

Oscillator Module Technical Brief

Author: Christopher Best

Microchip Technology Inc.

INTRODUCTION

The PIC16(L)F183XX device family contains an oscillator module that has a wide variety of clock sources and selection features that allow it to be used in a wide variety of applications while maximizing performance and minimizing power consumption.

External clock sources are supplied from external oscillators, or from quartz crystal or ceramic resonators.

Internal clock sources are supplied from one of two internal oscillator circuits – the High-Frequency Internal Oscillator (HFINTOSC), or the Low-Frequency Internal Oscillator (LFINTOSC).

The following registers are used to configure the system oscillator:

- Configuration Word 1
- Oscillator Control Register 1 (OSCCON1)
- Oscillator Control Register 2 (OSCCON2)
- Oscillator Control Register 3 (OSCCON3)
- Oscillator Status Register (OSCSTAT1)
- HFINTOSC Frequency Selection Register (OSCFRQ)
- HFINTOSC Tuning Register (OSCTUNE)

REGISTERS

Configuration Word 1

Configuration Word exclusively handles the oscillator configuration.

The FCMEN bit enables or disables the Fail-Safe Clock Monitor (FSCM). The FSCM is designed to detect a failure of the external clock source and automatically switch to an internal clock source to prevent the failure of code execution.

The CLKOUTEN bit enables or disables the output of a scaled system clock (Fosc/4).

The Reset Oscillator bits (RSTOSC<2:0>) allow the user software to begin operation from either an internal or external clock source upon power-up or Reset. There are several oscillator options to choose from:

- External Oscillator
- · External Oscillator with 4x PLL
- · Secondary Oscillator
- · Low-Frequency Internal Oscillator
- High-Frequency Internal Oscillator
- · High-Frequency Internal Oscillator with 2x PLL

The FEXTOSC<2:0> bits set the External Oscillator mode based on the type of external clock source that is used – either an external clock or crystal oscillator – upon power-up or Reset. When an external clock source is selected, the FEXTOSC<2:0> bits must be configured to match the type of external source that is used. There are several external oscillator options to choose from:

- EC (External Clock) high (above 8 MHz)
- EC medium (0.5 8 MHz)
- EC low (below 0.5 MHz)
- HS (crystal oscillator) (above 8 MHz)
- XT (crystal oscillator) (0.5 8 MHz)
- LP (crystal oscillator) (below 0.5 MHz)

The Clock Switch Enable (CSWEN) bit is used to either allow or prevent a clock switch from occurring once the user software begins to execute, except in the case of an external clock source failing and the Fail-Safe Clock Monitor switches to the internal clock. When the CSWEN bit is set, clock switching is allowed and can be done any time after the user code begins execution. When CSWEN is clear, clock switching is prevented, and the oscillator selected by the RSTOSC<2:0> bits will remain the active oscillator.

Oscillator Control Registers 1 and 2 (OSCCON1, OSCCON2)

The OSCCON1 register contains two important bit fields that can be read or written to:

- New Oscillator Source Request bits (NOSC<2:0>)
- New Divider Selection Request bits (NDIV<3:0>)

The NOSC bits can be written to if a new clock source is desired, as long as the CSWEN bit is set, allowing clock switching to take place. The NDIV bits can be written to in order to divide the selected clock source.

The OSCCON2 register also contains two very similar bit fields; however, these are read-only bit fields:

- Current Oscillator Source Select bits (COSC<2:0>)
- Current Divider Select bits (CDIV<3:0>)

The COSC bits can be read at any time to determine the current oscillator selection, and the CDIV bits can be read at any time to determine the current clock divider.

Upon power-up or Reset, the value written into the RSTOSC<2:0> bits of Configuration Word 1 are automatically written into both the NOSC and COSC bit fields. The value of '0100' is automatically written into the NDIV and CDIV bit fields, with the exception of when the 32 MHz HFINTOSC source is selected. In that case, the value of '0000' is written into NDIV and CDIV.

Oscillator Control Register 3 (OSCCON3)

The Clock Switch Hold (CSWHOLD) bit can be used to control when a clock switch takes place.

The New Oscillator is Ready (NOSCR) bit indicates when the new clock source is stable and ready.

