

APPLICATION NOTE

AVR2058: BitCloud OTAU User Guide

Atmel MCU Wireless

Introduction

Designers and providers of embedded wireless systems continue to be

challenged by the rapid evolution of the ZigBee® standard. The continuous

evolution of the standard requires that these systems must be made “future-

proof”, that is, the system engineers must design them to be easily upgraded

systems to the next version even after the system has been deployed.

The ability to upgrade networks also depends on the individual devices having

enough hardware resources to accommodate the next version of the

specification. But even when these hardware resource requirements are met,

there still must be a defined and interoperable mechanism for efficient over the

air upgrade.

The over-the-air upgrade support in ZigBee networks is covered by the Over-the-

Air Upgrade Cluster specification. The OTAU functionality relies on the use of

standard ZigBee data transfer and network management facilities to transfer

firmware images to any node on the network. The standard covers on air

message exchange, but leaves the details of the architecture and implementation

up to the vendor.

This document outlines the Atmel® architecture and implementation of over-the-

air upgrade and describes how to add over-the-air upgrade support to embedded

applications built on top of the Atmel BitCloud® C API. The guide also introduces

PC-side tools for initiating OTAU and explores practical considerations in

performing a network upgrade.

Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
2

2

Table of Contents

1 Architecture .. 3

1.1 Architecture Building Blocks ... 3

1.1.1 Client Side Architecture ... 3

1.1.2 Server Side Architecture .. 4

1.2 Basic Protocol and Control Flow 1` cx .. 4

1.2.2 Image Page/Block Request Modes ... 5

1.3 Application/OTAU Interaction ... 5

1.4 Embedded Bootloader and External Image Store .. 5

1.4.1 Secure Bootloading ... 6

2 Implementation ... 7

2.1 Supported Platforms ... 7

2.2 Hardware Setup ... 7

2.3 OTAU Configuration ... 8

2.3.1 Enabling OTAU .. 8

2.3.2 Setting OTAU Parameters ... 8

2.3.3 OTAU ConfigServer Parameters ... 8

2.3.4 Secure Bootloader Parameters ... 10

2.4 Application Operation with OTAU Support ... 10

2.4.1 OTAU Cluster API Overview .. 10

2.4.1.1 Processing OTAU Notifications.. 10

2.4.2 Running the OTAU Service on a Client/Server .. 11

2.4.3 Example Code for the OTAU Service Usage ... 12

2.4.3.1 Define Variables and Constants .. 12

2.4.3.2 Get the OTAU Cluster .. 12

2.4.3.3 Register the Endpoint .. 13

2.4.3.4 Prepare Parameters for OTAU Initialization ... 13

2.4.3.5 Run the OTAU Service .. 14

2.5 Secure Bootloader Operation ... 14

2.5.1 Server Side (encryption) .. 14

2.5.1.1 Using the Encryption Tool .. 15

2.5.1.2 Usage of “Image Type” Field in OTAU Header .. 15

2.5.2 Client Side (Decryption) ... 16

2.5.3 Use of Secured and Unsecured Image .. 17

2.5.4 EEPROM Usage for OTAU Parameters .. 18

2.6 Upgrade Access Point Tools .. 18

2.6.1 Connecting the OTAU Bootloader Tool to an In-Network Server ... 19

2.6.2 Updating the Network with the Bootloader PC Tool ... 19

2.7 Custom Use of ISD ... 21

3 Reference .. 22

4 Revision History ... 23

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

3

3

1 Architecture

1.1 Architecture Building Blocks

Since ZigBee Over-the-Air Upgrade (OTAU) relies on existing ZigBee PRO services for service discovery and

data transmission across the network, its building blocks fit nicely into the standard ZigBee architecture and

Atmel BitCloud implementation thereof. The main components of the architecture are:

 The OTAU client, which resides on one of the end points on every upgradeable device

 The OTAU server, which resides on whichever devices initiates the upgrade process

 A HAL driver responsible for writing the transferred images to persistent storage on every upgradeable

device

 An OTAU-capable bootloader for transferring firmware images from persistent storage into

microcontroller’s flash, also present on every upgradeable device

1.1.1 Client Side Architecture

The high-level software architecture of the OTAU client side (that is, the upgradeable device) is illustrated in

Figure 1-1.

According to the OTAU specification [1], the OTAU client part of the architecture is realized as a client side of

the OTAU cluster. This implies that the ZigBee Cluster Library (ZCL) framework must be present whenever

OTAU is to be enabled on a device, which also restricts the use of OTAU to applications making use of ZCL.

Figure 1-1. Upgrade Client Architecture

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
4

4

1.1.2 Server Side Architecture

The server side of the OTAU cluster resides on what is commonly referred to as the upgrade access point

(UAP). This may be a dedicated physical device which implements the server-side cluster or a multi-function

in-network device which implements the OTAU service as an add-on piece of functionality. Regardless of how

UAP is realized, there is always an implicit backchannel, usually in the form of another network or serial

connection outside of the ZigBee network, which is used to transfer the firmware images and control

commands to the UAP.

The document considers an application scenario where an in-network device is used as a permanent access

point on the network through which over-the-air upgrades can be initiated at some point in a network’s lifetime.

In such case, UAP is a device joined to the network and supporting the server side of the OTAU cluster in

addition to functionality of a common network device.

In order to start and control upgrade process an in-network UAP is connected serially to a PC, and the

Bootloader PC tool [5] or a similar custom utility is used.

1.2 Basic Protocol and Control Flow 1` cx

Once UAP appears on the network (assuming it possesses the necessary security material to join it), it must be

discovered by the OTAU clients (upgradeable nodes), that is, by those devices that implement the client side of

the OTAU cluster. These client nodes issue periodic service discovery commands to discover the OTAU

service cluster. In application scenarios where UAP is always present, this discovery will happen once when

the client is powered on.

