupt generation to signal receive and transmit completion, or errors

e Automatic pad and cyclic redundancy check (CRC) generation on transmitted frames
e Automatic discard of frames received with errors

e Receive and transmit IP, TCP and UDP checksum offload. Both IPv4 and IPv6 packet types supported

e Address checking logic for four specific 48-bit addresses, four type IDs, promiscuous mode, hash matching of
unicast and multicast destination addresses and Wake-on-LAN

e Management Data Input/Output (MDIO) interface for physical layer management
e Support for jumbo frames up to 10240 bytes

e Full duplex flow control with recognition of incoming pause frames and hardware generation of transmitted
pause frames

e Half duplex flow control by forcing collisions on incoming frames

e Support for 802.1Q Virtual Local Area Network (VLAN) tagging with recognition of incoming VLAN and priority
tagged frames

e Support for 802.1Qbb priority-based flow control
e Programmable Inter Packet Gap (IPG) Stretch

e Recognition of IEEE 1588 PTP frames

e |EEE 1588 Time Stamp Unit (TSU)

e Support for 802.1AS timing and synchronization

The GMAC includes the following signal interfaces:
e Media Independent Interface (Mll) to an external PHY
e MDIO interface for external PHY management
e Slave APB interface for accessing GMAC registers

e Master AHB interface for memory access

. _ 4
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

2, Ethernet Networking Layers
Ethernet is a widely used computer networking technology for local area networks (LANs). The IEEE introduced the
Ethernet standard as IEEE 802.3.
The Ethernet standards comprise several wiring and signaling variants of the OSI physical layer in use with Ethernet.
This chapter will give a brief introduction to the OSI mode for the Ethernet networking layers.
2.1 OSI Model
The OSI model (ISO/IEC 7498-1) is a product of the Open Systems Interconnection effort at the International
Organization for Standardization. Seven layers are defined to characterize and standardize the functions of
a communications system in terms of abstraction layer.
Table 2-1 lists the functions of the seven layers.
Table 2-1. OSl Layers.
Layer | Function
Application Network interfaces to application
Presentation Data representation, encryption and decryption, convert machine dependent data to machine
independent data
Session Start, managing and stop sessions between applications
Transport Connection between two network users
Network Logical Address and path determination
Data link Physical addressing and Ethernet controller interfaces
Physical Signal and binary transmission
The following sections give a brief introduction to these layers. As presentation and session layers are not involved in
the GMAC stack, these two layers are not discussed.
2.2 Layer 1: Physical Layer
The physical layer defines electrical and physical specifications for devices. The major functions and services
performed by the physical layer are:
e Establish data channels between communication mediums
e Transmit bit stream data
2.3 Layer 2: Data Link Layer
The data link layer provides the data link between network entities. It will detect and possibly correct errors that may
occur in the physical layer.
Following are the functions of data link layer:
e Framing
e Physical Addressing
e Flow Control
e Error Control
e Access Control
e Media Access Control (MAC)
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK 3

42134A-SAM4-05/2013

http://en.wikipedia.org/wiki/Computer_network�
http://en.wikipedia.org/wiki/Local_area_network�
http://en.wikipedia.org/wiki/Category:Ethernet_standards�
http://en.wikipedia.org/wiki/Physical_layer�
http://en.wikipedia.org/wiki/Open_Systems_Interconnection�
http://en.wikipedia.org/wiki/International_Organization_for_Standardization�
http://en.wikipedia.org/wiki/International_Organization_for_Standardization�
http://en.wikipedia.org/wiki/Communications_system�
http://en.wikipedia.org/wiki/Abstraction_layer�
http://en.wikipedia.org/wiki/Physical_layer�
http://en.wikipedia.org/wiki/Electrical�
http://en.wikipedia.org/wiki/Transmission_medium�
http://en.wikipedia.org/wiki/Data_link_layer�

2.4

2.5

2.6

Layer 3: Network Layer

The network layer defines interconnected network functions. The network layer is the lowest one in the OSI mode that is
concerned with actually getting data from one network endpoints to another even if it is on a remote network.

Following are the major functions of network layer:
e Logical addressing
e Routing
e Datagram encapsulation

Layer 4: Transport Layer

The transport layer provides transparent transfer of data based on the lower layers, providing reliable data transfer
services to the upper layers. It is designed to provide the necessary functions to enable communication between
software application processes on different network users.

