MICROCHIP TB3195
Managing Cache Coherency on Cortex-M7 Based MCUs

Introduction

This document provides an overview of the cache coherency issue under different scenarios. It also
suggests methods to manage or avoid the cache coherency issue.

© 2018 Microchip Technology Inc. DS90003195A-page 1



TB3195

Table of Contents

INEFOAUCTION. ...t e e e e e e e e as 1
1. Cache PoOlICIES OVEIVIEW. .......ouuiiiiiiiiiiee ettt 3
2. Supported Configurations...........ccccoooiii i, 4
3. Cache CONErenCY ISSUES........c..uuiiiiiie et e e e e eeae s 5
4. Using Cache Maintenance APIs to Handle Cache Coherency............ccccvvvieeiiinnnns 7
5. Disabling Cache on Memory Regions Shared by the DMA and CPU..................... 12
6. ReleVaNnNt RESOUICES. .......coiiiiiiiiii e 15
The MiIcroChip WED Site........eeeeiiieiieeeeeeeeeeeeee ettt 16
Customer Change Notification ServiCe..............oeiiiiiiiiiiiii e 16
(OS] (0] 41T S U] o] o To o S PR SUPUPRRRPR 16
Microchip Devices Code Protection Feature...........coooouiiiiiiiiiiiiiieeeeeee e 16
=T 0 = I I L (o = RPN 17
TrademMarkS. ... ... e e e e 17
Quality Management System Certified by DNV........oooiiiiiiiei e 18
Worldwide Sales and SErVICE. .......ccoouuiiiiiiiiie e 19

© 2018 Microchip Technology Inc. DS90003195A-page 2



TB3195

Cache Policies Overview

1. Cache Policies Overview
Table 1-1. Cache Policies

Read Policy (Cache miss case):

Read Allocate

Write Policy (Cache hit case):
Write Back

Write Through

Write Policy (Cache miss case):

Write Allocate

No Write Allocate

All cacheable locations on Cortex-M7 based MCUs
are read allocate. This means that the data cache
lines are allocated when a cache miss occurs,
bringing 32 bytes (See Note) of data from the main
memory into the cache memory. As a result,
subsequent access to these memory locations will
result in a cache hit condition, and the data is
directly read from the cache memory.

On a cache hit, only the data cache is updated and
not the main memory. The cache line is marked as
dirty, and writes to the main memory are postponed
until the cache line is evicted, or explicitly cleaned.

On a cache hit, both the data cache and the main
memory are updated.

On a cache miss, a cache line is allocated and
loaded with the data from the main memory. This
means that executing a store instruction on the
processor might cause a burst read to occur to
bring the data from the main memory to cache.

On a cache miss, a cache line is not allocated and
the data is written directly into the main memory.
Here, a line is not cached until a cache miss on a
read occurs, which then loads the cache using the
Read Allocate policy.

Note: The size of a cache line on Cortex-M7 MCUs is 32 bytes.

© 2018 Microchip Technology Inc.

DS90003195A-page 3



TB3195
Supported Configurations

Supported Configurations
Write-back with read and write allocate: WB-RWA

*  Provides the best performance. The cache hits only update the cache memory. Cache misses on a
write, copy data from the main memory to the cache. As a result, subsequent access results in a
cache hit.

Write-back with read allocate (no write allocate): WB-NWA

*  The cache hits only update the cache memory. Cache misses on a write do not bring the data to
the cache. This is advantageous only when the data is written, but not immediately read back.

Write-through with read allocate (no write allocate): WT-NWA

»  Each write (either cache hit, or cache miss) is performed on the main memory. This negates the
main advantage of having cache.

*  Partially solves the cache coherency issue.
Non-cacheable

* Each read and write is performed on the main memory.
* No cache coherency related issues.

© 2018 Microchip Technology Inc. DS90003195A-page 4



TB3195

Cache Coherency Issues

Cache Coherency Issues

A memory region is said to be coherent when multiple bus masters, for example, CPU and DMA have the
same view of the memory shared between them.

Consider an application where the DMA writes to the SRAM.

Conditions: Cache is enabled on SRAM and the cacheability attribute is set to write-back with read and
write-allocate (WB-RWA). The CPU has previously read the DMA buffer and therefore, the same is
available in the cache memory due to the read allocate policy.