Before clients can proceed with any OTAU specific actions, they must secure the link to the server. The

security settings applied to this link are the same as the security requirements for the specific ZigBee

application profile of the network being upgraded. Thus for profiles that require standard link security, the client

must negotiate with the trust center for an application link key with the OTAU server. OEM and private profiles

can use their own security settings including forgoing security altogether.

Once the link is secured, the clients can begin querying the server for the next image. If the server indicates

that a new image is available, then a client starts requesting individual firmware image blocks or image pages

consisting of multiple blocks from the server, eventually completing the download. When the download is

complete, the server can tell the client when to actually begin running the new firmware image. The whole

sequence of steps is illustrated in Figure 1-2.

Figure 1-2. Network Protocol for Transferring Firmware Images

New Client image received

from device manufacturerDevice

Manufacturer

OTA Upgrade

Server

OTA Upgrade

Client

Send Client image to Client

Image Checksum Verification

Send Activation command to Client

OTA Upgrade Discovery

Activation Acknowledgement

Activation Acknowledgement

Establish link key if needed

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

5

5

If a client loses connection to the server, while it is loading an image, it will try to restore connection and

continue downloading the image. The OTAU client cluster will try to get response from the server. If the server

replies with information about the image of the same version as the image which downloading has been

broken, the downloading will continue.

1.2.2 Image Page/Block Request Modes

There are two possible modes for an OTAU client to load an application image from the OTAU server: using

image block requests or image page request. In the first case an OTAU client sends a separate data request

for each individual image block and confirms back reception of each block.

While a block fits into a single data frame, a page is a greater piece of an image. If the client uses image page

requests it does not send acknowledgements to the server until all blocks for a given page are sent by the

server. If, while receiving a page, the client discovers that some blocks are lost, it marks missed pieces (which

may consist of several blocks), using a special buffer, and retrieves the missing blocks via image block

requests after the transmission of the current page finishes.

Using image page requests speeds up image upload process, because the client does not have to

acknowledge delivery of each individual block of the image. This mode is used by default. The user can switch

to using image block requests or configure some aspects of image page requests usage through Configuration

Server parameters (see Section 2.3.3).

1.3 Application/OTAU Interaction

An application that wishes to use OTAU functionality must initialize the OTAU client service to run alongside it

and to participate in the interactions with the server as shown in Figure 1-2. This is done with a simple call to

ZCL_StartOtauService() described in Section 2.4.1.

Although the OTAU client service is completely self-contained, that is, no further action needs to be taken by

the application during the upgrade process; the application may choose to get OTAU-specific indications from

the cluster. These include indications for a new available image, download completion, and various types of

error conditions. To receive indications the application simply registers a callback with the OTAU cluster when

the OTAU client service is initialized.

Once the application initiates the OTAU client and server, both will run in parallel. The application will continue

to execute as usual, but it may experience degradation in performance consistent with the amount of traffic

generated by the OTAU upgrade. Well-behaved applications should not see any other adverse effects besides

proportionally decreased data throughput. The OTAU client cluster runs in the ZCL task handler and at the

priority of ZCL layer, so the OTAU tasks will have slightly higher priority than the application tasks.

1.4 Embedded Bootloader and External Image Store

Due to unpredictable and dynamic nature of network links in multi-hop wireless networks like ZigBee, the

firmware image can only be transferred to the client using the best effort facilities for data transfer. At any given

point in time the client which has downloaded only a part of the image may become disconnected from the

network. Since in the general case it is impossible to avoid such a scenario, it helps to ensure that the entire

image is received before any part of it irreversibly overwrites any part of the currently running image.

This requires an architecture where whole and partially downloaded firmware images can be stored in a

dedicated, nonvolatile firmware image store decoupled from the flash memory holding the currently executing

application image. The simplest version of such a system is the one that stores firmware images in a serial

flash connected to an upgradable client node. Once the OTAU client cluster receives parts of the image it

verifies its integrity (security is already provided by the profile security applied to all in-network

communications) and writes it to serial flash. Once the whole image is received, it can be swapped from serial

flash into microcontroller’s internal flash memory.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
6

6

Embedded bootloader typically refers to some code that runs on the embedded device after the device is reset,

but before the control is passed to the application image. One piece of functionality shared by most

bootloaders is the ability to modify parts or the entire application image residing in other parts of flash. Thus

bootloaders are commonly used to upgrade embedded devices over a serial connection.

In context of OTAU, the embedded bootloader is extended to also cover interactions with the serial port as well

as with the external firmware image store. Thus an OTAU-enabled bootloader may receive images either over

serial input or from an external non-volatile memory. Figure 1-3 illustrates this bootloader architecture.

The ability of both the OTAU client cluster and the OTAU bootloader to interact with the external serial flash is

critical, so both must be made aware of the external storage interface.

Note: Since bootloader and application image (including the OTAU client cluster) run in different address

spaces, parts of the interface driver must be duplicated. Section 2.2 explores the serial flash driver in

more detail.

Figure 1-3. Embedded Bootloader Architecture

1.4.1 Secure Bootloading

The upgrade image can optionally be encrypted to prevent storing of raw firmware image on external flash that

can be easily accessed. Using encrypted image also improves protection for confidentiality and integrity.

Secure image bootloading is out of scope of ZigBee OTAU specification [1] that requires only standard

encryption of individual over-the-air frames but allows overall image encryption as vendor-specific

implementation. Atmel provides an example implementation of such secure bootloading. It can be used as is

with just vendor-specific configuration for security material or can be used as a reference when implementing

own algorithms.

Atmel embedded bootloader with security support has capability to read the metadata in the upgrade image to

know if the image is encrypted. AES-128 CBC (cipher block chaining) is used to encrypt/decrypt the image.

To ensure image integrity, message integrity code (MIC), calculated for the encrypted content along with the

file header, can optionally be added to the OTAU file. The message integrity can either be AES-128 CBC-MAC

or 8-bit CRC. The integrity check can optionally be encrypted but it needs to use the same encryption key and

initialization vector (IV) as the image encryption. The difference between the image encryption and integrity

encryption is the integrity encryption derives the code both from the meta-data and from the encrypted payload.

