
 TB3195
 Managing Cache Coherency on Cortex-M7 Based MCUs

Introduction

This document provides an overview of the cache coherency issue under different scenarios. It also
suggests methods to manage or avoid the cache coherency issue.

© 2018 Microchip Technology Inc. DS90003195A-page 1

Table of Contents

Introduction..1

1. Cache Policies Overview...3

2. Supported Configurations..4

3. Cache Coherency Issues.. 5

4. Using Cache Maintenance APIs to Handle Cache Coherency..................................7

5. Disabling Cache on Memory Regions Shared by the DMA and CPU..................... 12

6. Relevant Resources.. 15

The Microchip Web Site.. 16

Customer Change Notification Service..16

Customer Support... 16

Microchip Devices Code Protection Feature... 16

Legal Notice...17

Trademarks... 17

Quality Management System Certified by DNV...18

Worldwide Sales and Service..19

 TB3195

© 2018 Microchip Technology Inc. DS90003195A-page 2

1. Cache Policies Overview
Table 1-1. Cache Policies

Read Policy (Cache miss case):

Read Allocate All cacheable locations on Cortex-M7 based MCUs
are read allocate. This means that the data cache
lines are allocated when a cache miss occurs,
bringing 32 bytes (See Note) of data from the main
memory into the cache memory. As a result,
subsequent access to these memory locations will
result in a cache hit condition, and the data is
directly read from the cache memory.

Write Policy (Cache hit case):

Write Back On a cache hit, only the data cache is updated and
not the main memory. The cache line is marked as
dirty, and writes to the main memory are postponed
until the cache line is evicted, or explicitly cleaned.

Write Through On a cache hit, both the data cache and the main
memory are updated.

Write Policy (Cache miss case):

Write Allocate On a cache miss, a cache line is allocated and
loaded with the data from the main memory. This
means that executing a store instruction on the
processor might cause a burst read to occur to
bring the data from the main memory to cache.

No Write Allocate On a cache miss, a cache line is not allocated and
the data is written directly into the main memory.
Here, a line is not cached until a cache miss on a
read occurs, which then loads the cache using the
Read Allocate policy.

Note:  The size of a cache line on Cortex-M7 MCUs is 32 bytes.

 TB3195
Cache Policies Overview

© 2018 Microchip Technology Inc. DS90003195A-page 3

2. Supported Configurations
Write-back with read and write allocate: WB-RWA

• Provides the best performance. The cache hits only update the cache memory. Cache misses on a
write, copy data from the main memory to the cache. As a result, subsequent access results in a
cache hit.

Write-back with read allocate (no write allocate): WB-NWA

• The cache hits only update the cache memory. Cache misses on a write do not bring the data to
the cache. This is advantageous only when the data is written, but not immediately read back.

Write-through with read allocate (no write allocate): WT-NWA

• Each write (either cache hit, or cache miss) is performed on the main memory. This negates the
main advantage of having cache.

• Partially solves the cache coherency issue.

Non-cacheable

• Each read and write is performed on the main memory.
• No cache coherency related issues.

 TB3195
Supported Configurations

© 2018 Microchip Technology Inc. DS90003195A-page 4

3. Cache Coherency Issues
A memory region is said to be coherent when multiple bus masters, for example, CPU and DMA have the
same view of the memory shared between them.

Consider an application where the DMA writes to the SRAM.

Conditions: Cache is enabled on SRAM and the cacheability attribute is set to write-back with read and
write-allocate (WB-RWA). The CPU has previously read the DMA buffer and therefore, the same is
available in the cache memory due to the read allocate policy.

Figure 3-1. Cache Coherency Issue - DMA Writes to SRAM

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

W0W1new
W2W3W4W5W6W7

SRAM

@MemX+8

W0W1W2W3W4W5W6W7

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

D‐Cache

@MemX

2.
CPU Reads
(Cache Hit)

DMA

Peripheral CPU

1.
DMA Writes

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Where,

1. The DMA reads the data from the peripheral and updates the receive buffer in the SRAM.

2. When the CPU tries to read the receive buffer, it will read the data present in the cache and not the
new data available in the SRAM.

Consider another example, where the DMA reads from the SRAM.

Conditions: The cache is enabled on the SRAM, and the cacheability attribute is set to WB-RWA.