The Oscillator Ready (ORDY) bit indicates that the clock source is ready.

Oscillator Status Register 1 (OSCSTAT1)

The OSCSTAT1 register contains the read-only oscillator Status bits, indicating when the selected clock source is ready. When a clock source is selected, its Status bit will remain clear until the source is ready. The oscillator Status bits include the following:

- · External oscillator
- HFINTOSC
- LFINTOSC
- · Secondary Oscillator
- PLL

HFINTOSC Frequency Selection Register (OSCFRQ)

The OSCFRQ register contains the HFFRQ<3:0> bit field which defines the HFINTOSC frequency.

Upon power-up or Reset, the HFFRQ<3:0> bits are loaded automatically with the value of '0110', which sets the base HFINTOSC clock at 16 MHz.

When the HFINTOSC at 1 MHz clock source is selected by writing '110' into the RSTOSC bits, the value '0110' is loaded into the HFFRQ bit field, and the NDIV and CDIV bit fields are loaded with the value '0100', or divide by 16 (see Figure 1).

When the HFINTOSC with PLL clock source is selected by writing '000' into the RSTOSC bits, the same '0110' value is written into the HFFRQ bits; however, the value of '0000', or no divider, is written into the NDIV and CDIV bit fields. The 16 MHz clock signal is then routed through an internal 2x PLL to generate the 32 MHz system clock (see Figure 2).

It is important to consider both the HFFRQ and NDIV bits when changing Fosc frequencies. For example, if the RSTOSC bits were configured for the 1 MHz HFINTOSC, writing to the HFFRQ bits will change the frequency; however, the NDIV bits will remain at a divide by 16 unless a new divider is written (see Figure 3).

HFINTOSC Tuning Register (OSCTUNE)

The OSCTUNE register allows fine tuning of the HFINTOSC source. Fine tuning of the HFINTOSC source can be useful when compensating for oscillator drift over temperature.

CLOCK SOURCE TYPE

Clock sources can be classified as either external or internal. External clock sources rely on external circuitry for the clock source to function. Internal clock sources utilize built-in oscillator blocks.

External Sources

Writing the appropriate bit code into the RSTOSC<2:0> bits of Configuration Word 1 will select one of the following external clock sources:

- · External Oscillator
- · External Oscillator with 4x PLL
- · Secondary Oscillator

EXTERNAL OSCILLATOR

When the External Oscillator is selected, the FEXTOSC<2:0> bits must be configured to match the type and speed of the external clock source, which is determined by the application hardware.

In External Clock (EC) mode, an externally generated logic level signal is used for Fosc. EC mode has three power modes to select from:

- ECH High-Power mode with a frequency range of 8-32 MHz
- ECM Medium Power mode with a frequency range of 100 kHz to 8 MHz
- ECL Low-Power mode with a frequency range below 100 kHz.

When a quartz crystal or ceramic resonator is used as the external clock source, there are also three power modes that can be selected from based on the type and frequency:

- LP mode selects the lowest gain setting of the internal inverter-amplifier circuit but is designed to drive only a 32.768 kHz tuning-fork type crystal (watch crystal).
- XT mode selects the medium gain setting of the internal inverter-amplifier circuit and is best suited to drive quartz crystal or ceramic resonators with a medium-drive level specification, with a frequency range of 100 kHz to 8 MHz.
- HS mode selects the highest gain setting of the internal inverter-amplifier circuit and is best suited for quartz crystal or ceramic resonators that require a high-drive setting, with a frequency range above 8 MHz.

EXTERNAL OSCILLATOR WITH 4X PLL

When the external oscillator with 4x PLL is selected (RSTOSC = 001), an internal 4x PLL circuit is used in combination with an external clock source to provide the Fosc.

It should be noted that when using the 4x PLL, the clock source must be one that will not exceed the maximum allowable device frequency.

The FEXTOSC<2:0> bits must also be configured to match the type and speed of the external clock source.

SECONDARY OSCILLATOR

When the secondary oscillator is selected (RSTOSC = 011), an external 32.768 kHz quartz crystal resonator or externally generated logic level signal is used as the clock source. The secondary oscillator can be used either as the main Fosc or as a secondary source.