The advantage of encrypting the integrity code is that, key/IV mismatch at decryption side can be found out

before even honoring the actual image. If the integrity check does not match, be it due to wrong key/IV or due

to content corruption in the file, the OTAU image can be safely ignored.

The header part of OTAU file cluster carries the information of whether the image is encrypted, whether the file

carries message integrity check and the type of it.

Additional details on implementation of secure bootloading are described in Section 2.5.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

7

7

2 Implementation

This chapter describes how OTAU is implemented in Atmel BitCloud and provides instructions on making

devices participate in OTAU as OTAU clients or OTAU servers. BitCloud packages provide reference

applications which demonstrate OTAU functionality and can be used as templates for adding OTAU support to

other reference applications or to the user’s own custom applications.

To enable OTAU the user shall consider:

 Hardware setup

 OTAU parameters configuration

 Use of OTAU cluster API

 Use of PC tools to initiate and control OTAU process

The following sections address all these considerations in more detail.

The OTAU has the classical client-server architecture. Both a client and a server shall support the OTAU

cluster, but in different modes: an OTAU client shall register the OTAU cluster as an output cluster, while a

server shall support an input OTAU cluster to be able to process incoming requests. The network may contain

multiple servers, although typically there is only one OTAU server in the network. A server can be either a

common in-network device with OTAU cluster support or a device temporally added to the network, which in

the reference implementation is a Runner device.

The Serial Bootloader software package [5] shall also be downloaded. The package contains embedded

bootloader’s firmware images and sources, and the Bootloader PC tool, which is used to control the OTAU

server device. All OTAU clients should be programmed with the embedded bootloader for OTAU firmware, and

the application should be loader via the serial connection with the help of the Bootloader PC tool. For details

see [5].

2.1 Supported Platforms

BitCloud is the Atmel professional-grade implementation of ZigBee PRO standard for wireless monitoring and

control [2]. OTAU support with regard to reference applications can be found in [3]. The list of OTAU-enabled

hardware platforms is shown in Table 2-1.

Table 2-1. Supported Packages

Package Name Microcontroller Radio frequency transceiver Supported external Flash

BitCloud SDK for megaRF
ATmega256RFR2

ATmega2564RFR2
Built-in AT25DF041A

BitCloud SDK for SAMR21
ATSAMR21G18A

ATSAMR21E18A
Built-in M25P40VMN6PB

2.2 Hardware Setup

Since the embedded bootloader and the hardware abstraction layer (HAL) of the Atmel BitCloud stack are

provided in source code, the user may extend the range of supported external flash devices by modifying the

driver to interface it with any unsupported chipset. The driver maintains a consistent API for the OTAU cluster

to rely upon, which makes it possible to integrate core stack libraries with custom drivers. Of course, the serial

flash driver must then also be replicated in the bootloader section.

Note: To switch from one external Flash device to another, the user shall recompile the embedded

bootloader and the application itself. In the application the type of external Flash is specified in the

configuration.h file. For example if Atmel AT25DF041A is used, it will contain with the following

line:

#define EXTERNAL_MEMORY AT25DF041A

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
8

8

2.3 OTAU Configuration

2.3.1 Enabling OTAU

In BitCloud reference applications OTAU support is enabled via APP_USE_OTAU define in applications’

configuration.h file. If it is set to 1 then OTAU cluster will be registered on the application endpoint, OTAU

cluster code in ZCL component and external flash driver in HAL will be compiled together with the application.

Note: For SAMR21 platforms additionally IDE project configuration shall have an OTAU support.

The resulting application image includes all of the components illustrated in Figure 1-1. Detailed description on

how application code controls OTAU is given in Section 2.4.

2.3.2 Setting OTAU Parameters

The configuration.h file of the application includes a set of parameters enabled when APP_USE_OTAU

equals 1 and disabled otherwise:

 ConfigServer parameters (see Section 2.3.3), mainly configuring OTAU-cluster functionality

 Parameters related to secure booloading (see Section 2.3.4)

 Application-specific parameters:

– APP_USE_OTAU defines whether OTAU is enabled or not

– APP_USE_FAKE_OFD_DRIVER: when set to 1, the stack will substitute the real Flash driver with

the fake one that implements all driver operations as stub functions that do not store received

image anywhere. This feature may be useful to test OTAU operation on evaluation boards without

external flash present.

– APP_USE_ISD_CONSOLE_TUNNELING that indicates support for simultaneous usage of the same

serial interface for receiving commands from command console and commands exchanged by the

ISD driver and the bootloader PC tool. This parameter is valid for the OTAU server.

– APP_SUPPORT_OTAU_PAGE_REQUEST which enables use of page requests in OTAU cluster

– APP_SUPPORT_OTAU_RECOVERY: when set to 1, OTAU will recover the upgrade, after power

failure, from where it was interuppted.

– EXTERNAL_MEMORY which defines what external Flash device should be used

– OTAU_CLIENT/OTAU_SERVER which specifies whether the device operates as an OTAU client or

an OTAU server. The user shall uncomment the required option and comment out the other

– For ATmega256RFR2 platform, the following line needs to be commented in configuration.h

of the application when using bootloader:

#define PDS_NO_BOOTLOADER_SUPPORT

2.3.3 OTAU ConfigServer Parameters

Parameters of the Configuration Server component (ConfigServer) of Atmel BitCloud that customize the OTAU

operation are presented in Table 2-2.

