MICROCHIP
CAN Flexible Data-Rate (FD) Protocol Module

This section of the manual contains the following major topics:

1.0 INEFOAUCTION ..ottt et ebt e e e e ar e e e 2
2.0 CAN FD MeSSAQGE Frames.......cciiuiiiiiiieiiiiie ettt sttt et 5
3.0 CONLrOl REGISTEIS .ttt e ettt et e et e e enneas 9
4.0 Modes Of OPEIAtioNcoeeeiiiiiiie et e e e e e et e e e et eeeeaaaes 53
LT O 0o o1 T U =1 1 (o] o USRS 59
6.0 MesSSage TranSMUSSIONcc.uueiiiii ettt e e ettt e e e e et e e e e e et e e e e e aneeeeee e e anbeeaaeeannneeas 72
7.0 Transmit Event FIFO — TEF ..o e 81
8.0 MeSSAGE FllEIING.....uveiiiiiieiiie et 86
9.0 MeSSaGE RECEPLIONeeiiiiiieiiee e 91
T0.0 FIFO BENAVIOT......ciiiiiiiiiiiee ettt ettt ettt s 97
N T T =S =T 4 o o PRSP 108
B O 101 (=T T o] £ PP EPPPTRRR 109
S T O = o] g o = o |1 T SRS 116
14.0 Related Application NOTESoiiiiiiiiiie e 118
15.0 REVISION HISTOIY ...ttt 119

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 1

dsPIC33/PIC24 Family Reference Manual

1.0 INTRODUCTION

CAN Flexible Data-Rate (FD) addresses the increasing demand for bandwidth on CAN buses.
The two major enhancements over CAN 2.0B consist of:

* Increased data field of up to 64 data bytes (from a maximum eight data bytes for CAN 2.0B)
» Option to switch to faster bit rate after the arbitration field

Figure 1-1 shows the possible increase in net bit rate due to the higher Data Bit Rate (DBR) and
increased data bytes per frame.

Figure 1-1: Net CAN FD Bit Rate
Frame ID: 11-Bit, Bit Rate Arbitration: 1 Mbit
6
—64 bytes payload
5 —48 bytes payload

——32 bytes payload
16 bytes payload
4 —8 bytes payload

Net Bit Rate (Mbit/s)
w

0 1 2 3 4 5 6 7 8 9
Bit Rate Data Phase (Mbit/s)

The CAN FD protocol is defined to allow CAN 2.0 messages and CAN FD messages to coexist
on the same bus. This does not imply that non-CAN FD controllers can be mixed with CAN FD
controllers on the same bus. Non-CAN FD controllers will generate error frames while receiving
a CAN FD message.

1.1 Features

The CAN FD module has the following features:
General
* Nominal (Arbitration) Bit Rate up to 1 Mbps
« Data Bit Rate up to 8 Mbps
» CAN FD Controller modes:
- Mixed CAN 2.0B and CAN FD mode
- CAN 2.0B mode
» Conforms to ISO11898-1:2015
Message FIFOs
» 31 FIFOs Configurable as Transmit or Receive FIFOs
+ One Transmit Queue (TXQ)
» Transmit Event FIFO (TEF) with 32-Bit Timestamp
Message Transmission
* Message Transmission Prioritization:
- Based on priority bit field and/or
- Message with lowest ID gets transmitted first using the TXQ
* Programmable Automatic Retransmission Attempts: Unlimited, Three Attempts or Disabled

DS70005340C-page 2

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Message Reception

» 32 Flexible Filter and Mask Objects

» Each Object can be Configured to Filter either:
- Standard ID and first 18 data bits or
- Extended ID

» 32-Bit Timestamp

» The CAN FD Bit Stream Processor (BSP) implements the Medium Access Control (MAC)
of the CAN FD protocol described in ISO11898-1:2015. It serializes and deserializes the bit
stream, encodes and decodes the CAN FD frames, manages the medium access,
Acknowledges frames, and detects and signals errors.

» The TX handler prioritizes the messages that are requested for transmission by the
transmit FIFOs. It uses the RAM interface to fetch the transmit data from RAM and provides
it to the BSP for transmission.

» The BSP provides received messages to the RX handler. The RX handler uses an
acceptance filter to filter the messages that shall be stored in the receive FIFOs. It uses the
RAM interface to store received data into RAM.

» Each FIFO can be configured either as a transmit or receive FIFO. The FIFO control keeps
track of the FIFO head and tail, and calculates the user address. In a TX FIFO, the user
address points to the address in RAM where the data for the next transmit message is
stored. In an RX FIFO, the user address points to the address in RAM where the data of the
next receive message will be read. The user notifies the FIFO that a message is written to
or read from RAM by incrementing the head/tail of the FIFO.

* The TXQ is a special transmit FIFO that transmits the messages based on the ID of the
messages stored in the queue.

* The TEF stores the message IDs of the transmitted messages.

» Afree-running Time Base Counter (TBC) is used to timestamp received messages.
Messages in the TEF can also be timestamped.

» The CAN FD controller module generates interrupts when new messages are received or
when messages are transmitted successfully.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 3

dsPIC33/PIC24 Family Reference Manual

Figure 1-2 shows the system block diagram.

Figure 1-2: System Block Diagram
CxTX TX Handler Timestamping
TX Prioritization
Interrupt Control
CxRX RX Handler
Filter and Masks Error Handling Diagnostics
Device RAM
TEF ™>XQ FIFO 1 FIFO 31
Message Message Message Message
Object 0 Object 0 Object 0 Object 0
L] L] L] L]
L] L] L]
Message Message Message Message
Object 31 Object 31 Object 31 Object 31
Note: The number of FIFOs, filters and masks supported varies by device. Please refer to the
“Controller Area Network (CAN FD) Module” chapter in the specific device data sheet for the
actual number of FIFOs, filters and masks.

DS70005340C-page 4

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

2.0 CAN FD MESSAGE FRAMES

The 1SO11898-1:2015 describes the different CAN message frames in detail. Figure 2-1
through Figure 2-6 explain and summarize the construction of the messages and fields.

There are four different CAN data/remote frames (see Figure 2-2):

* CAN Base Frame: Classic CAN 2.0 frame using Standard ID

* CAN FD Base Frame: CAN FD frame using Standard ID

» CAN Extended Frame: Classic CAN 2.0 frame using Extended ID

» CAN FD Extended Frame: CAN FD frame using Extended ID

There are no remote frames in CAN FD frames; therefore, the RTR bit is replaced with the RRS

bit (see Figure 2-2). The RRS bit in the CAN FD base frame can be used to extend the SID to
12 bits. When enabled, it is referred to as SID11; it is the Least Significant bit (LSb) of SID[11:0].

Figure 2-3 specifies the control field of the different CAN messages. Before CAN FD was added
to the 1SO11898-1:2015, the FDF bit was a reserved bit. Now the FDF bit selects between
Classic and CAN FD formats.

The BRS bit selects if the bit rate should be switched in the data phase of CAN FD frames.
Figure 2-6 illustrates the error and overload frames. These special frames do not change.

Note: If an error is detected during the data phase of a CAN FD frame, the bit rate will be
switched back to the Nominal Bit Rate (NBR). Error frames are always transmitted
at the arbitration bit rate.

2.1 ISO vs. Non-ISO CRC

To support the system validation of non-ISO CRC ECUs, the CAN FD controller module sup-
ports both ISO CRC (according to 1SO11898-1:2015) and non-ISO CRC (see Figure 2-4 and
Figure 2-5). The CRC field is selectable using the ISOCRCEN bit (CxCONL[5]). The ISO CRC
field contains the stuff count. This count was not included in the original CAN FD specification; it
was added to fix a minor issue in the error detection of the original specification.

CAN FD frames use two different lengths of CRC: 17-bit for up to 16 data bytes and 21-bit for
20 or more data bytes. Technically, there are a total of six different CAN data/remote frames in

the CAN FD.
Figure 2-1: General Data Frame
DATA FRAME
IFS SOF DATA CRC (16/18/22b) IFS
(=3b) | (1b) ARBITRATION (12/32b) | CTRL (6/8/9b) (0t 64 bytes)| GRG (16/22/26b) ACK (2b)|EOF (7b) (= 3b)

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 5

dsPIC33/PIC24 Family Reference Manual

Figure 2-2: Arbitration Field
ARBITRATION (12/32b)
CAN Base SID[10:0] RTR
CAN FD Base SID[10:0] KRS
CAN Ext. EID[28:18] SRR | IDE EID[17:0] RTR
CAN FD Ext. EID[28:18] SRR | IDE EID[17:0] RRS
Figure 2-3: Control Field
CTRL (6/8/9b)
CAN Base | IDE | FDF DLCI3:0]

CANFDBase | IDE | FDF | res | BRS | ESI DLC[3:0]

CAN Ext. | FDF r0 DLCI3:0]
CANFDExt. | FDF | res | BRS | ESI DLC[3:0]
Figure 2-4: ISO CRC Field

CRC (16/22/26b)

CAN Base CRC (15b) GRC

STUPF | cRC (17/21b) | CRC

CAN FD Base CNT (4b) DEL
CAN Ext. CRC (15b) %‘EE
STUFF CRC

CAN FD EXt. | GNT (4b) BRS CRC

DS70005340C-page 6 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Figure 2-5: Non-ISO CRC Field
CRC (16/18/22b)
CAN Base CRC (15b) GRC
CAN FD Base CRC (17/21b) aRC
CAN Ext. CRC (15b) SRC
CAN FD Ext. CRC (17/21b) eRC
Figure 2-6: Error and Overload Frame
ERROR
ANYWHERE WITHIN DATA FRAME | ERRFLAG (6b) | ERRDEL (8b) | IFS (= 3b) or OVL
OVERLOAD
EOF or ERRDEL or OVLDEL OVLFLAG (6b) | OVLDEL (8b) | IFS (= 3b)or OVL

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 7

dsPIC33/PIC24 Family Reference Manual

2.11 DLC ENCODING

The Data Length Code (DLC) specifies the number of data bytes a message frame contains.
Table 2-1 illustrates the encoding.

Table 2-1: DLC Encoding
Frame DLC Number of Data Bytes

CAN 2.0 and CAN FD 0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

CAN 2.0 9-15 8

CAN FD 9 12
10 16
11 20
12 24
13 32
14 48
15 64

DS70005340C-page 8 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

3.0

CONTROL REGISTERS

CAN FD operations are controlled using the following Special Function Registers (SFRs). The
following registers are described later in this section:

Register 3-1:
Register 3-2:
Register 3-3:
Register 3-4:
Register 3-5:
Register 3-6:
Register 3-7:
Register 3-8:
Register 3-9:

Register 3-10:

CxCONL
CxCONH
CxNBTCFGL
CxNBTCFGH
CxDBTCFGL
CxDBTCFGH
CxTDCL
CxTDCH
CxTBCL
CxTBCH

Register 3-11: CxTSCONL

Register 3-12:
Register 3-13:
Register 3-14:
Register 3-15:
Register 3-16:
Register 3-17:
Register 3-18:
Register 3-19:
Register 3-20:
Register 3-21:
Register 3-22:
Register 3-23:
Register 3-24:
Register 3-25:
Register 3-26:
Register 3-27:
Register 3-28:

* Register 3-29:

Register 3-30:
Register 3-31:
Register 3-32:
Register 3-33:
Register 3-34:
Register 3-35:
Register 3-36:
Register 3-37:
Register 3-38:
Register 3-39:
Register 3-40:
Register 3-41:
Register 3-42:
Register 3-43:
Register 3-44:
Register 3-45:
Register 3-46:
Register 3-47:
Register 3-48:
Register 3-49:
Register 3-50:
Register 3-51:
Register 3-52:
Register 3-53:
Register 3-54:
Register 3-55:

CxTSCONH
CxVECL
CxVECH
CxINTL
CxINTH
CxRXIFL
CxRXIFH
CxRXOVIFL
CxRXOVIFH
CxTXIFL
CxTXIFH
CxTXATIFL
CxTXATIFH
CxTXREQL
CxTXREQH
CxFIFOBAL
CxFIFOBAH
CxTXQCONL
CxTXQCONH
CxTXQSTA

CxFIFOCONXxL
CxFIFOCONxH

CxFIFOSTAX
CxTEFCONL
CxTEFCONH
CxTEFSTA
CxFIFOUAXL
CxFIFOUAxH
CxTEFUAL
CxTEFUAH
CxTXQUAL
CxTXQUAH
CxTRECL
CxTRECH
CxBDIAGOL
CxBDIAGOH
CxBDIAG1L
CxBDIAG1H
CxFLTCONXxL
CxFLTCONxH
CxFLTOBJxL
CxFLTOBJxH
CxMASKXxL

CxMASKxH

© 2018-2022 Microchip Technology Inc. and its subsidiaries

DS70005340C-page 9

dsPIC33/PIC24 Family Reference Manual

Register 3-1: CxCONL: CAN Control Register Low
R/W-0 U-0 R/W-0 R/W-0 R-0 R/W-1 R/W-1 R/W-1
CON — SIDL BRSDIS BUSY WFT1 WEFTO WAKFIL™)
bit 15 bit 8
R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CLKSEL™M | pXEDIS!" |ISOCRCEN(™ | DNCNT4 | DNCNT3 DNCNT2 DNCNT1 DNCNTO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15

bit 14
bit 13

bit 12

bit 11

bit 10-9

bit 8

bit 7

bit 6

bit 5

Note 1:

CON: CAN Enable bit

1 = CAN module is enabled

0 = CAN module is disabled

Unimplemented: Read as ‘0’

SIDL: CAN Stop in Idle Control bit

1 = Stops module operation in Idle mode

0 = Does not stop module operation in Idle mode

BRSDIS: Bit Rate Switching (BRS) Disable bit

1 = Bit Rate Switching is disabled, regardless of BRS in the transmit message object
0 = Bit Rate Switching depends on BRS in the transmit message object
BUSY: CAN Module is Busy bit

1 =The CAN module is active

0 = The CAN module is inactive

WFT[1:0]: Selectable Wake-up Filter Time bits

11 = T1FILTER

10 = T10FILTER

01 = TO1FILTER

00 = TOOFILTER

WAKFIL: Enable CAN Bus Line Wake-up Filter bit(!)

1 = Uses CAN bus line filter for wake-up

0 = CAN bus line filter is not used for wake-up

CLKSEL: Module Clock Source Select bit(")

1 = Auxiliary clock is active when module is enabled

0 = Clock from the CAN clock generator is active when the module is enabled
PXEDIS: Protocol Exception Event Detection Disabled bit(!)

A recessive “reserved bit” following a recessive FDF bit is called a “Protocol Exception”.
1 = Protocol exception is treated as a form error
0 = If a protocol exception is detected, CAN will enter the bus integrating state

ISOCRCEN: Enable ISO CRC in CAN FD Frames bit(")

1 = Includes Stuff Bit Count in CRC field and uses non-zero CRC initialization vector
0 = Does not include Stuff Bit Count in CRC field and uses CRC initialization vector with all zeros

These bits can only be modified in Configuration mode (OPMOD[2:0] = 100).

DS70005340C-page 10

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-1: CxCONL: CAN Control Register Low (Continued)

bit 4-0 DNCNTI[4:0]: DeviceNet™ Filter Bit Number bits

10011-11111 = Invalid selection (compares up to 18 bits of data with EIDx)
10010 = Compares up to Data Byte 2, bit 6 with EID17

00001 = Compares up to Data Byte 0, bit 7 with EIDO
00000 = Does not compare data bytes

Note 1: These bits can only be modified in Configuration mode (OPMOD[2:0] = 100).

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 11

dsPIC33/PIC24 Family Reference Manual

Register 3-2: CxCONH: CAN Control Register High

R/W-0 R/W-0 R/W-0 R/W-0 S/HC-0 R/W-1 R/W-0 R/W-0
TXBWS3 TXBWS2 TXBWS1 TXBWSO0 ABAT REQOP2 REQOP1 REQOPO
bit 15 bit 8
R-1 R-0 R-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0
oPMOD2 | opPMOD1 | oPMoDO | TXQENM | sTEF(" | sSERRLOM(| ESIGM(| RTXAT()
bit 7 bit 0
Legend: S = Settable bit HC = Hardware Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bitis set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-12 TXBWS[3:0]: Transmit Bandwidth Sharing bits
1111-1100 = 4096
1011 =2048
1010 = 1024
1001 =512
1000 = 256
0111 =128
0110 =64
0101 =32
0100 =16
0011 =8
0010 =4
0001 =2
0000 = No delay
bit 11 ABAT: Abort All Pending Transmissions bit

1 = Signals all transmit buffers to abort transmission
0 = Module will clear this bit when all transmissions are aborted
bit 10-8 REQOP[2:0]: Request Operation Mode bits
111 = Sets Restricted Operation mode
110 = Sets Normal CAN 2.0 mode; error frames on CAN FD frames
101 = Sets External Loopback mode
100 = Sets Configuration mode
011 = Sets Listen Only mode
010 = Sets Internal Loopback mode
001 = Sets Disable mode
000 = Sets Normal CAN FD mode; supports mixing of full CAN FD and Classic CAN 2.0 frames
bit 7-5 OPMOD[2:0]: Operation Mode Status bits
111 = Module is in Restricted Operation mode
110 = Module is in Normal CAN 2.0 mode; error frames on CAN FD frames
101 = Module is in External Loopback mode
100 = Module is in Configuration mode
011 = Module is in Listen Only mode
010 = Module is in Internal Loopback mode
001 = Module is in Disable mode
000 = Module is in Normal CAN FD mode; supports mixing of full CAN FD and Classic CAN 2.0 frames

bit 4 TXQEN: Enable Transmit Queue bit(

1 = Enables TXQ and reserves space in RAM
0 = Does not reserve space in RAM for TXQ

Note 1: These bits can only be modified in Configuration mode (OPMODI[2:0] = 100).

DS70005340C-page 12 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-2: CxCONH: CAN Control Register High (Continued)

bit 3 STEF: Store in Transmit Event FIFO bit(!)

1 = Saves transmitted messages in TEF
0 = Does not save transmitted messages in TEF

bit 2 SERRLOM: Transition to Listen Only Mode on System Error bit()

1 = Transitions to Listen Only mode
0 = Transitions to Restricted Operation mode

bit 1 ESIGM: Transmit ESI in Gateway Mode bit(")

1 = ESl is transmitted as recessive when the ESI of message is high or CAN controller is error passive
0 = ESl reflects error status of the CAN controller

bit 0 RTXAT: Restrict Retransmission Attempts bit(1)

1 = Restricted retransmission attempts, uses TXAT[1:0] (CxFIFOCONxHI[6:5])
0 = Unlimited number of retransmission attempts, TXAT[1:0] bits will be ignored

Note 1: These bits can only be modified in Configuration mode (OPMOD[2:0] = 100).

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 13

dsPIC33/PIC24 Family Reference Manual

Register 3-3: CxNBTCFGL: CAN Nominal Bit Time Configuration Register Low(")

uU-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1
— TSEG2[6:0]
bit 15 bit 8
uU-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1
— SJW[6:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15 Unimplemented: Read as ‘0’
bit 14-8 TSEG2[6:0]: Time Segment 2 bits (Phase Segment 2)

111 1111 =Lengthis 128 x TQ

000 0000 =Lengthis1xTQ

bit 7 Unimplemented: Read as ‘0’

bit 6-0 SJWI[6:0]: Synchronization Jump Width bits
111 1111 =Lengthis 128 x TQ
000 0000 =Lengthis 1xTa

Note 1: These bits can only be modified in Configuration mode (OPMODI[2:0] = 100).

DS70005340C-page 14 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-4: CxNBTCFGH: CAN Nominal Bit Time Configuration Register High(")

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BRP[7:0]
bit 15 bit 8
R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0
TSEG1[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-8 BRP[7:0]: Baud Rate Prescaler bits
1111 1111 =TQ = 256/FCAN
0000 0000 =Ta=1/FCAN
bit 7-0 TSEG1[7:0]: Time Segment 1 bits (Propagation Segment + Phase Segment 1)
1111 1111 =Lengthis 256 x TQ
0000 0000 =Lengthis1xTa
Note 1: These bits can only be modified in Configuration mode (OPMODI[2:0] = 100).
Register 3-5: CxDBTCFGL: CAN Data Bit Time Configuration Register Low!(")
u-0 u-0 U-0 uU-0 R/W-0 R/W-0 R/W-1 R/W-1
— — — — TSEG2[3:0]
bit 15 bit 8
u-0 u-0 uU-0 uU-0 R/W-0 R/W-0 R/W-1 R/W-1
— — — — SJW[3:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR 1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-12 Unimplemented: Read as ‘0’
bit 11-8 TSEG2[3:0]: Time Segment 2 bits (Phase Segment 2)
1111 = Lengthis 16 x TQ
0000 = Lengthis 1 x TQ
bit 7-4 Unimplemented: Read as ‘0’
bit 3-0 SJWI[3:0]: Synchronization Jump Width bits

1111 = Lengthis 16 x TQ
0000 = Lengthis 1 x TQ

Note 1: This register can only be modified in Configuration mode (OPMODJ[2:0] = 100).

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 15

dsPIC33/PIC24 Family Reference Manual

Register 3-6: CxDBTCFGH: CAN Data Bit Time Configuration Register High(!)
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BRP[7:0]

bit 15 bit 8
u-0 u-0 U-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-0
_ _ — TSEG1[4:0]

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 BRP[7:0]: Baud Rate Prescaler bits

1111 1111 =TaQ = 256/FCAN

0000 0000 =TaQ = 1/FCAN

bit 7-5 Unimplemented: Read as ‘0’

bit 4-0 TSEG1[4:0]: Time Segment 1 bits (Propagation Segment + Phase Segment 1)
1 1111 =Lengthis 32 xTaQ

0 0000 =Lengthis1xTa

Note 1: This register can only be modified in Configuration mode (OPMODJ[2:0] = 100).

DS70005340C-page 16

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-7: CxTDCL: CAN Transmitter Delay Compensation Register Low(")
uU-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0
— TDCO[6:0]
bit 15 bit 8
u-0 u-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — TDCV[5:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as ‘0’
bit 14-8

111 1111 =-64 x TCAN

011 1111 =63 x TCAN

000 0000=0xTCAN
bit 7-6 Unimplemented: Read as ‘0’
bit 5-0

11 1111 =63 x TCAN

00 0000 =0xTcAN
Note 1:

TDCOI6:0]: Transmitter Delay Compensation Offset bits (Secondary Sample Point (SSP))

TDCV[5:0]: Transmitter Delay Compensation Value bits (Secondary Sample Point (SSP))

This register can only be modified in Configuration mode (OPMOD[2:0] = 100).