Following are the major functions of network layer:
e Keep track of data coming from the applications
e Combine application data into a flow of data to send to the low layers
e Lost transmission detection and handling

e Manage the data transmit rate to avoid overwhelmed

Layer 7: Application Layer

The application layer is the actual layer that is used by the network applications. It provides services for user application
to employ.

Following are the major functions of network layer:

e [ssue the appropriate commands to make use of the services provided by the lower layers
e Implement the functions needed by the network user

. . - 6
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

http://en.wikipedia.org/wiki/Transport_layer�
http://en.wikipedia.org/wiki/Application_layer�

3. LwlIP Stack Overview
LwlIP is a free TCP/IP stack licensed under a modified Berkeley Software Distribution (BSD) license. The focus of the
IwlP TCP/IP implementation is to reduce resource usage while still having a full scale TCP/IP stack. This makes IwIP
widely used in embedded systems.
Figure 3-1 shows the IwlP stack implementation to the OSI layers.
Figure 3-1. LwlIP TCP/IP Stack Overview.
4)
7. Application Layer
> <
6. Presentation Layer
> <
5. Session Layer
> <
4. Transport Layer
\- < lwlIP TCP/IP
3. Network Layer stack
> <
2. Data link Layer
> <
1. Physical Layer
\. J/
3.1 Protocols
LwIP TCP/IP stack includes the following protocols:
e |P (Internet Protocol) including packet forwarding over multiple network interfaces
e |CMP (Internet Control Message Protocol) for network maintenance and debugging
e UDP (User Datagram Protocol) including experimental UDP-lite extensions
e TCP (Transmission Control Protocol) with congestion control, RTT (Round-Trip Time) estimation and fast
recovery/fast retransmit
e DHCP (Dynamic Host Configuration Protocol)
e PPP (Point-to-Point Protocol)
e ARP (Address Resolution Protocol) for Ethernet Link and Network Protocols
3.2 Application API Layers
Several ways of using the TCP/IP services are provided by the IwIP TCP/IP stack. Netconn API and BSD socket API
will be described in the next sections. Netconn APl is used in the web server example and BSD socket APl is used in
the TFTP example.
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK 7

42134A-SAM4-05/2013

3.2.1 Netconn API

The netconn API is high-level sequential APl which has a model of execution based on the blocking open-read-write-
close paradigm. An operating system is required as this API requires the use of threads. All Ethernet packets
processing in the stack are done inside a dedicated thread while application runs in another or other threads.

Table 3-1 provides a summary of the netconn API functions.

Table 3-1. Netconn API Functions.

| APIFunction | Descriptn |

netconn_new Creates a new connection
netconn_delete Deletes an existing connection
netconn_bind Binds a connection to a local IP address and port

netconn_connect = Connects to a remote IP address and port

netconn_send Sends data to the currently connected remote IP/port (not applicable for TCP connections)
netconn_recv Receives data from a netconn
netconn_listen Sets a TCP connection into a listening mode

netconn_accept = Accepts an incoming connection on a listening TCP connection
netconn_write Sends data on a connected TCP netconn

netconn_close Closes a TCP connection without deleting it

3.2.2 Socket API
LwlIP offers the standard BSD socket API. This is a sequential API which is internally built on top of the netconn.

Table 3-2 provides a summary of the main socket API functions.

Table 3-2. Socket API Functions.

| API Function | Deseription

socket Creates a new socket
bind Binds a socket to an IP address and port
listen Listens for socket connections
connect Connects a socket to a remote host IP address and port
accept Accepts a new connection on a socket
read Reads data from a socket
write Writes data on a socket
close Closes a socket
AtmeL Atmel AT02971: Use of Ethernet (zzr: SAM4E-EK 8
34A-SAM4-05/2013

41

4.2

4.21

GMAC Stack Implementation on SAM4E

The GMAC stack implemented on SAM4E includes PHY access interfaces and Ethernet application interfaces. The
GMAC file organization and data structure will be introduced first and then the application interfaces will be described.

Figure 4-1 shows the GMAC stack implementation on SAM4E in the OSI layers.

Figure 4-1. GMAC Stack Implementation on SAM4E.

s 3\

7. Application Layer

\
7

A

6. Presentation Layer

AL

\
>

5. Session Layer

A

\,
7

4. Transport Layer

A

\,
f (Ethernet application
 interfaces

rGMAC control and

| data management
>

3. Network Layer

AN

A

\,
7

2. Data link Layer

AN

\
7

A

1. Physical Layer PHY access interfaces
\ J \ J

GMAC Stack File Organization
Table 4-1 presents the modules of GMAC Stack on the SAM4E-EK.

