

Atmel AVR1617: Frequency Measurement with
Atmel AVR XMEGA Family Devices

Features
• Atmel® AVR® XMEGA® family devices
• Modular C functions easily integrated into customer application code
• Effective use of two event channels, two 16-bit counters, and one interrupt
• Function calls are reuseable between most AVR XMEGA devices
• Includes software option to expand to 32-bit result
• Measure frequencies up to 16MHz using a 32MHz clkCPU

1 Introduction
Frequency measurement is a function commonly needed in today’s consumer and
industrial applications, and is easily implemented by using the XMEGA Event
System and counter/timers. A typical scenario is shown in Figure 1-1. A signal
whose frequency is to be measured is applied to an XMEGA input pin, which is
assigned to one channel of the XMEGA Event System. The event channel output is
routed to TCCB, a 16-bit timer/counter configured in a basic count-up mode.

A second 16-bit timer/counter, TCCA, is also configured as a simple count mode
timer, which allows a counting period of, typically, 125ms. This period is
configurable by a function call to adapt to a wide range on input frequencies.

As timer TCCA reaches its overflow (OVF), the 16-bit value in TCCB is latched into
a 16-bit input capture register.

Figure 1-1. Frequency counter block diagram.

8-bit Atmel
Microcontrollers

Application Note

Rev. 8383A-AVR-06/11

2 Atmel AVR1617
8383A-AVR-06/11

In order to provide higher resolution, the basic method is expandable to 32 bits of
counting range with the addition of a third event channel, a third timer/counter, TCCC,
and its input capture register, as shown in the upper portion of Figure 1-1.

A clkCPU of 32MHz is used in this application example because it permits an input
frequency as high as 16MHz to be measured. The xmega_freq_cntr.c driver can
accommodate other AVR device clock sources including a crystal oscillator.

2 Prerequisite
The frequency measurement demo discussed in this document requires basic
familiarity with following:

• C programming language for embedded systems
• Compiling C projects with WinAVR GCC compiler and Atmel AVR Studio® 4.18 or

Atmel AVR Studio 5 integrated design environment (IDE)
• Atmel STK®600 with XMEGA adapter socket and one of various XMEGA devices
• Atmel AVR JTAGICE mkII debugger, optional for debugging support
• General familiarity with frequency counters as used in industry or a lab

environment

3 Limitations
• The Atmel AVR XMEGA device operating with the recommended 32MHz internal

RC oscillator is limited to measuring clock frequencies up to 32MHz / 2, or 16MHz
• The software solution with this application note was tested with AVR Studio 4.18.

Newer or older versions of AVR Studio and the GCC Compiler may require some
modifications

• This technique does not use the XMEGA device feature of measuring frequency
by counting the time between input signal edges and then taking the reciprocal,
which would require floating point calculations. For more information, see Chapter
7, “Frequency capture option”.

http://www.atmel.com/dyn/products/tools_card.asp?category_id=163&family_id=607&subfamily_id=1723&tool_id=2725�
http://www.atmel.com/dyn/products/tools_card.asp?category_id=163&family_id=607&subfamily_id=1723&tool_id=2725�
http://www.atmel.com/dyn/products/tools_card.asp?category_id=163&family_id=607&subfamily_id=1723&tool_id=2725�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=17212�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4254�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4254�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4254�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3353�

 AVR1617

 3
8383A-AVR-06/11

4 XMEGA target device resource requirements
Table 4-1. Peripheral requirements.

Peripheral Pin(s) Configurable?

Two or three (1) 16-bit
timer/counters (TC) Not applicable

Yes, other XMEGA TCs may
be used

One I/O pin as input One of many I/O pins Yes

Three or four (1) event
channels None Yes

Note: 1. If a 32-bit result is desired, then an additional third timer/counter and fourth
event channel must be used.

Table 4-2. Memory requirements (1).
Memory Typical size Maximum size

Program memory 1016 bytes
1404 bytes with
EXPAND_TO_32_BITS = 1

Data memory 5 bytes
7 bytes with
EXPAND_TO_32_BITS = 1

Internal EEPROM memory None required

Note: 1. Exact memory requirements depend on a variety of factors, such as compiler
version, optimization levels, and addition or removal of configurable
functionality.

Table 4-1 describes the typical peripheral requirements for this implementation of a
frequency counter. The minimum timer/counter requirement is two.