© 2018-2022 Microchip Technology Inc. and its subsidiaries

DS70005340C-page 17

dsPIC33/PIC24 Family Reference Manual

Register 3-8: CxTDCH: CAN Transmitter Delay Compensation Register High(!)

uU-0 uU-0 uU-0 uU-0 uU-0 U-0 R/W-0 R/W-0
— — — — — — EDGFLTEN | SID11EN
bit 15 bit 8
uU-0 uU-0 uU-0 uU-0 uU-0 uU-0 R/W-1 R/W-0
— — — — — — TDCMOD1 | TDCMODO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-10 Unimplemented: Read as ‘0’
bit 9 EDGFLTEN: Enable Edge Filtering During Bus Integration State bit
1 = Edge filtering is enabled according to ISO11898-1:2015
0 = Edge filtering is disabled
bit 8 SID11EN: Enable 12-Bit SID in CAN FD Base Format Messages bit
1 =RRS is used as SID11 in CAN FD base format messages: SID[11:0] = {SID[10:0], SID11}
0 = Does not use RRS; SID[10:0]
bit 7-2 Unimplemented: Read as ‘0’
bit 1-0 TDCMODI1:0]: Transmitter Delay Compensation mode bits (Secondary Sample Point (SSP))

10-11 = Auto: Measures delay and adds TDCO
01 = Manual: Does not measure, uses TDCV[5:0] + TDCOI[6:0] from register

00 = Disables

Note 1: This register can only be modified in Configuration mode (OPMODJ[2:0] = 100).

DS70005340C-page 18

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-9: CxTBCL: CAN Time Base Counter Register Low(!2)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TBC[15:8]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TBCI[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 TBC[15:0] CAN Time Base Counter bits

This is a free-running timer that increments every TBCPRE[9:0] clock when TBCEN is set.

Note 1: The TBC will be stopped and reset when TBCEN = 0 to save power.
2: The TBC prescaler count will be reset on any write to CxTBCL/H (TBCPREX will be unaffected).

Register 3-10: CxTBCH: CAN Time Base Counter Register High!'-?)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TBC[31:24]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TBC[23:16]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 TBC[31:16] CAN Time Base Counter bits

This is a free-running timer that increments every TBCPRE[9:0] clock when TBCEN is set.

Note 1: The Time Base Counter (TBC) will be stopped and reset when TBCEN = 0 to save power.
2: The TBC prescaler count will be reset on any write to CxTBCL/H (TBCPREX will be unaffected).

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 19

dsPIC33/PIC24 Family Reference Manual

Register 3-11: CxTSCONL: CAN Timestamp Control Register Low

u-0 u-0 u-0 u-0 u-0 u-0 R/W-0 R/W-0
— — — — — — TBCPRE[9:8]

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TBCPRE[7:0]

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-10 Unimplemented: Read as ‘0’

bit 9-0 TBCPRE[9:0]: CAN Time Base Counter Prescaler bits

1023 = TBC increments every 1024 clocks

0 = TBC increments every 1 clock

Register 3-12: CxTSCONH: CAN Timestamp Control Register High

uU-0 uU-0 uU-0 uU-0 uU-0 U-0 uU-0 uU-0
bit 15 bit 8
uU-0 uU-0 U-0 uU-0 uU-0 R/W-0 R/W-0 R/W-0
— — — — — TSRES TSEOF TBCEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-3 Unimplemented: Read as ‘0’
bit 2 TSRES: Timestamp Reset bit (CAN FD frames only)

1 = At sample point of the bit following the FDF bit
0 = At sample point of Start-of-Frame (SOF)
bit 1 TSEOF: Timesstamp End-of-Frame (EOF) bit
1 = Timestamp when frame is taken valid (11898-1 10.7):
- RX no error until last, but one bit of EOF
- TX no error until the end of EOF
0 = Timestamp at “beginning” of frame:
- Classical Frame: At sample point of SOF
- FD Frame: see TSRES bit
bit 0 TBCEN: Time Base Counter (TBC) Enable bit

1 = Enables TBC
0 = Stops and resets TBC

DS70005340C-page 20 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-13: CxVECL: CAN Interrupt Code Register Low

u-0 u-0 u-0 R-0 R-0 R-0 R-0 R-0
— — — FILHIT[4:0]
bit 15 bit 8
u-0 R-1 R-0 R-0 R-0 R-0 R-0 R-0
— ICODE[6:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0’
bit 12-8 FILHIT[4:0]: Filter Hit Number bits

11111 = Filter 31
11110 = Filter 30

00001 = Filter 1
00000 = Filter 0
bit 7 Unimplemented: Read as ‘0’
bit 6-0 ICODE[6:0]: Interrupt Flag Code bits
1001011-1111111 = Reserved
1001010 = Transmit attempt interrupt (any bit in CxTXATIF is set)
1001001 = Transmit event FIFO interrupt (any bit in CXTEFSTA is set)
1001000 = Invalid message occurred (IVMIF/IE)
1000111 = CAN module mode change occurred (MODIF/IE)
1000110 = CAN timer overflow (TBCIF/IE)
1000101 = RX/TX MAB overflow/underflow (RX: Message received before previous message was
saved to memory; TX: Can’'t feed TX MAB fast enough to transmit consistent data)
(SERRIF/IE)
1000100 = Address error interrupt (illegal FIFO address presented to system) (SERRIF/IE)
1000011 = Receive FIFO overflow interrupt (any bit in CxRXOVIF is set)
1000010 = Wake-up interrupt (WAKIF/WAKIE)
1000001 = Errorinterrupt (CERRIF/IE)
1000000 = No interrupt
0100000-0111111 = Reserved
0011111 = FIFO 31 interrupt (TFIF31 or RFIF31 is set)

0000001 = FIFO 1 Interrupt (TFIF1 or RFIF1 is set)
0000000 = FIFO 0 Interrupt (TFIFO is set)

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 21

dsPIC33/PIC24 Family Reference Manual

Register 3-14: CxVECH: CAN Interrupt Code Register High

u-0 R-1 R-0 R-0 R-0 R-0 R-0 R-0
— RXCODE[6:0]
bit 15 bit 8
u-0 R-1 R-0 R-0 R-0 R-0 R-0 R-0
— TXCODE[6:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0’
bit 14-8 RXCODE[6:0]: Receive Interrupt Flag Code bits

1000001-1111111 = Reserved

1000000 = No interrupt

0100000-0111111 = Reserved

0011111 = FIFO 31 interrupt (RFIF[31] is set)

0000010 = FIFO 2 interrupt (RFIF[2] is set)
0000001 = FIFO 1 interrupt (RFIF[1] is set)
0000000 = Reserved; FIFO 0 cannot receive

bit 7 Unimplemented: Read as ‘0’
bit 6-0 TXCODE[6:0]: Transmit Interrupt Flag Code bits

1000001-1111111 = Reserved

1000000 = No interrupt

0100000-0111111 = Reserved

0011111 =FIFO 31 interrupt (TFIF[31] is set)

0000001 = FIFO 1 interrupt (TFIF[1] is set)
0000000 = FIFO 0 interrupt (TFIF[O] is set)

DS70005340C-page 22 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-15:

CxINTL: CAN Interrupt Register Low

R = Readable bit
-n = Value at POR

HS/C-0 HS/C-0 HS/C-0 HS/C-0 R-0 R-0 U-0 U-0
IvMIF(™ WAKIF() CERRIF™M | SERRIFM | RXOVIF TXATIF — —
bit 15 bit 8
U-0 u-0 u-0 R-0 HS/C-0 HS/C-0 R-0 R-0
= = = TEFIF MODIF(™ TBCIF™ RXIF TXIF
bit 7 bit 0
Legend: HS = Hardware Settable bit C = Clearable bit

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’

‘0’ = Bit is cleared x = Bit is unknown

bit 15

bit 14

bit 13

bit 12

bit 11

bit 10

bit 9-5
bit 4

bit 3

bit 2

bit 1

bit 0

Note 1:

IVMIF: Invalid Message Interrupt Flag bit(1)

1 = Invalid message interrupt occurred

0 = No invalid message interrupt

WAKIF: Bus Wake-up Activity Interrupt Flag bit(")
1 = Wake-up activity interrupt occurred

0 = No wake-up activity interrupt

CERRIF: CAN Bus Error Interrupt Flag bit(")

1 = CAN bus error interrupt occurred
0 = No CAN bus error interrupt

SERRIF: System Error Interrupt Flag bit(1)

1 = System error interrupt occurred

0 = No system error interrupt

RXOVIF: Receive Buffer Overflow Interrupt Flag bit
1 = Receive buffer overflow interrupt occurred

0 = No receive buffer overflow interrupt

TXATIF: Transmit Attempt Interrupt Flag bit

1 = Transmit attempt interrupt occurred
0 = No transmit attempt interrupt

Unimplemented: Read as ‘0’
TEFIF: Transmit Event FIFO Interrupt Flag bit

1 = Transmit event FIFO interrupt occurred
0 = No transmit event FIFO

MODIF: CAN Mode Change Interrupt Flag bit(")

1 = CAN module mode change occurred (OPMOD[2:0] have changed to reflect REQOP[2:0])
0 = No mode change occurred

TBCIF: CAN Timer Overflow Interrupt Flag bit(")
1 =TBC has overflowed

0 = TBC has not overflow

RXIF: Receive Object Interrupt Flag bit

1 = Receive object interrupt is pending

0 = No receive object interrupts are pending
TXIF: Transmit Object Interrupt Flag bit

1 = Transmit object interrupt is pending
0 = No transmit object interrupts are pending

CxINTL: Flags are set by hardware and cleared by application.

© 2018-2022 Microchip Technology Inc. and its subsidiaries

DS70005340C-page 23

dsPIC33/PIC24 Family Reference Manual

Register 3-16:

CxINTH: CAN Interrupt Register High

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 u-0 u-0
IVMIE WAKIE CERRIE SERRIE RXOVIE TXATIE — —
bit 15 bit 8
u-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — TEFIE MODIE TBCIE RXIE TXIE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15

bit 14

bit 13

bit 12

bit 11

bit 10

bit 9-5
bit 4

bit 3

bit 2

bit 1

bit 0

IVMIE: Invalid Message Interrupt Enable bit

1 = Invalid message interrupt is enabled

0 = Invalid message interrupt is disabled
WAKIE: Bus Wake-up Activity Interrupt Enable bit
1 = Wake-up activity interrupt is enabled

0 = Wake-up activity interrupt is disabled
CERRIE: CAN Bus Error Interrupt Enable bit

1 = CAN bus error interrupt is enabled

0 = CAN bus error interrupt is disabled
SERRIE: System Error Interrupt Enable bit

1 = System error interrupt is enabled

0 = System error interrupt is disabled

RXOVIE: Receive Buffer Overflow Interrupt Enable bit
1 = Receive buffer overflow interrupt is enabled
0 = Receive buffer overflow interrupt is disabled
TXATIE: Transmit Attempt Interrupt Enable bit
1 = Transmit attempt interrupt is enabled

0 = Transmit attempt interrupt is disabled
Unimplemented: Read as ‘0’

TEFIE: Transmit Event FIFO Interrupt Enable bit
1 = Transmit event FIFO interrupt is enabled

0 = Transmit event FIFO interrupt is disabled
MODIE: Mode Change Interrupt Enable bit

1 = Mode change interrupt is enabled

0 = Mode change interrupt is disabled

TBCIE: CAN Timer Interrupt Enable bit

1 = CAN timer interrupt is enabled

0 = CAN timer interrupt is disabled

RXIE: Receive Object Interrupt Enable bit

1 = Receive object interrupt is enabled

0 = Receive object interrupt is disabled

TXIE: Transmit Object Interrupt Enable bit

1 = Transmit object interrupt is enabled
0 = Transmit object interrupt is disabled

DS70005340C-page 24

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-17: CxRXIFL: CAN Receive Interrupt Status Register Low(")

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
RFIF[15:8]
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 u-0
RFIF[7:1] —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-1 RFIF[15:1]: Receive FIFO Interrupt Pending bits

1 = One or more enabled receive FIFO interrupts are pending
0 = No enabled receive FIFO interrupts are pending

bit 0 Unimplemented: Read as ‘0’

Note 1: CxRXIFL: FIFO: RFIFx = ‘or’ of enabled RX FIFO flags (flags need to be cleared in the FIFO register).

Register 3-18: CxRXIFH: CAN Receive Interrupt Status Register High(1)

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
RFIF[31:24]
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
RFIF[23:16]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 RFIF[31:16]: Receive FIFO Interrupt Pending bits

1 = One or more enabled receive FIFO interrupts are pending
0 = No enabled receive FIFO interrupts are pending

Note 1: CxRXIFH: FIFO: RFIFx = ‘or’ of enabled RX FIFO flags (flags need to be cleared in the FIFO register).

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 25

dsPIC33/PIC24 Family Reference Manual

Register 3-19: CxRXOVIFL: CAN Receive Overflow Interrupt Status Register Low(")

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
RFOVIF[15:8]

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 u-0
RFOVIF[7:1] —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-1 RFOVIF[15:1]: Receive FIFO Overflow Interrupt Pending bits

1 = Interrupt is pending
0 = Interrupt is not pending

bit 0 Unimplemented: Read as ‘0’

Note 1: CxRXOVIFL: FIFO: RFOVIFx (flag needs to be cleared in the FIFO register).

Register 3-20: CxRXOVIFH: CAN Receive Overflow Interrupt Status Register High(")

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
RFOVIF[31:24]
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
RFOVIF[23:16]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 RFOVIF[31:16]: Receive FIFO Overflow Interrupt Pending bits

1 = Interrupt is pending
0 = Interrupt is not pending

Note 1: CxRXOVIFH: FIFO: RFOVIFx (flag needs to be cleared in the FIFO register).

DS70005340C-page 26 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-21: CxTXIFL: CAN Transmit Interrupt Status Register Low("

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
TFIF[15:8]
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
TFIF[7:0]®
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 TFIF[15:0]: Transmit FIFO/TXQ Interrupt Pending bits(?)

1 = One or more enabled transmit FIFO/TXQ interrupts are pending
0 = No enabled transmit FIFO/TXQ interrupts are pending

Note 1: CxTXIFL: FIFO: TFIFx = ‘or’ of the enabled TX FIFO flags (flags need to be cleared in the FIFO register).
2: TFIFO is for the TXQ.

Register 3-22: CxTXIFH: CAN Transmit Interrupt Status Register High(1)

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
TFIF[31:24]
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
TFIF[23:16]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 TFIF[31:16]: Transmit FIFO/TXQ Interrupt Pending bits

1 = One or more enabled transmit FIFO/TXQ interrupts are pending
0 = No enabled transmit FIFO/TXQ interrupts are pending

Note 1: CxTXIFH: FIFO: TFIFx = ‘or’ of the enabled TX FIFO flags (flags need to be cleared in the FIFO register).

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 27

dsPIC33/PIC24 Family Reference Manual

Register 3-23: CxTXATIFL: CAN Transmit Attempt Interrupt Status Register Low(")

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
TFATIF[15:8]
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
TFATIF[7:0]®
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 TFATIF[15:0]: Transmit FIFO/TXQ Attempt Interrupt Pending bits(2)

1 = Interrupt is pending
0 = Interrupt is not pending

Note 1: CxTXATIFL: FIFO: TFATIFx (flag needs to be cleared in the FIFO register).
2: TFATIFO is for the TXQ.

Register 3-24: CxTXATIFH: CAN Transmit Attempt Interrupt Status Register High(")

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
TFATIF[31:24]
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
TFATIF[23:16]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR 1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 TFATIF[31:16]: Transmit FIFO/TXQ Attempt Interrupt Pending bits

1 = Interrupt is pending
0 = Interrupt is not pending

Note 1: CxTXATIFH: FIFO: TFATIFx (flag needs to be cleared in the FIFO register).

DS70005340C-page 28 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-25: CxTXREQL: CAN Transmit Request Register Low

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TXREQ[15:8]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TXREQ[7:1] TXREQO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-1 TXREQ[15:0]: Message Send Request bits

TXEN = 1 (object configured as a transmit object):
Setting this bit to ‘1’ requests sending a message. The bit will automatically clear when the message(s)
queued in the object is (are) successfully sent. This bit can NOT be used for aborting a transmission.
TXEN = 0 (object configured as a receive object):
This bit has no effect.

bit 0 TXREQO: Transmit Queue Message Send Request bit

Setting this bit to ‘1’ requests sending a message. The bit will automatically clear when the message(s)
queued in the object is (are) successfully sent. This bit can NOT be used for aborting a transmission.

Register 3-26: CxTXREQH: CAN Transmit Request Register High

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TXREQ[31:24]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TXREQ[23:16]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 TXREQ[31:16]: Message Send Request bits

TXEN = 1 (object configured as a transmit object):

Setting this bit to ‘1’ requests sending a message. The bit will automatically clear when the message(s)
queued in the object is (are) successfully sent. This bit can NOT be used for aborting a transmission.
TXEN = 0 (object configured as a receive object):

This bit has no effect.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 29

dsPIC33/PIC24 Family Reference Manual

Register 3-27: CxFIFOBAL: CAN Message Memory Base Address Register Low

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FIFOBA[15:8]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 u-o u-o
FIFOBA[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 FIFOBA[15:0]: Message Memory Base Address bits

Defines the base address for the transmit event FIFO followed by the message objects.
Note 1: Bits[1:0] are forced to '0' to be 32-bit word aligned.

Register 3-28: CxFIFOBAH: CAN Message Memory Base Address Register High

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FIFOBA[31:24]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FIFOBA[23:16]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 FIFOBA[31:16]: Message Memory Base Address bits

Defines the base address for the transmit event FIFO followed by the message objects.

DS70005340C-page 30 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-29: CxTXQCONL: CAN Transmit Queue Control Register Low

u-0 u-0 u-0 u-0 u-0 S/HC-1 R/W/HC-0 S/HC-0
— — — — — FRESET TXREQ UINC

bit 15 bit 8
R-1 u-0 U-0 R/W-0 u-0 R/W-0 u-0 R/W-0

TXEN() — — TXATIE — TXQEIE — TXQNIE

bit 7 bit 0

Legend: S = Settable bit HC = Hardware Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-11 Unimplemented: Read as ‘0’

bit 10 FRESET: FIFO Reset bit

1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset; user should poll
whether this bit is clear before taking any action
0 = No effect

bit 9 TXREQ: Message Send Request bit

1 = Requests sending a message; the bit will automatically clear when all the messages queued in
the TXQ are successfully sent
0 = Clearing the bit to ‘0’ while set (‘1’) will request a message abort

bit 8 UINC: Increment Head/Tail bit
When this bit is set, the FIFO head will increment by a single message.
bit 7 TXEN: TX Enable bit(")
1 = Transmit Message Queue. This bit always reads as ‘1’.
bit 6-5 Unimplemented: Read as ‘0’
bit 4 TXATIE: Transmit Attempts Exhausted Interrupt Enable bit

1 = Enables interrupt
0 = Disables interrupt

bit 3 Unimplemented: Read as ‘0’
bit 2 TXQEIE: Transmit Queue Empty Interrupt Enable bit

1 = Interrupt is enabled for TXQ empty
0 = Interrupt is disabled for TXQ empty

bit 1 Unimplemented: Read as ‘0’
bit 0 TXQNIE: Transmit Queue Not Full Interrupt Enable bit

1 = Interrupt is enabled for TXQ not full
0 = Interrupt is disabled for TXQ not full

Note 1: Please refer to the specific device data sheet for the Reset value of the TXEN bit.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 31

dsPIC33/PIC24 Family Reference Manual

Register 3-30: CxTXQCONH: CAN Transmit Queue Control Register High

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
pLsize2® | pLsize1™ | pLsizeo®™ | Fsizea™ | Fsizes™ | Fsize2) Fsize1™ | Fsizeo
bit 15 bit 8

U-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— TXAT1 TXATO TXPRI4 TXPRI3 TXPRI2 TXPRI1 TXPRIO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-13 PLSIZE[2:0]: Payload Size bits(")

111 = 64 data bytes
110 =48 data bytes
101 = 32 data bytes
100 = 24 data bytes
011 = 20 data bytes
010 = 16 data bytes
001 = 12 data bytes
000 = 8 data bytes

bit 12-8 FSIZE[4:0]: FIFO Size bits("
11111 = FIFO is 32 messages deep

00010 = FIFO is 3 messages deep
00001 = FIFO is 2 messages deep
00000 = FIFO is 1 message deep

bit 7 Unimplemented: Read as ‘0’

bit 6-5 TXAT[1:0]: Retransmission Attempts bits

This feature is enabled when RTXAT (CxCONH]I0]) is set.
11 = Unlimited number of retransmission attempts
10 = Unlimited number of retransmission attempts
01 = Three retransmission attempts
00 = Disable retransmission attempts
bit 4-0 TXPRI[4:0]: Message Transmit Priority bits
11111 = Highest message priority

00000 = Lowest message priority

Note 1: These bits can only be modified in Configuration mode (OPMOD[2:0] = 100).

DS70005340C-page 32 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-31: CxTXQSTA: CAN Transmit Queue Status Register

u-0 U-0 u-0 R-0 R-0 R-0 R-0 R-0
— — — TxQci | txaciz™ | Txaci2th | txacn™ | TxacioM
bit 15 bit 8
R-0 R-0 R-0 HS/C-0 u-0 R-1 U-0 R-1
TXABT? | TXLARB(® TXERR(?) TXATIF — TXQEIF — TXQNIF
bit 7 bit 0
Legend: C = Clearable bit HS = Hardware Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’
bit 12-8 TXQCI[4:0]: Transmit Queue Message Index bits(")

Aread of this register will return an index to the message that the FIFO will next attempt to transmit.
bit 7 TXABT: Message Aborted Status bit(?)

1 = Message was aborted
0 = Message completed successfully

bit 6 TXLARB: Message Lost Arbitration Status bit(?)

1 = Message lost arbitration while being sent

0 = Message did not lose arbitration while being sent
bit 5 TXERR: Error Detected During Transmission bit(2)

1 = A bus error occurred while the message was being sent
0 = A bus error did not occur while the message was being sent

bit 4 TXATIF: Transmit Attempts Exhausted Interrupt Pending bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 3 Unimplemented: Read as ‘0’
bit 2 TXQEIF: Transmit Queue Empty Interrupt Flag bit
1 =TXQ is empty
0 = TXQ is not empty, at least 1 message is queued to be transmitted

bit 1 Unimplemented: Read as ‘0’

bit 0 TXQNIF: Transmit Queue Not Full Interrupt Flag bit
1 =TXQ is not full
0 =TXQis full

Note 1: The TXQCI[4:0] bits give a zero-indexed value to the message in the TXQ. If the TXQ is four messages
deep (FSIZE = 3), TXQCIx will take on a value of 0 to 3, depending on the state of the TXQ.