Table 4-1. GMAC Stack on SAM4E-EK.

Stack Layer

GMAC stack sam\drivers\gmac\gmac.c GMAC stack interfaces

sam\drivers\gmac\gmac.h GMAC stack definitions, function
prototypes

PHY component | sam\components\ethernet phy\ksz8051mnl\ethernet_phy.c = PHY interfaces implementation

sam\components\ethernet_phy\ksz8051mnl\ethernet_phy.h | PHY interface function prototypes

GMAC Stack Data Structures

This section gives a brief introduction to the data structures used in the GMAC stack.

gmac_rx_descriptor
The gmac_rx_descriptor used for receiving data is defined in the gmac.h file:

typedef struct gmac_rx_descriptor {
union gmac_rx_addr {
uint32_t val;
struct gmac_rx_addr_bm {
uint32_t b_ownership:1,

b_wrap:1,

. . - 9
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

addr_dw:30;
} bm;
} addr;
union gmac_rx_status {
uint32_t val;
struct gmac_rx_status_bm {
uint32_t len:13,
b_fes:1,
b_sof:1,
b_eof:1,
b_cfi:1,
vlan_priority:3,
b_priority detected:1,
b_vlan_detected:1,
b_type_id_match:2,
b_checksumoffload.:1,
b_addrmatch:2,
b_ext_addr_match:1,
reserved:1,
b_uni_hash_match:1,
b_multi_hash_match:1,
b_boardcast_detect:1;
} bm;
} status;
} gmac_rx_descriptor_t;
Structure items:

e b _ownership: Ownership - needs to be zero for the GMAC to write data to the receive buffer. The GMAC sets
this to 1 once it has successfully written a frame to memory. Software has to clear this bit before the buffer
can be used again

e b _warp: Wrap - marks last descriptor in receive buffer descriptor list
e addr_dw: Address of beginning of buffer

e |en: These bits represent the length of the received frame which may or may not include FCS depending on
whether FCS discard mode is enabled or not

e b fcs: This bit has a different meaning depending on whether jumbo frames and ignore FCS modes are
enabled or not

e b _sof: Start of frame - when set, the buffer contains the start of a frame. If both bits 15 and 14 are set, the
buffer contains a whole frame

e b _eof: End of frame - when set, the buffer contains the end of a frame. If end of frame is not set, the only valid
status bit is start of frame (bit 14)

e b_cfi: Canonical Format Indicator (CFl) bit (only valid if bit 21 is set)

. - 10
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

e vlan_priority: VLAN priority - only valid if bit 21 is set

b_priority_detected: Priority tag detected - type ID of 0x8100 and null VLAN identifier. For packets
incorporating the stacked VLAN processing feature, this bit will be set if the second VLAN tag has a type ID of
0x8100 and a null VLAN identifier

b_vlan_detected: VLAN tag detected - type ID of 0x8100. For packets incorporating the stacked VLAN
processing feature, this bit will be set if the second VLAN tag has a type ID of 0x8100

b_type_id_match: This bit has a different meaning depending on whether RX checksum offloading is enabled
or not

b_checksumoffload: This bit has a different meaning depending on whether RX checksum offloading is
enabled or not. More information could be referred in the datasheet

b_addrmatch: Specific Address Register match

b_ext_addr_match: Specific Address Register match found, bit 25 and bit 26 indicate which Specific Address
Register causes the match

b_uni_hash_match: Unicast hash match

b_multi_hash_match: Multicast hash match

b_boardcast_detect: Global all ones broadcast address detected

4.2.2 gmac_tx_descriptor

The gmac_tx_descriptor used for transmitting data is defined in the gmac.h file:
typedef struct gmac_tx_descriptor {
uint32_t addr;
union gmac_tx_status {
uint32_t val;
struct gmac_tx_status_bm {
uint32_t len:14,
reserved:1,
b_last_buffer:1,
b_no_crc:1,
reserved1:3,
b_checksumoffload.:3,
reserved2:3,
b_lco:1,
b_exhausted:1,
b_underrun:1,
b_error:1,
b_wrap:1,
b_used:1;
} bm;
} status;

} gmac_tx_descriptor_t;

i : - 11
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

Structure items:

Len: Length of buffer

b_last_buffer: Last buffer, when set this bit will indicate that the last buffer in the current frame has been
reached

e b no_crc: No CRC to be appended by MAC
b_checksumoffload: Transmit IP/TCP/UDP checksum generation offload errors
b_lIco: Late collision, transmit error detected

b_exhausted: Transmit frame corruption due to AHB error

b_underrun: Transmit underrun

b_error: Retry limit exceeded, transmit error detected

b_wrap: Wrap - marks last descriptor in transmit buffer descriptor list

b_used: Used - must be zero for the GMAC to read data to the transmit buffer
addr: Byte address of buffer

4.2.3 gmac_options
The gmac_options used for GMAC stack configuration is defined in the gmac.h file:
typedef struct gmac_options {
uint8_t uc_copy_all_frame;
uint8_t uc_no_boardcast;
uint8_t uc_mac_addr[GMAC_ADDR_LENGTH];
} gmac_options_t;
Structure items:
e uc_copy_all_frame: Enable/disable CopyAllFrame
e uc_no_boardcast: Enable/disable NoBroadCast

e uc_mac_addr: MAC address

424 gmac_device
The gmac_device used a generic GMAC stack device is defined in the gmac.h file:
typedef struct gmac_device {
Gmac *p_hw;
uint8_t *p_tx_buffer;
uint8_t *p_rx_buffer;
gmac_rx_descriptor_t *p_rx_dscr;
gmac_tx_descriptor t *p_tx_dscr;
gmac_dev_tx_cb_t func_rx_cb;
gmac_dev_wakeup_cb_t func_wakeup_cb;
gmac_dev_tx_cb_t *func_tx_cb_list;
uint16_t us_rx_list_size;
uint16_t us_rx_idx;
uint16_t us_tx_list_size;
uint16_t us_tx_head;

uint16_t us_tx_tail;

i : - 12
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

uint8_t uc_wakeup_threshold;
} gmac_device_t;
Structure items:
e p_hw: Pointer to HW register base
e p_ tx_buffer: Pointer to allocated TX buffer
e p_rx_buffer: Pointer to allocated RX buffer
e p_rx_dscr: Pointer to Rx TDs (must be 8-byte aligned)
e p_tx dscr: Pointer to Tx TDs (must be 8-byte aligned)
e func_rx_cb: Optional callback to be invoked once a frame has been received
e func_wakeup_cb: Optional callback to be invoked once several TDs have been released
e func_tx_cb_list: Optional callback list to be invoked once TD has been processed
e us_rx_list_size: RX TD list size
e us_rx_idx: RX index for current processing TD
e us_tx_list_size: TX TD list size
e us_tx_head: Circular buffer head pointer by upper layer (buffer to be sent)
e us_tx_tail: Circular buffer tail pointer incremented by handlers (buffer sent)

e uc_wakeup_threshold: Number of free TD before wakeup callback is invoked

4.3 PHY Access Interfaces
There are two interfaces provided in the GMAC stack to access the PHY components, which are listed in Table 4-2.
Table 4-2. GMAC PHY Access Interfaces.
gmac_phy_read Read the PHY register
gmac_phy_write Write the value to the PHY register
4.4 Ethernet Application Interfaces
Table 4-3 lists the functions of the Ethernet application interfaces. Through these application interfaces the user can use
the GMAC features without implementing the detail of the GMAC stack.
Table 4-3. Ethernet Application Interfaces.
gmac_dev_init Initialize the GMAC driver
gmac_dev_read Frames can be read from the GMAC in multiple sections
gmac_dev_write Send bytes from TX buffers
gmac_dev_get tx_load Get current load of transmit
gmac_dev_set_rx_callback Register/Clear RX callback. Callback will be invoked after the next received frame
gmac_dev_set_tx_wakeup_callback | Register/Clear TX wakeup callback
gmac_dev_reset Reset TX & RX queue & statistics
gmac_handler GMAC interrupt handler
] Atmel AT02971: Use of Ethernet on SAM4E-EK 13
A t m e L 42134A-SAM4-05/2013