Figure 3-1. Cache Coherency Issue - DMA Writes to SRAM

SRAM

em+

D-Cache

1.
DMA Writes

>
@MemX

CPU Reads

A
|
|
|
| (Cache Hit)

Peripheral

Where,

1. The DMA reads the data from the peripheral and updates the receive buffer in the SRAM.

2. When the CPU tries to read the receive buffer, it will read the data present in the cache and not the
new data available in the SRAM.

Consider another example, where the DMA reads from the SRAM.
Conditions: The cache is enabled on the SRAM, and the cacheability attribute is set to WB-RWA.

© 2018 Microchip Technology Inc. DS90003195A-page 5



TB3195

Cache Coherency Issues

Figure 3-2. Cache coherency Issue - DMA Reads from SRAM

SRAM

D-Cache

2. i@MemX+8 1
w
DMA Reads [ o C
wiremx [ wr[wo[ws wa[ws{wz wafwo lt ooy, W[ [ ][]
ey
Ssue

e
1

CPU Writes
A4 (Cache Hit)T

Where,

1. The CPU updates the data to be transmitted in a transmit buffer as the cache policy is set to WB-RWA,
only the cache is updated and not the main memory.

2. When the DMA reads the transmit buffer, it reads the old value present in the main memory and not the
latest value updated by the CPU which is still in the cache.

© 2018 Microchip Technology Inc. DS90003195A-page 6



TB3195

Using Cache Maintenance APIs to Handle Cache Coher...

Using Cache Maintenance APIs to Handle Cache Coherency

This solution requires the application to manage the cache at run-time using the Cortex-M7 cache
maintenance operations. The cache maintenance APIs enable users to perform these actions:

1. Enable or disable cache — Cache on or off.

2. Invalidate cache — Marks the cache lines as invalid. Subsequent access forces the data to be copied
from the main memory to the cache, due to the read-allocate and write-allocate policies.

3. Clean cache — Writes the cache lines, which are marked as dirty, back to the main memory.

The Cortex Microcontroller Software Interface Standard (CMSIS) provides the following D-Cache
maintenance APls:

Table 4-1. CMSIS Data Cache Maintenace APIs

SCB_EnableDCache (void) Enables data cache. Invalidates the entire data
cache before enabling it.

SCB_DisableDCache (void) Disables data cache. Cleans the data cache to
flush dirty data to main memory before disabling
the cache.

SCB_InvalidateDCache(void) Invalidate the entire data cache.

SCB_InvalidateDCache_by Addr (uint32_t * addr, Invalidate the data cache line by address.
int32_t dsize )

SCB_CleanDCache(void) Cleans the data cache.

SCB_CleanDCache_by Addr (uint32_t *addr, Cleans the data cache line by address.
int32_t dsize)

SCB_CleaninvalidateDCache(void) Cleans and Invalidates the entire data cache.

SCB_CleaninvalidateDCache_by_ Addr(uint32_t Cleans and Invalidates the data cache line by
*addr, int32_t dsize) address.

When using the cache clean and cache invalidate by address APIs:

addr — Must be aligned to the cache line size boundary. This means that the DMA buffer address must be
aligned to the 32-byte boundary.

dsize — Must be a multiple of the cache line size. This means that the DMA buffer size must be a multiple
of 32-bytes.

Using cache maintenance APl when DMA writes to SRAM

Conditions: The cache policy is WB-RWA. The CPU initially accessed the receive buffer (rx_buffer(]),
and cached it in the D-Cache.

1. DMA writes data to the rx_buffer(].

2. A cache invalidate operation is performed to invalidate the cached rx_buffer[].

3. CPU tries to read the rx_buffer[] and results in a cache miss as rx_buffer[] was invalidated in step 2.

© 2018 Microchip Technology Inc. DS90003195A-page 7



TB3195

Using Cache Maintenance APIs to Handle Cache Coher...

Figure 4-1. Cache Invalidate Operation After DMA Writes to SRAM

SRAM D-Cache
20028888 ]
1 1

1.
DMA Writes

T / 1
rk COED0EDD Sy ========

3.
A CPU read results in
a cache miss

A
I
I
I
I
Peripheral CPU

4. Due to the read-allocate policy, a cache line is allocated and copies data from the rx_buffer] in the
SRAM to the allocated cache line.