2: These bits are updated when a message completes (or aborts) or when the TXQ is reset.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 33

dsPIC33/PIC24 Family Reference Manual

Register 3-32: CxFIFOCONXxL: CAN FIFO Control Register x (x =1 to 31) Low

u-0 u-0 u-0 u-0 u-0 S/HC-1 R/W/HC-0 S/HC-0
— — — — | — | FRESET | TXREQ UINC
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TXEN RTREN RXTSEN() | TXATIE RXOVIE | TFERFFIE | TFHRFHIE | TENRFNIE
bit 7 bit 0
Legend: S = Settable bit HC = Hardware Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0’
bit 10 FRESET: FIFO Reset bit

1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset; user should poll
whether this bit is clear before taking any action

0 = No effect

bit 9 TXREQ: Message Send Request bit

TXEN = 1 (FIFO configured as a transmit FIFO):

1 = Requests sending a message; the bit will automatically clear when all the messages queued in
the FIFO are successfully sent

0 = Clearing the bit to ‘0’ while set (‘1’) will request a message abort

TXEN = 0 (FIFO configured as a receive FIFO):
This bit has no effect.
bit 8 UINC: Increment Head/Tail bit
TXEN =1 (FIFO configured as a transmit FIFO):
When this bit is set, the FIFO head will increment by a single message.
TXEN = 0 (FIFO configured as a receive FIFO):
When this bit is set, the FIFO tail will increment by a single message.
bit 7 TXEN: TX/RX Buffer Selection bit
1 = Transmits message object
0 = Receives message object
bit 6 RTREN: Auto-Remote Transmit (RTR) Enable bit
1 = When a Remote Transmit is received, TXREQ will be set
0 = When a Remote Transmit is received, TXREQ will be unaffected
bit 5 RXTSEN: Received Message Timestamp Enable bit(")
1 = Captures timestamp in received message object in RAM
0 = Does not capture time stamp
bit 4 TXATIE: Transmit Attempts Exhausted Interrupt Enable bit
1 = Enables interrupt
0 = Disables interrupt
bit 3 RXOVIE: Overflow Interrupt Enable bit

1 = Interrupt is enabled for overflow event
0 = Interrupt is disabled for overflow event

Note 1: These bits can only be modified in Configuration mode (OPMOD[2:0] = 100).

DS70005340C-page 34 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-32: CxFIFOCONXxL: CAN FIFO Control Register x (x =1 to 31) Low (Continued)

bit 2 TFERFFIE: Transmit/Receive FIFO Empty/Full Interrupt Enable bit

TXEN =1 (FIFO configured as a transmit FIFO):
Transmit FIFO Empty Interrupt Enable

1 = Interrupt is enabled for FIFO empty

0 = Interrupt is disabled for FIFO empty

TXEN = 0 (FIFO configured as a receive FIFO):
Receive FIFO Full Interrupt Enable
1 = Interrupt is enabled for FIFO full
0 = Interrupt is disabled for FIFO full

bit 1 TFHRFHIE: Transmit/Receive FIFO Half Empty/Half Full Interrupt Enable bit
TXEN = 1 (FIFO configured as a transmit FIFO):
Transmit FIFO Half Empty Interrupt Enable
1 = Interrupt is enabled for FIFO half empty
0 = Interrupt is disabled for FIFO half empty
TXEN = 0 (FIFO configured as a receive FIFO):
Receive FIFO Half Full Interrupt Enable
1 = Interrupt is enabled for FIFO half full
0 = Interrupt is disabled for FIFO half full

bit 0 TFNRFNIE: Transmit/Receive FIFO Not Full/Not Empty Interrupt Enable bit
TXEN = 1 (FIFO configured as a transmit FIFO):
Transmit FIFO Not Full Interrupt Enable
1 = Interrupt is enabled for FIFO not full
0 = Interrupt is disabled for FIFO not full
TXEN = 0 (FIFO configured as a receive FIFO):
Receive FIFO Not Empty Interrupt Enable
1 = Interrupt is enabled for FIFO not empty
0 = Interrupt is disabled for FIFO not empty

Note 1: These bits can only be modified in Configuration mode (OPMOD[2:0] = 100).

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 35

dsPIC33/PIC24 Family Reference Manual

Register 3-33:

CxFIFOCONXxH: CAN FIFO Control Register x (x = 1 to 31) High

R/W-0

R/W-0 R/W-0 R/W-0

R/W-0 R/W-0 R/W-0 R/W-0

PLSIZE2(

pLsizE1™ | pLsizeo™ | Fsizea™ | Fsizes™ | Fsize2® [Fsize1™ | Fsizeo®

bit 15

bit 8

u-0

R/W-1 R/W-1 R/W-0

R/W-0 R/W-0 R/W-0 R/W-0

TXAT1 TXATO TXPRI4

TXPRI3 TXPRI2 TXPRI1 TXPRIO

bit 7

bit 0

Legend:

R = Readable bit W = Writable bit U
-n = Value at POR ‘1’ = Bit is set ‘0

= Unimplemented bit, read as ‘0’

' = Bit is cleared X = Bit is unknown

bit 15-13

bit 12-8

bit 7
bit 6-5

bit 4-0

PLSIZE[2:0]: Payload Size bits(")
111 = 64 data bytes

110 =48 data bytes

101 = 32 data bytes

100 = 24 data bytes

011 = 20 data bytes

010 = 16 data bytes

001 = 12 data bytes

000 = 8 data bytes

FSIZE[4:0]: FIFO Size bits(!
11111 = FIFO is 32 messages deep

00010 = FIFO is 3 messages deep
00001 = FIFO is 2 messages deep
00000 = FIFO is 1 message deep

Unimplemented: Read as ‘0’
TXAT[1:0]: Retransmission Attempts bits

This feature is enabled when RTXAT (CxCONH]I0]) is set.
11 = Unlimited number of retransmission attempts
10 = Unlimited number of retransmission attempts

01 = Three retransmission attempts
00 = Disables retransmission attempts

TXPRI[4:0]: Message Transmit Priority bits
11111 = Highest message priority

00000 = Lowest message priority

Note 1: These bits can only be modified in Configuration mode (OPMOD[2:0] = 100).

DS70005340C-page 36

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-34: CxFIFOSTAx: CAN FIFO Status Register x (x = 1 to 31)

u-0

u-0 u-0 R-0 R-0 R-0 R-0 R-0

— — FIFoc4™ [FiFocis™ | FiIFoci2® | FiIFocit™ | FiIFocio™

bit 15

bit 8

R-0

R-0 R-0 HS/C-0 HS/C-0 R-0 R-0 R-0

TXABT®) | TXLARB® | TXERR® TXATIF RXOVIF TFERFFIF | TFHRFHIF | TFNRFNIF

bit 7

bit 0

Legend:

C = Clearable bit HS = Hardware Settable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13
bit 12-8

bit 7

bit 6

bit 5

bit 4

bit 3

Note 1:

Unimplemented: Read as ‘0’

FIFOCI[4:0]: FIFO Message Index bits("

TXEN = 1 (FIFO configured as a transmit buffer):

A read of this register will return an index to the message that the FIFO will next attempt to transmit.
TXEN = 0 (FIFO configured as a receive buffer):

A read of this register will return an index to the message that the FIFO will use to save the next
message.

TXABT: Message Aborted Status bit(®

1 = Message was aborted

0 = Message completed successfully

TXLARB: Message Lost Arbitration Status bit(2)

1 = Message lost arbitration while being sent

0 = Message did not lose arbitration while being sent

TXERR: Error Detected During Transmission bit(2)

1 = Abus error occurred while the message was being sent

0 = Abus error did not occur while the message was being sent
TXATIF: Transmit Attempts Exhausted Interrupt Pending bit
TXEN = 1 (FIFO configured as a transmit buffer):

1 = Interrupt is pending

0 = Interrupt is not pending

TXEN = 0 (FIFO configured as a receive buffer):

Unused, reads as ‘0’.

RXOVIF: Receive FIFO Overflow Interrupt Flag bit

TXEN = 1 (FIFO configured as a transmit buffer):

Unused, reads as ‘0’.

TXEN = 0 (FIFO configured as a receive buffer):
1 = Overflow event has occurred
0 = No overflow event occurred

FIFOCI[4:0] gives a zero-indexed value to the message in the FIFO. If the FIFO is four messages deep
(FSIZE = 3), FIFOCIx will take on a value of 0 to 3, depending on the state of the FIFO.

This bit is updated when a message completes (or aborts) or when the FIFO is reset.
This bit is reset on any read of this register or when the TXQ is reset.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 37

dsPIC33/PIC24 Family Reference Manual

Register 3-34: CxFIFOSTAx: CAN FIFO Status Register x (x =1 to 31) (Continued)

bit 2 TFERFFIF: Transmit/Receive FIFO Empty/Full Interrupt Flag bit

TXEN =1 (FIFO configured as a transmit FIFO):

Transmit FIFO Empty Interrupt Flag

1 =FIFO is empty

0 = FIFO is not empty, at least one message is queued to be transmitted
TXEN = 0 (FIFO configured as a receive FIFO):

Receive FIFO Full Interrupt Flag

1 =FIFO is full

0 = FIFO is not full

bit 1 TFHRFHIF: Transmit/Receive FIFO Half Empty/Half Full Interrupt Flag bit

TXEN = 1 (FIFO configured as a transmit FIFO):
Transmit FIFO Half Empty Interrupt Flag

1 =FIFQO is < half full

0 = FIFO is > half full

TXEN = 0 (FIFO configured as a receive FIFO):
Receive FIFO Half Full Interrupt Flag

1 = FIFO is > half full

0 = FIFO is < half full

bit 0 TFNRFNIF: Transmit/Receive FIFO Not Full/Not Empty Interrupt Flag bit

TXEN = 1 (FIFO configured as a transmit FIFO):
Transmit FIFO Not Full Interrupt Flag

1 =FIFO is not full

0 =FIFQO is full

TXEN = 0 (FIFO configured as a receive FIFO):
Receive FIFO Not Empty Interrupt Flag

1 = FIFO is not empty, has at least one message
0 = FIFO is empty

Note 1: FIFOCI[4:0] gives a zero-indexed value to the message in the FIFO. If the FIFO is four messages deep
(FSIZE = 3), FIFOCIx will take on a value of 0 to 3, depending on the state of the FIFO.

2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
3: This bit is reset on any read of this register or when the TXQ is reset.

DS70005340C-page 38 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-35:

CxTEFCONL: CAN Transmit Event FIFO Control Register Low

uU-0 uU-0 uU-0 uU-0 uU-0 S/HC-1 uU-0 S/HC-0
— — — — — FRESET — UINC
bit 15 bit 8
uU-0 uU-0 R/W-0 uU-0 R/W-0 R/W-0 R/W-0 R/W-0
— — TEFTSEN() — TEFOVIE TEFFIE TEFHIE TEFNEIE
bit 7 bit 0
Legend: S = Settable bit HC = Hardware Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0’
bit 10 FRESET: FIFO Reset bit
1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset; the user should poll
whether this bit is clear before taking any action
0 = No effect
bit 9 Unimplemented: Read as ‘0’
bit 8 UINC: Increment Tail bit
1 = When this bit is set, the FIFO tail will increment by a single message
0 = FIFO tail will not increment
bit 7-6 Unimplemented: Read as ‘0’
bit 5 TEFTSEN: Transmit Event FIFO Timestamp Enable bit(")
1 = Timestamps elements in TEF
0 = Does not timestamp elements in TEF
bit 4 Unimplemented: Read as ‘0’
bit 3 TEFOVIE: Transmit Event FIFO Overflow Interrupt Enable bit
1 = Interrupt is enabled for overflow event
0 = Interrupt is disabled for overflow event
bit 2 TEFFIE: Transmit Event FIFO Full Interrupt Enable bit
1 = Interrupt is enabled for FIFO full
0 = Interrupt is disabled for FIFO full
bit 1 TEFHIE: Transmit Event FIFO Half Full Interrupt Enable bit
1 = Interrupt is enabled for FIFO half full
0 = Interrupt is disabled for FIFO half full
bit 0 TEFNEIE: Transmit Event FIFO Not Empty Interrupt Enable bit
1 = Interrupt is enabled for FIFO not empty
0 = Interrupt is disabled for FIFO not empty
Note 1: These bits can only be modified in Configuration mode (OPMOD[2:0] = 100).

© 2018-2022 Microchip Technology Inc. and its subsidiaries

DS70005340C-page 39

dsPIC33/PIC24 Family Reference Manual

Register 3-36: CxTEFCONH: CAN Transmit Event FIFO Control Register High

uU-0 uU-0 uU-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
_ _ — FSIzE[4:0]"
bit 15 bit 8
uU-0 uU-0 uU-0 uU-0 uU-0 U-0 uU-0 uU-0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0’
bit 12-8 FSIZE[4:0]: FIFO Size bits("
11111 = FIFO is 32 messages deep
00010 = FIFO is 3 messages deep
00001 = FIFO is 2 messages deep
00000 = FIFO is 1 message deep
bit 7-0 Unimplemented: Read as ‘0’

Note 1: These bits can only be modified in Configuration mode (OPMOD[2:0] = 100).

DS70005340C-page 40 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-37: CxTEFSTA: CAN Transmit Event FIFO Status Register

u-0 u-0 u-0 u-0 u-0 U-0 U-0 U-0
bit 15 bit 8
u-0 u-0 u-0 u-0 HS/C R-0 R-0 R-0
— — — — TEFOVIF | TEFFIFM | TEFHIFM | TEFNEIF(
bit 7 bit 0
Legend: C = Clearable bit HS = Hardware Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-4 Unimplemented: Read as ‘0’
bit 3 TEFOVIF: Transmit Event FIFO Overflow Interrupt Flag bit

1 = Overflow event has occurred
0 = No overflow event has occurred

bit 2 TEFFIF: Transmit Event FIFO Full Interrupt Flag bit()
1 =FIFO is full
0 = FIFO is not full
bit 1 TEFHIF: Transmit Event FIFO Half Full Interrupt Flag bit(")

1 = FIFO is = half full
0 = FIFO is < half full

bit O TEFNEIF: Transmit Event FIFO Not Empty Interrupt Flag bit(")

1 = FIFO is not empty
0 = FIFO is empty

Note 1: These bits are read-only and reflect the status of the FIFO.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 41

dsPIC33/PIC24 Family Reference Manual

Register 3-38: CxFIFOUAxL: CAN FIFO User Address Register x (x = 1 to 31) Low(")

R-x R-x R-x R-x R-x R-x R-x R-x
FIFOUA[15:8]
bit 15 bit 8
R-x R-x R-x R-x R-x R-x R-x R-x
FIFOUAJ[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 FIFOUA[15:0]: FIFO User Address bits

TXEN = 1 (FIFO configured as a transmit buffer):

Aread of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0 (FIFO configured as a receive buffer):

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This registeris not ensured to read correctly in Configuration mode and should only be accessed when the

module is not in Configuration mode.

Register 3-39: CxFIFOUAxH: CAN FIFO User Address Register x (x = 1 to 31) High(")

R-x R-x R-x R-x R-x R-x R-x R-x
FIFOUA[31:24]
bit 15 bit 8
R-x R-x R-x R-x R-x R-x R-x R-x
FIFOUA[23:16]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 FIFOUA[31:16]: FIFO User Address bits

TXEN = 1 (FIFO configured as a transmit buffer):

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0 (FIFO configured as a receive buffer):

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the

module is not in Configuration mode.

DS70005340C-page 42 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-40: CxTEFUAL: CAN Transmit Event FIFO User Address Register Low(")

R-x R-x R-x R-x R-x R-x R-x R-x
TEFUA[15:8]
bit 15 bit 8
R-x R-x R-x R-x R-x R-x R-x R-x
TEFUA[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 TEFUA[15:0]: Transmit Event FIFO User Address bits

A read of this register will return the address where the next event is to be read (FIFO tail).

Note 1: This registeris not ensured to read correctly in Configuration mode and should only be accessed when the
module is not in Configuration mode.

Register 3-41: CxTEFUAH: CAN Transmit Event FIFO User Address Register High(1)

R-x R-x R-x R-x R-x R-x R-x R-x
TEFUA[31:24]
bit 15 bit 8
R-x R-x R-x R-x R-x R-x R-x R-x
TEFUA[23:16]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 TEFUA[31:16]: Transmit Event FIFO User Address bits

A read of this register will return the address where the next event is to be read (FIFO tail).

Note 1: This registeris not ensured to read correctly in Configuration mode and should only be accessed when the
module is not in Configuration mode.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 43

dsPIC33/PIC24 Family Reference Manual

Register 3-42: CxTXQUAL: CAN Transmit Queue User Address Register Low(!)

R-x R-x R-x R-x R-x R-x R-x R-x
TXQUA[15:8]
bit 15 bit 8
R-x R-x R-x R-x R-x R-x R-x R-x
TXQUA[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 TXQUA[15:0]: Transmit Queue User Address bits

Aread of this register will return the address where the next message is to be written (TXQ head).

Note 1: This registeris not ensured to read correctly in Configuration mode and should only be accessed when the
module is not in Configuration mode.

Register 3-43: CxTXQUAH: CAN Transmit Queue User Address Register High(")

R-x R-x R-x R-x R-x R-x R-x R-x
TXQUA[31:24]
bit 15 bit 8
R-x R-x R-x R-x R-x R-x R-x R-x
TXQUA[23:16]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 TXQUA[31:16]: TXQ User Address bits

A read of this register will return the address where the next message is to be written (TXQ head).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the
module is not in Configuration mode.

DS70005340C-page 44 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-44: CxTRECL: CAN Transmit/Receive Error Count Register Low

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
TERRCNTI[7:0]
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
RERRCNT[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-8 TERRCNT[7:0]: Transmit Error Counter bits
bit 7-0 RERRCNT[7:0]: Receive Error Counter bits

Register 3-45: CxTRECH: CAN Transmit/Receive Error Count Register High

u-0 u-0 u-0 u-0 u-0 u-0 u-0 u-0
bit 15 bit 8
u-0 u-0 R-1 R-0 R-0 R-0 R-0 R-0
— — TXBO TXBP RXBP TXWARN RXWARN EWARN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-6 Unimplemented: Read as ‘0’
bit 5 TXBO: Transmitter in Error Bus Off State bit (TERRCNT[7:0] > 255)
In Configuration mode, TXBO is set since the module is not on the bus.
bit 4 TXBP: Transmitter in Error Bus Passive State bit (TERRCNT[7:0] > 127)
bit 3 RXBP: Receiver in Error Bus Passive State bit (RERRCNT[7:0] > 127)
bit 2 TXWARN: Transmitter in Error Warning State bit (128 > TERRCNT[7:0] > 95)
bit 1 RXWARN: Receiver in Error Warning State bit (128 > RERRCNT[7:0] > 95)
bit 0 EWARN: Transmitter or Receiver is in Error Warning State bit

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 45

dsPIC33/PIC24 Family Reference Manual

Register 3-46: CxBDIAGOL: CAN Bus Diagnostics Register 0 Low

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NTERRCNTI[7:0]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NRERRCNTI7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-8 NTERRCNT[7:0]: Nominal Bit Rate Transmit Error Counter bits
bit 7-0 NRERRCNT[7:0]: Nominal Bit Rate Receive Error Counter bits

Register 3-47: CxBDIAGOH: CAN Bus Diagnostics Register 0 High

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DTERRCNTI7:0]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DRERRCNTI7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-8 DTERRCNT[7:0]: Data Bit Rate Transmit Error Counter bits
bit 7-0 DRERRCNT][7:0]: Data Bit Rate Receive Error Counter bits

DS70005340C-page 46 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-48: CxBDIAG1L: CAN Bus Diagnostics Register 1 Low

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
EFMSGCNT[15:8]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
EFMSGCNT[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 EFMSGCNT[15:0]: Error-Free Message Counter bits

Register 3-49: CxBDIAG1H: CAN Bus Diagnostics Register 1 High

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 uU-0 R/W-0 R/W-0
DLCMM ESI DCRCERR | DSTUFERR | DFORMERR — DBIT1ERR | DBITOERR
bit 15 bit 8
R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TXBOERR — NCRCERR | NSTUFERR | NFORMERR | NACKERR | NBIT1ERR | NBITOERR
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 DLCMM: DLC Mismatch bit
During a transmission or reception, the specified DLC is larger than the PLSIZEx of the FIFO element.
bit 14 ESI: ESI Flag of Received CAN FD Message Set bit
bit 13 DCRCERR: Same as for Nominal Bit Rate
bit 12 DSTUFERR: Same as for Nominal Bit Rate
bit 11 DFORMERR: Same as for Nominal Bit Rate
bit 10 Unimplemented: Read as ‘0’
bit 9 DBIT1ERR: Same as for Nominal Bit Rate
bit 8 DBITOERR: Same as for Nominal Bit Rate
bit 7 TXBOERR: Device Went to Bus Off bit (and auto-recovered)
bit 6 Unimplemented: Read as ‘0’
bit 5 NCRCERR: Received Message with CRC Incorrect Checksum bit

The CRC checksum of a received message was incorrect. The CRC of an incoming message does not
match with the CRC calculated from the received data.
bit 4 NSTUFERR: Received Message with lllegal Sequence bit

More than five equal bits in a sequence have occurred in a part of a received message where this is not
allowed.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 47

dsPIC33/PIC24 Family Reference Manual

Register 3-49: CxBDIAG1H: CAN Bus Diagnostics Register 1 High (Continued)

bit 3 NFORMERR: Received Frame Fixed Format bit
A fixed format part of a received frame has the wrong format.
bit 2 NACKERR: Transmitted Message Not Acknowledged bit
Transmitted message was not Acknowledged.
bit 1 NBIT1ERR: Transmitted Message Recessive Level bit

During the transmission of a message (with the exception of the arbitration field), the device wanted to
send a recessive level (bit of logical value ‘1’), but the monitored bus value was dominant.

bit 0 NBITOERR: Transmitted Message Dominant Level bit

During the transmission of a message (or Acknowledge bit, or active error flag or overload flag), the
device wanted to send a dominant level (data or identifier bit of logical value ‘0’), but the monitored bus
value was recessive. During bus off recovery, this status is set each time a sequence of 11 recessive
bits has been monitored. This enables the CPU to monitor the proceeding bus off recovery sequence
(indicating the bus is not stuck at dominant or continuously disturbed).