 TB3195
Cache Coherency Issues

© 2018 Microchip Technology Inc. DS90003195A-page 5

Figure 3-2. Cache coherency Issue - DMA Reads from SRAM

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

W0W1W2W3W4W5W6W7

SRAM

@MemX+8

W0W1New
W2W3W4W5W6W7

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

D‐Cache

@MemX

1.
CPU Writes
(Cache Hit)

DMA

Peripheral CPU

2.
DMA Reads

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Where,

1. The CPU updates the data to be transmitted in a transmit buffer as the cache policy is set to WB-RWA,
only the cache is updated and not the main memory.

2. When the DMA reads the transmit buffer, it reads the old value present in the main memory and not the
latest value updated by the CPU which is still in the cache.

 TB3195
Cache Coherency Issues

© 2018 Microchip Technology Inc. DS90003195A-page 6

4. Using Cache Maintenance APIs to Handle Cache Coherency
This solution requires the application to manage the cache at run-time using the Cortex-M7 cache
maintenance operations. The cache maintenance APIs enable users to perform these actions:

1. Enable or disable cache – Cache on or off.

2. Invalidate cache – Marks the cache lines as invalid. Subsequent access forces the data to be copied
from the main memory to the cache, due to the read-allocate and write-allocate policies.

3. Clean cache – Writes the cache lines, which are marked as dirty, back to the main memory.

The Cortex Microcontroller Software Interface Standard (CMSIS) provides the following D-Cache
maintenance APIs:

Table 4-1. CMSIS Data Cache Maintenace APIs

Cache Maintenance API Description

SCB_EnableDCache (void) Enables data cache. Invalidates the entire data
cache before enabling it.

SCB_DisableDCache (void) Disables data cache. Cleans the data cache to
flush dirty data to main memory before disabling
the cache.

SCB_InvalidateDCache(void) Invalidate the entire data cache.

SCB_InvalidateDCache_by_Addr (uint32_t * addr,
int32_t dsize)

Invalidate the data cache line by address.

SCB_CleanDCache(void) Cleans the data cache.

SCB_CleanDCache_by_Addr (uint32_t *addr,
int32_t dsize)

Cleans the data cache line by address.

SCB_CleanInvalidateDCache(void) Cleans and Invalidates the entire data cache.

SCB_CleanInvalidateDCache_by_Addr(uint32_t
*addr, int32_t dsize)

Cleans and Invalidates the data cache line by
address.

When using the cache clean and cache invalidate by address APIs:

addr – Must be aligned to the cache line size boundary. This means that the DMA buffer address must be
aligned to the 32-byte boundary.

dsize – Must be a multiple of the cache line size. This means that the DMA buffer size must be a multiple
of 32-bytes.

Using cache maintenance API when DMA writes to SRAM

Conditions: The cache policy is WB-RWA. The CPU initially accessed the receive buffer (rx_buffer[]),
and cached it in the D-Cache.

1. DMA writes data to the rx_buffer[].
2. A cache invalidate operation is performed to invalidate the cached rx_buffer[].
3. CPU tries to read the rx_buffer[] and results in a cache miss as rx_buffer[] was invalidated in step 2.

 TB3195
Using Cache Maintenance APIs to Handle Cache Coher...

© 2018 Microchip Technology Inc. DS90003195A-page 7

Figure 4-1. Cache Invalidate Operation After DMA Writes to SRAM

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

W0W1new
W2W3W4W5W6W7

SRAM

@MemX+8
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

D‐Cache

@MemXDMA

Peripheral CPU

1.
DMA Writes

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐

3.
A CPU read results in

a cache miss

4. Due to the read-allocate policy, a cache line is allocated and copies data from the rx_buffer[] in the
SRAM to the allocated cache line.

5. The CPU reads from the cache will then be coherent.
Figure 4-2. After a Cache Invalidate Operation, Reads Out of D-Cache by CPU are Coherent

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

W0W1new
W2W3W4W5W6W7

SRAM

@MemX+8
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

D‐Cache

5.
Reads out of cache
are now coherent

CPU

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

W0W1
new
W2W3W4W5W6W7‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

The following code sample shows (using the GCC compiler) how to define the DMA buffers aligned to the
cache line size boundary. The BUFFER_SIZE must be a multiple of the cache line size (32-bytes). The
DMA_TRANSFER_SIZE is the number of bytes transferred by the DMA. Once the DMA read operation is
complete, the receive buffer in cache is invalidated using the cache invalidate API. The main function
enables the data cache, using the cache maintenance APIs.