Internal Sources

HFINTOSC

When the RSTOSC<2:0> bits are configured so that the High-Frequency Internal Oscillator (HFINTOSC) is selected as the clock source upon power-up or Reset, an internal base clock of 16 MHz is established.

There are two selections for the HFINTOSC:

- HFINTOSC at 1 MHz (no PLL)
- HFINTOSC at 32 MHz (using 2x PLL)

When the HFINTOSC without the 2x PLL is selected, the value of '110' is automatically written into the NOSC and COSC bit fields, and a value of '0100' is automatically written to both the NDIV and the CDIV bit fields. This configures the output of the oscillator circuit to be 1 MHz.

When the HFINTOSC with 2x PLL is selected, the value of '000' is automatically written into the NOSC and COSC bit fields, and the value of '0000' is written into both the NDIV and CDIV bit fields, indicating that no clock divider is needed. The 16 MHz base clock is then routed through the PLL to generate the 32 MHz system clock.

It is important to keep in mind that whenever the HFINTOSC is selected by writing the appropriate code into the RSTOSC bits, a base 16 MHz clock is generated. The base clock is then either divided down to get the 1 MHz system clock, or routed through the internal PLL system to multiply the base clock to the 32 MHz system clock.

LFINTOSC

When the RSTOSC<2:0> bits are configured so that the Low-Frequency Internal Oscillator (LFINTOSC) is selected, a factory calibrated 31 kHz internal clock source as the clock source upon power-up or Reset.

The LFINTOSC is the clock source for the power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

CLOCK SWITCHING

The system clock source can be switched between external and internal clock sources via software using the NOSC and NDIV bits of the OSCCON1 register.

When a new clock source is selected by writing to NOSC, the current oscillator will continue to operate until the new source is stable and ready. When the new source is ready, both the NOSCR bit and the Clock Switch Interrupt Flag (CSWIF) bit of the PIR3 register become set. If Clock Switch Interrupts are enabled, an interrupt will be generated at that time. The ORDY bit can also be polled to determine when the new oscillator is ready.

The current COSC and CDIV values are indicated in the OSCCON2 register up to the moment when the switch actually occurs, at which time OSCCON2 is updated and ORDY is set. NOSCR is cleared by hardware to indicate that the switch is complete.

If CSWHOLD is clear, the oscillator switch will occur as soon as the NOSCR bit is set. If the Clock Switch Interrupts are enabled, the interrupt will be serviced at the new clock setting.

If CSWHOLD is set, the clock switch is suspended, and the oscillator module will continue to operate with the current (old) clock. Once the NOSCR bit is set, the clock switch occurs when the user software clears the CSWHOLD bit. The switch can also be abandoned by leaving the CSWHOLD bit set and writing the value that is currently in COSC into NOSC.

Changing the clock divider without changing the clock source (for example, changing Fosc from 1 MHz to 2 MHz) is handled in the same manner as a clock source switch, with the exception of writing the new divider into NDIV. CSWHOLD must be clear for the switch to complete.

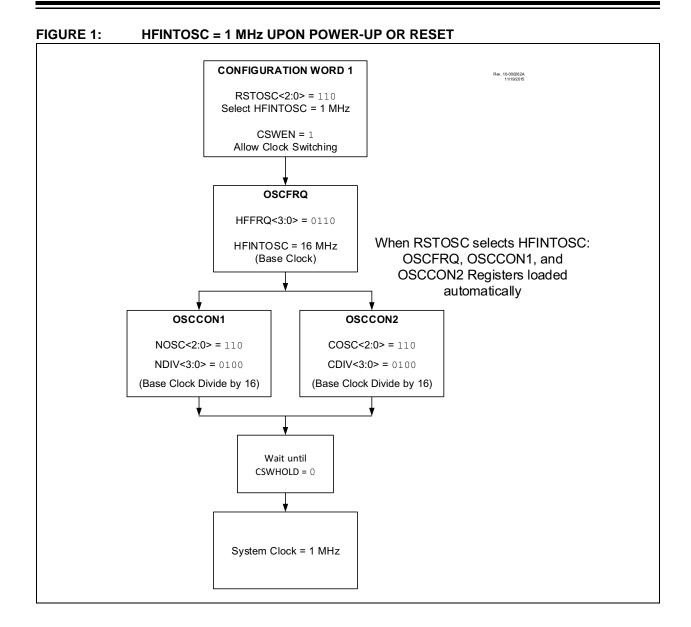
Switching between the PLL and any non-PLL source is managed as described above. The input to the PLL is established when value written into NOSC selects the PLL.