Note: Parameters are applied either on the client or the server side. The role of a device is determined by

whether OTAU_CLIENT or OTAU_SERVER in uncommented in the configuration.h file of the

application.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

9

9

Table 2-2. ConfigServer Parameters for OTAU

Parameter Used on Description

CS_ZCL_OTAU_DISCOVERED_SERVER_AMOUNT Client

The maximum number of OTAU servers

in the network whose responses the cli-

ent can process

CS_ZCL_OTAU_CLIENT_SESSION_AMOUNT Server

The maximum number of clients served

by the server simultaneously. If equals 1,

the server will upgrade one client at a

time

CS_ZCL_OTAU_SERVER_DISCOVERY_PERIOD Client
The duration between two attempts to

find an OTAU server

CS_ZCL_OTAU_DEFAULT_UPGRADE_SERVER_IEEE_AD-

DRESS
Client

The default OTAU server address. If the

user specifies a valid extended address

of a device in the network, the client will

send server discovery requests to this

particular address. If a broadcast address

is specified (0x0000000000000000 or

0xFFFFFFFFFFFFFFFF), the client will

broadcast server discovery requests.

CS_ZCL_OTAU_IMAGE_PAGE_REQUEST_ENABLE Client

Specifies whether to use image page re-

quests (if set to 1) or image block re-

quests (if set to 0). Note that APP_SUP-

PORT_OTAU_PAGE_REQUEST shall be

set to 1 for this parameter to work.

CS_ZCL_OTAU_IMAGE_PAGE_REQUEST_RESPONSE_SPAC-

ING
Client

The minimum duration between sending

two blocks. The server receives this

value from the client. According to the

OTAU specification, the minimum value

should be 200ms.

CS_ZCL_OTAU_IMAGE_PAGE_REQUEST_PAGE_SIZE Client

The number of bytes transferred from the

server to the client for a single image

page request.

CS_ZCL_OTAU_QUERY_INTERVAL Client
The interval in milliseconds between two

successful attempts to query the server.

CS_ZCL_OTAU_MAX_RETRY_COUNT Client

Maximum numbers of retries for com-

mands (OTAU cluster, ZDO and APS)

used for OTAU process. Retry happens

at ZCL level in case of failure to receive a

successful response.

To find out more details about ConfigServer parameters refer to [4].

As it can be observed from Table 2-2, the network can include several OTAU servers, although the user rarely

needs more than one server. A client device periodically attempts to discover upgrade servers by sending

service discovery requests either to all devices in the network (broadcast) or to a particular address if it is

predefined. An upgrade server can also specify the number of simultaneous client sessions, which the server

serves in parallel.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
1

0

10

2.3.4 Secure Bootloader Parameters

Table 2-3. Security Parameters

Configuration parameter
Application/

Bootloader

Possible

values
Description

USE_IMAGE_SECURITY Both
0 client supports plain image

client supports secured image 1

IMAGE_KEY Application 128-bit value Key value that should be used for image decryption

IMAGE_IV Application 128-bit value Initialization vector that should be used for AES decryption

More information on operation of secure bootloading is given in Section 2.5.

2.4 Application Operation with OTAU Support

If a correct build configuration is chosen and parameters are specified, the application can enable OTAU

functionality through several simple steps described in Section 2.4.2. After the OTAU service has been

launched, the application can control the OTAU operation by processing notifications about various events in

the callback function specified at OTAU service start and by calling other OTAU cluster API functions described

in Section 2.4.1.

A custom application can safely reuse code from reference applications as described in Section 2.4.3.

2.4.1 OTAU Cluster API Overview

Table 2-4 lists OTAU cluster API functions. More details, arguments specifications, etc. can be found in [4].

Table 2-4. OTAU Cluster API Functions

Function Valid for Description

ZCL_GetOtauClientCluster() Client

Retrieves the OTAU cluster information on an OTAU client,

which should be passed to the endpoint registration func-

tion while registering the endpoint for the OTAU service

ZCL_GetOtauServerCluster() Server

Retrieves the OTAU cluster information on an OTAU

server, which should be passed to the endpoint registration

function while registering the endpoint for the OTAU ser-

vice

ZCL_StartOtauService() Client and server
Starts the OTAU service. The function shall be called after

a network start. See Section 2.4.3.5 for use example

ZCL_StopOtauService() Server Stops the OTAU service; is implemented for a server only

zclIsOtauBusy() Client and server Checks whether the OTAU cluster is busy or not

ZCL_Unsolic-

itedUpgradeEndResp()
Server

Sends an upgrade end response to a client specifying the

duration to wait before swapping firmware images

ZCL_ImageNotifyReq() Server
Sends an image notify command to a client or set of clients

indicating them, the availability of new image to upgrade

2.4.1.1 Processing OTAU Notifications

The OTAU cluster informs the application of various events that occur during its operation via the callback

function specified in the ZCL_StartOtauService() call (see Section 2.4.3.5). A callback function has the

following signature:

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

1
1

11

typedef void (* ZCL_OtauStatInd_t)(ZCL_OtauAction_t action);

The action variable of the ZCL_OtauAction_t enumeration type indicates the type of the event. The

enumeration is defined in the zclOTAUCluster.h file located in the

\BitCloud\Components\ZCL\include directory.

The application on a server is not obliged to process any events, while a client shall process at least the

OTAU_DEVICE_SHALL_CHANGE_IMAGE notification, which is called when the time received with the upgrade

end response from the server elapses. Thus this notification indicates that the device is ready to swap image,

and the application shall respond by invoking hardware reset.

Note: The device is not reset automatically after loading the image. This allows the application to make

necessary preparations before switching the application image.

2.4.2 Running the OTAU Service on a Client/Server

The OTAU cluster is implemented as a service, such that the user would only need to properly configure the

service and start it with a single function call. Since the process is almost identical for both a client and a

server, a general procedure is given below highlighting differences between the server and the client side

whenever necessary.

To enable OTAU functionality the user shall do the following:

1. Specify whether the device is a client or a server by enabling OTAU_CLIENT or OTAU_SERVER in the

configuration.h file of the application.

2. Get the OTAU cluster structure of the ZCL_OtauCluster_t type by calling:

a. ZCL_GetOtauClientCluster() for a client.

b. ZCL_GetOtauServerCluster() for a server.