Note:  All the code samples provided in this tech brief refer to the API functions available under
Microchip’s Atmel Software Framework (ASF3).

 TB3195
Using Cache Maintenance APIs to Handle Cache Coher...

© 2018 Microchip Technology Inc. DS90003195A-page 8

Code Showing Cache Invalidate Operation After DMA Transfer is Complete

/* The rx_buffer is aligned to 32-byte boundary. The BUFFER_SIZE is a multiple of cache line
size (32-bytes)*/
#define BUFFER_SIZE 32

__attribute__ ((aligned (32))) uint8_t rx_buffer[BUFFER_SIZE];

volatile bool rx_xfer_done;
/**
 * \brief XDMAC interrupt handler.
 */
void XDMAC_Handler(void)
{
 uint32_t dma_status;

 dma_status = xdmac_channel_get_interrupt_status(XDMAC, XDMA_CH_RX);

 if (dma_status & XDMAC_CIS_BIS)
 {
 rx_xfer_done = true;
 SCB_InvalidateDCache_by_Addr((uint32_t*)rx_buffer, DMA_TRANSFER_SIZE);
 }
}
int main (void)
{
 ……
 /* Enabling the D-Cache */
 SCB_EnableDCache();
 /* Setup and trigger a DMA transfer */
 ……
 while (false == rx_xfer_done);
 /* Access to the rx_buffer[] is coherent now */
}

Using cache maintenance API when DMA reads from SRAM

Conditions: The cache policy is set to WB-RWA. The CPU initially accessed the transmit buffer
(tx_buffer[]), and cached it in the D-Cache.

1. The CPU writes data to the tx_buffer[] which will be transmitted by the DMA.

2. A cache clean operation is performed to flush the cached tx_buffer[] into the SRAM before enabling the
DMA transfer.

3. The DMA reads from the SRAM will now be coherent.

Figure 4-3. Cache Clean Operation After CPU Writes to D-Cache

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

W0W1new
W2W3W4W5W6W7

SRAM

@MemX+8
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

D‐Cache

@MemXDMA

Peripheral CPU

3.
DMA Reads

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ W0W1new
W2W3W4W5W6W7

1.
CPU Writes
(Cache Hit)

 TB3195
Using Cache Maintenance APIs to Handle Cache Coher...

© 2018 Microchip Technology Inc. DS90003195A-page 9

Code Showing A Cache Clean Operation after the CPU writes to D-Cache

int main (void)
{
 ……

 strcpy(tx_buffer, "DMA Transmit String");

 SCB_CleanDCache_by_Addr((uint32_t*)tx_buffer, DMA_TRANSFER_SIZE);

 xdmac_channel_enable(XDMAC, XDMA_CH_TX);
}

In the previous code sample, before enabling the DMA transfer, a cache clean operation by CPU writes
the updated data in the transmit buffer to the SRAM.

Note:  If the DMA link descriptors are used, then every time the descriptors are updated, the application
must clean the cache corresponding to the link descriptor addresses to maintain coherency between the
DMA and the CPU.

Important:  All the cache operations are performed on a cache line of 32-bytes. As a result, if
the size of the transmit and receive buffers in the above example are not a multiple of 32-bytes,
a cache invalidate or cache clean operation could lead to unexpected behavior as shown in the
following code sample.

Code Illustrating the Effect of DMA Buffers That are Not a Multiple of 32-Bytes

#define BUFFER_SIZE 16

typedef struct
{
 /* The rx_buffer is aligned to 32-byte boundary.
 The BUFFER_SIZE is 16-bytes which is not a multiple of the cache line size.
 */
 __attribute__ ((aligned (32))) uint8_t rx_buffer[BUFFER_SIZE];

 bool rx_xfer_done;

}st_dma_xfer;

static st_dma_xfer g_st_dma_xfer;

/**
 * \brief XDMAC interrupt handler.
 */
void XDMAC_Handler(void)
{
 uint32_t dma_status;

 dma_status = xdmac_channel_get_interrupt_status(XDMAC, XDMA_CH_RX);

 if (dma_status & XDMAC_CIS_BIS)
 {
 g_st_dma_xfer.rx_xfer_done = true;
 SCB_InvalidateDCache_by_Addr((uint32_t*)g_st_dma_xfer.rx_buffer,
 DMA_TRANSFER_SIZE);
 }
}