When NOSC and COSC select the PLL with different input sources, the system continues to run using the COSC setting, and the new source is enabled per NOSC. When the new oscillator is ready and CSWHOLD is clear, system operation is suspended while the PLL input is switched and the PLL acquires lock.

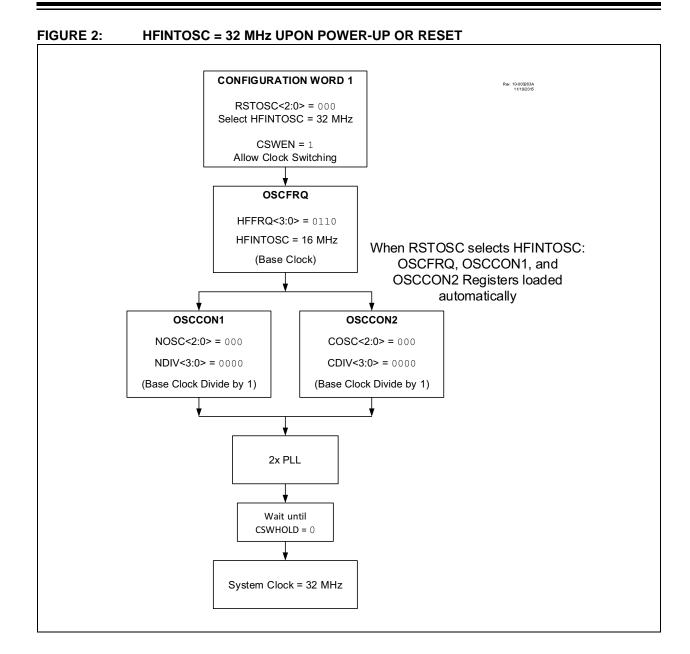
There is more than one way to change the Fosc frequency during code execution. The following two examples illustrate different methods to achieve a 4 MHz Fosc clock when the default oscillator is HFINTOSC:

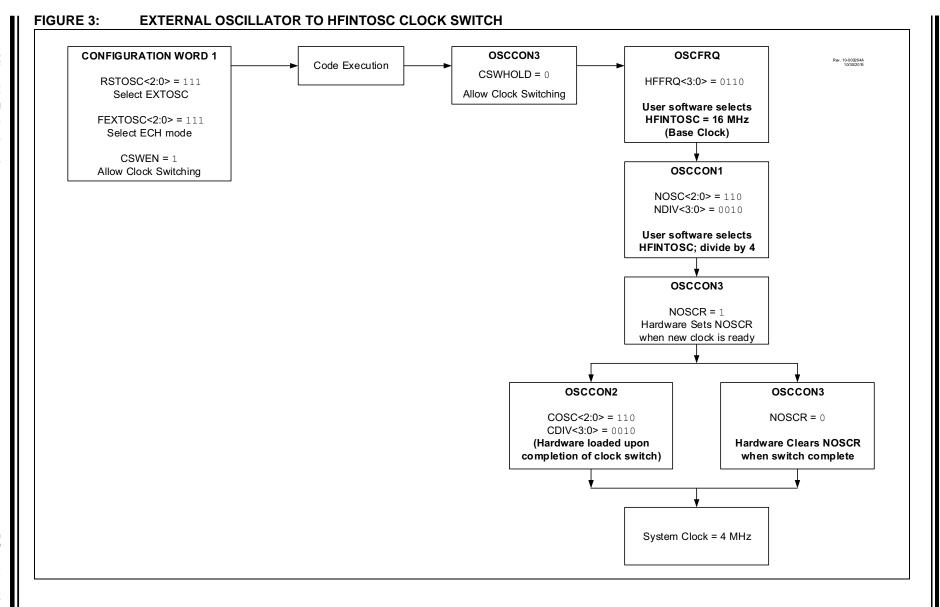
Method 1

- 1. Configure the RSTOSC bits so that the HFINTOSC at 1 MHz is selected as the clock source (RSTOSC<2:0> = 110).
- During code execution, write the value of '0011' into the HFFRQ<3:0> bits of the OSCFRQ register, which sets the HFINTOSC frequency to 4 MHz.
- 3. Write the value '0000' to the NDIV bits to select a divide by one clock divider.