Table 4-2 describes the memory requirements. These numbers are the result of no
compiler optimization. The program memory requirements would decrease if a
different compiler optimization was selected. Also if EXPAND_TO_32_BITS = 0 is
used, then the peripheral and code requirements will be less.

4 Atmel AVR1617
8383A-AVR-06/11

5 Frequency counter using the Event System: How it works

5.1 Incoming signal to be measured connects through Event System to timer clock
Figure 5-1. Atmel AVR XMEGA input circuit and synchronizer.

Figure 5-1 illustrates how synchronous inputs are handled by the AVR XMEGA
device. The process is as follows:

The signal to be measured is synchronized by the AVR XMEGA device pin input
circuit block before being submitted to the Event System. Then, two successive D flip-
flops essentially eliminate a meta-stable condition from being allowed into the event
detection system.

NOTE In this case, rising and falling edges of the input signal both cause counter TCCB to
increment.

The input signal is connected to the event channel with the following C statement

EVSYS.CH0MUX = EVSYS_CHMUX_PORTD_PIN0_gc;

In this specific example, Port D, Pin 0 is assigned to Channel 0 of the Event System.

The event channel is routed to the timer/counter with the following C statement:

TCC1.CTRLA = TC_CLKSEL_EVCH0_gc;

The instruction in xmega_freq_cntr.c is a slight variation of the instruction above to
allow different timer/counters to be used.

5.2 Timer TCCA used to generate the counting interval; that is, the gate interval time
Referring to Figure 5-2, below, an AVR XMEGA device core clock of 32MHz is
recommended for the best possible range of gate interval times.

Before each frequency measurement, counter TCCA is preloaded with a value such
that it counts up to an 0xFFFF overflow condition (OVF), and then triggers Event
Channel 1 and the TCCA interrupt, which is used by an interrupt service routine (ISR)
in the xmega_freq_cntr.c driver.

Figure 5-2. Counting interval generated by 16-bit timer/counter.

 AVR1617

 5
8383A-AVR-06/11

The divide-by-clk_sel divider is programmed by the function
xmega_tcca_clk_freq_sel(CLK_SEL), which is described in xmega_freq_cntr.h.
This function sets a register value inside TCCA using the specified divisor.

In addition, the TCCA preload value must be selected by the user in
xmega_freq_cntr.h as part of the xmega_freq_cntr.c driver initialization. In this
example, 125ms is used. This value may be changed if a different gate interval time is
desired.

5.3 Input capture used with TCCB

Figure 5-3. Diagram of TCCA and its input capture latch.

Figure 5-3 describes how the 16-bit input capture latch will clock the contents of
TCCB via a clock pulse from Event Channel 1 as a result of a TCCA OVF event. The
event channel is set up in the driver with the following instruction:

EVSYS.CH1MUX = EVSYS_CHMUX_TCC0_OVF_gc;

In the xmega_freq_cntr.c driver, TCC0 has been changed to TCCA so that the user
may choose a different timer, if desired:

EVSYS.CH1MUX = EVSYS_CHMUX_TCCA_OVF_gc;

Next, Event Channel 1 is routed to TCCB via the following C instruction:

TCCB.CTRLD = (TC1_EVACT_gm & TCB_EVACT0_bm) | (TCB_EVSEL_gm &
(TCB_EVSEL3_bm | TCB_EVSEL0_bm));

This instruction has been modified to allow flexibility in the choice of Timer/Counter B.
The #define for TCCB, located in xmega_freq_cntr.h, is as follows:

#define TCCB TCC

6 Atmel AVR1617
8383A-AVR-06/11

5.4 Expansion to 32-bit result, uses TCCC

Figure 5-4. Block diagram of 32-bit expansion by an additional 16-bit timer/counter.

If a 32-bit frequency counter result is desired, change the #define in
xmega_freq_cntr.h as follows:

#define result_32_bit 1

This statement will instruct the C compiler to use additional resources, as indicated in
Figure 5-4, which include Event Channel 2 and an additional 16-bit timer/counter,
noted above as TCCC.