In the previous code sample, the receive buffer is16 bytes. The DMA reads 16 bytes from the peripheral
into the g_st_dma_xfer.rx_buffer[] in SRAM and generates a DMA interrupt. In the DMA ISR, the CPU
sets the g_st_dma_xfer.rx_xfer_done flag to 1 in D-cache. This memory location was previously

 TB3195
Using Cache Maintenance APIs to Handle Cache Coher...

© 2018 Microchip Technology Inc. DS90003195A-page 10

accessed by the CPU and therefore it is available in the D-cache. A cache invalidate operation is then
performed, thereby invalidating the cached line.

Figure 4-4. DMA Updates the Receive Buffer in SRAM and CPU Updates a Flag in D-Cache

g_st_dma_xfer.rx_xfer_done

SRAM

D‐Cache

DMA

CPU

g_st_dma_xfer.rx_xfer_done

0
g_st_dma_xfer.rx_buffer[16]

1
g_st_dma_xfer.rx_buffer[16]

Since the cache line is invalidated, access to the g_st_dma_xfer.rx_xfer_done flag by the CPU in the
main function, result in the entire cache line of 32 bytes copied from the SRAM to the D-cache (due to the
read allocate policy). This overwrites the g_st_dma_xfer.rx_xfer_done flag back to 0.

As a result, the CPU never sees the g_st_dma_xfer.rx_xfer_done flag set to 1.

Figure 4-5. A Cache Invalidate Operation Inadvertantly Corrupts Data Present in the Data Cache

g_st_dma_xfer.rx_buffer[16]

SRAM

D‐Cache

g_st_dma_xfer.rx_buffer[16]

0

0
g_st_dma_xfer.rx_xfer_done

Cache Invalidate

CPU never sees the rx_xfer_done bit set to 1
as it is overwritten with the SRAM contents
by the cache invalidate operation.

g_st_dma_xfer.rx_xfer_done

This issue is caused as the DMA buffer is not a multiple of 32 bytes. Note that even if the DMA is
configured to transfer a non-integer multiple of 32 bytes of data to/from a peripheral, the DMA buffer must
be an integer multiple of 32 bytes to avoid corruption of variables defined in the same cache line. For
example, if the DMA is configured to read/write 50 bytes to/from a peripheral then the DMA buffers must
be of size 64.

 TB3195
Using Cache Maintenance APIs to Handle Cache Coher...

© 2018 Microchip Technology Inc. DS90003195A-page 11

5. Disabling Cache on Memory Regions Shared by the DMA and CPU
In this approach, the memory regions shared by the CPU and DMA are defined as non-cacheable using
the Memory Protection Unit (MPU), while leaving the memory regions that are only accessed by the CPU
as cacheable.

Use case: Shared memory can be updated by the CPU and DMA simultaneously. For example, the
Ownership bit in the GMAC receive buffer descriptor entry can be updated simultaneously by the CPU
and DMA.

Advantage: Transparent to the application. No cache maintenance is required. Porting a driver from a
MCU without cache to a MCU with cache becomes easy.

Drawbacks: Requires the use of an MPU to create a dedicated non-cacheable memory region. This
requires a complex linker script file.

Configuring the MPU to create a non-cacheable memory region:

Using the SAM Cortex-M7 MCUs users can create up to 16 MPU regions. The following table shows the
MPU registers used to configure and enable a memory region. For detailed information, refer to the http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646b/BIHJJABA.html

Table 5-1. MPU Registers

MPU Register Description

MPU_RNR Selects which memory region is referenced by the MPU_RBAR and MPU_RASR
registers. Valid values range from 0-15 corresponding to the 16 MPU regions.

MPU_RBAR Defines the base address of the MPU region. The region start address must align to the
size of the region. (i.e., A 64KB region must be aligned on a multiple of 64KB, at
0x00010000 or 0x00020000).

MPU_RASR Defines the region size and memory attributes of the MPU region and then enables that
region. The smallest permitted region size is 32 bytes and must be a power of 2.