Method 2

- Configure the RSTOSC bits so that the HFINTOSC at 1 MHz is selected as the clock source (RSTOSC<2:0> = 110).
- During code execution, write the value of '0010' to the NDIV bits to select a divide by four clock divider.


It is important to keep in mind that whenever the HFINTOSC is selected by writing the appropriate code into the RSTOSC bits, a base 16 MHz clock is generated. The base clock is then either divided down to get the 1 MHz system clock, or routed through the internal PLL system to multiply the base clock to the 32 MHz system clock.


When the HFINTOSC is selected during code execution, and was not the default oscillator selected by the RSTOSC bits, it will be necessary to write to two registers:

- Write the appropriate code into the HFFRQ<3:0> bit field of the OSCFRQ register to select the desired base frequency.
- Write either '110' or '000' to the NOSC<2:0> bit field of the OSCCON1 register to select one of the two HFINTOSC sources, and write the appropriate code into the NDIV<3:0> bit field of OSCCON1 to select the desired divider.

© 2016 Microchip Technology Inc.

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the "Company") is intended and supplied to you, the Company's customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

EXAMPLE 1: SIMPLE EXTOSC TO HFINTOSC CLOCK SWITCH CODE EXAMPLE

```
* File: main.c
* Author: Chris Best,
* MCU8 Applications, Microchip Technologies Inc
* Created on November 19, 2015, 12:06 PM
#include <xc.h>
// PIC16F18345 Configuration Bit Settings
// CONFIG1
#pragma config FEXTOSC = ECM
                                  // EC (external clock) for 100 kHz to 8 MHz
                                 // EXTOSC operating per FEXTOSC bits
#pragma config RSTOSC = EXT1X
#pragma config CLKOUTEN = ON
                                 // FOSC/4 clock appears at OSC2
#pragma config CSWEN = ON
                                 // Writing to NOSC and NDIV is allowed
                                 // Fail-Safe Clock Monitor is enabled
#pragma config FCMEN = ON
// CONFIG2
#pragma config MCLRE = ON
                                 // MCLR/VPP pin function is MCLR
#pragma config PWRTE = OFF
                                  // PWRT disabled
#pragma config WDTE = OFF
                                 // WDT disabled; SWDTEN is ignored
#pragma config LPBOREN = OFF
                                 // ULPBOR disabled
#pragma config BOREN = ON
                                 // Brown-out Reset enabled, SBOREN bit ignored
#pragma config BORV = LOW
                                 // Brown-out voltage (Vbor) set to 2.45V
                                 \ensuremath{//} The PPS can be set and cleared repeatedly
#pragma config PPS1WAY = OFF
                                 // Stack Overflow/Underflow will cause a Reset
#pragma config STVREN = ON
#pragma config DEBUG = ON
                                  // Background debugger enabled
// CONFIG3
#pragma config WRT = OFF
                                 // Write protection off
#pragma config LVP = ON
                                  // Low Voltage programming enabled
// CONFIG4
#pragma config CP = OFF
                                 // User NVM code protection disabled
#pragma config CPD = OFF
                                 // Data NVM code protection disabled
#define _XTAL_FREQ 4000000
                                 // For __delay_ms() routine
main()
    _delay_ms(5000);
                                 // delay 5s to see clock switch
   OSCFRQbits.HFFRQ = 0b0111;
                                 // set to 32 MHz
   OSCCON1 = 0b01100000;
                                 // set to HFINTOSC no divider
   while(!OSCCON3bits.NOSCR);
                                 // wait until new oscillator ready
   while(1);
                                  // do nothing
```

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0220-6

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511

Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Haba Manta

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw

Tel: 48-22-3325737

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham

Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15