 AVR1617

 7
8383A-AVR-06/11

6 How to build and run the software

6.1 Installing the Atmel AVR1617-freq_meas-xmega software package
From www.atmel.com, download the AVR1617.zip file. Unpack it into a working
directory. The following files are included in the zip file:

avr1617_xmega_freq_cntr.c The application demo code

xmega_freq_cntr-drvr.c The driver code

xmega_freq_cntr-drvr-drvr.h Contains #define device assignments

avr1617_xmega_freq_cntr.aps The AVR Studio project file

Open the avr1617_xmega_freq_cntr.aps file with Atmel AVR Studio 4, or import the
file into Atmel AVR Studio 5 and build the project after specifying the target Atmel
AVR XMEGA device in the Project Build options.

Download the project into the target AVR XMEGA device, run the program, and feed
a signal of known frequency into the specified input pin. In this example, the input pin
is Port D, bit 0: PORTD0

To observe the operation of the input capture registers, insert a breakpoint in
avr1617_freq_meas_xmega.c just before the comment

// result available here

and inspect the value of the variable result.

6.2 Functions
The following functions are described as prototypes in xmega_freq_cntr.h.

void xmega_freq_cntr_init(void);

This function initializes the timer/counters and the two (optionally three) event
channels. One interrupt vector related to TCCA is also defined here.

Input: none Output: none

void xmega_freq_cntr_start_meas(void);

This function initiates the measurement process by starting the TCCA gate timer,
which is set in this demo to 125ms. This gate time is easily changed using the
function xmega_tcca_clk_freq_sel(), described below.

Input: none Output: none

unsigned int xmega_freq_cntr_rtn_result(void);

This function returns the contents of the TCCB input capture register by using the 16-
bit SRAM unsigned integer ic_result, which is defined in xmega_freq_cntr.h . This
SRAM location is written to by the TCCA interrupt service routine just after TCCA
overflows (OVF).

If the results are too high for 16 bits and there is no 32-bit option enabled, the value
0xFFFF indicates a TCCB OVF. In this case, the gate interval should be shortened,
as indicated below.

Input: none Output: none

void xmega_freq_cntr_clr_result(void);

http://www.atmel.com/�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=17212�

8 Atmel AVR1617
8383A-AVR-06/11

After the driver returns the frequency to the application, it is necessary to clear the
results in the driver to set it up for the next frequency measurement. This is
accomplished by the application code, by calling this function.

Input: none Output: none

void xmega_tcca_clk_freq_sel(unsigned char CK_SEL);

This function sets the TCCA prescaler to divide clkCPU, as shown in Table 6-1. The
millisecond values are based on a clkCPU of 32MHz, although another frequency could
be used, such as an external oscillator.

Input: CK_SEL Output: none

Table 6-1. Maximum time interval based on TCCA prescaler.
CK_SEL CPU_clk_div_by If 32MHz osc, max interval time, ms

0 OFF

1 div by 1 2.048

2 div by 2 4.096

3 div by 4 8.192

4 div by 8 16.384

5 div by 64 131.072 (>125ms)

6 div by 256 524.288

7 div by 1024 2097.1

6.2.1 How to set the TCCA interval time using TCCA for the frequency range

Timer TCCA is configured by the xmega_freq_cntr.c driver using #defines in the
xmega_freq_cntr.h file. The timer generates the gate interval time used to measure
the input frequency. Timer TCCA is loaded with a specific value so that when it
reaches 0xFFFF, it will generate an OVF condition. As OVF is reached, Event
Channel 1 will clock the TCCB count into the input capture register. Also, the TCCA
OVF will generate an interrupt, which will read the input capture latch to get the
frequency result.

To select the proper gate interval value:

1. Consider the frequency range to be measured. To properly scale the operation of
the frequency counting TCCB, the gate timer, TCCA, must not time out (reach
OVF) after TCCB itself overflows.

2. Choose a gate interval time that is long enough to allow the TCCB counter to
offer enough digits of resolution to suit the application.

As an example, to attain a gate interval time of 125ms, the following C instruction sets
the TCCA clock to be clkCPU / 64:

TCCA.CTRLA = (TCCA.CTRLA & ~TC0_CLKSEL_gm) |

TC_CLKSEL_DIV64_gc;

The following #define sets the TCCA OVF value to 1/8 second (125ms).

The 8 defines the 1/8 second.

#define TCCA_CNT_TO_OVF (0xffffUL)-(F_CPU/(64UL*8UL))

The 125ms timing interval may be changed to a longer time period for lower
frequencies, or as short as 2.048ms for measuring high-frequency signals.