3. Configure and register the endpoint where the OTAU service will reside via the

ZCL_RegisterEndpoint() function. Note the differences in endpoint configuration for a client and a

server:

a. For a client specify the OTAU cluster in the out clusters list and assign the pointer to the

structure received in Step 2 to the clientCluster field of the endpoint.

b. For a server specify the OTAU cluster in the in clusters list and assign the pointer to the

structure received in Step 2 to the serverCluster field of the endpoint.

4. After a network start, run the OTAU service by calling:

ZCL_StartOtauService(&otauInitParams, otauClusterIndication);

a. In otauInitParams set clusterSide to ZCL_CLIENT_CLUSTER_TYPE for a client and

ZCL_SERVER_CLUSTER_TYPE for a server.

b. otauClusterIndication is a callback function executed upon certain events related to the

OTAU operation.

The first three steps are performed before the device entered a network. ZCL_StartOtauService() is

called after the network start. Interaction between the application and the stack is illustrated in Figure 2-1. For

source code examples refer to Section 2.4.3.

Note: After the OTAU service has been launched, no more actions are required for a server. However, a

client must process the OTAU_DEVICE_SHALL_CHANGE_IMAGE notification, which indicates that the

device is ready to swap images. Refer to Section 2.4.1.1 for details.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
1

2

12

Figure 2-1. Application/Stack Interaction to Support the OTAU Cluster

Application Stack

Start network request

Start network response

Run OTAU Cluster

Register an endpoint for the OTAU Cluster

A
p

p
 i
n

it
ia

l
s

ta
te ...

...
ZCL_RegisterEndpoint()

ZCL_StartOtauService()

ZDO_StartNetworkReq()

A
p

p
 i
n

-n
e

tw
o

rk
 s

ta
te

2.4.3 Example Code for the OTAU Service Usage

The user can use reference implementation of OTAU support (for example, in WSNDemo) as a template. In

the WSNDemo application invocation of the OTAU cluster API is localized in the WSNZclManager.c file.

Parameters for API functions are configured in the appZclManagerInit() function, which is called from the

application state machine during application initialization. The OTAU service is started by the

runOtauService() function called from the application state machine after the network start.

The following code examples illustrate the procedure described in Section 2.4.2.

2.4.3.1 Define Variables and Constants

Variables holding parameters for API functions are defined in the file scope as follows:

static ZCL_Cluster_t otauCluster;

static ClusterId_t otauClusterId = OTAU_CLUSTER_ID;

static ZCL_OtauInitParams_t otauInitParams;

static ZCL_DeviceEndpoint_t otauClusterEndpoint;

In addition, define constants for the number of in and out clusters, which differ for a client and a server:

#if defined(OTAU_CLIENT)

#define OUT_CLUSTERS_COUNT 1

#define IN_CLUSTERS_COUNT 0

#elif defined(OTAU_SERVER)

#define OUT_CLUSTERS_COUNT 0

#define IN_CLUSTERS_COUNT 1

#endif

2.4.3.2 Get the OTAU Cluster

The following code gets the OTAU cluster information for both a client and a server:

#if defined(OTAU_CLIENT)

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

1
3

13

 otauCluster = ZCL_GetOtauClientCluster();

#elif defined(OTAU_SERVER)

 otauCluster = ZCL_GetOtauServerCluster();

#endif

2.4.3.3 Register the Endpoint

The OTAU service requires an endpoint, which shall be registered by a call to the

ZCL_RegisterEndpoint() function, rather than via the APS component function used to register endpoints

for data transfer. The following code prepares and registers the endpoint:

 otauClusterEndpoint.simpleDescriptor.endpoint = APP_OTAU_CLUSTER_ENDPOINT;

 otauClusterEndpoint.simpleDescriptor.AppProfileId = PROFILE_ID_SMART_ENERGY;

 otauClusterEndpoint.simpleDescriptor.AppDeviceId = WSNDEMO_DEVICE_ID;

 otauClusterEndpoint.simpleDescriptor.AppInClustersCount = IN_CLUSTERS_COUNT;

 otauClusterEndpoint.simpleDescriptor.AppOutClustersCount =

OUT_CLUSTERS_COUNT;

#if defined(OTAU_CLIENT)

 otauClusterEndpoint.simpleDescriptor.AppInClustersList = NULL;

 otauClusterEndpoint.simpleDescriptor.AppOutClustersList = &otauClusterId;

 otauClusterEndpoint.serverCluster = NULL;

 otauClusterEndpoint.clientCluster = &otauCluster;

#elif defined(OTAU_SERVER)

 otauClusterEndpoint.simpleDescriptor.AppInClustersList = &otauClusterId;

 otauClusterEndpoint.simpleDescriptor.AppOutClustersList = NULL;

 otauClusterEndpoint.serverCluster = &otauCluster;

 otauClusterEndpoint.clientCluster = NULL;

#endif

 ZCL_RegisterEndpoint(&otauClusterEndpoint);

Again, the code above is valid for both a client and a server. A custom application may change the value

assigned to AppDeviceId to whatever value needed. It is also assumed that the application defines all

constants with the APP prefix. Here it is the endpoint identifier, which can take any value from 1 to 240 not

occupied by other endpoints.

2.4.3.4 Prepare Parameters for OTAU Initialization

Parameters for the ZCL_StartOtauService() function, which is called after a network start to run the

OTAU service, may be configured immediately after the endpoint registration.

#if defined(OTAU_CLIENT)

 otauInitParams.clusterSide = ZCL_CLIENT_CLUSTER_TYPE;

#elif defined(OTAU_SERVER)

 otauInitParams.clusterSide = ZCL_SERVER_CLUSTER_TYPE;

#endif

 otauInitParams.firmwareVersion.memAlloc = APP_OTAU_SOFTWARE_VERSION;

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
1

4

14

 otauInitParams.otauEndpoint = APP_OTAU_CLUSTER_ENDPOINT;

 otauInitParams.profileId = PROFILE_ID_SMART_ENERGY;

Note: otauEndpoint shall be set to the identifier of the endpoint registered for the OTAU service.