DS70005340C-page 48 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-50: CxFLTCONxL: CAN Filter Control Register x Low (x=0to 7; a= 0, 4, 8, 12, 16, 20, 24, 28;
b=1,5,9,13, 17, 21, 25, 29)

R/W-0 u-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FLTENDb — — ‘ FbBP4 FoBP3 ‘ FbBP2 FoBP1 FbBPO
bit 15 bit 8
R/W-0 u-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FLTENa — — FaBP4 FaBP3 FaBP2 FaBP1 FaBPO
bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 FLTEND: Enable Filter b to Accept Messages bit

1 = Filter is enabled
0 = Filter is disabled

bit 14-13 Unimplemented: Read as ‘0’
bit 12-8 FbBP[4:0]: Pointer to FIFO When Filter b Hits bits

11111 = Message matching filter is stored in FIFO 31
11110 = Message matching filter is stored in FIFO 30

00010 = Message matching filter is stored in FIFO 2

00001 = Message matching filter is stored in FIFO 1

00000 = Reserved; FIFO 0 is the TX Queue and cannot receive messages
bit 7 FLTENa: Enable Filter a to Accept Messages bit

1 = Filter is enabled

0 = Filter is disabled
bit 6-5 Unimplemented: Read as ‘0’
bit 4-0 FaBP[4:0]: Pointer to FIFO When Filter a Hits bits

11111 = Message matching filter is stored in FIFO 31
11110 = Message matching filter is stored in FIFO 30

00010 = Message matching filter is stored in FIFO 2
00001 = Message matching filter is stored in FIFO 1
00000 = Reserved; FIFO 0 is the TX Queue and cannot receive messages

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 49

dsPIC33/PIC24 Family Reference Manual

Register 3-51:
d=3,7,11,15,19, 23, 27, 31)

CxFLTCONxH: CAN Filter Control Register x High (x=0to 7; c = 2, 6, 10, 14, 18, 22, 26, 30;

R/W-0 u-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FLTENd = — | FdaBP4 | FdBP3 | FdBP2 FdBP1 FdBPO
bit 15 bit 8
R/W-0 u-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FLTENCc — — FcBP4 FcBP3 FcBP2 FcBP1 FcBPO
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15

1 = Filter is enabled

0 = Filter is disabled
bit 14-13 Unimplemented: Read as ‘0’

bit 12-8

FLTENd: Enable Filter d to Accept Messages bit

FdBP[4:0]: Pointer to FIFO When Filter d Hits bits

11111 = Message matching filter is stored in FIFO 31
11110 = Message matching filter is stored in FIFO 30

00010 = Message matching filter is stored in FIFO 2
00001 = Message matching filter is stored in FIFO 1
00000 = Reserved; FIFO 0 is the TX Queue and cannot receive messages

bit 7
1 = Filter is enabled

0 = Filter is disabled
bit 6-5 Unimplemented: Read as ‘0’

bit 4-0

FLTENc: Enable Filter c to Accept Messages bit

FcBP[4:0]: Pointer to FIFO When Filter ¢ Hits bits

11111 = Message matching filter is stored in FIFO 31
11110 = Message matching filter is stored in FIFO 30

00010 = Message matching filter is stored in FIFO 2
00001 = Message matching filter is stored in FIFO 1
00000 = Reserved; FIFO 0 is the TX Queue and cannot receive messages

DS70005340C-page 50

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Register 3-52:

CxFLTOBJxL: CAN Filter Object Register x Low (x = 0 to 31)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
EID4 EID3 EID2 EID1 EIDO ‘ SID10 | SID9 SID8

bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SID7 SID6 SID5 SID4 SID3 SID2 SID1 SIDO

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-11 EID[4:0]: Extended Identifier Filter bits

In DeviceNet™ mode, these are the filter bits for the first two data bytes.
bit 10-0 SID[10:0]: Standard Identifier Filter bits

Register 3-53:

CxFLTOBJxH: CAN Filter Object Register x High (x =0 to 31)

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— EXIDE SID11 EID17 EID16 ‘ EID15 | EID14 EID13
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
EID12 EID11 EID10 EID9 EID8 EID7 EID6 EID5
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0’
bit 14 EXIDE: Extended Identifier Enable bit
If MIDE = 1:
1 = Matches only messages with Extended Identifier addresses
0 = Matches only messages with Standard Identifier addresses
bit 13 SID11: Standard Identifier Filter bit
bit 12-0 EID[17:5]: Extended Identifier Filter bits

In DeviceNet™ mode, these are the filter bits for the first two data bytes.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 51

dsPIC33/PIC24 Family Reference Manual

Register 3-54:

CxMASKxL: CAN Mask Register x Low (x =0 to 31)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
MEID4 MEID3 MEID2 MEID1 ‘ MEIDO ‘ MSID10 MSID9 MSID8
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
MSID7 MSID6 MSID5 MSID4 MSID3 MSID2 MSID1 MSIDO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 MEID[4:0]: Extended Identifier Mask bits
In DeviceNet™ mode, these are the mask bits for the first two data bytes.
bit 10-0 MSID[10:0]: Standard Identifier Mask bits

Register 3-55:

CxMASKxH: CAN Mask Register x High (x = 0 to 31)

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— MIDE MSID11 MEID17 ‘ MEID16 ‘ MEID15 MEID14 MEID13
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
MEID12 MEID11 MEID10 MEID9 MEID8 MEID7 MEID6 MEID5
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0’
bit 14 MIDE: Identifier Receive Mode bit
1 = Matches only message types (standard or extended address) that correspond to the EXIDE bit in
the filter
0 = Matches either standard or extended address message if filters match
(i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))
bit 13 MSID11: Standard Identifier Mask bit
bit 12-0 MEID[17:5]: Extended Identifier Mask bits

In DeviceNet™ mode, these are the mask bits for the first two data bytes.

DS70005340C-page 52

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

40 MODES OF OPERATION

The CAN FD Protocol Module has eight modes of operations:
» Configuration mode
* Normal CAN FD mode: Supports mixing of CAN FD and CAN 2.0 messages

* Normal CAN 2.0 mode: Will generate error frames while receiving CAN FD messages. The
FDF bit is forced to zero and only CAN 2.0 frames are sent, even if the FDF bit is set in the
transmit message object.

» Disable mode

* Listen Only mode

» Restricted Operation mode
* Internal Loopback mode

» External Loopback mode

The modes of operations can be grouped into four main groups: Configuration, Normal, Sleep
and Debug (see Figure 4-1).

4.1 Mode Change

Figure 4-1 illustrates the possible mode transitions. New modes of operation are requested by
writing to the REQOP[2:0] (CxCONH[10:8]) bits. The modes of operations do not change
immediately. The modes will only change when the bus is Idle.

The current operating mode is indicated in the OPMOD[2:0] (CxCONH][7:5]) bits. The
application can enable an interrupt on an OPMODx change or poll the OPMODXx bits.

411 CHANGING BETWEEN NORMAL MODES

Directly changing between Normal modes is not allowed. The Configuration mode must be
selected before a new Normal mode can be selected.

4.1.2 CHANGING BETWEEN DEBUG MODES

Directly changing between Debug modes is not allowed. The Configuration mode must be
selected before a new Debug mode can be selected.

4.1.3 EXITING NORMAL MODE

The device will transition to Configuration or Sleep mode only after the current message is
transmitted.

414 ENTERING AND EXITING DISABLE MODE

The CAN FD Protocol Module enters Disable mode after a Disable mode request. The device
exits Disable mode after a mode request.

If WAKIE is set, a dominant edge on CxRX will generate an interrupt. The CPU has to enable
the CAN module by requesting a Normal mode.
4.1.5 BUS INTEGRATING MODE

The CAN FD Protocol Module integrates to the bus, according to the 1SO11898-1:2015
specifications (eleven consecutive recessive bits), under the following conditions:

» Change from Configuration mode to one of the Normal modes or Debug modes
» Change from Disable mode to one of the Normal modes

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 53

dsPIC33/PIC24 Family Reference Manual

Figure 4-1: CAN FD Modes of Operation

REQOPXx = Loopback Int/Ex
and Bus Idle (Integrating)

Loopback
Modes

POR

WAKIF or OSCDIS =0

Configuration

Mode

REQOPx = Config
and Bus Idle

Sleep Mode
Clock Off
CxTX Recessive

REQOPx = Config
and Bus Idle

REQOPx = Config

(and Bus Idle) REQOPx = Listen Only

REQOPx = “Normal”

and Bus Idie REQOP=Nsten Only

and Bus Idle

REQOPx = Sleep (Integrating) And B Idle Listen Only
and Bus Idle RI\)chzieI
nly
“Normal® REQOP=Restricted TX Pin High
Modes And Bus Idle TXREQ Ignored
RXand TX
Wait for - Yes
\—
Bus Idle REQOPx = “Normal”
Recessive bit = 1 System Error
Received and PXEDIS = 0
TXBO REQOPx = Restrifted SERRLOM = 1?

Protocol

Exception Event
No TX

128 Idle Conditions

and Bus Idle

REQOPx = Config
(and Bus Idle)

Wait for

REQOPx =
“Normal”

Bus Off
Clear All TXREQx
bits (Reset TX
FIFOs/TXQ)

Restricted Operation
Mode
RX

TX: Only ACK,
TXREQx Ignored

N

“Normal” Modes “Debug” Modes
Normal FD External/Internal
Mode Loopback
Mode
Normal 2.0 Listen Only
Mode Mode

Restricted
Operation

Mode

No

DS70005340C-page 54

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

4.2 Configuration Mode

After Reset, the CAN FD Protocol Module is in Configuration mode. The error counters are
cleared and all registers contain the Reset values.

The CAN FD Protocol Module has to be initialized before activation. This is only possible when
the module is in Configuration mode, OPMODI[2:0] = 100. The Configuration mode is requested
by setting REQOP[2:0] = 100.

The CAN FD Protocol Module will protect the user from accidentally violating the CAN protocol
through programming errors. The following registers and bit fields can only be programmed
during Configuration mode:

* CxCONL: WAKFIL, CLKSEL, PXEDIS, ISOCRCEN

+ CxCONH: TXQEN, STEF, SERRLOM, ESIGM, RTXAT

* CxNBTCFGL/H, CxDBTCFGL/H, CxTDCL/H

+ CxTXQCONH: PLSIZE[2:0], FSIZE[4:0]

* CxFIFOCONxL: TXEN, RXTSEN

* CxFIFOCONxH: PLSIZE[2:0], FSIZE[4:0]

* CXxTEFCONL: TEFTSEN

* CXTEFCONH: FSIZE[4:0]

» CxFIFOBAL/H

The CAN FD Protocol Module is not allowed to enter Configuration mode during transmission or
reception to prevent the module from causing errors on the CAN bus. The following registers
are reset when exiting Configuration mode:

* CxTRECL/H

» CxBDIAGOL/H

+ CxBDIAG1L/H

In Configuration mode, FRESET is set in the CxFIFOCONXxL, CxTXQCONL and CxTEFCONL
registers, and all FIFOs and the TXQ are reset.

4.3 Normal Modes

4.3.1 NORMAL CAN FD MODE
Once the device is configured, Normal Operation mode can be requested by setting
REQOP[2:0] = 000.

In this mode, the device will be on the CAN bus. It can transmit and receive messages in CAN
FD mode, Bit Rate Switching can be enabled, and up to 64 data bytes can be transmitted and
received.

4.3.2 NORMAL CAN 2.0 MODE
The Normal CAN 2.0 Operation mode can be requested by setting REQOP[2:0] = 110.

In this mode, the device will be on the CAN bus. This is a the Classic CAN 2.0 mode. The
module will not receive CAN FD frames. It might send error frames if CAN FD frames are
detected on the bus. The FDF, BRS and ESI bits in the TX objects will be ignored and
transmitted as ‘0.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 55

dsPIC33/PIC24 Family Reference Manual

4.4 Disable Mode

Disable mode is similar to Configuration mode, except the error counters are not reset. Disable
mode is requested by setting REQOP[2:0] = 001.

The CAN module will not be allowed to enter Disable mode while a transmission or reception is
taking place to prevent causing errors on the CAN bus. The module will enter Disable mode when
the current message completes.

The OPMODXx bits indicate whether the module successfully entered Disable mode. The application
software should use this bit field as a handshake indication for the Disable mode request.

The CxTX pin will stay in the recessive state while the module is in Disable mode to prevent
inadvertent CAN bus errors.

4.5 Debug Modes
451 LISTEN ONLY MODE

Listen Only mode is a variant of Normal CAN FD Operation mode. If the Listen Only mode is
activated, the module on the CAN bus is passive. It will receive messages, but it will not transmit
any bits. TXREQXx bits will be ignored. No error flags or Acknowledge signals are sent. The error
counters are deactivated in this state. The Listen Only mode can be used for detecting the baud
rate on the CAN bus. It is necessary that there are at least two further nodes that communicate
with each other. The baud rate can be detected empirically by testing different values until a
message is received successfully. This mode is also useful for monitoring the CAN bus without
influencing it.

452 RESTRICTED OPERATION MODE

In Restricted Operation mode, the node is able to receive data and remote frames, and to
Acknowledge valid frames, but it does not send data frames, remote frames, error frames or
overload frames. In case of an error or overload condition, it does not send dominant bits; instead,
it waits for the bus to enter the Idle condition to resynchronize itself to the CAN communication.
The error counters are not incremented.

453 LOOPBACK MODE

Loopback mode is a variant of Normal CAN FD Operation mode. This mode will allow internal
transmission of messages from the transmit FIFOs to the receive FIFOs. The module does not
require an external Acknowledge from the bus. No messages can be received from the bus,
because the CxRX pin is disconnected.

4.5.3.1 Internal Loopback Mode

The transmit signal is internally connected to receive and the CxTX pin is driven high.

453.2 External Loopback Mode

The transmit signal is internally connected to receive and transmit messages, and can be
monitored on the CxTX pin.

DS70005340C-page 56 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

4.6 Low-Power Modes

4.6.1 SLEEP MODE

In the CAN module, special conditions need to be met for Sleep mode. The module must first be
switched to Disable mode by setting REQOPx = 001. When OPMODx = 001, indicating Disable
mode has been achieved, the CAN FD Protocol Module enters Sleep mode after a Sleep mode
request.

In Sleep mode, the register contents do not change, so the OPMODX bits do not change. At the
end of Sleep, the module will continue in the mode specified by the OPMODXx bits previous to
Sleep mode (which should be Disable mode, OPMODx = 001).

If the user executes a SLEEP instruction without switching to Disable mode, the module
assumes a clock is available to read/write from RAM.

Since the system clock input is not available in Sleep mode, the CAN module cannot run as it
requires a system clock to transmit or receive. Also, the FIFO is in system RAM, which has no
clock in Sleep mode.

Recommended steps:

1. Write the REQOP[2:0] bits to ‘001’; the module will enter Disable mode.

2. Poll the OPMODI2:0] bits to verify whether they are ‘001’, which indicates that the module
has successfully entered Disable mode.

3. Execute the SLEEP instruction.

4.6.2 IDLE MODE

The system can be set to run in a low-power mode, called Idle mode. When the device is in Idle
mode, the CPU is disabled and only select peripherals are active.

Based on the configuration of the CAN SIDL bit, the module can either be in or out of Idle mode:
» If SIDL = 0, the module continues operation in Idle mode. If the module generates an
interrupt while in Idle mode, the interrupt may generate a wake-up event.

» If SIDL = 1, the module stops when the device is in Idle mode. The module performs the
same procedures when stopped in Idle mode as it does in Disable mode and the same
requirements apply.

The user should ensure that the module is not active when the CPU transitions to Idle mode
with SIDL = 1. To protect the CAN bus system from fatal consequences due to violation of this
rule, the module will drive the TX pin into the recessive state while stopped in Idle mode.

If the CAN SIDL bit is set, the recommended procedure is to bring the module into Disable
mode before the device is placed in Idle mode.
4.6.3 WAKE-UP FROM SLEEP

Figure 4-2 depicts how the CAN module will execute the SLEEP instruction and how the module
wakes up on bus activity. Upon a wake-up from Sleep mode, the WAKIF flag is set.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 57

dsPIC33/PIC24 Family Reference Manual

Figure 4-2: Processor Sleep and CAN Bus Wake-up Interrupt

0scC1

é

X i 001 [X i 000

REQOP[2:0] 000

OPMODI[2:0] 000
CAN Bus
Sleep
WAKIF

WAKIE /

(@) - Processor requests and receives Module Disable mode. Wake-up interrupt is enabled.
@ — Processor executes SLEEP (PWRSAV #0) instruction.
(@) — SOF of message wakes up processor. Oscillator start time begins. CAN message is lost. WAKIF bit is set.

@— Processor completes oscillator start time. Processor resumes program or interrupt, based on GIE bits.
Processor requests Normal Operating mode. Module waits for 11 recessive bits before
accepting CAN bus activity. CAN message is lost.

@— Module detects 11 recessive bits. Module will begin to receive messages and transmits any pending messages.

Processor in
Sleep

CAN Module |
Disabled '

® @ ® @

y

<
' <%
' '
' '
' '

-
. T

The module will monitor the CAN receive line for activity while the module is Sleeping. The
device will generate a wake-up interrupt on the falling edges of CxRX if WAKIE is enabled.

The device will exit Sleep mode after a new mode request or a negative edge on CxRX.
The module will be in Sleep mode if either of the following is true:

* The system is in Sleep mode following Disable mode
* The system is in Idle mode with SIDL = 1

Note 1: If the module is in Sleep mode, the module generates an interrupt if the WAKIE bit
(CxINTH[14]) is set and bus activity is detected. Due to delays in starting up the
oscillator and CPU, the message activity that caused the wake-up will be lost.

2: The module can be programmed to apply a low-pass filter function to the CAN
receive input line while in Disable, Sleep or Idle mode. This feature can be used to
protect the module from wake-up due to short glitches on the CAN bus lines. The

WAKEFIL bit (CxCONL[8]) enables or disables the filter while the module is in Sleep.

DS70005340C-page 58

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

5.0 CONFIGURATION

5.1 Clock Configuration

The sample point of all nodes in a CAN FD network should be at the same position. Hence, it is
recommended to use the same clock frequency and bit time settings for all nodes. Therefore, a
CAN clock (FcaN) of 80 MHz, 40 MHz or 20 MHz is recommended.

The CLKSEL bit allows the selection of the clock source to the CAN FD module.

» If CLKSEL = 1, then the auxiliary clock will be selected as a clock source
» If CLKSEL = 0, then the clock from the CAN clock generator will be selected

The following register is used to configure the CAN clock generator.

Register 5-1: CANCLKCON: CAN Clock Control Register("
R/W-0 u-0 uU-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
CANCLKEN — — — CANCLKSEL[3:0]"
bit 15 bit 8
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— CANCLKDIV[6:0](%:3)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CANCLKEN: CAN Clock Generator Enable bit

bit 14-12
bit 11-8

bit 7

1 = CAN clock generation circuitry is enabled
0 = CAN clock generation circuitry is disabled

Unimplemented: Read as ‘0’
CANCLKSEL[3:0]: Can Clock Source Select bits(1)

1011-1111 = Reserved (no clock selected)
1010 = AFvco/4

1001 = AFvco/3

1000 = AFvco/2

0111 =AFvco

0110 = AFPLLO

0101 = Fvco/4

0100 = Fvco/3

0011 = Fvco/2

0010 = FpLLO

0001 = Fvco

0000 = 0 (no clock selected)

Unimplemented: Read as ‘0’

Note 1: The user must ensure the input clock source is 640 MHz or less. Operation with input reference frequency
above 640 MHz will result in unpredictable behavior.
2: The CANCLKDIVx divider value must not be changed during CAN module operation.

@

The user must ensure the maximum clock output frequency of the divider is 80 MHz or less.

4: Fvco/AFvco can be selected as CAN clock source in CANCLKSEL and used regardless of values of
VCODIV/AVCODIV bits. Refer Oscillator FRM for the details of VCODIV/AVCODIV bits.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 59

dsPIC33/PIC24 Family Reference Manual

Register 5-1: CANCLKCON: CAN Clock Control Register(")

bit 6-0 CANCLKDIV[6:0]: CAN Clock Divider Select bits(?-3)
1111111 = Divide by 128

0000010 = Divide by 3
0000001 = Divide by 2
0000000 = Divide by 1

Note 1: The user must ensure the input clock source is 640 MHz or less. Operation with input reference frequency
above 640 MHz will result in unpredictable behavior.

2: The CANCLKDIVx divider value must not be changed during CAN module operation.
The user must ensure the maximum clock output frequency of the divider is 80 MHz or less.

4: Fvco/AFvco can be selected as CAN clock source in CANCLKSEL and used regardless of values of
VCODIV/AVCODIV bits. Refer Oscillator FRM for the details of VCODIV/AVCODIV bits.

@

DS70005340C-page 60 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

5.2 CAN Configuration

The CxCONL/H registers contain several bits that can only be configured in Configuration mode.

5.2.1 ISO CRC ENABLE

The module supports ISO CRC (according to 1SO11898-1:2015) and non-ISO CRC (see
Section 2.1 “ISO vs. Non-ISO CRC”). ISO CRC is enabled by setting the ISOCRCEN bit.

5.2.2 PROTOCOL EXCEPTION DISABLE

The negative edge between the FDF bit and the “reserved bit” in CAN FD frames is important
for the calculation of the transceiver delay and for hard synchronization. Therefore, if the
“reserved bit” following the FDF bit is detected recessive, the CAN FD Protocol Module will treat
this as a form error. This is called, “Protocol Exception Event Detection Disabled,” and is
configured by setting the PXEDIS bit.

The Protocol Exception Event Detection Disabled can be enabled by clearing the PXEDIS bit. As
a reaction to the protocol exception event, the error counters are not changed, hard
synchronization is enabled, the module sends recessive bits and enters the bus integration state.

5.2.3 WAKE-UP FILTER - WFTI[1:0]

The WAKEFIL bit is used to enable/disable the low-pass filter on the CxRX pin. The filter is only
active during Sleep mode. The WFTx bits allow the configuration of different filter times.

5.2.4 RESTRICTION OF TRANSMISSION ATTEMPTS

1ISO11898-1:2015 requires that frames that lost arbitration and are not acknowledged, or are
destroyed by errors, are automatically retransmitted. Optionally, the number of retransmission
attempts can be limited.

When the RTXAT bit is set, retransmission attempts can be limited using the TXAT[1:0] bits in
the FIFO Control registers. If the RTXAT bit is clear, then the TXATx bits in the FIFO Control
register are ignored and the retransmission attempts are unlimited.

5.2.5 ERROR STATE INDICATOR (ESI) IN GATEWAY MODE

Normally, the ESI bit in a transmitted message reflects the error status of the CAN FD Protocol
Module. ESI is transmitted recessive when the module is error passive. In case the module is
used in a gateway application, there will be situations where the ESI bit in the message should
be transmitted recessive, even though the gateway module is error active. This can be
configured by setting the ESIGM bit.

5.2.6 MODE SELECTION IN CASE OF SYSTEM ERROR
The SERRLOM bit selects which mode the module will transition to in case of a system error. The
module can either transition to Restricted Operation mode or Listen Only mode.

5.2.7 RESERVING MESSAGE MEMORY FOR TXQ AND TEF

Setting the TXQEN bit will reserve RAM for the TXQ. If the TXQEN bit is cleared, then the TXQ
cannot be used.