5. The CPU reads from the cache will then be coherent.
Figure 4-2. After a Cache Invalidate Operation, Reads Out of D-Cache by CPU are Coherent

SRAM D-Cache

i@MemX+8

A /

w7|ws | ws |wa | w3 ':Ael‘g’ w1|wo

The following code sample shows (using the GCC compiler) how to define the DMA buffers aligned to the
cache line size boundary. The BUFFER_SIZE must be a multiple of the cache line size (32-bytes). The
DMA_TRANSFER_SIZE is the number of bytes transferred by the DMA. Once the DMA read operation is
complete, the receive buffer in cache is invalidated using the cache invalidate API. The main function
enables the data cache, using the cache maintenance APIs.

Note: All the code samples provided in this tech brief refer to the API functions available under
Microchip’s Atmel Software Framework (ASF3).

© 2018 Microchip Technology Inc. DS90003195A-page 8



TB3195

Using Cache Maintenance APIs to Handle Cache Coher...

Code Showing Cache Invalidate Operation After DMA Transfer is Complete

/* The rx buffer is aligned to 32-byte boundary. The BUFFER SIZE is a multiple of cache line
size (32-bytes)*/

#define BUFFER_SIZE 32
__attribute  ((aligned (32))) uint8_t rx buffer[BUFFER SIZE];
volatile bool rx xfer done;
/*x - -
* \brief XDMAC interrupt handler.
=Y

void XDMAC Handler (void)
{

uint32 t dma status;
dma status = xdmac_channel get interrupt status(XDMAC, XDMA CH RX);

if (dma_status & XDMAC CIS BIS)
{
rx_xfer done = true;
SCB_InvalidateDCache by Addr ((uint32 t*)rx buffer, DMA TRANSFER SIZE);
}
}
int main (void)

{

/* Enabling the D-Cache */

SCB_EnableDCache () ;

/* Setup and trigger a DMA transfer */

while (false == rx xfer done);

/* Access to the rx buffer[] is coherent now */

}

Using cache maintenance APl when DMA reads from SRAM

Conditions: The cache policy is set to WB-RWA. The CPU initially accessed the transmit buffer
(tx_buffer(]), and cached it in the D-Cache.

1. The CPU writes data to the tx_buffer[] which will be transmitted by the DMA.

2. A cache clean operation is performed to flush the cached tx_buffer[] into the SRAM before enabling the
DMA transfer.

3. The DMA reads from the SRAM will now be coherent.
Figure 4-3. Cache Clean Operation After CPU Writes to D-Cache

SRAM

3 i@MemX+8

DMA Reads .
< G e wfwe s [ wi ] wo

D-Cache

1
BRRDRHAD

|

Peripheral CPU

[
|
1 1.
1 CPU Writes
v (Cache Hit)

© 2018 Microchip Technology Inc. DS90003195A-page 9



TB3195

Using Cache Maintenance APIs to Handle Cache Coher...

Code Showing A Cache Clean Operation after the CPU writes to D-Cache

int main (void)

{

strcpy (tx buffer, "DMA Transmit String");
SCB_CleanDCache by Addr ((uint32 t*)tx buffer, DMA TRANSFER SIZE);

xdmac_channel enable (XDMAC, XDMA CH TX);

In the previous code sample, before enabling the DMA transfer, a cache clean operation by CPU writes
the updated data in the transmit buffer to the SRAM.

Note: If the DMA link descriptors are used, then every time the descriptors are updated, the application
must clean the cache corresponding to the link descriptor addresses to maintain coherency between the
DMA and the CPU.

Important: All the cache operations are performed on a cache line of 32-bytes. As a result, if
the size of the transmit and receive buffers in the above example are not a multiple of 32-bytes,
a cache invalidate or cache clean operation could lead to unexpected behavior as shown in the
following code sample.

Code lllustrating the Effect of DMA Buffers That are Not a Multiple of 32-Bytes

#define BUFFER SIZE 16

typedef struct
{
/* The rx buffer is aligned to 32-byte boundary.
The BUFFER SIZE is l6-bytes which is not a multiple of the cache line size.
*/
__attribute  ((aligned (32))) uint8 t rx buffer [BUFFER SIZE];

bool rx xfer done;
}st dma xfer;
static st_dma_xfer g_ st dma_xfer;

/**
* \brief XDMAC interrupt handler.
/)

void XDMAC Handler (void)

{

uint32 t dma status;
dma_status = xdmac_channel get interrupt status (XDMAC, XDMA CH_RX) ;

if (dma status & XDMAC CIS BIS)
{
g st dma xfer.rx xfer done = true;
SCB_InvalidateDCache by Addr ((uint32 t*)g st dma xfer.rx buffer,
DMA TRANSFER SIZE) ;