2.4.3.5 Run the OTAU Service

As a second argument ZCL_StartOtauService() requires a callback function which is called upon OTAU-

related events. The simplest callback implementation may look like this:

static void otauClusterIndication(ZCL_OtauAction_t action)

{

 if (OTAU_DEVICE_SHALL_CHANGE_IMAGE == action)

 {

 // Device has finished uploading image and can be reset. The

 // application can perform additional actions here before the

 // reset.

 HAL_WarmReset();

 }

}

Provided the callback function is declared as stated above, the following line starts the OTAU service:

 ZCL_StartOtauService(&otauInitParams, otauClusterIndication);

2.5 Secure Bootloader Operation

2.5.1 Server Side (encryption)

Figure 2-2 illustrates the procedure required to form an encrypted image that can be sent over the air. This

procedure requires following steps:

1. Extract the raw payload from .srec container.

2. Encrypt (AES128 CBC) the raw content with the configured key/IV.

3. Add OTAU cluster file header with appropriate parameters on top of the encrypted payload as required

by OTAU specification. Note Atmel-specific use of Image Type as described in Section 2.5.1.2.

4. Add encrypted (optional) integrity code (optional) if configured.

5. Update the appropriate fields in the OTAU header to reflect step 4.

Note: BitCloud SDK provides an encryption tool (see Section 2.5.1.1) that automates the steps described

above.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

1
5

15

Figure 2-2. Image Encryption Flow

RAW Image

Encrypted image

OTA header

(encrypted) 128-bit Integrity

check

OTA Header

AES-128 CBC encryption

for Image

AES-128 CBC encryption

for Integrity check

key IV

key IV

File to be

converted

to .srec

2.5.1.1 Using the Encryption Tool

The encryption tool is part of the BitCloud SDK package. The tool supports both MEGARF and SAMR21

platform outputs. To generate the encrypted files, the configuration parameters need to be set in

“boot_ldr.cfg”. The following are the fields present in “boot_ldr.cfg”:

Figure 2-3. Configuration Parameters of Encryption Tool

Platform : MEGARF/

SAMR21

Image Type
OTA header file(already

present in the same folder)

Input .srec file

IV for AES

key for AES

After configuring the parameters, run the application to generate the .srec file. The command to run the

application is: encrypt_bc.exe boot_ldr.cfg.

2.5.1.2 Usage of “Image Type” Field in OTAU Header

“Image Type” field in the OTAU file header is used to reflect upgrade file’s security credentials. Once the image

is honored, the same value is used in OTA upgrade request frames from the client. Table 2-5 provides the

interpretation of bits of “image type”:

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
1

6

16

Table 2-5. “Image Type” Bit Interpretation

Bit Value Description

15
0 Firmware image is plain, un-encrypted

Firmware image is AES-128 CBC encrypted 1

14
0 No integrity code present

Integrity code is appended at the end of the payload 1

13
0 Integrity code is unencrypted(if bit 14 is ‘1’)

Integrity code is encrypted(if bit 14 is ‘1’) 1

12
0 Integrity code used is an 8-bit CRC (if bit 14 is ‘1’). The rest of 15 bytes can be anything

Integrity code used is a 128-bit CBC-MAC(if bit 14 is ‘1’) 1

Other bits/values until

0xffbf
 Reserved

Based on Table 2-5, the following are the valid combinations of “image type” values:

Table 2-6. Supported Values of “Image Type”

Value Description

0x0000 Firmware image is plain, un-encrypted

0x8000 Image is encrypted. No integrity code present.

0xC000 Image is encrypted. Plain 8-bit CRC(aligned to 128-bits) is present at the end of the file

0xD000 Image is encrypted. Plain 128-bit CBC MAC is present at the end of the file

0xE000 Image is encrypted. AES-128 Encrypted 8-bit CRC(aligned to 128-bits) is present at the end of the file

0xF000 Image is encrypted. AES-128 Encrypted 128-bit CBC MAC is present at the end of the file

2.5.2 Client Side (Decryption)

Secure bootloader shall be present on a device [5] if handling of encrypted firmware images is required.

Additionally application shall be compiled with USE_IMAGE_SECURITY set to 1 in application

configuration.h file.

If application wants to configure decryption material it can define it via IMAGE_KEY and IMAGE_IV parameters

(see Section 2.3.4) and then call ZCL_ConfigureOtauImageKey() function in the application initialization

code. This function reads IMAGE_KEY and IMAGE_IV macros configured by the application and shares for

bootloader’s use via EEPROM area (see Section 2.5.4).

Figure 2-4 illustrates the decryption sequence diagram that is performed on the client side by secure

bootloader as follows:

1. Check if application has configured decryption key and initialization vector. If not, use the default

key/IV.

2. Check for OTAU file cluster identifier to detect if it is an OTAU cluster file.

3. Read integrity code (if present) from the file, if OTAU file header notifies its presence.

4. Decrypt the integrity code (if present and encrypted).

5. If integrity check passes, decrypt the upgrade image and use it.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

1
7

17

Figure 2-4. Decryption Flow

 Server Client application Client bootloader

Upgrade end request/response

Check for the right manufacturer

code. Calculate CRC and write to

EEPROM. Set action for bootloader

Client AES engine

Validate the calculated CRC

with EEPROM CRC**

Switch to old image if CRC check fails

If security bit is set, decrypt the

image (inplace) using transceiver’s

AES engine

Move the image from

external to internal flash

<<switch to new application image>>

Read the OTA header and

derive the security, integrity

fields

If integrity bit is set, decrypt the

integrity code using transceiver’s

AES engine

Calculate and validate

with image MAC/CRC**

Switch to old image if file MAC/CRC

check fails

Check if it is an OTAU file or

raw file. For OTAU file, save

control info and strip the hdr

Comments in black are specific to security part
** Mutually exclusive

2.5.3 Use of Secured and Unsecured Image

If USE_IMAGE_SECURITY is enabled in the bootloader, the bootloader can upgrade only encrypted file sent in

OTAU cluster file format. Plain images are not honored.