MPU_CTRL Enables/Disables MPU

The TEX, C and B bits of the MPU_RASR register define the cacheability of the memory regions. The
following table shows the encoding for the normal memory type.

Table 5-2. MPU Access Permission Attributes

TEX C B Shareable Memory Type Description

000 1 0 Yes Normal Write-through, no write allocate

000 1 1 Yes Normal Write-back, no write allocate

001 0 0 Yes Normal Non-cacheable

001 1 1 Yes Normal Write-back, write and read allocate (Default cache policy on
SAM Cortex-M7 MCUs when cache is enabled)

For detailed information, refer to the "section 4.6.6 MPU access permissions attributes", available on the
ARM Information Center. For more details on configuring the MPU, refer to the TB3179 - How to
Configure the Memory Protection Unit (MPU).

 TB3195
Disabling Cache on Memory Regions Shared by the DM...

© 2018 Microchip Technology Inc. DS90003195A-page 12

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646b/BIHJJABA.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646b/BIHJJABA.html
http://ww1.microchip.com/downloads/en/DeviceDoc/90003179A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/90003179A.pdf

The following code example disables the MPU and then configures and enables a section of the SRAM
memory region starting at 0x2045F0000 and of size 4096 bytes, as non-cacheable. Leaving the
remaining SRAM memory region as cacheable with the default (WB-RWA) cache policy. The Access
Permission (AP) is set to Full access which allows both privileged and non-privileged software to have
RW access, and later it enables the MPU.

Code Showing MPU Configuration to Create a Non-Cacheable Memory Region

#define SRAM_NOCACHE_START_ADDRESS (0x2045F000UL)
#define NOCACHE_SRAM_REGION_SIZE 0x1000
#define MPU_NOCACHE_SRAM_REGION (11)
#define INNER_OUTER_NORMAL_NOCACHE_TYPE(x) ((0x01 << MPU_RASR_TEX_Pos) | (DISABLE <<
MPU_RASR_C_Pos) | (DISABLE << MPU_RASR_B_Pos) | (x << MPU_RASR_S_Pos))

 /* Disable the MPU region */
 MPU->CTRL = MPU_DISABLE;
 dw_region_base_addr =
 SRAM_NOCACHE_START_ADDRESS |
 MPU_REGION_VALID |
 MPU_NOCACHE_SRAM_REGION;

 dw_region_attr =
 MPU_AP_FULL_ACCESS |
 INNER_OUTER_NORMAL_NOCACHE_TYPE(SHAREABLE) |
 mpu_cal_mpu_region_size(NOCACHE_SRAM_REGION_SIZE) |
 MPU_REGION_ENABLE;

 MPU->RBAR = dw_region_base_addr;
 MPU->RASR = dw_region_attr;

 /* Enable the MPU region */
 MPU->CTRL = (MPU_ENABLE | MPU_PRIVDEFENA);
 __DSB();
 __ISB();

The linker script file may be modified to define a non-cacheable memory space, and place the DMA
buffers to be linked to the non-cacheable memory area as shown in the following code sample for GNU
linker script.

Linker Script Modifications to Create Memory Sections for Non-Cacheable Data

/* Memory Spaces Definitions */
MEMORY
{
 rom (rx) : ORIGIN = 0x00400000, LENGTH = 0x00200000
 ram (rwx) : ORIGIN = 0x20400000, LENGTH = 0x0005F000
 ram_nocache (rwx) : ORIGIN = 0x2045F000, LENGTH = 0x00001000
}
/* Section Definitions */
SECTIONS
{
 …….
 .ram_nocache (NOLOAD):
 {
 . = ALIGN(4);
 _s_ram_nocache = .;
 *(.ram_nocache)
 . = ALIGN(4);
 _e_ram_nocache = .;
 } > ram_nocache

 .ram_nocache_data : AT (_etext + SIZEOF(.relocate))
 {
 . = ALIGN(4);
 _s_ram_nocache_vma = .;
 _s_ram_nocache_lma = LOADADDR(.ram_nocache_data);
 *(.ram_nocache_data)
 . = ALIGN(4);
 _e_ram_nocache_vma = .;
 } > ram_nocache

 TB3195
Disabling Cache on Memory Regions Shared by the DM...

© 2018 Microchip Technology Inc. DS90003195A-page 13

 ……….
}

The previous linker script example specifies the load memory address of the .ram_nocache_data
section to be at the end of the .text and the .relocate sections.