Setting the STEF bit will reserve RAM for the TEF and all transmitted messages will be stored in
the TEF.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 61

dsPIC33/PIC24 Family Reference Manual

5.3 CAN FD Bit Time Configuration

In order to achieve higher bandwidth, bits in a CAN FD frame are transmitted with two different
bit rates:

» Nominal Bit Rate (NBR): Used during arbitration until the sample point of the BRS bit and
the sample point of the CRC delimiter reach the EOF

» Data Bit Rate (DBR): Used during the data and CRC field

NBR is limited by the propagation delay of the CAN network (see Section 5.3.2 “Propagation
Delay”). In the data phase, only one transmitter remains; therefore, the bit rate can be increased.
The transmitting node always compares the intended transmitted bits with the actual bits on the
CAN bus. The propagation delay in the data phase can be longer than the bit time. In this case,
the data bits are sampled at a Secondary Sample Point (SSP) (see Section 5.3.3 “Transmitter
Delay Compensation (TDC)”).

NBR is the number of bits per second during the arbitration phase. Itis the inverse of the Nominal
Bit Time (NBT) (see Equation 5-1).

Equation 5-1: Nominal Bit Rate/Time

NBR = —L_
NBT

DBR is the number of bits per second during the data phase. It is the inverse of the Data Bit Time
(DBT) (see Equation 5-2).

Equation 5-2: Data Bit Rate/Time

The Baud Rate Prescaler (BRP) is used to divide the FCAN. The divided FCAN is used to
generate the bit times.

There are two prescalers: NBRP for the Nominal Bit Rate Prescaler and DBRP for the Data Bit
Rate Prescaler. The Time Quanta (NTQ and DTQ) are selected as shown in Equation 5-3 and
Equation 5-4.

Equation 5-3: Nominal Time Quanta

_ _ NBRP
NTQ = NBRPX Ty = 7
CAN
Equation 5-4: Data Time Quanta
_ _ DBRP
DTQ = DBRP x TCAN =
CAN

CAN bit times have four segments, as specified in ISO11898-1:2015 (see Figure 5-1).

Synchronization Segment (SYNC) — Synchronizes the different nodes connected on the CAN
bus. A bit edge is expected to be within this segment. The Synchronization Segment is always
1Ta.

Propagation Segment (PRSEG) — Compensates for the propagation delay on the bus. PRSEG
has to be longer than the maximum propagation delay.

Phase Segment 1 (PHSEG1) — Compensates for errors that may occur due to phase shifts in
the edges. The time segment may be automatically lengthened during resynchronization to
compensate for the phase shift.

DS70005340C-page 62

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Phase Segment 2 (PHSEG2) — Compensates for errors that may occur due to phase shifts in
the edges. The time segment may be automatically shortened during resynchronization to
compensate for the phase shift.

In the bit time registers, PRSEG and PHSEG1 are combined to create TSEG1. PHSEG2 is called
TSEG2. Each segment has multiple Time Quanta (TQ). The sample point lies between TSEG1
and TSEG2.

Table 5-1 and Table 5-2 show the ranges for the bit time configuration parameters.

Figure 5-1: Partition of Bit Time
|- TBIT |
SYNC| PRSEG PHSEG1 PHSEG2
SYNC TSEGH1 TSEG2

Sample Point

The total number of TQ in a bit time is programmable and can be calculated using Equation 5-5
and Equation 5-6.

Equation 5-5: Number of NTQ in a NBT

NBT _ NSYNC + NTSEGI + NTSEG2
NTQO
Equation 5-6: Number of DTQ in a DBT
DBT _ pSYNC + DTSEGI + DTSEG?
DTQ
Table 5-1: Nominal Bit Rate Configuration Ranges
Segment Minimum Maximum
NSYNC 1 1
NTSEG1 2 256
NTSEG2 1 128
NSJW 1 128
NTQ per Bit 4 385
Table 5-2: Data Bit Rate Configuration Ranges
Segment Minimum Maximum
DSYNC 1 1
DTSEG1 1 32
DTSEG2 1 16
DSJW 1 16
DTQ per Bit 3 49

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 63

dsPIC33/PIC24 Family Reference Manual

Figure 5-2:

5.3.1 SAMPLE POINT

The sample point is the point in the bit time at which the logic level of the bit is read and
interpreted. The sample point in percent can be calculated using Equation 5-7 and Equation 5-8.

Equation 5-7: Nominal Sample Point (%)

_ 1+ NTSEGI
NSP = S22 < 100

NTO

Equation 5-8: Data Sample Point (%)

1 +DTSEGI
DBT
DTO

DSP = 100

5.3.2 PROPAGATION DELAY

Figure 5-2 illustrates the propagation delay between two CAN nodes on the bus, assuming
Node A is transmitting a CAN message. The transmitted bit will propagate from the transmitting
CAN Node A through the transmitting CAN transceiver, over the CAN bus, through the receiving
CAN transceiver, into the receiving CAN Node B.

During the arbitration phase of a CAN message, the transmitter samples the CAN bus and
checks if the transmitted bit matches the received bit. The transmitting node has to place the
sample point after the maximum propagation delay.

Equation 5-9 describes the maximum propagation delay; where 7y, _ ryp iS the propagation
delay of the transceiver, a maximum of 255 ns according to ISO11898-1:2015; Ty is the delay
on the CAN bus, which is approximately 5 ns/m. The factor 2 comes from the worst-case when
Node B starts transmitting exactly when the bit from Node A arrives.

Equation 5-9: Maximum Propagation Delay

= 2x(t

Tpror rxp-rxp " TpUs)

Propagation Delay

//7 \\

Delay: Node A to B (Teroras)

CxTX CANH CANH CxRX
Node A Node B
CxRX CANL CANL CxTX
. . CAN Bus (TBUS) . .
Transceiver Propagation Transceiver Propagation

Delay (trxp - rxD) Delay (trxp - rxD)

V\ //

Delay: Node B to A (Terorsa)

Tpror = Tprorast Tprorsa = 2% (trxp_rxpt Tpus)

DS70005340C-page 64

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

5.3.3 TRANSMITTER DELAY COMPENSATION (TDC)

During the data phase of a CAN FD transmission, only one node is transmitting; the others are
receiving. Therefore, the propagation delay does not limit the maximum data rate.

When transmitting via pin CxTX, the CAN FD Protocol Module receives the transmitted data
from its local CAN transceiver via pin CxRX. The received data is delayed by the CAN
transceiver’'s loop delay. In case this delay is greater than 1 + DTSEGH1, a bit error would be
detected.

In order to enable a data phase bit time that is shorter than the transceiver loop delay, the
Transmitter Delay Compensation (TDC) is implemented. Instead of sampling after DTSEG1, a
Secondary Sample Point (SSP) is calculated and used for sampling during the data phase of a
CAN FD message.

Figure 5-3 illustrates how the transceiver loop delay is measured and Equation 5-10 shows how
the SSP is calculated.

Equation 5-10: Secondary Sample Point

SSP = TDCV/[5:0] + TDCO/[6:0]

Figure 5-3: Measurement of Transceiver Delay (TDCV)

FDF res BRS |ESI DLC

CxTX ' Arbitration| Phase

FDF

CxRX Arpitration| Phase —_

.- Transmitter Delay

/

-
-t -

A Y
Start Stop

Transmitter ~«—— TDCO
Delay
Measurement

Secondary Sample Point (SSP)

5.3.4 SYNCHRONIZATION

To compensate for phase shifts between the oscillator frequencies of the nodes on the CAN bus,
each CAN controller must be able to synchronize to the relevant edge of the incoming signal.

The CAN controller expects an edge in the received signal to occur within the SYNC segment.
Only recessive-to-dominant edges are used for synchronization.

There are two mechanisms used for synchronization:

» Hard Synchronization — Forces the edge that has occurred to lie within the
SYNC segment. The bit time counter is restarted with SYNC.

* Resynchronization — If the edge falls outside the SYNC segment, PHSEG1 or PHSEG2
will be adjusted.

For a more detailed description of the CAN synchronization, please refer to 1ISO11898-1:2015.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 65

dsPIC33/PIC24 Family Reference Manual

5.3.5 SYNCHRONIZATION JUMP WIDTH

The Synchronization Jump Width (SJW) is the maximum amount that PHSEG1 and PHSEG2
can be adjusted during resynchronization. SUW is programmable (see Table 5-1 and Table 5-2).
5.3.6 OSCILLATOR TOLERANCE

The oscillator tolerance, df, around the nominal frequency of the oscillator, fiom, is defined in
Equation 5-11.

Equation 5-12 through Equation 5-16 describe the conditions for the maximum tolerance of the
oscillator.

Equation 5-11: Oscillator Tolerance

(I —df) x fnom < FCANS (I +df)x fnom
Equation 5-12: Condition 1
NSJW
< e
= 2% 10 x NBT
NTQ
Equation 5-13: Condition 2
df _min(NPHSEG |,NPHSEG?2)
- NBT)
2% (13 X NTO NPHSEG?2
Equation 5-14: Condition 3
daf < DSJW
DBT
2x10x%
DTO
Equation 5-15: Condition 4
df < min(NPHSEGI,NPHSEG?2)
- DBT) DBRP NB
- _ + —_—
2 x ((6 X DTO DPHSEG?2| x NBRP X NTO
Equation 5-16: Condition 5
DSJW—max(O,(M— D
DBRP
4= NBT NBRP DB
+ +
2 x ((2 X NTO X HNSEGPZ) X DERP DPHSEG2 + 4 x DTO

DS70005340C-page 66

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

5.3.7 RECOMMENDATIONS FOR BIT TIME CONFIGURATION
The following recommendations should be considered when configuring the bit time:

» Select the highest available CAN clock frequency:
- Short Ta leads to high resolution to select the sample point
- Use 20 MHz, 40 MHz or 80 MHz for FCAN
» Select the lowest NBRP and DBRP:
- Low BRP leads to short Ta
- NSYNC and DSYNC will be short and reduce the quantization error
- The receiving node can synchronize more accurately to the transmitting node
» Set NBRP equal to DBRP:
- lIdentical Ta in both phases prevents quantization errors during Bit Rate Switching

» Use the same Nominal Sample Point (NSP) and Data Sample Point (DSP) in all nodes on
the CAN FD network:

- Different sample points in the different nodes lead to different lengths of the BRS and
CRC delimiter bits and introduce phase errors when switching the bit rate

- NSP need not be equal to the DSP

- The SSP can be different in differing CAN FD nodes
» Select the largest possible NSJW and DSJW:

- Maximizes the oscillator tolerance

- Allows the receiving nodes to quickly resynchronize to the transmitting nodes
» Enable automatic TDC for DBR of 1 Mbps and higher:

- Automatic TDC measurement compensates for transmitter delay variations

5.3.8 BIT TIME CONFIGURATION EXAMPLE

The following tables illustrate the configuration of the CAN FD Bit Time registers, assuming there
is a CAN FD network in an automobile with the following parameters:

» 500 kbps NBR — Sample Point at 80%
* 2 Mbps DBR — Sample Point at 80%
* 40 Meters — Minimum Bus Length

Table 5-3 and Table 5-4 illustrate how the bit time parameters are calculated. Since the
parameters depend on multiple constraints and equations, and are calculated using an iterative
process, it is recommended to enter the equations in a spreadsheet.

Table 5-5 translates the calculated values into register values. It is recommended to let the CAN
FD Protocol Module measure the Transmitter Delay Compensation Value (TDCV). This is
accomplished by setting TDCMODI[1:0] (CxTDCHI[1:0]) = 10 (Automatic mode). In order to set
the SSP to 80%, TDCOI[6:0] are set to (DBRP * DTSEGH1).

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 67

dsPIC33/PIC24 Family Reference Manual

Table 5-3: Step-by-Step Nominal Bit Rate Configuration
Parameter Constraint Value | Unit Equations and Comments
NBT NBT = 1 us 2 us |Equation 5-1.
FcaN FcaN < 80 MHz 80 | MHz |CAN clock frequency= 80 MHz.
NBRP 1 to 256 1 — | Select smallest possible BRP value to maximize resolution.
NTQ NBT, FCAN 12.5 ns |Equation 5-3.
NBT/NTQ 4 to 385 160 — |Equation 5-5.
NSYNC Fixed 1 NTQ |Defined in ISO11898-1:2015.
NPRSEG NPRSEG > Tprop 95 | NTQ |Equation 5-9: Tprop = 910 ns,
minimum NPRSEG = Tprop/NTQ = 72.8 NTQ.
Selecting 95 will allow up to a 60m bus length.
NTSEG1 210256 NTQ 127 | NTQ |Equation 5-7. Select NTSEG1 to achieve 80% NSP.
NTSEG2 1t0 128 NTQ 32 | NTQ |There are 32 NTQ left to reach NBT/NTQ = 160.
NSJW 1to 128 NTQ; 32 NTQ |Maximizing NSJW lessens the requirement for the oscillator tolerance.
SJW < min (NPHSEG1, NPHSEG2)
Table 5-4: Step-by-Step Data Bit Rate Configuration
Parameter Constraint Value | Unit Equations and Comments
DBT DBT 2 125 ns 500 ns |Equation 5-2.
DBRP 1 to 256 1 — | Selecting the same prescaler as for NBT ensures that the TQ
resolution does not change during the Bit Rate Switching.
DTQ DBT, FCAN 12.5 ns |Equation 5-4.
DBT/DTQ 31049 40 — |Equation 5-6.
DSYNC Fixed 1 DTQ |Defined in ISO11898-1:2015.
DTSEG1 11032 DTQ 31 DTQ |Equation 5-7. Select DTSEG1 to achieve 80% DSP.
DTSEG2 1t0 16 DTQ DTQ |There are 8 DTQ left to reach DBT/DTQ = 40.
DSJW 11016 DTQ; 8 DTQ |Maximizing DSJW lessens the requirement for the
SJW < min (DPHSEG1, DPHSEG2) oscillator tolerance.
Oscillator Tolerance Minimum of Conditions 1-5 0.78 % |Equation 5-11 through Equation 5-16.
Conditions 1-5

Table 5-5: Bit Time Register Initialization (500k/2M)

CxNBTCFGL/H Value CxDBTCFGL/H Value CxTDCL/H Value
BRP[7:0] 0 BRP[7:0] 0 TDCMOD[1:0] 2
TSEG1[7:0] 126 TSEG1[4:0] 30 TDCO[6:0] 31
TSEG2[6:0] 31 TSEG2[3:0] 7 TDCV[5:0] 0
SJWI[6:0] 31 SJW[3:0] — —

DS70005340C-page 68

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

5.4 Message Memory Configuration

The message objects of the TEF, TXQ and transmit/receive FIFOs are located in RAM (see
Figure 5-4). The application must configure the number of message objects in a FIFO between
Message Object 0 and Message Object 31. Additionally, the application must configure the
payload size of the message objects in each FIFO. This configuration determines where
message objects are located in RAM. The RAM allocation can only be configured in
Configuration mode. The start of the message memory is defined by CxFIFOBAL/H register,
which is word aligned.

In order to optimize RAM usage, the application should start configuring the RAM with the TEF,
followed by the TXQ, and continue with FIFO 1, FIFO 2, FIFO 3 and so on. In case a user
application requires TEF, TXQ and 16 additional FIFOs, it should configure TEF and TXQ,
followed by FIFO 1 through FIFO 16. It is not necessary to configure the unused FIFOs 17

through 31.

Figure 5-4: Message Memory Organization
TEF
™>Q

FIFO 1

FIFO 2: Message Object 0

FIFO 2: Message Object 1

FIFO 2: Message Object n

FIFO 3

FIFO 31

5.4.1 TRANSMIT EVENT FIFO CONFIGURATION

In order to reserve space in RAM for the TEF, the STEF bit (CxCONH][3]) has to be set. The number
of message objects in the TEF is configured using the FSIZE[4:0] bits (CXTEFCONH[12:8]).
Transmitted messages can be timestamped by setting the TEFTSEN bit (CXTEFCONLI5]).

5.4.2 TRANSMIT QUEUE CONFIGURATION

In order to reserve space in RAM for the TXQ, the TXQEN bit (CxCONH[4]) has to be set. The
number of message objects in the TXQ is configured using the FSIZE[4:0] bits
(CxTXQCONH][12:8]. All objects in the TXQ use the same payload size (number of data bytes),
which is configured using the PLSIZE[2:0] bits (CxTXQCONH[15:13]).

543 TRANSMIT FIFO CONFIGURATION

FIFO 1 through FIFO 31 can be configured as transmit FIFOs by setting TXEN in the CxFIFOCONXxL
register. The number of message objects in each transmit FIFO is configured using the FSIZE[4:0]
bits (CxFIFOCONxH[12:8]). All objects in one transmit FIFO use the same payload size (number of
data bytes), which is determined by the PLSIZE[2:0] bits (CxFIFOCONxH[15:13]).

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 69

dsPIC33/PIC24 Family Reference Manual

5.4.4 RECEIVE FIFO CONFIGURATION

FIFO 1 through FIFO 31 can be configured as receive FIFOs by clearing TXEN in the
CxFIFOCONXL register. The number of message objects in each receive FIFO is configured
using the FSIZE[4:0] bits (CxFIFOCONxH[12:8]). All objects in one receive FIFO use the same
payload size (number of data bytes), which is determined by the PLSIZE[2:0] bits
(CxFIFOCONXxHI[15:13]). Received messages can be timestamped by setting the RXTSEN bit
(CxFIFOCONXL[5]).

5.4.5 CALCULATION OF REQUIRED MESSAGE MEMORY

The size of required RAM depends on the configuration of each FIFO. Equation 5-17 through
Equation 5-19 specify the sizes of the TEF, TXQ and the FIFOs in bytes. The TEF or TXQ is not
used if their size is zero.

Since the size of the integrated RAM is limited, the user must check that the memory configuration
fits into RAM. Equation 5-20 can be used to calculate the total RAM usage in bytes.

The size of the TEF objects depends on the enabling of timestamping. If TEFTSEN is set, then
tefts = 4, else tefts = 0.

The PayLoad(i) is defined in data bytes.

The size of a message object of an RX FIFO varies dependent on the enabling of timestamping.
If RXTSEN =1 and TXEN = 0 for FIFO(i), then rxts(i) = 4, else rxts(i) = 0.

N is defined as the number of FIFOs used in addition to the TEF and the TXQ.

Equation 5-17: Size of TEF

S N

Elements\TEF) x (tefts + 8)

TEF ~

Equation 5-18: Size of TXQ

S (TXQ) x (8 + PayLoad(TXQ))

TXQ - NElements

Equation 5-19: Size of FIFOs

Srir0) = NEgjemenis(D) x (rxts(i) + 8 + PayLoad(i))

Equation 5-20: Total RAM Usage

N

S

RAM™ |5

reF Stxo ™t 2 Sriro®
i=1

For example:
» If TEF is 4 messages deep (Ngiements (TEF) = 4) and TEFTSEN is clear,
then the size of TEF = Sygp =4 x (0 + 8) = 32 bytes

* If Ngjements (TXQ) = 1, PayLoad (TXQ) = 12,
then the size of TXQ = Syxq =1 x (8 + 12) = 20 bytes

* If Ngiements (FIFO) = 3, PaylLoad (FIFO) = 8,
then the size of FIFO = Sgjpg = 3 x (8 + 8) = 48 bytes

Therefore, SRAM = Stgg + STXQ + Sgpo =32 + 20 + 48 = 100 bytes.

DS70005340C-page 70

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

5.4.6 CALCULATION OF START ADDRESSES

Since the payload size of the FIFOs can be configured individually, the start address of an
individual object depends on the configuration of all previous objects. The application can read
back the start addresses of each message object to double-check whether they were correctly
configured.

The TEF starts at the beginning of the message memory.

Equation 5-21: Start Address of TEF

A = Base Address= CxFIFOBAL/H

TEF

The TXQ starts after the Transmit Event FIFO.

Equation 5-22: Start Address of TXQ

A = CxFIFOBAL/H + STEF

TXQ

The message FIFO object starts after the Transmit Queue.

Equation 5-23: Start Address of Message FIFO

A = CxFlFOBAL/H+STEF+S

FIFO(1) TXQ

If CxCONH.STEF = 0, then TEF does not exist in RAM and STEF is zero. In this case, if TXQ is
available, the TXQ starts at the base address defined by CxFIFOBAL/H.

If CxCONH.TXQEN = 0, then TXQ does not exist in RAM and STxQ is zero.
The start of nth FIFO can be calculated as follows:

Equation 5-24: Start Address of Nth FIFO

n—1

A A

rirony 2 Skiro)
i=1

FIFO(n)~

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 71

dsPIC33/PIC24 Family Reference Manual

6.0 MESSAGE TRANSMISSION

The application has to configure the FIFO or TXQ before it can be used for transmission
(see Section 5.4.3 “Transmit FIFO Configuration” and Section 5.4.2 “Transmit Queue
Configuration”).

6.1 Transmit Message Object

Table 6-1 specifies the transmit message object used by the TXQ and the transmit FIFOs. The
transmit objects contain the message ID, control bits and payload.

« SID: Standard Identifer or Base Identifier.

« EID: Extended Identifier.

» DLC: Data Length Code; specifies the number of data bytes to transmit (see Section 2.1.1
“DLC Encoding”).

« IDE: Identifier Extension; clearing this bit will transmit a base frame, setting this bit will
transmit an extended frame.

+ RTR: Remote Transmit Request; this bit is only specified in CAN 2.0 frames. Setting this bit
will request a transmission of a receiving node.

* FDF: FD Format; if this bit is set, a CAN FD frame will be transmitted; otherwise, a CAN 2.0
frame will be transmitted. If Normal CAN 2.0 mode is selected, this bit is ignored and only
CAN 2.0 frames are transmitted.

+ BRS: Bit Rate Switch; the data phase of a CAN FD frame will be transmitted using DBR if
this bit is set. If the bit is clear, the whole frame will be transmitted using NBR.

 ESI: Error State Indicator; normally, the ESI bit reflects the error status of the transmitting
node. A recessive ESI bit in a CAN FD frame indicates that the transmitting node is
error passive; a dominant bit shows that the transmitting node is error active. If
ESIGM (CxCONHI[1]) = 0, this bit in the object is ignored. If ESIGM = 1, the ESI bit in the
transmitted message will be transmitted recessive if the CAN FD Protocol Module is error
passive, or if the ESI bit in the message object is set. A gateway application would use it to
signal that the ESI bit of the transmitting node is set.

» SEQ: Sequence Number; SEQ is not transmitted on the CAN bus. It is used to keep track
of the transmitted messages. SEQ is stored in the TEF message object.

+ Transmit Buffer Data: contains the payload of the message. Only the number of data
bytes specified by the DLC are transmitted. Byte 0 is transmitted first, followed by 1, 2 and
so on.

6.2 Loading Messages into Transmit FIFO

Before loading a message into the FIFO, the application must ensure that the FIFO is not full.
There is space in the FIFO if TFNRFNIF (CxFIFOSTAX[0]) is set. Loading a message into a full
FIFO can corrupt a message that is being transmitted.

The FIFO user address (CxFIFOUAXL/H) points to the RAM of the next transmit message object
where the application should store the message. TO of the transmit message object is loaded first,
followed by T1, T2 and so on. The maximum number of data bytes is limited by the configured
payload. Only the number of data bytes specified by the DLC have to be loaded.