When USE_IMAGE_SECURITY is disabled in the bootloader, the bootloader honors the image as is in the

upgrade file. It is expected that the image upgraded is a plain image in this case.

In either case, the bootloader updates the image Type value in EEPROM (see also Section 2.5.4) to reflect the

new image’s capability and for application’s use in outgoing OTA upgrade requests.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
1

8

18

2.5.4 EEPROM Usage for OTAU Parameters

EEPROM is used to share non-volatile parameters between application and bootloader. Even if upgrade image

has EEPROM content, using it for sharing is not a problem. This is because, for application to bootloader

sharing, bootloader reads EEPROM parameters before writing with image’s content. For bootloader to

application sharing, the non-volatile parameters are over-written after copying image’s contents to EEPROM.

Table 2-7 shows the index usage in EEPROM.

Table 2-7. EEPROM Usage for Secure Bootloading

EEPROM

location
Direction Value Description Addition Comments

0-3 Application to bootloader Action & CRC

Bootloader action is notified. Exter-

nal flash contents’ 8-bit CRC is

stored

-

4 Application to bootloader

1 Use the key & IV from EEPROM

Use default key
Specific to secured

bootloader

Any other

value

5-20 Application to bootloader
128-bit hex

value

If byte 4 is a ‘1’, read 128-bit key

from this offset

Specific to secured

bootloader

21-36 Application to bootloader
128-bit hex

value

If byte 4 is a ‘1’, read 128-bit initiali-

zation vector from this offset

Specific to secured

bootloader

37-38 Bootloader to Application
16-bit hex

value

“Image Type” of the newly upgraded

image
-

39-43 Application to bootloader
32-bit NVM

start address Bootloader skips writing to internal

flash to not overwrite non-volatile

parameters

-

44-47 Application to bootloader
32-bit NVM

end address
-

2.6 Upgrade Access Point Tools

Once the network is up and running, the user may proceed with starting the upgrade process with the help of

PC tools provided with the BitCloud SDK. In case of a dedicated upgrade access point (UAP), the user shall

first configure a Runner device, which will serve as an OTAU server, while in case of an in-network UAP it is

assumed that the server device is already present in the network. In both cases the server device shall be

connected over a serial link to the Bootloader PC tool installed on a PC.

The Bootloader PC tool is used to initiate and control the upgrade process. Another tool involved is the Image

Converter utility used to convert *.srec images into compatible *.zigbee images, which can be uploaded to

the devices. The Bootloader PC tool and the Image Converter utility are provided with the Serial Bootloader

software package [5].

The overall upgrade process is illustrated in Figure 2-5. The OTAU Server depicted in the illustration is an in-

network device supporting the OTAU server cluster. Proceed to Section 2.6.1 for details on connecting the

Bootloader PC tool to an OTAU server. The procedure for updating the network after the server is connected is

given in Section 2.6.2.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

1
9

19

Figure 2-5. Over-the-Air Upgrade with the OTAU Bootloader Tool

OTAU

Server

C

R

R

ED

R

PC

Serial

connection

Bootloader PC tool

.srec

image Service

Discovery OTAU

Client

Transfer

image

Receive

image

Report

A ZigBee network

R – router

C – coordinator

ED – end device

2.6.1 Connecting the OTAU Bootloader Tool to an In-Network Server

The following steps illustrate a typical sequence to connect the Bootloader PC tool to an in-network OTAU

server and prepare to upgrade the target network:

1. Start the Bootloader PC tool.

2. Switch to the OTAU tab as shown in Figure 2-6.

3. Specify connection settings to match the port where the OTAU server device is connected.

4. Click the Start passive mode button. The program will listen to the specified port to detect the OTAU

server device.

2.6.2 Updating the Network with the Bootloader PC Tool

The following steps illustrate a typical sequence to upgrade a single device on the network:

1. Connect the tool to a server as described in Section 2.6.1.

2. The utility will automatically populate the list of devices that support the OTAU functionality (that is,

applications that include the OTAU client cluster). By default, only devices programmed with

application images with OTAU support should be shown in the list. The operation may take up to one

minute and more depending on end devices’ sleep periods.

3. Start the Image Converter utility (you will also be able to convert images in the Bootloader PC tool

although it is not possible to set metadata information there):

a. Select *.srec image(s) you wish to upload to a remote OTAU-capable device over the air.

b. Fill in image metadata information in fields below and click Convert. You can specify the firmware

version and the stack version.

Note: An *.srec image may contain an EEPROM payload. This is configured in the Image Converter

utility through the checkbox near the Erase label. If it is checked, the image generated by the utility

will contain the EEPROM part and the device’s EEPROM will be cleared during update with this

image. If the Erase checkbox is left unchecked, the firmware will not contain the image for

EEPROM so that after the update device’s EEPROM data will stay unchanged.

4. Return to the Bootloader PC tool:

a. Click on the Update button next to device information.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
2

0

20

b. In the window that has opened specify the folder containing firmware images either in the

*.zigbee or the *.srec format. *.srec images can be converted in place by clicking on

Convert.

c. Select a suitable image and click Upload and the upload process will begin.

d. Once the image is uploaded the progress bar next to the updated device will be replaced by a

button. Click on this button to send an update end response to the device, informing it that it can

swap application images. Note switching to a new firmware can take additional time.

Upload progress for each device being updated will be shown in the OTAU server tool window depicted on

Figure 2-7. When a sleeping end device uploads a new firmware image, it suspends sleeping, but it still uses

the polling mechanism to request data from its parent. Therefore for end devices with greater

CS_INDIRECT_POLL_RATE parameter, which specifies the period of time between two poll requests, it will

take longer to download the firmware image.

Figure 2-6. The OTAU Server Tool Main Screen

Update button,

Press to detect

networks.