Use the following code in the Reset Handler to zero the uninitialized variables defined under
the .ram_nocache section, and to copy (from Flash to the SRAM) the initial values of initialized
variables in .ram_nocache_data.
C Startup Code Modifications to Initialize the Memory Sections for Non-Cacheable Data

extern uint32_t _s_ram_nocache;
extern uint32_t _e_ram_nocache;
extern uint32_t _s_ram_nocache_vma;
extern uint32_t _e_ram_nocache_vma;
extern uint32_t _s_ram_nocache_lma;

void Reset_Handler(void)
{
 uint32_t *pSrc, *pDest;
 ………

 /* Initialize the no cache data segment */
 pSrc = &_s_ram_nocache_lma;
 pDest = &_s_ram_nocache_vma;

 if (pSrc != pDest) {
 for (; pDest < &_e_ram_nocache_vma;) {
 *pDest++ = *pSrc++;
 }
 }

 /* Clear the no cache zero segment */
 for (pDest = &_s_ram_nocache; pDest < &_e_ram_nocache;) {
 *pDest++ = 0;
 }
 ………
}

In the application, the DMA buffers can be allocated to the .ram_nocache memory region as shown in
the following code sample. If the application has initialized variables in the no-cache memory region, then
they must be defined to go under the .ram_nocache_data section.

Application Code to Define Buffers in Non-Cacheable Memory Section

__attribute__ ((section (".ram_nocache"), aligned (32))) uint8_t rx_buf[BUFFER_SIZE];
__attribute__ ((section (".ram_nocache"), aligned (32))) uint8_t tx_buf[BUFFER_SIZE];

Another way to avoid cache coherency is to use Tightly Coupled Memory (TCM) as the contents of TCM
are not cached and can be accessed by both the CPU and the DMA. It can be accessed at similar
speeds as accessing cache, without the penalty of a cache-miss and cache coherence issues.

Use case: Buffers with a size larger than the cache size (16 KB).

Advantages: No impact on performance. Transparent to the application (no cache maintenance
required).

Drawbacks: Requires the linker script to be modified.

For more information on using TCM, refer to the links provided in the references section.

 TB3195
Disabling Cache on Memory Regions Shared by the DM...

© 2018 Microchip Technology Inc. DS90003195A-page 14

6. Relevant Resources
For additional information, refer to the following documents which are available for download from the
following location:

1. ARM Cortex-M7 Processor Technical Reference Manual – L1 caches
2. ARM Cortex-M7 Processor Technical Reference Manual – Memory Protection Unit
3. http://ww1.microchip.com/downloads/en/AppNotes/Atmel-44047-Cortex-M7-Microcontroller-

Optimize-Usage-SAM-V71-V70-E70-S70-Architecture_Application-note.pdf
4. How to Configure the Memory Protection Unit (MPU)
5. Atmel SMART SAM V7x TCM Memory
6. Atmel SMART SAM E70 TCM Memory

 TB3195
Relevant Resources

© 2018 Microchip Technology Inc. DS90003195A-page 15

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0489d/Chdcghid.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0489d/BEHIECDF.html
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-44047-Cortex-M7-Microcontroller-Optimize-Usage-SAM-V71-V70-E70-S70-Architecture_Application-note.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-44047-Cortex-M7-Microcontroller-Optimize-Usage-SAM-V71-V70-E70-S70-Architecture_Application-note.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/90003179A.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42510-SMART-SAM-V7x-TCM-Memory_Application%20Note_AT13878.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42555-SMART-SAM-E70-TCM-Memory_Application%20Note_AT14971.pdf

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 TB3195

© 2018 Microchip Technology Inc. DS90003195A-page 16

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings,
BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA,
SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL
ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 TB3195

© 2018 Microchip Technology Inc. DS90003195A-page 17

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-2966-1

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 TB3195

© 2018 Microchip Technology Inc. DS90003195A-page 18

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2018 Microchip Technology Inc. DS90003195A-page 19

	Introduction
	Table of Contents
	1. Cache Policies Overview
	2. Supported Configurations
	3. Cache Coherency Issues
	4. Using Cache Maintenance APIs to Handle Cache Coherency
	5. Disabling Cache on Memory Regions Shared by the DMA and CPU
	6. Relevant Resources
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