5. PHY Implementation
The PHY component of KSZ8051MNL is used in the SAM4E-EK. This chapter gives a brief introduction to the KSZ8051
implementations.
5.1 KSZ8051MNL Introduction
There is a standard PHY access interfaces defined in the ASF, Table 5-1 lists these interfaces.
Table 5-1. Ethernet Application Interfaces.
ethernet_phy_init Perform a HW initialization to the PHY and set up clocks
ethernet_phy_set_link Get the Link & speed settings, and automatically set up the GMAC with the settings
ethernet_phy_auto_negotiate Issue an auto negotiation of the PHY
ethernet_phy_reset Issue a SW reset to reset all registers of the PHY
For SAM4E-EK the PHY component interfaces are implemented in the file:
sam\components\ethernet_phy\ksz8051mnl\ethernet_phy.c.
5.2 Initializing KSZ8051MNL
Based on the GMAC stack on SAM4E, the procedures to initialize the KSZ8051 is simplified to three steps:
e Initialize the PHY
e Enabling PHY auto-negotiation mode or manually selecting the mode of operation (Full-speed/Low-speed,
Half-duplex/Full-duplex)
e |If PHY auto-negotiation mode is selected, the application needs to poll the PHY or use a PHY interrupt in order
to obtain the result of auto-negotiation (speed, duplex mode)
Figure 5-1. KSZ8051MNL Initializing Procedures.
GMAC init (1/0,
clock...)
v
ethernet_phy_init
v
ethernet_phy_auto_
negotiate
ethernet_phy_set_link
GMAC
unction
Three interfaces should be called to initialize the KSZ8051MNL component:
e ethernet_phy_init() is used to initialize the PHY, including setting the clock and the address
e ethernet_phy_auto_negotiate() is used to do the auto negotiation and get link parameters
e ethernet_phy_set_link() to set the link parameters
Atmel AT02971: f Eth t AM4E-EK 14
AtmeL mel AT02971: Use o erneton S

42134A-SAM4-05/2013

6. GMAC Demo on SAM4E-EK

The GMAC demo includes two applications for the usage of GMAC and IwIP stack on SAMA4E, i.e., the web server
example and TFTP example. Figure 6-1 shows the GMAC demo diagram.

Figure 6-1. GMAC Demo Overview.

demg
WEB TFTP
server server
example example

7. Application Layer

\,
>

6. Presentation Layer

A

'

5. Session Layer

A

Y

4. Transport Layer

A

a'd

3. Network Layer

A

'l

2. Data link Layer

A

'

1. Physical Layer

A

T |
\[HTTP][TFTP]/
service service

|wlIP TCP/IP stack

|
[GMAC stack

[PHY componentdriver

OSl Layers

thernet

tworki

SAMA4E
Implementation

6.1 GMAC Demo File Organization

The GMAC demo code is located in the folder: thirdparty/freertos/demo/lwip_sam_example. Table 6-1 lists the files

used in the GMAC demo.

Table 6-1. GMAC Demo Used Files.

main.c

Iwipopts.h
FreeRTOSConfig.h
Network/ethernet.c
Network/ethernet.h

Partest/PartTest.c

Main routine of the example

LwlIP configurations

FreeRTOS configurations

Ethernet management

Header files for Ethernet management

LED management

The web server and TFTP server code are located in the thirdparty/freertos/demo/lwip_avr32_uc3_example/network

folder.

Atmel

Atmel AT02971: Use of Ethernet on SAM4E-EK 15

42134A-SAM4-05/2013

Description

Basictftp/BasicTFTP.c TFTP server implementation
Basictftp/BasicTFTP.h TFTP server application interfaces
Basicweb/BasicWEB.c Web server implementation
Basicweb/BasicWEB.h Web server application interfaces
6.2 GMAC Demo Requirements
A router which provides the IP address is required to connect the SAM4E-EK and the computer. Figure 6-2 shows the
hardware diagram of this example.
Figure 6-2. GMAC Demo Diagram.
(\ Router
Ethernet
SAMAE-EK connector
| DBGU
\ j 4 Ethernet
Uart connector
Console
Computer
N
For the TFTP usage, a TFTP client should be installed on the computer.
6.3 LwlIP Porting on SAM4E
Two parts are involved in the porting of IwIP on SAM4E, the IwlP low level drivers and IwIP configuration.
6.3.1 Initializing LwIP
The ethernet_if.c file in the thirdparty/lwip/lwip-port-1.4.0/sam/netif folder is used to link the IwIP stack to the GMAC
Ethernet network interface. Table 6-2 lists the interfaces used for this link.
Table 6-2. LwIP TCP/IP Stack Low Level Drivers.
low_level_init Calls the Ethernet driver functions to initialize the GMAC Ethernet peripheral
low_level_output Calls the Ethernet driver functions to send an Ethernet packet
low_level_input Should allocate a buffer and transfer the bytes of the incoming packet from the
B B interface into the buffer
ethernetif _init Calls low_level_init() to set up the network interface
ethernet_input Calls low_level_input to receive a packet and provide it to the IwlP stack
In the case of the RTOS implementation, an additional file is required; sys_arch.c. This file implements an emulation
layer for the RTOS services. The implementation can be found in thirdparty/Iwip/Ilwip-port-1.4.0/sam/sys_arch.c.
] Atmel AT02971: Use of Ethernet on SAM4E-EK 16
A t m e l- 42134A-SAM4-05/2013

6.3.2 Configuring LwIP

The Iwipopt.h file in the thirdparty/freertos/demo/lwip_sam_example folder is used to configure the IwIP TCP/IP
stack. Table 6-3 lists the major configuration items.