Select connection

type

Select port

Press the Init button to

connect to a Runner device

Press Start to

force a Runner

device to join the

selected network

After init, set security keys

Connect to an in-network

OTAU server device

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

2
1

21

Figure 2-7. The OTAU Server Tool Devices’ Screen

Appropriate “Image type” as described in Section 2.5.1.2 will be displayed here.

2.7 Custom Use of ISD

The ISD component may be used to implement custom OTAU mechanism. In this case the server (that is, a

device that distributes firmware images) should use the ISD API to pass messages from the client device to the

image storage system.

ISD communicates with the storage system through the serial interface. The ISD_Open() and ISD_Close()

functions are used to open and close the serial interface, respectively. While the serial interface is open the

following functions may be called to address the storage system with a request from the client:

 ISD_QueryNextImageReq() to inform the storage system about a client requesting a new image and

the client’s firmware version: the success status in the response should indicate that a new image is

available for the client

 ISD_ImageBlockReq() to request the specified block of data of the image from the storage system

 ISD_UpgradeEndReq() to notify the storage system that the client has uploaded the whole image and

is only waiting for the update end response command to switch the current image with the new one

All ISD functions are executed asynchronously, with the callback’s being called when the storage system

responds to the message sent by ISD. For API specification refer to [4].

The storage system sends three types of commands each of them having the structure shown in Table 2-8.

The storage system may add any sense to the meaning of the fields. ISD uses only command ID to identify the

type of the message and to raise the right callback function. Besides, the payload field is cast to the type

corresponding to the message type. The way other fields are processed in on behalf of the application and the

callback functions it specifies, calling ISD API functions.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
2

2

22

Table 2-8. ISD Protocol Command Structure

Field Size [bytes] Comment

Address mode 1
Standard addressing information that is used to identify the client to

which the response is addressed

Short address 2

Extended address 8

Profile ID 2

Endpoint 1

Destination end-

point
1

Cluster ID 2

Default Response 1 Being set to 1, indicates that the default response should be sent

Command’s options 1
Bit 1 – direction, bit 2 – is general command; remaining bits are not

used

Command ID 1

May have one of the following values:

QUERY_NEXT_IMAGE_REQUEST_ID

IMAGE_BLOCK_REQUEST_ID

UPGRADE_END_REQUEST_ID

(defined in the zclOTAUCluster.h file)

Payload Depends on command

May be cast to one of the following types depending on the command

ID:

ZCL_OtauQueryNextImageResp_t

ZCL_OtauImageBlockResp_t

ZCL_OtauUpgradeEndResp_t

3 Reference

[1] 095264r21 ZigBee Over-the-Air Upgrading Cluster Specification

[2] ZigBee PRO specification (053474r20)

[3] AVR2052: BitCloud Quick Start Guide

[4] BitCloud API Reference (available in BitCloud SDK)

[5] AVR2054: Serial Bootloader User Guide

http://www.zigbee.org/Standards/Downloads.aspx
http://www.zigbee.org/Standards/Downloads.aspx
http://atmel.com/dyn/resources/prod_documents/doc8200.pdf
http://www.atmel.com/tools/BITCLOUDPROFILESUITE-ZIGBEEPROPUBLICPROFILE.aspx
http://atmel.com/dyn/resources/prod_documents/doc8390.pdf

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015

2
3

23

4 Revision History

Doc Rev. Date Comments

8426D 03/2015 Modified for BitCloud 3.2 release.

8426C 08/2014 Modified for BitCloud 3.1 release. Added SAMR21 and security support.

8426B 03/2014 Updated list of supported platforms to RFR2 family. Document clean up.

8426A 08/2011 Initial document release.

BitCloud OTAU User Guide [APPLICATION NOTE]
Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015
2

4

24

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2015 Atmel Corporation. / Rev.:Atmel-8426D-BitCloud-OTAU-User-Guide_ApplicationNote_032015.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, BitCloud®, Enabling Unlimited Possibilities®, megaAVR®, XMEGA®, ZigBit®, and others are
registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND COND ITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LI MITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accurac y or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, auto motive applications. Atmel products are not intended,

authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and wil l not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety -Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation o f nuclear facilities and weapons systems. Atmel
products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not
designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive -grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Introduction
	Table of Contents
	1 Architecture
	1.1 Architecture Building Blocks
	1.1.1 Client Side Architecture
	1.1.2 Server Side Architecture

	1.2 Basic Protocol and Control Flow 1` cx
	1.2.2 Image Page/Block Request Modes

	1.3 Application/OTAU Interaction
	1.4 Embedded Bootloader and External Image Store
	1.4.1 Secure Bootloading

	2 Implementation
	2.1 Supported Platforms
	2.2 Hardware Setup
	2.3 OTAU Configuration
	2.3.1 Enabling OTAU
	2.3.2 Setting OTAU Parameters
	2.3.3 OTAU ConfigServer Parameters
	2.3.4 Secure Bootloader Parameters

	2.4 Application Operation with OTAU Support
	2.4.1 OTAU Cluster API Overview
	2.4.1.1 Processing OTAU Notifications

	2.4.2 Running the OTAU Service on a Client/Server
	2.4.3 Example Code for the OTAU Service Usage
	2.4.3.1 Define Variables and Constants
	2.4.3.2 Get the OTAU Cluster
	2.4.3.3 Register the Endpoint
	2.4.3.4 Prepare Parameters for OTAU Initialization
	2.4.3.5 Run the OTAU Service

	2.5 Secure Bootloader Operation
	2.5.1 Server Side (encryption)
	2.5.1.1 Using the Encryption Tool
	2.5.1.2 Usage of “Image Type” Field in OTAU Header

	2.5.2 Client Side (Decryption)
	2.5.3 Use of Secured and Unsecured Image
	2.5.4 EEPROM Usage for OTAU Parameters

	2.6 Upgrade Access Point Tools
	2.6.1 Connecting the OTAU Bootloader Tool to an In-Network Server
	2.6.2 Updating the Network with the Bootloader PC Tool

	2.7 Custom Use of ISD

	3 Reference
	4 Revision History