After the message object is loaded into RAM, the FIFO needs to be incremented by setting the
UINC bit (CxFIFOCONXL[8]). Doing so will cause the CAN FD Protocol Module to increment the
head of the FIFO and update CxFIFOUAXxL/H.

Now the message is ready for transmission and the next message can be loaded at the new
address.

DS70005340C-page 72 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

6.3

Loading Messages Into Transmit Queue

Loading transmit message objects into the TXQ works similarly to loading message objects into
a transmit FIFO. The application must check the CxTXQSTA register to see if there is space in
the TXQ. The CxTXQUAL/H registers should be used instead of the CxFIFOUAXL/H registers to
calculate the address to load the message and set the UINC bit (CxTXQCONL[8]) to increment

the head of the TXQ.

Table 6-1: Transmit Message Object (TXQ and TX FIFO)
Words | Bits | Bit1577 | Bit14/6 | Bit13/5 | Bit12/4 | Bit11/3 | Bit10:2 | Biton | Bit8/o
To 15:8 EID[4:0] SID[10:8]
7:0 SID[7:0]
11 158 — | —] st | EID[17:13]
7:0 EID[12:5]
1o 158 SEQI6:0] | EsI
7:0 FOF | BRS | RTR | IDE | DLC[3:0]
T3 15:8 SEQ[22:15]
7:0 SEQ[14:7]
T4 15:8 Transmit Data Byte 1
7:0 Transmit Data Byte 0
T5(1) 15:8 Transmit Data Byte 3
70 Transmit Data Byte 2
6 15:8 Transmit Data Byte 5
7:0 Transmit Data Byte 4
T7 15:8 Transmit Data Byte 7
7:0 Transmit Data Byte 6
Tie1 15:8 Transmit Data Byte n-3
7:0 Transmit Data Byte n-2
Ti 15:8 Transmit Data Byte n
7:0 Transmit Data Byte n-1

bit 15:11 (TO) EID[4:0]: Extended Identifier bits
bit 10-0 (TO) SID[10:0]: Standard Identifier bits
bit 15-14 (T1) Unimplemented: Read as ‘x’

bit 13 (T1) SID11: In FD mode, the Standard ID can be Extended to 12 bits Using r1 bit
bit 12-0 (T1) EID[17:5]: Extended Identifier bits
bit 15-9 (T2) SEQ[6:0]: Sequence to Keep Track of Transmitted Messages in Transmit Event FIFO bits
bit 8 (T2) ESI: Error Status Indicator bit
In CAN to CAN Gateway mode (ESIGM (CxCONH][1]) = 1), the transmitted ESI flag is a “logical OR” of
ESI (T1) and the error passive state of the CAN controller.
In Normal mode, ESI indicates the error status:
1 = Transmitting node is error passive
0 = Transmitting node is error active
bit 7 (T2) FDF: FD Frame bit
Distinguishes between CAN and CAN FD formats.
bit 6 (T2) BRS: Bit Rate Switch bit
Selects if Data Bit Rate is switched.
bit 5 (T2) RTR: Remote Transmission Request bit (not used in CAN FD)
bit 4 (T2) IDE: Identifier Extension bit
Distinguishes between base and extended format.
bit 3-0 (T2) DLC[3:0]: Data Length Code bits
bit 15:0 (T3) SEQ[22:7]: Sequence to Keep Track of Transmitted Messages in Transmit Event FIFO bits
Note 1: Data Bytes 0-n: Payload size is configured individually in the PLSIZE[2:0] bits (CxFIFOCONxH[15:13]).

© 2018-2022 Microchip Technology Inc. and its subsidiaries

DS70005340C-page 73

dsPIC33/PIC24 Family Reference Manual

6.4 Requesting Transmission of Message in Transmit FIFO

After a message is loaded into a transmit FIFO, the message is ready for transmission. The
application initiates the transmission of all messages in a FIFO by setting the TXREQ bit
(CxFIFOCONXL[9]) or by setting the corresponding bit in the CxTXREQL/H registers. When all
messages are transmitted, TXREQ gets cleared. The application can request transmission of
multiple FIFOs and the TXQ simultaneously. The FIFO or TXQ with the highest priority will start

transmitting first. Messages in a FIFO will be transmitted First-In-First-Out.

Messages can be loaded into a FIFO while the FIFO is transmitting messages. Since TXREQ is
cleared by the FIFO automatically after the FIFO empties, UINC and TXREQ of the
CxFIFOCONXL register must be set at the same time after appending a message. This ensures
that all messages in the FIFO are transmitted, including the appended messages.

6.5 Requesting Transmission of Message in Transmit Queue

After a message is loaded into the TXQ, the message is ready for transmission. The application
initiates the transmission of all messages in the queue by setting TXREQ (CxTXQCONL[9]).
When all messages have been transmitted, TXREQ will be cleared. The application can request
transmission of the TXQ and multiple FIFOs simultaneously. The TXQ or FIFO of the
CxTXQCONL register with the highest priority will start transmitting first. Messages in the TXQ
will be transmitted based on their ID. The message with the highest priority ID and the lowest ID

value will be transmitted first.

Messages can be loaded into the TXQ while the TXQ is transmitting messages. Since TXREQ
is cleared by the TXQ automatically after the TXQ empties, UINC and TXREQ of the
CxTXQCONL register must be set at the same time after appending a message. This ensures
that all messages in the TXQ are transmitted, including the appended messages.

6.6 CxTXREQ Register

The CxTXREQL and CxTXREQH registers contain the TXREQ[31:0] bits of the TXQ and of all

the TX FIFOs. They have the following purposes:

» The user application can request transmission of the TXQ and/or one or more TX FIFOs by
setting the corresponding bits in the CxTXREQL/H registers. Clearing a bit does NOT abort

any transmissions.

» Reading the CxTXREQH and CxTXREQL registers gives information about which transmit

FIFOs have transmissions pending.

CxTXREQL][0] is mapped to the TXQ, CxTXREQL[1] is mapped to TX FIFO 1, CxTXREQL[2] is

mapped to TX FIFO 2 and so on. CxTXREQH[31] is mapped to TX FIFO 31.

6.7 Transmit Priority

The transmit priority of the FIFOs and TXQ needs to be configured using the TXPRIx bits

(CXFIFOCONXH[4:0] and CXTXQCONH[4:0]).

Before transmitting a message, the priorities of the TXQ and the TX FIFOs queued for
transmission are compared. The FIFO/TXQ with the highest priority will be transmitted first. For
example, if transmit FIFO 1 has a higher priority setting than FIFO 3, all messages in FIFO 1 will
be transmitted first. If multiple FIFOs have the same priority, the FIFO with the highest index is
transmitted. For example, if FIFO 1 and FIFO 3 have the same priority setting, all messages in
FIFO 3 will be transmitted first. If the TXQ and one or more FIFOs have the same priority, all

messages in the TXQ will be transmitted first.

The transmit priority will be recalculated after every successful transmission of a single

message.

6.7.1 TRANSMIT PRIORITY OF MESSAGES IN FIFO
In this method, the messages in a FIFO are transmitted First-In-First-Out.

DS70005340C-page 74 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

6.7.2 TRANSMIT PRIORITY OF MESSAGES IN TXQ

Messages in the TXQ are transmitted based on the message ID. The message with the lowest
message ID (highest priority) is transmitted first.

6.7.3 TRANSMIT PRIORITY BASED ON ID

The goal of transmitting CAN messages based on ID is to avoid “Inner Priority Inversion”. If a
low-priority message is waiting to get transmitted due to bus traffic (arbitration), a higher priority
message could be prevented from being transmitted. The TXQ solves this issue by reprioritizing
the messages in the queue based on priority (ID).

6.8 Transmit Bandwidth Sharing

The bandwidth sharing feature works as follows:

» After a successful transmission of a message, the module will remain Idle for n arbitration
bit times before the module attempts to transmit the next message; it suspends the next
transmission.

» After the device has received a message, the module can transmit the next message as
soon as the bus is Idle.

This allows other nodes on the bus to transmit their messages, even though they are of lower

priority.

The number of arbitration bit times between transmissions can be configured using the
TXBWS[3:0] bits (CxCONH[15:12]).

6.9 Retransmission Attempts

The number of retransmission attempts can be configured as follows:

» Retransmission attempts are disabled

* Three retransmission attempts

* Unlimited retransmissions

The retransmission attempts can be restricted by setting RTXAT (CxCONHIO0]). The number of

retransmission attempts can be configured individually for each transmit FIFO and the TXQ
using TXAT[1:0] (CxFIFOCONXxH[6:5] and CxTXQCONH][6:5], respectively).

In case RTXAT = 0, unlimited retransmission attempts will be used for all transmit FIFOs and
the TXQ, and TXATx will be ignored.

6.9.1 RETRANSMISSION ATTEMPTS DISABLED

TXREQ will be cleared after the attempt to transmit the message. If the message is not
successfully transmitted due to loss of arbitration or due to an error, TXATIF in the CxFIFOSTAx
or CxTXQSTA register will be set.

6.9.2 THREE RETRANSMISSION ATTEMPTS

In case an error is detected during transmission, the CAN FD Protocol Module will decrement
the number of remaining attempts and try to retransmit the message the next time the bus is
Idle. In case arbitration is lost, the number of remaining attempts will not change. If all
retransmission attempts are exhausted, TXREQ will be cleared and TXATIF in CxFIFOSTAXx or
CxTXQSTA will be set.

Before retransmitting the message, the transmit priority will be recalculated. The retransmission
attempts will be reinitialized if a different TX FIFO or TXQ is selected for transmission, or if a
message is received after the last transmission attempt.

6.9.3 UNLIMITED RETRANSMISSIONS
TXREQ will be cleared only after all messages in the TX FIFO or TXQ are successfully transmitted.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 75

dsPIC33/PIC24 Family Reference Manual

6.10 Aborting Transmission

A pending transmission can only be aborted before the transmission of the message starts,
before the Start-of-Frame (SOF).

The transmission of a specific FIFO can be aborted by clearing TXREQ in the CAN Transmit
Queue Control register; it cannot be aborted by clearing the bits in the CxTXREQL/H registers.
Writing a ‘0’ to one of the bits in the CxTXREQL/H registers will be ignored. The TXABT bit in the
CAN FIFO Status x register will be set after a successful abortion. TXREQ will remain set until
the message either aborts or is successfully transmitted.

Setting ABAT (CxCONH][11]) will abort all pending messages of all FIFOs. After all TXREQXx bits
are cleared, ABAT has to be cleared in order to be able to transmit new messages.

Clearing TXREQ for a transmit FIFO will attempt to abort all transmissions in the FIFO. If a
message is successfully transmitted, the FIFO index will be updated as normal. If the message
is successfully aborted, the FIFO index will not change.

The user can then use the FIFO Message Index bits, FIFOCI[4:0] (CxFIFOSTAx[12:8]), to
identify messages that are transmitted. To reset the transmit FIFO index and erase all pending
messages, the user can set the FRESET bit. The FIFO can then be loaded with new messages
to be transmitted.

6.11 Remote Transmit Request — RTR

The CAN bus system has a method for allowing a master node to request data from another
node. The master sends a message with the RTR bit set. The message contains no data, only
an address to trigger a filter match.

Remote frames are only specified for CAN 2.0 frames; they are not supported in CAN FD frames.

The filter that is configured to respond to a Remote Transmit Request will point to a FIFO that is
configured for transmission and RTREN has to be set.

Automatic remote data requests can be handled without MCU intervention. If a FIFO is properly
configured, when a filter matches and points to the FIFO, the FIFO will be queued for
transmission.

The FIFO must be configured as follows:

+ Set TXENto ‘1.
» Afilter must be enabled and loaded with a matching message identifier

» The Buffer Pointer for that filter must point to the TX FIFO. (Normally, a filter points to an
RX FIFO.)

* RTREN bit must be set to ‘1’ to enable RTR.
» The FIFO must be preloaded with at least one message to be sent.

When an RTR message is received, and it matches a filter pointing to a properly configured
transmit FIFO, the TXREQ bit is set, queuing the object for transmission according to priorities.

A FIFO will only be transmitted if TXEN and RTREN are set, and if it is NOT empty. When a
request for a remote transmission occurs while the FIFO is empty, the event will be treated as an
overflow and the RXOVIF bit will be set.

6.12 Mismatch of DLC and Payload Size During Transmission

The PLSIZEX bits reserve a certain number of bytes in the transmit FIFO. The CAN FD Protocol
Module handles mismatches between the DLC and payload size as follows:

 If the DLC is smaller than the reserved payload, the number of data bytes specified by the
DLC will be transmitted.

« If the DLC is bigger than the reserved payload, the module will not transmit the message.
Instead, it will set the IVMIF (CxINTL[15]) and DLCMM (CxBDIAG1H[15]) flags and clear
the TXREQ flag. The application can use the TEF to identify the message that is not
transmitted.

DS70005340C-page 76

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

6.13 Transmit State Diagram

Figure 6-1 describes how messages are queued for transmission. It illustrates how the most
important transmit flags are set and cleared:
1. Messages are queued for transmission by setting the TXREQ flag.

2. The transmit priority will be determined. The FIFO or TXQ with the highest priority TXPRIx
flag will be selected. The index of the TX message in the FIFO or TXQ will be calculated.

The TX message is pending for transmission.
Transmission can only start when the bus is Idle.
A pending transmission can only be aborted before SOF is transmitted.

During the transmission of a message, the CAN FD Protocol Module checks for the

following:

a) Loss of arbitration during the arbitration field.

b) Transmit errors.

7. In case a message of a TX FIFO or the TXQ is transmitted successfully, the TXREQ will
only be cleared after all messages of the FIFO are transmitted. After the transmission of
any message, the status flags of the FIFO or TXQ are updated. In case STEF
(CxCONHI[3]) is set, the message will be stored into the TEF and a timestamp will be
attached if enabled.

8. In case arbitration is lost, TXLARB of the TX FIFO or TXQ will be set and the device will
switch over to receiving the message (see Section 9.0 “Message Reception”).

9. In case an error is detected during the transmission of a message, an error frame will be

transmitted and the appropriate error flags will be set. Messages will be retransmitted

according to Section 6.9 “Retransmission Attempts”.

ook w

Figure 6-1: Transmit State Diagram

IDLE
RX Done
Calculate
Safe Msg to TEF
ABORT ALL
Cir All TXREQ

Any TXREQ

Result: Index

New TX Index or
Received a Message?

TX Priority
Set All TXABT Re-Init TX

Attempts
Based on New
Index

TX ABORT
Set

TXABT[Index] Abort: Set ABAT

X
Pending[Index]
Wait for
Suspend Time

Clr TXREQ[Index]
Set
TXATIF[Index]

Abort: CIr TXREQ[Index]

Bus Idle and Waited for Suspend Time

TX Successful Yes
Set TXIF[Index]

Clr TXREQ[Index]

TX In Progress
SOF
Transmit[Index]

RX Message

TX Attempts Exhausted?

TX ERR
Set TXERRIF Flag
TX Attempts--

Success

Lost Arbitration

Lost Arbitration
Set
TXLARB[Index]

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 77

dsPIC33/PIC24 Family Reference Manual

6.14 Resetting Transmit FIFO

A Transmit FIFO can be reset by:

» Setting FRESET (CxFIFOCONXxL[10]) or
* Placing the module in Configuration mode (OPMOD[2:0] = 100)

Resetting the FIFO will reset the Head and Tail Pointers, and the CxFIFOSTAX register. The
settings in the CxFIFOCONXxL and CxFIFOCONXxH registers will not change.

Before resetting a TX FIFO using FRESET, ensure no transmissions are pending.

6.15 Resetting Transmit Queue

The Transmit Queue can be reset by:

» Setting FRESET (CxTXQCONL][10]) or
» Placing the module in Configuration mode (OPMOD[2:0] = 100)

Resetting the TXQ will reset the Head and Tail Pointers, and the CxTXQSTA register. The
settings in the CxTXQCONL and CxTXQCONH registers will not change.

Before resetting the TXQ using FRESET, ensure no transmissions are pending.
6.16 Message Transmission Code Example

Example 6-1: Message Transmission Code

#include <xc.h>
/* This code example demonstrates a method to configure the CAN FD module to transmit Standard and
Extended ID CAN FD messages. This uses CAN1l, TXQ and FIFOl. TXQ size is 1 and FIFOl size is 2. */

/* Include fuse configuration code here. */

#define MAX WORDS 100
unsigned int _ attribute ((aligned(4)))CanTxBuffer [MAX WORDS];

/*Data structure to implement a CANFD message buffer. */
/* CANFD Message Time Stamp */
typedef unsigned long CANFD MSG TIMESTAMP;

/* CAN TX Message Object Control*/
typedef struct _CANFD_TX MSGOBJ CTRL {
unsigned DLC:4
unsigned IDE:1
unsigned RTR:1;
unsigned BRS:1
unsigned FDF:1
unsigned ESI:1;
unsigned SEQ:23;
unsigned unimplementedl:16;
} CANFD_TX MSGOBJ CTRL;

/* CANFD TX Message ID*/
typedef struct _CANFD _MSGOBJ_ID {
unsigned SID:11;
unsigned long EID:18;
unsigned SID11:1;
unsigned unimplementedl:2;
} CANFD MSGOBJ ID;

DS70005340C-page 78 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Example 6-1: Message Transmission Code Example (Continued)

/* CAN TX Message Object*/
typedef union _CANFD TX MSGOBJ ({
struct {
CANFD MSGOBJ ID id;
CANFD_TX_MSGOBJ CTRL ctrl;
} bF;
unsigned int word([4];
unsigned char byte[8];
} CANFD_ TX MSGOBJ;

int main (void)
{

unsigned char index;

/* Place code to set device speed here. For this example the device speed should be set at 40 MHz
(i.e., the device is operating at 40 MIPS). */
ConfigureDeviceClockFor40MIPS () ; // Fcy = 40 MIPS

/* The dsPIC33C device features I/0O remap. This I/O remap configuration for the CAN FD module can
be performed here. */
SetIORemapForCANFDModule () ;

/* Set up the CAN clock generator for 40 MHz and enable the CAN clock generator. */
ConfigureCANFDClockFor40MHz () ; // Fcan = 40 MHz

/* Enable the CANFD module */
C1CONLbits.ON = 1;

/* Place CAN module in configuration mode */
CI1CONHbits.REQOP = 4;
while (C1CONHbits.OPMOD != 4);

/* Initialize the CIFIFOBA with the start address of the CAN FIFO message buffer area. */
C1lFIFOBAL = (unsigned int) &CanTxBuffer;

/* Set up the CANFD module for 1Mbps of Nominal bit rate speed and 2Mbps of Data bit rate. */
CINBTCFGH = 0x001E;

CINBTCFGL = 0x0707;

C1DBTCFGH = 0x000E;

C1DBTCFGL = 0x0303;

CI1TDCH = 0x0002; //TDCMOD is Auto

C1TDCL = 0x0F00;

/* Configure CANFD module to enable Transmit Queue and BRS*/
C1CONLbits.BRSDIS = 0x0;

C1CONHbits.STEF = 0x0; //Don't save transmitted messages in TEF
C1CONHbits.TXQEN = 0x1;

/* Configure TXQ to transmit 1 message*/
C1TXQCONHbits.FSIZE = 0x0; // single message
CI1TXQCONHbits.PLSIZE = 0x7; // 64 bytes of data

/* Configure FIFOl to transmit 2 messages*/

ClFIFOCON1Hbits.FSIZE = 0x1; //2 messages
ClFIFOCON1Hbits.PLSIZE = 0x2; //16 bytes of data
ClFIFOCON1Lbits.TXEN = 0x1; // Set TXEN bit ,transmit fifo

/* Place the CAN module in Normal mode. */
C1CONHbits.REQOP = 0;
while (C1CONHbits.OPMOD != 0);

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 79

dsPIC33/PIC24 Family Reference Manual

Example 6-1: Message Transmission Code Example (Continued)

/* Get the address of the message buffer to write to. Load the buffer and then set the UINC bit.
Set the TXREQ bit next to send the message. */

CANFD_TX MSGOBJ *tx0bj;
/* Transmit message from TXQ - CANFD base frame with BRS*/

/* SID =

0x100,

txObj =
tx0bj->bF.
tx0bj->bF.
txObj->bF.
tx0bj->bF.
tx0bj->bF.
txObj->bF.

for

{

}

{

}

id.SID
id.EID
ctrl.B
ctrl.D
ctrl.F
ctrl.I

txObj->byte[index+8] =

txObj->byte[index+8] =

64 bytes of data */

(CANFD_TX MSGOBJ *)CI1TXQUAL;

= 0x100;
= 0x0000;
RS =
ILC =0
DF = 1;
DE = 0

J

(index=0; index<0x40; index++)

0x5A ;

C1TXQCONLbits.UINC = 1;
CITXQCONLbits.TXREQ = 1;

/* Transmit message 0 from FIFO 1 - CANFD base frame with BRS*/

/* SID = 0x300 , 16 bytes of data */

txObj = (CANFD TX MSGOBJ *)ClFIFOUALL;
tx0bj->bF.1id.SID = 0x300;

tx0bj->bF.id.EID = 0x0000;

txObj->bF.ctrl.BRS = 1 ; //Switch bit rate
txObj->bF.ctrl.DLC = OxA; //16 bytes
txObj->bF.ctrl.FDF = 1; // CANFD frame
txObj->bF.ctrl.IDE = 0; //Standard frame
for (index=0;index<0x10;index++)

0xA5 ;

ClFIFOCON1Lbits.UINC
CLFIFOCON1Lbits.TXREQ =

/* Transmit message 1

{

txObj->byte[index+8]
}
ClFIFOCON1Lbits.UINC
ClFIFOCON1Lbits.TXREQ =

e

while (1) ;
}

from FIFO 1

1;
1;

/* SID = 0x500, EID = 0xC000, 12 bytes of data */
tx0Obj = (CANFD_TX MSGOBJ *)C1lFIFOUALL;
tx0bj->bF.1id.SID = 0x500;

tx0bj->bF.id.EID = 0xC000;

txObj->bF.ctrl.BRS = 1 ; //Switch bit rate
txObj->bF.ctrl.DLC = 0x9; //12 bytes
txObj->bF.ctrl.FDF = 1; // CANFD frame
txObj->bF.ctrl.IDE = 1; //Extended frame
for (index=0;index<0xC;index++)

= 0x55 ;

- CANFD base frame with BRS*/

//Switch bit rate
//64 bytes

// CANFD frame
//Standard frame

// 64 bytes of 0x5A

// Set UINC bit
// Set TXREQ bit

// 16 bytes of 0xA5

// Set UINC bit
// Set TXREQ bit

// 12 bytes of 0x55

// Set UINC bit
// Set TXREQ bit

DS70005340C-page 80

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

7.0 TRANSMIT EVENT FIFO - TEF

The TEF allows the application to keep track of the order and time in which the messages are
transmitted. The TEF works similarly to a receive FIFO. Instead of storing received messages, it
stores transmitted messages. Messages are only saved if STEF (CxCONH[3]) is set. The
sequence number (SEQ) of the transmitted message is copied into the TEF object. The payload
data is not stored. Transmitted messages are timestamped if TEFTSEN is set.