Table 6-3. LwlIP Configurations.

LWIP DHCP Enable/disable DHCP
MEM:SIZE LwIP heap memory size: used for all lwIP dynamic memory allocations
MEMP_NUM_PBUF Total number of MEM_REF and MEM_ROM pbufs
MEMP_NUM_TCP_PCB Total number of TCP PCB structures
MEMP_NUM_TCP_PCB_LISTEN | Total number of listening TCP PCBs
MEMP_NUM_TCP_SEG The maximum number of simultaneously queued TCP segments
PBUF_POOL_SIZE The total number of pbufs of type PBUF_POOL
PBUF_POOL_BUFSIZE Size of a pbuf of type PBUF_POOL
TCP_MSS TCP maximum segment size
TCP_SND_BUF TCP send buffer space for a connection
TCP_SND_QUEUELEN Maximum number of pbufs in the TCP send queue
TCP_WND Advertised TCP receive window size
6.4 FreeRTOS Introduction
As mentioned in the netconn API, an Operation System (OS) is required to provide the thread services. The FreeRTOS
is used in the GMAC demo.
FreeRTOS is a scaleable realtime kernel designed for embedded systems, with small memory cost and full function of
thread support. For more information about FreeRTOS, see www.freertos.org.
In the GMAC demo the TCP/IP task is created by IwlP stack. It's an internal task and all the TCP/IP stack functions are
processed through this task.
Two application tasks are created for the Ethernet usage: web server and TFTP tasks. The implementations of these
two tasks will be discussed in the next sections.
/* Create the WEB server task. This uses the IwIP RTOS abstraction layer. */
sys_thread_new("WEB?", vBasicWEBServer, (void *)NULL,
IwipBASIC_WEB_SERVER _STACK_SIZE,
IwipBASIC_WEB_SERVER_PRIORITY);
/* Create the TFTP server task. This uses the IwIP RTOS abstraction layer. */
sys_thread_new("TFTP", vBasicTFTPServer, (void *)NULL,
IwipBASIC_TFTP_SERVER_STACK_SIZE,
IwipBASIC_TFTP_SERVER_PRIORITY);
AtmeL Atmel AT02971: Use of Ethernet (:Zr:ﬁléllﬂhﬂii-lgﬁ 17

http://www.freertos.org/�

6.5 Web Server Implementation
The following code is the main routine for the web server example.

{

struct netconn *pxHTTPListener, *pxNewConnection;

/* Create a new tcp connection handle */
pxHTTPListener = netconn_new(NETCONN_TCP);
netconn_bind(pxHTTPListener, NULL, webHTTP_PORT);

netconn_listen(pxHTTPListener);

/* Loop forever */
for(;;)
{
while(netconn_accept(pxHTTPListener, &pxNewConnection) I= ERR_OK)
{
vTaskDelay(webSHORT_DELAY);

}
vParTestSetLED(webCONN_LED, pdTRUE);

if(pxNewConnection I= NULL)

{
prvweb_ParseHTMLRequest(pxNewConnection);

}/* end if new connection */
vParTestSetLED(webCONN_LED, pdFALSE);

} /* end infinite loop */
}

Example description:
e Function netconn_new(NETCONN_TCP) is called to create a new networking connection. Hypertext transfer
protocol (HTTP) protocol is based on TCP, so TCP protocol, defined as NETCONN_TCP, is used

e Bind the net connection to the IP address and port. It is used for web server purpose, the address is left empty
and the port number should be 80.

netconn_bind(pxHTTPListener, NULL, webHTTP_PORT))
e Listen for the web client request

netconn_listen(pxHTTPListener)