}
In the previous code sample, the receive buffer is16 bytes. The DMA reads 16 bytes from the peripheral

into the g_st_dma_xfer.rx_buffer[] in SRAM and generates a DMA interrupt. In the DMA ISR, the CPU
sets the g_st_dma_xfer.rx_xfer_done flag to 1 in D-cache. This memory location was previously

© 2018 Microchip Technology Inc. DS90003195A-page 10



TB3195

Using Cache Maintenance APIs to Handle Cache Coher...

accessed by the CPU and therefore it is available in the D-cache. A cache invalidate operation is then
performed, thereby invalidating the cached line.

Figure 4-4. DMA Updates the Receive Buffer in SRAM and CPU Updates a Flag in D-Cache

SRAM

=-»O

A

g_st_dma_xfer.rx_xfer_done g_st_dma_xfer.rx_buffer[16] m——p

D-Cache

1

g_st_dma_xfer.rx_xfer_done === e g st dma_xfer.rx_buffer[16] =———p

Since the cache line is invalidated, access to the g_st dma_xfer.rx_xfer_done flag by the CPU in the
main function, result in the entire cache line of 32 bytes copied from the SRAM to the D-cache (due to the
read allocate policy). This overwrites the g_st_dma_xfer.rx_xfer_done flag back to 0.

As a result, the CPU never sees the g_st_dma_xfer.rx_xfer_done flag set to 1.

Figure 4-5. A Cache Invalidate Operation Inadvertantly Corrupts Data Present in the Data Cache

SRAM g_st_dma_xfer.rx_xfer_done —
0

G @ St_dma_xfer.rx_buffer[16]

Cache Invalidate

<--

D-Cache g_st_dma_xfer.rx_xfer_done -3
0
A

G g st _dma_xfer.rx_buffer[16] =

CPU never sees the rx_xfer_done bit set to 1
as it is overwritten with the SRAM contents
by the cache invalidate operation.

This issue is caused as the DMA buffer is not a multiple of 32 bytes. Note that even if the DMA is
configured to transfer a non-integer multiple of 32 bytes of data to/from a peripheral, the DMA buffer must
be an integer multiple of 32 bytes to avoid corruption of variables defined in the same cache line. For
example, if the DMA is configured to read/write 50 bytes to/from a peripheral then the DMA buffers must
be of size 64.

© 2018 Microchip Technology Inc. DS90003195A-page 11



TB3195
Disabling Cache on Memory Regions Shared by the DM...

Disabling Cache on Memory Regions Shared by the DMA and CPU

In this approach, the memory regions shared by the CPU and DMA are defined as non-cacheable using
the Memory Protection Unit (MPU), while leaving the memory regions that are only accessed by the CPU
as cacheable.

Use case: Shared memory can be updated by the CPU and DMA simultaneously. For example, the
Ownership bit in the GMAC receive buffer descriptor entry can be updated simultaneously by the CPU
and DMA.

Advantage: Transparent to the application. No cache maintenance is required. Porting a driver from a
MCU without cache to a MCU with cache becomes easy.

Drawbacks: Requires the use of an MPU to create a dedicated non-cacheable memory region. This
requires a complex linker script file.

Configuring the MPU to create a non-cacheable memory region:

Using the SAM Cortex-M7 MCUs users can create up to 16 MPU regions. The following table shows the
MPU registers used to configure and enable a memory region. For detailed information, refer to the http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646b/BIHJJABA.html

Table 5-1. MPU Registers

MPU_RNR Selects which memory region is referenced by the MPU_RBAR and MPU_RASR
registers. Valid values range from 0-15 corresponding to the 16 MPU regions.

MPU_RBAR  Defines the base address of the MPU region. The region start address must align to the
size of the region. (i.e., A 64KB region must be aligned on a multiple of 64KB, at
0x00010000 or 0x00020000).

MPU_RASR | Defines the region size and memory attributes of the MPU region and then enables that
region. The smallest permitted region size is 32 bytes and must be a power of 2.

MPU_CTRL  Enables/Disables MPU
The TEX, C and B bits of the MPU_RASR register define the cacheability of the memory regions. The
following table shows the encoding for the normal memory type.