 AVR1617

 9
8383A-AVR-06/11

Consider again that the AVR XMEGA Event System supplies a clock pulse to TCCB
on each rising and falling edge of the input signal. This causes TCCB to be clocked at
twice the input frequency. A gate interval time of 125ms will allow up to 65534 edges
to be counted, for a maximum frequency input of 8/2 × 65534 = 262136Hz.

If the expand_to_32_bits option is set to 1, the maximum input frequency may be as
high as 16MHz. This option is located in the xmega.freq.cntr.h file.

10 Atmel AVR1617
8383A-AVR-06/11

7 Frequency capture option
Another frequency measuring technique is described in the AVR XMEGA datasheet,
although it is not implemented here. The Event System and a timer/counter are used
to measure the time between two rising edges. Refer to Figure 7-1. This enables the
timer/counter to use capture to measure the period or frequency of a signal directly.
The capture result will be the time (T) from the previous timer/counter restart until the
event occurrs. This can be used to calculate the frequency (f) of the signal:

f = 1/T

This technique is best for lower input frequencies, as the resolution of the result will
decrease as the external input frequency increases. Consider the case where the
external signal is 1MHz. If a 32MHz timer/counter clock is used, then the value of the
CNT result would be the number 32. Then the result would be plus or minus one
count, or ±3%.

Floating point software support would be required to invert CNT to arrive at the actual
frequency, based on the equation above. By contrast, the method described in this
application note with the 32-bit expansion and a one-second time counting interval
would produce a count of 1,000,000 ± one count. This accuracy is dependent on the
accuracy of the AVR XMEGA device’s 32MHz oscillator.

Figure 7-1. An example where the period is measured for an external signal.

 AVR1617

 11
8383A-AVR-06/11

8 References
1. Atmel AVR Studio – www.atmel.com
2. The WinAVR GCC C compiler is available from http://winavr.sourceforge.net
3. AVR205: Frequency Measurement Made Easy with Atmel tinyAVR® and Atmel

megaAVR®
4. Atmel AVR JTAGICE mk-II
5. National Instruments: “Frequency Measurements: How-To Guide,”

http://zone.ni.com/devzone/cda/tut/p/id/7111

http://www.atmel.com/�
http://winavr.sourceforge.net/�
http://www.atmel.com/dyn/resources/prod_documents/doc8365.pdf�
http://www.atmel.com/dyn/resources/prod_documents/doc8365.pdf�
http://www.atmel.com/dyn/resources/prod_documents/doc8365.pdf�
http://www.atmel.com/dyn/resources/prod_documents/doc8365.pdf�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3353�
http://zone.ni.com/devzone/cda/tut/p/id/7111�

12 Atmel AVR1617
8383A-AVR-06/11

9 Table of contents
Features... 1
1 Introduction .. 1
2 Prerequisite .. 2
3 Limitations.. 2
4 XMEGA target device resource requirements 3
5 Frequency counter using the Event System: How it works 4

5.1 Incoming signal to be measured connects through Event System to timer clock4
5.2 Timer TCCA used to generate the counting interval; that is, the gate interval
time.. 4
5.3 Input capture used with TCCB .. 5
5.4 Expansion to 32-bit result, uses TCCC ... 6

6 How to build and run the software ... 7
6.1 Installing the Atmel AVR1617-freq_meas-xmega software package.................. 7
6.2 Functions ... 7

6.2.1 How to set the TCCA interval time using TCCA for the frequency range 8
7 Frequency capture option... 10
8 References.. 11
9 Table of contents ... 12

8383A-AVR-06/11

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chou-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3523-3551
Fax: (+81) 3523-7581

 © 2011 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, AVR Studio®, XMEGA®, megaAVR®, STK®, tinyAVR®, and others are
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of
others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

http://www2.atmel.com/�

	1 Introduction
	2 Prerequisite
	3 Limitations
	4 XMEGA target device resource requirements
	5 Frequency counter using the Event System: How it works
	5.1 Incoming signal to be measured connects through Event System to timer clock
	5.2 Timer TCCA used to generate the counting interval; that is, the gate interval time
	5.3 Input capture used with TCCB
	5.4 Expansion to 32-bit result, uses TCCC

	6 How to build and run the software
	6.1 Installing the Atmel AVR1617-freq_meas-xmega software package
	6.2 Functions

	7 Frequency capture option
	8 References
	9 Table of contents