Then the web server is initialized to waiting for web client request.
e netconn_accept() to accept a connection

e prvweb_ParseHTMLRequest() is used to handle the http request

1 . - 18
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

6.6 TFTP Server Implementation
The following code is the main routine for the TFTP server example.
{
// Create socket
ISocket = socket(AF_INET, SOCK_DGRAM, 0);
if (ISocket < 0) {
return;
}
memset((char *)&sLocalAddr, 0, sizeof(sLocalAddr));
sLocalAddr.sin_family = AF_INET;
sLocalAddr.sin_len = sizeof(sLocalAddr);
sLocalAddr.sin_addr.s_addr = htonl(INADDR_ANY);
sLocalAddr.sin_port = htons(TFTP_PORT);

if (bind(ISocket, (struct sockaddr *)&sLocalAddr, sizeof(sLocalAddr)) < 0) {
// Problem setting up my end
close(ISocket);
return;
}
IRecvLen = sizeof(cData);
IFromLen = sizeof(sFromAddr);
IDatalen = recvfrom(ISocket, sHdr, IRecvLen, O,
(struct sockaddr *)&sFromAddr, &IFromLen);
vParTestSetLED(TFTP_LED , pdTRUE);

close(ISocket); // so that other servers can bind to the TFTP socket

switch (ntohs(sHdr->th_opcode)) {

case WRQ:
tftpd_write_file(sHdr, &sFromAddr, IFromLen);
vParTestSetLED(TFTP_LED , pdFALSE);
break;

case RRQ:
tftpd_read_file(sHdr, &sFromAddr, IFromLen);
vParTestSetLED(TFTP_LED , pdFALSE);
break;

case ACK:

case DATA:

. - 19
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

case ERROR:
vParTestSetLED(TFTP_LED , pdFALSE);
// Ignore
break;

}

Example description:

e Function socket (AF_INET, SOCK_DGRAM, 0) is called to create a new socket. The socket is using the type
SOCK_DGRAM and protocol AF_INET. In the Internet domain, the SOCK_DGRAM socket type is
implemented on the User Datagram Protocol/Internet Protocol (UDP/IP) protocol. AF_INET means the socket
is IP address and port number.

e Set the IP address properties by the code:
memset((char *)&sLocalAddr, 0, sizeof(sLocalAddr));
sLocalAddr.sin_family = AF_INET;
sLocalAddr.sin_len = sizeof(sLocalAddr);
sLocalAddr.sin_addr.s_addr = htonl(INADDR_ANY);
sLocalAddr.sin_port = htons(TFTP_PORT);

e Bind the socket to the IP address and port:
bind(ISocket, (struct sockaddr *)&sLocalAddr, sizeof(sLocalAddr))

e Get the TFTP request from remote:
recvfrom(ISocket, sHdr, IRecvLen, 0, (struct sockaddr *)&sFromAddr, & FromLen);

e Close the socket so that other servers can bind to the TFTP socket:
close(ISocket);

e Handle TFTP requests according to the opcode: switch (ntohs(sHdr->th_opcode))
e Call tftpd_write_file(sHdr, &sFromAddr, IFromLen) to handle write in case of write request
e Call tftpd_read_file(sHdr, &FromAddr, IFromLen) to handle read in case of read request

6.7 Getting Started Using GMAC Demo

6.7.1 GMAC Demo Kit
The kit used for GMAC demo is the SAM4E-EK. The SAM4E-EK is an evaluation kit featuring the SAM4E16 device
BGA144 package with optional socket footprint, on board 12MHz and 32.768kHz crystal, a 2.8” TFT color LCD display
with touch panel and backlight, one Ethernet physical transceiver layer with RJ45 connector, CAN port with driver,
mono/stereo headphone jack output, QTouch® interfaces, full speed USB device port, Serial Flash memory, NAND
Flash memory, SD/MMC interface, LEDs, push buttons, BNC connector for ADC input and DAC output, JTAG/ICE port,
UART port with RS232 driver, USART port with RS232 driver multiplexed with RS485 function with driver. For more
information about SAM4E-EK, see www.atmel.com/tools/SAM4E-EK.asfpx.

6.7.2 Tools for GMAC Demo Software
The GMAC demo is developed based on the Atmel Studio 6. The following tools are required for the startup of the
GMAC demo:
e Atmel Studio 6.1 (or above) installed
e Segger J-Link (the latest version) installed

A SAM-ICE™ is required for programming and debugging purpose. If programming the GMAC demo only, the Atmel
SAM-BA® software can be used instead of the SAM-ICE. For more information about SAM-BA usage,
see www.atmel.com/tools/ATMELSAM-BAIN-SYSTEMPROGRAMMER.aspx.