Table 5-2. MPU Access Permission Attributes

T4 ' Snaresie ey e Despion

000 1 /0 Yes Normal Write-through, no write allocate

000 1 1 Yes Normal Write-back, no write allocate

001 O O Yes Normal Non-cacheable

001 1 1 Yes Normal Write-back, write and read allocate (Default cache policy on

SAM Cortex-M7 MCUs when cache is enabled)

For detailed information, refer to the "section 4.6.6 MPU access permissions attributes", available on the
ARM Information Center. For more details on configuring the MPU, refer to the TB3179 - How to
Configure the Memory Protection Unit (MPU).

© 2018 Microchip Technology Inc. DS90003195A-page 12


http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646b/BIHJJABA.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646b/BIHJJABA.html
http://ww1.microchip.com/downloads/en/DeviceDoc/90003179A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/90003179A.pdf

TB3195
Disabling Cache on Memory Regions Shared by the DM...

The following code example disables the MPU and then configures and enables a section of the SRAM
memory region starting at 0x2045F0000 and of size 4096 bytes, as non-cacheable. Leaving the
remaining SRAM memory region as cacheable with the default (WB-RWA) cache policy. The Access
Permission (AP) is set to Full access which allows both privileged and non-privileged software to have
RW access, and later it enables the MPU.

Code Showing MPU Configuration to Create a Non-Cacheable Memory Region

#define SRAM NOCACHE START ADDRESS (0x2045F000UL)

#define NOCACHE SRAM REGION SIZE 0x1000

#define MPU NOCACHE SRAM REGION (11)

#define INNER OUTER NORMAL NOCACHE TYPE(x) ((0x0l << MPU RASR TEX Pos ) | ( DISABLE <<
MPU RASR C Pos ) | ( DISABLE << MPU RASR B Pos ) | ( x << MPU RASR S Pos)

/* Disable the MPU region */
MPU->CTRL = MPU DISABLE;
dw_region base addr =
SRAM NOCACHE START ADDRESS |
MPU REGION VALID |
MPU_NOCACHE_SRAM REGION;

dw_region_attr =
MPU_ AP FULL ACCESS \
INNER OUTER NORMAL NOCACHE TYPE ( SHAREABLE ) |
mpu_cal mpu region size (NOCACHE SRAM REGION SIZE) |
MPU_REGION ENABLE;

MPU->RBAR
MPU->RASR

dw_region base addr;
dw_region attr;

/* Enable the MPU region */

MPU->CTRL = (MPU_ENABLE | MPU PRIVDEFENA) ;
__DSB();

~ ISB();

The linker script file may be modified to define a non-cacheable memory space, and place the DMA
buffers to be linked to the non-cacheable memory area as shown in the following code sample for GNU
linker script.

Linker Script Modifications to Create Memory Sections for Non-Cacheable Data

/* Memory Spaces Definitions */

MEMORY
{
rom (rx) : ORIGIN = 0x00400000, LENGTH = 0x00200000
ram (rwx) : ORIGIN = 0x20400000, LENGTH = 0x0005F000
ram nocache (rwx) : ORIGIN = 0x2045F000, LENGTH = 0x00001000

}

/* Section Definitions */
SECTIONS

{

.ram nocache (NOLOAD) :
{
. = ALIGN(4);
_s_ram_nocache = .;
*(.ram nocache)
. = ALIGN(4);
_e_ram _nocache = .;

} > ram nocache

.ram nocache data : AT (_etext + SIZEOF (.relocate))
{
. = ALIGN (4);
_s_ram_nocache_vma
s _ram nocache Ima
* (.ram_nocache data
. = ALIGN (4);
_e ram nocache vma = .;
} > ram nocache

LOADADDR (.ram nocache data);

© 2018 Microchip Technology Inc. DS90003195A-page 13



TB3195
Disabling Cache on Memory Regions Shared by the DM...

}

The previous linker script example specifies the load memory address of the . ram nocache data
section to be at the end of the . text and the . relocate sections.

Use the following code in the Reset Handler to zero the uninitialized variables defined under
the .ram nocache section, and to copy (from Flash to the SRAM) the initial values of initialized
variables in . ram_nocache data.