Table 7-1 specifies the TEF object. The first two words of the TEF object are a copy of the
transmit message object. Optionally, the TEF object contains the timestamp when the message
is transmitted.

71 Reading a TEF Object

Before reading a TEF object, the application must check that the TEF is not empty by reading
the CxTEFSTA register. The TEF is not empty if TEFNEIF is set.

The TEF user address points to the address in RAM of the next TEF object to read. The actual
address in RAM is calculated using Equation 7-1. TEO of the TEF object is read first, followed by
TE1 and TE2.

Equation 7-1: Start Address of TEF Object

A = BaseAddress = CxFIFOBAL/H

After the TEF object is read from RAM, the TEF needs to be incremented by setting UINC
(CxTEFCONL][8]). This will cause the CAN FD Protocol Module to increment the Tail Pointer and
update CxTEFUAL/H.

Now the next message can be read from the TEF.

711 RESETTING THE TEF
TEF can be reset by:

» Setting FRESET (CXTEFCONL][10]) or
» Placing the module in Configuration mode (OPMOD[2:0] = 100)

Resetting the FIFO will reset the Head and Tail Pointers, and the CxTEFSTA register. The
settings in the CXTEFCONL and CxTEFCONH registers will not change.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 81

dsPIC33/PIC24 Family Reference Manual

Table 7-1: Transmit Event FIFO Object
Words | Bits | Bit157 | Bit14/6 | Bit13/5 | Bit12/4 | Bit11/3 | Bit1022 | Bit9/1 | Bit8/0
15:8 EID[4:0] SID[10:8]
TEO
7:0 SID[7:0]
15:8 — | — | sbn | EID[17:13]
TE1
7:0 EID[12:5]
ey | 158 SEQ[6:0] | Esl
70 | FOF | BRS | RTIR | IDE | DLC[3:0]
15:8 SEQ[22:15]
TE3
7:0 SEQ[14:7]
15:8 TXMSGTS[15:8]
TE4("
7:0 TXMSGTS][7:0]
1 | 158 TXMSGTS[31:24]
TES™M
7:0 TXMSGTS[23:16]

bit 15:11 (TEO)
bit 10-0 (TEO)
bit 15-14 (TE1)
bit 13 (TE1)

bit 12-0 (TE1)
bit 15-9 (TE2)
bit 8 (TE2)

bit 7 (TE2)

bit 6 (TE2)

bit 5 (TE2)
bit 4 (TE2)

bit 3-0 (TE2)

bit 15-0 (TE3)
bit 15-0 (TE4)
bit 15-0 (TE5)

EID[4:0]: Extended Identifier bits

SID[10:0]: Standard Identifier bits

Unimplemented: Read as ‘x’

SID11: In FD mode, the Standard ID can be Extended to 12 Bits Using r1 bit

EID[17:5]: Extended Identifier bits

SEQ[6:0]: Sequence to Keep Track of Transmitted Messages in Transmit Event FIFO bits
ESI: Error Status Indicator bit

In CAN to CAN Gateway mode (ESIGM (CxCONH][1]) = 1), the transmitted ESI flag is a “logical OR”
of ESI (TE2) and the error passive state of the CAN controller.

In Normal mode, ESI indicates the error status:
1 = Transmitting node is error passive
0 = Transmitting node is error active

FDF: FD Frame bit

Distinguishes between CAN and CAN FD formats.

BRS: Bit Rate Switch bit

Selects if Data Bit Rate is switched.

RTR: Remote Transmission Request bit (not used in CAN FD)
IDE: Identifier Extension bit

Distinguishes between base and extended format.

DLC[3:0]: Data Length Code bits

SEQJ[22:7]: Sequence to Keep Track of Transmitted Messages in Transmit Event FIFO bits
TXMSGTS[15:0]: Transmit Message Timestamp bits
TXMSGTS[31:16]: Transmit Message Timestamp bits

Note 1: TE4 and TE5 (TXMSGTSx) only exist in objects where TEFTSEN (CxTEFCONL[5]) is set.

DS70005340C-page 82 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

7.2 Transmit Event FIFO Code Example

A code example to save the transmitted messages using TEF is shown in Example 7-1.

Example 7-1: Using the Transmit Event FIFO Code

#include <xc.h>

/* Include fuse configuration code here. */

#define MAX WORDS 100
unsigned int attribute ((aligned(4)))CanTxBuffer[MAX WORDS];
unsigned int * currentMessageBuffer;

/*data structure to implement a CANFD message buffer. */
/* CANFD Message Time Stamp */
typedef wunsigned long CANFD MSG TIMESTAMP;
/* CAN TX Message Object Control*/
typedef struct CANFD TX MSGOBJ CTRL {
unsigned DLC:4;
unsigned IDE:
unsigned RTR:
unsigned BRS:
unsigned FDF:
unsigned ESI:1;
unsigned SEQ:23;
unsigned unimplementedl:16;
} CANFD_ TX MSGOBJ CTRL;
/* CANFD TX Message ID*/
typedef struct CANFD MSGOBJ ID ({
unsigned SID:11;
unsigned long EID:18;
unsigned SID11:1;
unsigned unimplementedl:2;
} CANFD MSGOBJ ID;
/* CAN TX Message Object*/
typedef wunion _CANFD TX MSGOBJ {
struct {
CANFD _MSGOBJ_ID id;
CANFD TX MSGOBJ CTRL ctrl;
} bF;
unsigned int word[4];
unsigned char byte[8];
} CANFD TX MSGOBJ;
/* CANFD TEF Message Object */
typedef wunion CAN TEF MSGOBJ {
struct {
CANFD_MSGOBJ_ID id;
CANFD TX MSGOBJ CTRL ctrl;
CANFD MSG TIMESTAMP timeStamp;
} bF;
unsigned int word[6];
unsigned char byte[l1l2];
} CANFD TEF MSGOBJ;

’
’
’

1
1
1
1

’

/* This code example demonstrates a method to configure the CAN FD module to save the transmitted
messages in the TEF. This example uses CANl, FIFOl and TEF */

//message buffer to be written
// Points to message buffer to be read

© 2018-2022 Microchip Technology Inc. and its subsidiaries

DS70005340C-page 83

dsPIC33/PIC24 Family Reference Manual

Example 7-1: Using the Transmit Event FIFO Code (Continued)

int main(void)
{

unsigned char index, fifoSize;

/* Place code to set device speed here. For this example the device speed should be set at
40 MHz (i.e., the device is operating at 40 MIPS). */
ConfigureDeviceClockFor40MIPS () ; // Fcy = 40 MIPS

/* The dsPIC33C device features I/0 remap. This I/0 remap configuration for the CAN FD
module can be performed here. */
SetIORemapForCANFDModule () ;

/* Set up the CAN clock generater for 40 MHz and enable the CAN clock generator. */
ConfigureCANFDClockFor40MHz () ; // Fcan = 40 MHz

/* Enable the CANFD module */
C1CONLbits.CON = 1;

/* Place CAN module in configuration mode */

C1CONHbits.REQOP = 4;

while (CICONHbits.OPMOD != 4);

/* Initialize the C1FIFOBA with the start address of the CAN FIFO message buffer area. */
C1lFIFOBAL = (unsigned int) &CanTxBuffer;

/* Set up the CANFD module for 1 Mbps of Nominal bit rate speed and 2Mbps of Data bit rate. */
CINBTCFGH = 0x001E;

CINBTCFGL = 0x0707;

C1DBTCFGH = 0x000E;

CI1DBTCFGL = 0x0303;

C1TDCH = 0x0002; //TDCMOD is Auto

C1TDCL = 0xOQ0FO00;

/* Configure CANFD module to save transmitted messages in TEF and BRS*/
CI1CONLbits.BRSDIS = 0x0;

C1CONHbits.STEF = 0x1;

C1CONHbits.TXQEN = 0x0; // Disable TXQ

/* Configure TEF to save 5 messages*/
C1TEFCONHbits.FSIZE = 0x4; // save 5 messages
C1lTEFCONLbits.TEFTSEN = 1;

/* Configure FIFOl to transmit 5 messages*/

ClFIFOCON1Hbits.FSIZE = 0x4; //5 messages
ClFIFOCON1Hbits.PLSIZE = 0x7; //64 bytes of data
ClFIFOCON1Lbits.TXEN = 0Ox1; // Set TXEN bit ,transmit fifo

/* Place the CAN module in Normal mode. */
C1CONHbits.REQOP = 0;
while (C1CONHbits.OPMOD != 0);

/* Get the address of the message buffer to write to. Load the buffer and */
/* then set the UINC bit. Set the TXREQ bit to send the message. */

CANFD TX MSGOBJ *txObj;

/* Transmit 5 messages from FIFO 1 - CANFD base frame with BRS*/
/* SID = 0x300 , 64 bytes of data */
for (fifoSize= 0; fifoSize < 5; fifoSize++)

{

DS70005340C-page 84 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Example 7-1:

Using the Transmit Event FIFO Code (Continued)

tx0bj = (CANFD_TX_MSGOBJ *)CIlFIFOUAIL;
txObj->bF.1id.SID 0x300;
txObj->bF.1d.EID = 0x0000;
txObj->bF.ctrl.BRS = 1 ;
txObj->bF.ctrl.DLC = OxF;
txObj->bF.ctrl.FDF = 1;
txObj->bF.ctrl.IDE = O;
txObj->bF.ctrl.SEQ fifoSize ;

for (index=0; index<0x40; index++)
{

txObj->byte[index+8] = 0xA5 ;

}
ClFIFOCON1Lbits.UINC

1;

ClFIFOCON1Lbits.TXREQ = 1;
while (CIFIFOCON1Lbits.TXREQ == 1);

{
while (CLTEFSTAbits.TEFNEIF ==0);
CANFD_TEF _MSGOBJ *tefObj;
tefObj = (CANFD TEF MSGOBJ *)ClTEFUAL;

CI1TEFCONLbits.UINC = 1 ;
}
while (1) ;
}

//Switch bit rate

//64 bytes

//CANFD frame

//Standard frame

//Sequence does not get transmitted, but stored in TEF

// 64 bytes of 0xA5

// Set TXREQ bit

/* Keep reading the TEF objects until the last transmitted message*/
for (fifoSize= 0; fifoSize < 5; fifoSize++)

//ProcessTEFMessages (currentMessageBuffer)

// Set UINC bit

// Set UINC bit

© 2018-2022 Microchip Technology Inc. and its subsidiaries

DS70005340C-page 85

dsPIC33/PIC24 Family Reference Manual

8.0

MESSAGE FILTERING

All messages on a CAN network will be received by all nodes. In order to process only messages
of interest, a hardware filtering mechanism is implemented. The CAN FD Protocol Module can
be configured to receive only messages of interest. The module contains a maximum of
32 acceptance filters. Each acceptance filter contains a filter object and a mask object. The user
application configures the specific filter to receive a message with a given identifier by setting the
filter object and mask object to match the identifier of the message to be received.

8.1 Filter Configuration

The filters are controlled by the CxFLTCONxL and CxFLTCONXxH registers. The filters must be
disabled by clearing the FLTEN bit before changing the filter or mask object; the module need
not be in Configuration mode. After the filter object is updated, the Buffer Pointer, FnBP, has to
be initialized and the filter can be enabled by setting the FLTEN bit. The FnBP points to the
FIFO where the matching receive message needs to be stored.

8.2 Filtering a Received Message

The CAN FD Protocol Module starts acceptance filtering after the arbitration field and when the first
three data bytes of a message are received. Figure 8-1 describes the flow of message filtering.

The module loops through all the filters, starting with Filter O, which is the highest priority filter.
The message in the Receive Message Assembly Buffer (RXMAB) is compared to the filter and
mask. In case the message matches the filter and it is received without any errors, the message
will be stored into the RX FIFO pointed to by the FnBP. Acceptance filtering is stopped and the
associated RFIF bit is set.

In case an RTR is received, the TXREQ bit of the TX FIFO pointed to by FnBP will be set.

Filtering will continue with the next filter and RXOVIF will be set only when one of the following
happens:
« A filter matches, but the RX FIFO is full.

* When multiple filters match the same message and all matching RX FIFOs are full, only the
RXOVIF of the FIFO pointed to by the highest priority filter will be set.

* The RXOVIF bit will be set if the TX FIFO is empty during an RTR (TXEN = 1, RTREN = 1).
If none of the filters match, the received message will be discarded.

Note: If the module receives a message that matches a filter, but the corresponding FIFO is
a TXFIFO (TXEN = 1, RTREN = 0), the module will discard the received message.

DS70005340C-page 86

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Figure 8-1: Message Filtering Flow

Arbitration Done and
Required Data Bytes Received

\ J

;Yes and RTR: Match Filter Object 0 Yes and Not RTR—

Y

FIFO Not Empty and
?
TXEN = 1 and RTREN = 1? No No ﬁ::(?e)’(\‘?tFZUBl:’.
Index = FOBP =

h J

;Yes and RTR: Match Filter Object 1 Yes and Not RTR—

T
| \ A
FIFO Not Empty and | -
TXEN = 1 and RTREN = 1? ——No—|———-No——————— Fllr::i:‘f:lg;‘
Index = F1BP | -

Yes No Yes
|

<___

Match Filter Object 2-30

Do the Same

Y

;Yes and RTR: Match Filter Object 31 Yes and Not RTR—

Y

FIFO Not Empty and ?
TXEN =1 and RTREN = 1? No- Nor I’:ZSXN_O;;;QE
Index = F31BP _

Yes (¢ Yes

h J

Accept Message:
Set TXREQ[Index] Discard Message Receive Rest of Message
Store in FIFO [Index]

\
- Done -¢
 J

8.2.1 FILTERING STANDARD OR EXTENDED FRAMES

Figure 8-2 illustrates the flow of matching a single filter object to the received message in the
RXMAB.

The filter object can be configured to accept either standard, extended or both frames. If MIDE
is clear, both standard and extended frames will be accepted.

If the filter should only accept standard frames, then MIDE must be set and EXIDE must be
cleared. If the filter should only accept extended frames, then both MIDE and EXIDE must be set.

8.2.2 MASK BITS

The mask object is used to ignore selected bits of the received identifier. The masked bits (mask
bits with a value of ‘0’) of the RXMAB will not be compared with the bits in the filter object. For
example, to receive all messages with Identifiers 0, 1, 2 and 3, it is required to mask the lower
two bits of the identifier by clearing the corresponding bits of the mask object.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 87

dsPIC33/PIC24 Family Reference Manual

Figure 8-2: Filter Match

{ Start Matching)

Y
CxMASKxH . MIDE

Set? "
No y

Check IDE:
CXFLTOBJxH.EXIDE == RXMAB.IDE?

Yes: No No Match

Ye RXMAB.IDE =

Base Format Extended Format
CxFLTOBJx.SID == RXMAB.SID, No NO Match CxFLTOBJx.SID == RXMAB.SID, No No Match
Don t Care if CxMASKx.MSID[i] = 0 Don t Care if CxMASKx.MSID[i] = 0

Yes Yes

v

CxFLTOBJX.EID == RXMAB.EID,
Don t Care if CxMASKx.MEIDIi] = 0 No No Match

SID11:
CXTDCH.SID11EN and
CxMASKx.MSID11

Yes—

)

|
. y

Yes
Check SID11: N L
ves CxFLTOBJxXH.SID11 == RXMAB.SID11? had r{ No Match
Data Bytes: N o
CXCONL.DNCNTx > 0 ? No > Match
Yes

'

Calculate Number of Bits to Compare
N = DNCNTx
Calculate Index:
M =18-N
Assemble Receive Data Bytes: No
RXDB = {RXMAB.DBO, RXMAB.DB1, RXMAB.DB2[7:6]} > .
Compare:
CxFLTOBJm.EID[O:N] == RXDB[17 : M] ?
Don t Care if CXMASKm.MEID[i] = 0

Yes

DS70005340C-page 88 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

8.2.3 FILTERING ON DATABYTES

When the filter is configured to receive standard frames, the EID part of the filter and mask
object can be selected to filter the data bytes. The DNCNTI[4:0] bits in the CxCONL register are
used to select how many bits in the data bytes are compared. Table 8-1 explains how many
data bits are compared, and which filter bits and data bits are compared.

If DNCNTX is:

» ‘0, then data byte filtering is disabled.

» Non-zero, the filtering will commence on as many data bits as specified in DNCNTx. A filter
hit will require matching of the SIDx bits and a match of n data bits with the filter's EID[0:17]
bits. Data Byte 0[7] is always compared to EID[0], Data Byte 0[6] to EID[1],

Data Byte 2[6] to EID[17].

» Greater than 18, indicating that the user-selected number of bits is greater than the total
number of EIDx bits. The filter comparison will terminate with the 18th bit of the data.

» Greater than 16, and the received message has DLC = 2, indicating a payload of two data
bytes. The filter comparison will terminate with the 16th bit of the data.

+ Greater than 8, and the received message has DLC = 1, indicating a payload of one data
byte. The filter comparison will terminate with the 8th bit of the data.

» Greater than 0, and the received message has DLC = 0, indicating no data payload. The
filter comparison will terminate with the identifier.

8.24 12-BIT STANDARD ID

Setting SID11EN (CxTDCHI8]) allows the use of RRS as bit 12 of the SIDx (LSB). 12-Bit SID
mode is only available for CAN FD base frames. The filter is extended by SID11 and MSID11.
Data bytes can also be filtered in this mode.

Table 8-1: Data Byte Filter Configuration
Received Message Data Bits to be EIDx Bits Used for
DNCNT[4:0] Comparengyte [bits] Acceptance Filter

00000 No Comparison No Comparison
00001 Data Byte 0[7] EID[O]
00010 Data Byte 0[7:6] EID[0:1]
00011 Data Byte 0[7:5] EID[0:2]
00100 Data Byte 0[7:4] EID[0:3]
00101 Data Byte 0[7:3] EID[0:4]
00110 Data Byte 0[7:2] EID[0:5]
00111 Data Byte 0[7:1] EID[0:6]
01000 Data Byte 0[7:0] EID[0:7]
01001 Data Byte 0[7:0] and Data Byte 1[7] EID[0:8]
01010 Data Byte 0[7:0] and Data Byte 1[7:6] EID[0:9]
01011 Data Byte 0[7:0] and Data Byte 1[7:5] EID[0:10]
01100 Data Byte 0[7:0] and Data Byte 1[7:4] EID[0:11]
01101 Data Byte 0[7:0] and Data Byte 1[7:3] EID[0:12]
01110 Data Byte 0[7:0] and Data Byte 1[7:2] EID[0:13]
01111 Data Byte 0[7:0] and Data Byte 1[7:1] EID[0:14]
10000 Data Byte 0[7:0] and Data Byte 1[7:0] EID[0:15]
10001 Byte 0[7:0] and Byte 1[7:0] and Byte 2[7] EID[0:16]

10010to 11111 |Byte 0[7:0] and Byte 1[7:0] and Byte 2[7:6] EID[0:17]

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 89

dsPIC33/PIC24 Family Reference Manual

Figure 8-3 illustrates how the first 18 data bits of the received message data payload are
compared with the corresponding EIDx bits of the message acceptance filter (EID[17:0] bits in
the CxFLTOBJxL/H registers). The IDE bit of the received message must be ‘0’.

CAN Operation with DeviceNet™ Filtering

Figure 8-3:
STANDARD MESSAGE DATA FRAME
: e | — — {DATABYTE 0 |DATABYTE 1| DATABYTE 2| — - — — — — — — — — __ o o
F
/ \ / S
/ / ~
/' MESSAGE SID[10:0] ‘ / DataByte 0 Data Byte 1 Data By t 2
[sip1o[sips] - - - - |S'DOIIIIII||||||||||||||||||| o]
|
Accept/Reject Message
| 1 [1
|SID10|SID9| ————— | SIDO| |EIDO| EID1 } - | EID7 | |EID8|EID9| ————— |EID15| | EID16 |EID17|
MESSAGE ACCEPTANCE FILTER MESSAGE ACCEPTANCE FILTER
SID[10:0] EID[0:17]
Note: The DeviceNet™ filtering configuration shown for the EIDx bits is DNCNT[4:0] = 10010.

DS70005340C-page 90 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

9.0 MESSAGE RECEPTION

The application has to configure the RX FIFO before it can be used for reception (see
Section 5.4.4 “Receive FIFO Configuration”). In addition, the application has to configure and
enable at least one filter (see Section 8.1 “Filter Configuration”).

The CAN FD Protocol Module continuously monitors the CAN bus. Messages that match a filter
are stored in the RX FIFO pointed to by the filter (see Section 8.2 “Filtering a Received
Message”). The message data is stored in the receive message objects.

9.1 Receive Message Object

Table 9-1 specifies the receive message object used by the RX FIFOs. The receive objects

contain the message ID, control bits, payload and timestamp.

» SID: Standard Identifier (ID) or Base ID.

» EID: Extended Identifier.

» DLC: Data Length Code; specifies the number of data bytes in the frame (see
Section 2.1.1 “DLC Encoding”).

« |IDE: Identifier Extension; IDE = 0 means a Base ldentifier frame is received. IDE = 1
means an Extended Identifier frame is received.

* RTR: Remote Transmit Request; this bit is only specified in CAN 2.0 frames. If this bit is
set, the module is requested to respond with a frame transmission.

« FDF: FD Frame; if this bit is set, a CAN FD frame is received; otherwise, a CAN 2.0 frame
is received.

» BRS: Bit Rate Switch; the data phase of a CAN FD frame is received using DBR if this bit is
set. If the bit is clear, the whole frame is received using NBR.

» ESI: Error Status Indicator; the ESI bit reflects the error status of the transmitting node. A
recessive ESI bit in a CAN FD frame indicates that the transmitting node is error passive;
a dominant bit shows that the transmitting node is error active.

* FILHIT: Indicates the number of the filter that matched the received message.

« RXMSGTS: Timestamp of the Received Message; timestamping can be enabled for each
RX FIFO individually using RXTSEN (CxFIFOCONXxL[5]). The receive message object will
not contain RXMSGTS if timestamping is disabled.

* Receive Buffer Data: Contains the payload of the message. The maximum payload is
configured by the PLSIZEx bits (CxFIFOCONxH[15:13].

9.1.1 READING A RECEIVE MESSAGE OBJECT

Before reading a receive message object, the application must ensure that the RX FIFO is not
empty by reading the CxFIFOSTAX register. The RX FIFO is not empty if TFNRFNIF is set.

The RX FIFO user address (CxFIFOUAxL/H) points to the RAM of the next receive message
object to read. RO of the receive message object is read first, followed by R1, R2 and so on.