) - 20
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

http://www.atmel.com/tools/SAM4E-EK.asfpx�
http://www.atmel.com/atmelstudio�
http://www.atmel.com/tools/atmelsam-ice.aspx?tab=overview�

6.7.3 GMAC Demo Board Connections

The GMAC demo uses DHCP by default, so it is required to connect the SAM4E-EK to the debug console. Figure 6-3
shows the typical connection of SAM4E-EK.

e Build and program the demo code into the SAM4E flash memory
e Be sure the debug port of SAM4E-EK has been connected to the computer

Figure 6-3. SAM4E-EK Board Connections.

AP AT R SRR RSN

PPPPPEEEE P PR AR
fIffaraverneyL Y

6.7.4 Load GMAC Demo

e Download the zipped file of GMAC demo code at the same web page of this application note

e Unzip the file and double click the GMAC_Demo.cproj. Then the Atmel Studio will open the demo
Build the project: Build — Build Solution

e Load the code in SAM4E and start debugging: Debug — Start Debugging and Break

Now the GMAC demo has been programmed and the debugger stops at the beginning of main(). To execute it, click on
Debug — Continue.

6.7.5 GMAC Demo Execution

e Get the IP address assigned by DHCP. If failed, the address will not appear in the console. Figure 6-4 shows
the sample screen of DHCP assignment, 192.168.0.100 is assigned to the board for example.

Figure 6-4. DHCP Address Assignment.

. . - 21
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

e Open a web client, such as Internet Explorer, and type the board’s IP address in the web browser; the
statistics of the board will be shown in the browser, as shown in Figure 6-5

Figure 6-5. SAM4E-EK Statics in the Web Browser.

e Open the TFTP client and type the TFTP commands to exchange. Figure 6-6 shows a sample file transfer of
the TFTP server

Figure 6-6. TFTP File Transfer Example.
AAWINDOWS\system 32\CMD. ex

Cowrtftp 18.217.2.143 PUT test.txt
Tranzfer successful: 186 bytes in 1 second,. 186 hytesss

Cowrtftp 18.217.2.143 GET test.txt
Tranzfer successful: 218 bhytes in 1 second,. 218 hytes-s

RN

. - 22
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

7. Revision History

Doc. Rev. Date Comments
42134A 05/2013 Initial document release

)) - 23
AtmeL Atmel AT02971: Use of Ethernet on SAM4E-EK

42134A-SAM4-05/2013

AtmeL Enabling Unlimited Possibilities®

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K.

1600 Technology Drive Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Building
San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku
USA 418 Kwun Tong Road D-85748 Garching b. Munich Tokyo 141-0032

Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81)(3) 6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81)(3) 6417-0370

Fax: (+852) 2722-1369

© 2013 Atmel Corporation. All rights reserved. / Rev.: 42134A-SAM4-05/2013

Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, QTouch®, SAM-BA®, and others are registered trademarks or trademarks
of Atmel Corporation or its subsidiaries. ARM®, Cortex™ and others are registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Introduction
	1.1 SAM4E Device Overview
	1.2 GMAC on SAM4E

	2. Ethernet Networking Layers
	2.1 OSI Model
	2.2 Layer 1: Physical Layer
	2.3 Layer 2: Data Link Layer
	2.4 Layer 3: Network Layer
	2.5 Layer 4: Transport Layer
	2.6 Layer 7: Application Layer

	3. LwIP Stack Overview
	3.1 Protocols
	3.2 Application API Layers
	3.2.1 Netconn API
	3.2.2 Socket API

	4. GMAC Stack Implementation on SAM4E
	4.1 GMAC Stack File Organization
	4.2 GMAC Stack Data Structures
	4.2.1 gmac_rx_descriptor
	4.2.2 gmac_tx_descriptor
	4.2.3 gmac_options
	4.2.4 gmac_device

	4.3 PHY Access Interfaces
	4.4 Ethernet Application Interfaces

	5. PHY Implementation
	5.1 KSZ8051MNL Introduction
	5.2 Initializing KSZ8051MNL

	6. GMAC Demo on SAM4E-EK
	6.1 GMAC Demo File Organization
	6.2 GMAC Demo Requirements
	6.3 LwIP Porting on SAM4E
	6.3.1 Initializing LwIP
	6.3.2 Configuring LwIP

	6.4 FreeRTOS Introduction
	6.5 Web Server Implementation
	6.6 TFTP Server Implementation
	6.7 Getting Started Using GMAC Demo
	6.7.1 GMAC Demo Kit
	6.7.2 Tools for GMAC Demo Software
	6.7.3 GMAC Demo Board Connections
	6.7.4 Load GMAC Demo
	6.7.5 GMAC Demo Execution

	7. Revision History