C Startup Code Modifications to Initialize the Memory Sections for Non-Cacheable Data

extern uint32 t s ram nocache;
extern uint32 t e ram nocache;
extern uint32 t s ram nocache vma;
extern uint32 t e ram nocache vma;
extern uint32 t s ram nocache lma;

void Reset Handler (void)

{
uint32 t *pSrc, *pDest;

/* Initialize the no cache data segment */

pSrc = & s ram nocache lma;
pDest = & s ram nocache vma;
if (pSrc != pDest) {
for (; pDest < & e ram nocache vma;) {

*pDest++ = *ES;C++;
}
}
/* Clear the no cache zero segment */

for (pDest = & s ram nocache; pDest < & e ram nocache;) {
*pDest++ = 0;

In the application, the DMA buffers can be allocated to the . ram nocache memory region as shown in
the following code sample. If the application has initialized variables in the no-cache memory region, then
they must be defined to go under the . ram nocache data section.

Application Code to Define Buffers in Non-Cacheable Memory Section

__attribute  ((section (".ram nocache"), aligned (32))) uint8 t rx buf[BUFFER SIZE];
__attribute  ((section (".ram nocache"), aligned (32))) uint8 t tx buf[BUFFER SIZE];

Another way to avoid cache coherency is to use Tightly Coupled Memory (TCM) as the contents of TCM
are not cached and can be accessed by both the CPU and the DMA. It can be accessed at similar
speeds as accessing cache, without the penalty of a cache-miss and cache coherence issues.

Use case: Buffers with a size larger than the cache size (16 KB).

Advantages: No impact on performance. Transparent to the application (no cache maintenance
required).

Drawbacks: Requires the linker script to be modified.

For more information on using TCM, refer to the links provided in the references section.

© 2018 Microchip Technology Inc. DS90003195A-page 14



TB3195

Relevant Resources

6. Relevant Resources

For additional information, refer to the following documents which are available for download from the
following location:

ARM Cortex-M7 Processor Technical Reference Manual — L1 caches
2.  ARM Cortex-M7 Processor Technical Reference Manual — Memory Protection Unit

3. http://ww1.microchip.com/downloads/en/AppNotes/Atmel-44047-Cortex-M7-Microcontroller-
Optimize-Usage-SAM-V71-V70-E70-S70-Architecture_Application-note.pdf

4. How to Configure the Memory Protection Unit (MPU)
5. Atmel SMART SAM V7x TCM Memory
6. Atmel SMART SAM E70 TCM Memory

© 2018 Microchip Technology Inc. DS90003195A-page 15


http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0489d/Chdcghid.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0489d/BEHIECDF.html
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-44047-Cortex-M7-Microcontroller-Optimize-Usage-SAM-V71-V70-E70-S70-Architecture_Application-note.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-44047-Cortex-M7-Microcontroller-Optimize-Usage-SAM-V71-V70-E70-S70-Architecture_Application-note.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/90003179A.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42510-SMART-SAM-V7x-TCM-Memory_Application%20Note_AT13878.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42555-SMART-SAM-E70-TCM-Memory_Application%20Note_AT14971.pdf

TB3195

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

*  Product Support — Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

*  General Technical Support — Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

»  Distributor or Representative
* Local Sales Office
*  Field Application Engineer (FAE)
»  Technical Support
Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.

Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

*  Microchip products meet the specification contained in their particular Microchip Data Sheet.

*  Microchip believes that its family of products is one of the most secure families of its kind on the
market today, when used in the intended manner and under normal conditions.

*  There are dishonest and possibly illegal methods used to breach the code protection feature. All of
these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

*  Microchip is willing to work with the customer who is concerned about the integrity of their code.

© 2018 Microchip Technology Inc. DS90003195A-page 16


http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

TB3195

*  Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings,
BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA,
SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom,
chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL
ICE, Ripple Blocker, SAM-ICE, Serial Quad 1/0, SMART-1.S., SQIl, SuperSwitcher, SuperSwitcher I, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018 Microchip Technology Inc. DS90003195A-page 17



TB3195

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-2966-1

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®
DSCs, KEELOQ® code hopping devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

© 2018 Microchip Technology Inc. DS90003195A-page 18



MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC m

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186- 6233 1526

China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi M
Tel: 84-28-5448- 2100

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2018 Microchip Technology Inc.

DS90003195A-page 19



	Introduction
	Table of Contents
	1. Cache Policies Overview
	2. Supported Configurations
	3. Cache Coherency Issues
	4. Using Cache Maintenance APIs to Handle Cache Coherency
	5. Disabling Cache on Memory Regions Shared by the DMA and CPU
	6. Relevant Resources
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