After the receive message object is read from RAM, the RX FIFO needs to be incremented by
setting the UINC bit (CxFIFOCONXxL[8]). This will make the CAN FD Protocol Module increment
to the tail of the FIFO and update CxFIFOUAXL/H.

Now the application can read the next message from the RX FIFO.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 91

dsPIC33/PIC24 Family Reference Manual

Table 9-1: Receive Message Object
Words | Bits | Bit15/7 | Bit14/6 | Bit13/5 | Bit12/4 | Bit11/3 | Bit10/2 | Bit91 | Bit8/0
RO 15:8 EID[4:0] SID[10:8]
7:0 SID[7:0]
Ri 158 — | — | sib11 EID[17:6]
7:0 EID[12:5]
Ry | 158 FILHIT[4:0] | — | — ESI
7:0 FDF BRS RTR IDE DLCJ[3:0]
15:8 — — — — — — — —
R3 7:0 — — — — — — — —
R4(2) 15:8 RXMSGTS[15:8]
7:0 RXMSGTSJ[7:0]
R5(2) 15:8 RXMSGTS[31:24]
7:0 RXMSGTS[23:16]
R6(M 15:8 Receive Data Byte 1
7:0 Receive Data Byte 0
rR7(1) 15:8 Receive Data Byte 3
7:0 Receive Data Byte 2
RS 15:8 Receive Data Byte 5
7:0 Receive Data Byte 4
R9 15:8 Receive Data Byte 7
7:0 Receive Data Byte 6
Ri-1 15:8 Receive Data Byte n-2
7:0 Receive Data Byte n-3
Ri 15:8 Receive Data Byte n
7:0 Receive Data Byte n-1

bit 15-11 (R0) EID[4:0]: Extended Identifier bits

bit 10-0 (RO)
bit 15-14 (R1)
bit 13 (R1)

bit 12-0 (R1)
bit 15-11 (R2)

bit 10-9 (R2)
bit 8 (R2)

bit 7 (R2)
bit 6 (R2)

bit 5 (R2)
bit 4 (R2)

bit 3-0 (R2)

bit 15:0 (R3)
bit 15:0 (R4)
bit 15:0 (R5)

Note 1:

SID[10:0]: Standard Identifier bits
Unimplemented: Read as ‘x’

SID11: In FD mode, the Standard ID can be Extended to 12 bits using r1 bit

EID[17:5]: Extended Identifier bits
FILHIT[4:0]: Filter Hit bits

The number of filters that matched.
Unimplemented: Read as ‘x’

ESI: Error Status Indicator bit

In CAN to CAN Gateway mode (ESIGM = 1), the transmitted ESI flag is a “logical OR” of ESI (T1) and

the error passive state of the CAN controller.
In Normal mode, ESI indicates the error status:

1 = Transmitting node is error passive
0 = Transmitting node is error active

FDF: FD Frame bit

Distinguishes between CAN and CAN FD formats.

BRS: Bit Rate Switch bit
Selects if Data Bit Rate is switched.

RTR: Remote Transmission Request bit (not used in CAN FD)

IDE: Identifier Extension bit

Distinguishes between base and extended format.

DLCI3:0]: Data Length Code bits
Unimplemented: Read as ‘x’

RXMSGTS[15:0]: Receive Message Timestamp bits
RXMSGTS[31:16]: Receive Message Timestamp bits

2: R4 and R5 (RXMSGTSx) only exists in objects where RXTSEN is set.

Receive Message Object: Data Bytes 0-n; payload size is configured individually with the PLSIZE[2:0] bits.

DS70005340C-page 92

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

9.2 Receive State Diagram

Figure 9-1 illustrates how messages are received. It illustrates how the most important receive
flags are set and cleared.

* The CAN FD Protocol Module remains Idle until a SOF is detected.

« After a SOF is detected, the module will receive the arbitration and control fields.

» Based on the DNCNTXx bits and the received DLC, acceptance filtering will start. See
Figure 8-1 for more details.

« If none of the filters match, the message will still be received, but it will not be stored.

« If a filter matches, the device checks whether the receive object the filter points to is full.

« If the receive object is full, the RXOVIF bit will be set.

« If the receive object is not full, the rest of the data bytes are received and stored to the
receive object.

 If a complete message is received, the message will be stored, a timestamp will be
attached and the receive flags will be set; the FIFO status flags will be updated and the
FIFO head will be incremented.

* In case an error is detected during the reception of a message, an error frame will be
transmitted and the appropriate error flags will be set.

Figure 9-1: Receive State Diagram

Store Message to

Object
Set RXIF

Error

Success

Receive Rest of

Message

Transmit Error SOF
Frame Success
Set Error Flags

Error

Error

Receive Rest of
Message

Receive

Arbitration and
CTRL Field

Success

DNCNTx >0 and DLC > 0?

Error Filter Match?

Receive
Data Bytes 0-3

Set RXOVIF

Receive Remaining
Data Bytes
and Store them

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 93

dsPIC33/PIC24 Family Reference Manual

9.3 Resetting RX FIFO

Areceive FIFO can be reset by:
» Setting FRESET (CxFIFOCONXxL[10]) or
* Placing the module in Configuration mode (OPMOD[2:0] = 100)

Resetting the FIFO will reset the Head and Tail Pointers, and the CxFIFOSTAX register. The
settings in the CxFIFOCONXL/H registers will not change.

Before resetting an RX FIFO using FRESET, ensure that no enabled filter is pointing to the FIFO.

9.4 Mismatch of DLC and Payload Size During Reception

The PLSIZEX bits reserve a certain number of bytes in the receive message object. The module
handles mismatches between DLC and payload size as follows:

« If the number of bytes specified by the DLC is smaller than the number of bytes specified
by the PLSIZEX bits, the received message bytes will be stored in the message object,
without any padding.

« If the number of bytes specified by the DLC is bigger than the number of bytes specified by
the PLSIZEX bits, the data bytes that fit in the receive message object are stored and the
other data bytes that do not fit are discarded. The module ensures that the next message
object in RAM does not get overwritten. The module will store the message in the receive
object and the RX FIFO status flags will be updated. In addition, the IVMIF (CxINTL[15])
and DLCMM flags (CxBDIAG1H[15]) will be set.

9.5 Message Reception Code Example

A code example to receive the CAN FD extended frame using Filter 0, and saving the messages
in FIFO 1, is shown in Example 9-1.

Example 9-1: Message Reception Code

#include <xc.h>
/* This code example demonstrates a method to configure the CAN FD module to receive the extended ID
CAN FD messages. This uses CAN1l, FIFOl and filter 0. FIFOl is configured to receive 2 messages. */

/* Include fuse configuration code here. */
#define MAX_WORDS 100
unsigned int attribute ((aligned(4)))CanRxBuffer[MAX WORDS];

/*data structure to implement a CANFD message buffer. */
/* CANFD Message Time Stamp */
typedef unsigned long CANFD MSG TIMESTAMP;

/* CANFD RX Message Object Control*/
typedef struct CANFD RX MSGOBJ CTRL {
unsigned DLC:4;
unsigned IDE:1;
unsigned RTR:1
unsigned BRS:1
unsigned FDF:1
unsigned ESI:1;
unsigned unimplementedl:2;
unsigned FilterHit:5;
unsigned unimplemented2:16;
} CANFD RX MSGOBJ_ CTRL;

’
’
’

DS70005340C-page 94 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Example 9-1: Message Reception Code (Continued)

/* CANFD RX Message ID*/
typedef struct _CANFD MSGOBJ_ID {
unsigned SID:11;
unsigned long EID:18;
unsigned SID11:1;
unsigned unimplementedl:2;
} CANFD _MSGOBJ_1ID;

/* CANFD RX Message Object */
typedef wunion _CANFD RX MSGOBJ {
struct {
CANFD _MSGOBJ ID id;
CANFD RX MSGOBJ CTRL ctrl;
CANFD MSG TIMESTAMP timeStamp;
} bF;
unsigned int word[6];
unsigned char byte [12]
} CANFD RX MSGOBJ;

int main(void)

{

/* Place code to set device speed here. For this example the device speed should be set at 40 MHz
(i.e., the device is operating at 40 MIPS). */
ConfigureDeviceClockFor40MIPS () ; // Fcy = 40 MIPS

/* The dsPIC33C device features I/0 remap. This I/0 remap configuration for the CAN FD module can
be performed here. */
SetIORemapForCANFDModule () ;

/* Set up the CAN clock generator for 40 MHz and enable the CAN clock generator. */
ConfigureCANFDClockFor40MHz () ; // Fcan = 40 MHz

/* Enable the CANFD module */
C1CONLbits.CON = 1;

/* Place CAN module in configuration mode */
C1CONHbits.REQOP = 4;
while (CICONHbits.OPMOD != 4);

/* Initialize the CIFIFOBA with the start address of the CAN FIFO message buffer area. */
C1FIFOBAL = (unsigned int) &CanRxBuffer;

/* Set up the CANFD module for 1 Mbps of Nominal bit rate speed and 2 Mbps of Data bit rate. */
CINBTCFGH = 0x001E;

CINBTCFGL = 0x0707;

C1DBTCFGH = 0x000E;

C1DBTCFGL = 0x0303;

C1TDCH = 0x0002; //TDCMOD is Auto

C1TDCL = 0xOQ0FO00;

/* Configure CANFD module to enable BRS */

C1CONLbits.BRSDIS = 0xO0;

C1CONHbits.STEF = 0x0; //Don't save transmitted messages in TEF
C1CONHbits.TXQEN = 0x0; // No TXQ

/* Configure FIFOl to Receive 2 messages*/

ClFIFOCON1Hbits.FSIZE = 0x1; //2 messages
ClFIFOCON1Hbits.PLSIZE = 0x7; //64 bytes of data
C1FIFOCON1Lbits.TXEN = 0x0; //Receive fifo
ClFIFOCON1Lbits.RXTSEN = 0x1; //Enable receive fifo timestamp

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 95

dsPIC33/PIC24 Family Reference Manual

Example 9-1: Message Reception Code (Continued)

/* Configure filter 0 and MASK 0 to accept extended id messages with id = 2 and 3 */
C1FLTCONOLbits.FOBP = 1; // message stored in FIFO1

CI1FLTOBJOL = 0x1000; // EID = 0x00002

C1FLTOBJOH = 0x4000; // Match messages with extended identifier address
C1MASKOL = OxF7FF; // MEID = Ox1FFFE - Last it is 0

C1MASKOH = OxFFFF; // Match message types

C1lFLTCONOLbits.FLTENO = 1; // Enable the filter 0

/* Place the CAN module in Normal mode. */
C1CONHbits.REQOP = 0;
while (C1CONHbits.OPMOD != 0);

/* Get the address of the message buffer to read the received messages.*/

/* set UINC bit to update the FIFO tail */

CANFD_RX_MSGOBJ *rxObj;

rxObj = (CANFD_RX_MSGOBJ *)CIlFIFOUAIL;

while (CIFIFOSTAlbits.TFNRENIF ==0) ;

//Process the received messages

ClFIFOCON1Lbits.UINC = 1; // Update the FIFO message pointer.
while (1) ;

}

DS70005340C-page 96 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

10.0 FIFO BEHAVIOR

This section explains the FIFO behavior when TEF and TXQ are enabled. FIFO 1 is configured
as a TXFIFO and FIFO 2 as an RX FIFO. The remaining FIFOs are not configured.

Note 1: The start addresses are calculated based on the number of objects in the FIFO and
the PLSIZEXx bits.

2: The start addresses of the FIFOs given in Table 10-1 are calculated when TEF

starts at 0x1400.
Table 10-1: Example FIFO Configuration

Objects | Payload - Bytes in Bytes in

FIFO in FIFO | per Object Timestamp Object FIFO Start Address

TEF 12 N/A Yes 12 144 0x1400
™>Q 8 32 N/A 40 320 0x1490
FIFO 1 5 64 N/A 72 360 0x15D0
FIFO 2 16 64 Yes 76 1216 0x1738
FIFO 3 N/A — — — — 0x1BF8

10.1 FIFO Status Flags

FIFO 1 through FIFO 31 can be configured as transmit or receive FIFOs. The same status flags
in CxFIFOSTAX are used for transmit and receive FIFOs. The status flags behave differently
based on the selected configuration.

10.1.1 TX FIFO STATUS FLAGS

There are three transmit status flags:

* TFEIF (TEERFFIE): Transmit FIFO Empty Interrupt Flag; set when the FIFO is empty.

* TFHIF (TEHRFHIE): Transmit FIFO Half Empty Interrupt Flag; set when FIFO is less than half full.
* TFNIF (TENRFNIE): Transmit FIFO Not Full Interrupt Flag; set when FIFO is not full.

The status flags of a transmit FIFO are set when there is space to load a new message object

into the FIFO. Before the first message object is loaded (after the FIFO is reset), all status flags
are set. When the FIFO is fully loaded, all flags are cleared.

10.1.2 RX FIFO STATUS FLAGS

There are three receive status flags:

* RFFIF (TFEREEIFE): Receive FIFO Full Interrupt Flag; set when the FIFO is full.

» RFHIF (TFHREHIE): Receive FIFO Half Full Interrupt Flag; set when the FIFO is at least half full.

* RFNIF (TFNRENIF): Receive FIFO Not Empty Interrupt Flag; set when there is at least one
message in the FIFO.

The status flags of the receive FIFO are set when there are received messages in the FIFO.
Before the first message is received (after the FIFO is reset), all status flags are cleared. When
the FIFO is full, all flags are set.

10.1.3 TXQ STATUS FLAGS

There are two TXQ status flags:

« TXQEIF: TXQ Empty Interrupt Flag; set when the TXQ is empty.
* TXQNIF: TXQ Not Full Interrupt Flag; set when TXQ is not full.

The status flags of the TXQ are set when there is space to load a new message object into the
TXQ. Before the first message object is loaded (after the TXQ is reset), all status flags are set.
When the TXQ is fully loaded, all flags are cleared.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 97

dsPIC33/PIC24 Family Reference Manual

10.1.4 TEF STATUS FLAGS
There are four TEF status flags:

* TEFFIF: TEF Full Interrupt Flag; set when the TEF is full.

» TEFHIF: TEF Half Full Interrupt Flag; set when the TEF is at least half full.

* TEFNEIF: TEF Not Empty Interrupt Flag; set when there is at least one message in the TEF.

* TEFOVIF: TEF Overrun Interrupt Flag; set when an overflow has occurred.

The status flags of the TEF are set when there are transmitted messages in the FIFO. Before the

first message is stored (after the TEF is reset), all status flags are cleared. When the TEF is full,
all flags are set.

10.2 Transmit FIFO Behavior

FIFO 1 is configured as a TX FIFO. CxFIFOCON1L and CxFIFOCON1H are used to control the
FIFO. CxFIFOSTA1 contains the status flags and the FIFO Index bits (FIFOCI[4:0]).
CxFIFOUA1L and CxFIFOUA1H contain the user address of the next transmit message object
to be loaded.

Figure 10-1 through Figure 10-6 illustrate how the status flags, user address and FIFO index are
updated for FIFO 1.

Figure 10-1 shows the status of FIFO 1 after Reset. Message objects, MOO to MO4, are empty.
All status flags are set. The user address and the FIFO index point to MOO.

Figure 10-1: FIFO 1 — Initial State
CxFIFOUA1L = 0x1D0 ——» MO0
CxFIFOSTAT:
FIFOCIx = 0 MoT
TFEIF =1 MO?2
TFHIF = 1
TFENIF = 1 MO3
CxFIFOCONL: MO4
TXREQ = 0

Figure 10-2 illustrates the status of FIFO 1 after the first message (MSGO) is loaded. MOO now
contains MSGO. The user application sets the UINC bit (CxFIFOCON1L[8]), which causes the
FIFO head to advance. The user address now points to MO1. TFEIF is cleared since the FIFO
is no longer empty. The user application now sets TXREQ to request the transmission of MSGO.

Figure 10-2: FIFO 1 - First Message Loaded

CxFIFOUA1L = 0x218 MOO0/MSGO
CxFIFOSTA1:
FIFOCIx = 0 /{ MO1

TFEIF = 0 MO?2
TFHIF =1

TFNIF = 1 MO3
CxFIFOCONL: MO4
TXREQ = 1

DS70005340C-page 98

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Figure 10-3 illustrates the status of FIFO 1 after MSGO is transmitted. The FIFO is empty again.
TFEIF is set and TXREQ is cleared. FIFOCIx bits now point to MO1 with user address 0x218.

Figure 10-3: FIFO 1 - First Message Transmitted

CxFIFOUA1L = 0x218 MO0
CxFIFOSTAT:
FIFOCIx =1) Mot

TFEIF =1 MO2
TFHIF = 1

TFNIF =1 MO3
CXFIFOCONAL: MO4
TXREQ = 0

Figure 10-4 illustrates the status of FIFO 1 after three more messages are loaded: MSG1-MSG3. The
user address now points to MO4. TFHIF is cleared because the FIFO is now less than half empty.

Figure 10-4: FIFO 1 — Three More Messages Loaded

CxFIFOUA1L = 0x2F0 MO0
CxFIFOSTA1:

FIFOCIx =1 MO1/MSG1
TFEIF =0 MO2/MSG2
TFHIF =0

TENIF = 1 MO3/MSG3
CxFIFOCON1L: MO4
TXREQ =0

Figure 10-5 illustrates the status of FIFO 1 after two more messages are loaded: MSG4 and
MSG5. CxFIFOUA1L now points to MO1. All status flags are now cleared because the FIFO is
full. The user address and the FIFO index now point to MO1. The user application now sets
TXREQ to request the transmission of MSG1-MSG5.

Figure 10-5: FIFO 1 — FIFO Fully Loaded

CxFIFOUA1L = 0x218 \ MOO0/MSG5

CxFIFOSTA1:
FFoCk=1 | MO1MSG1

TFEIF =0 MO2/MSG2
TFHIF =0

TENIF = 0 MO3/MSG3
CxFIFOCON1L: MO4/MSG4
TXREQ =1

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 99

dsPIC33/PIC24 Family Reference Manual

Figure 10-6 illustrates the status of FIFO 1 after MSG1-MSG5 are transmitted. The FIFO is
empty again. All status flags are set and TXREQ is cleared. The user address and the FIFO index
point to MO1 again.

Figure 10-6: FIFO 1 — FIFO Fully Transmitted

CxFIFOUA1L = 0x218 MO0
CxFIFOSTAT:
FIFOCIx =1) Mot

TFEIF =1 MO2
TFHIF =1

TFNIF = 1 MO3
CxFIFOCONL: MO4
TXREQ = 0

10.3 Receive FIFO Behavior

FIFO 2 is configured as an RX FIFO. CxFIFOCON2L and CxFIFOCONZ2H are used to control the
FIFO. CxFIFOSTA2 contains the status flags and the FIFO index (FIFOCIx). CxFIFOUA2L and
CxFIFOUAZ2H contain the user address of the next message object to read.

Figure 10-7 through Figure 10-14 illustrate how the status flags, user address and FIFO index
are updated.

Figure 10-7 shows the status of FIFO 2 after the Reset. Message objects, MO0 to MO15, are
empty. All status flags are cleared. The user address and the FIFO index point to MOO.

Figure 10-7: FIFO 2 - Initial State

CxFIFOUA2L = 0x338 MO0
CxFIFOSTAZ:
RFFIF =0 MO2

RFHIF = 0
RFNIF = 0

RXOVIF =0 MO15

Figure 10-8 illustrates the status of FIFO 2 after the first message (MSGO) is received. MOO now
contains MSGO. The FIFO index now points to MO1. RFNIF is set since the FIFO is not empty
anymore.

Figure 10-8: FIFO 2 - First Message Received

CxFIFOUA2L = 0x338 — | MOO/MSGO
CxFIFOSTA2:

FIFocIx=1 ___——» | MO1
RFFIF = 0 MO2
RFHIF = 0 ,
RFNIF = 1

RXOVIF =0 MO15

DS70005340C-page 100 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Figure 10-9 illustrates the status of FIFO 2 after MSGO is read. The user application reads the
message from RAM and sets the UINC bit (CxFIFOCONZ2L[8]). The user address increments and
points to MO1. The FIFO index is unchanged. The FIFO is empty again. All flags are cleared.

Figure 10-9: FIFO 2 - First Message Read

CxFIFOUA2L = 0x384 MO0
CxXFIFOSTA2: \ MO1
FIFOCIx = 1

RFFIF = 0 MO2
RFHIF = 0 .
RFNIF =0 :

RXOVIF =0 MO15

Figure 10-10 illustrates the status of FIFO 2 after eight more messages are received: MSG1-MSG8.
The user address still points to MO1. RFNIF and RFHIF are set because the FIFO is now half full.
The FIFO index points to MO9.

Figure 10-10: FIFO 2 - Half Full

CxFIFOUAZ2L = 0x384 MO0

FIFOCIx =0

RFFIF =0 MO2/MSG2

RFHIF = 1 .

RFENIF =1 !

RXOVIF =0 MOB/MSG8
MQO9
MO10

MO15

Figure 10-11 illustrates the status of FIFO 2 after ten more messages are received: MSG5-MSG15.
The user address still points to MO1. The FIFO index points to MOO. RFNIF and RFHIF are set.

Figure 10-11: FIFO 2 - FIFO Almost Full

CxFIFOUA2L = 0x384 MO0
CxFIFOSTA2:

FIFOCIx = 0 /<{ MO1/MSGH1
RFFIF = 0 MO2/MSG2
RFHIF = 1

RFNIF = 1 :

RXOVIF =0 MO15/MSG15

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 101

dsPIC33/PIC24 Family Reference Manual

Figure 10-12 illustrates the status of FIFO 2 after one more message is received: MSG16. All
status flags are set because the FIFO is full. The user address and the FIFO index point to MO1.

Figure 10-12:

FIFO 2 — FIFO Full

CxFIFOUA2L = 0x384

CxFIFOSTA2: \
FIFOCIx=1 ____— %

RFFIF =1
RFHIF = 1
RFNIF = 1

MOO0/MSG16
MO1/MSG1
MO2/MSG2

RXOVIF =0

MO15/MSG15

Figure 10-13 illustrates the status of FIFO 2 after one more message is received. Since FIFO 2
is already full, an overflow occurs. The message is discarded and RXOVIF is set. The user
address and FIFO index has not changed.

Figure 10-13: FIFO 2 — FIFO Overflow

CxFIFOUA2L = 0x384

CxFIFOSTA2: \
FIFOClx=1 __— %

RFFIF =1 MO2/MSG2
RFHIF = 1 .
RFNIF = 1 .

RXOVIF =1 MO15/MSG15

MOO0/MSG16
MO1/MSG1

Figure 10-14 illustrates the status of FIFO 2 after the application cleared RXOVIF and read two
more messages. RFFIF is clear because the FIFO is not full anymore. The user address points
to MO3. The FIFO index has not changed.

Figure 10-14: FIFO 2 — Two More Messages Read
CxFIFOUA2L = 0x41C MOO0/MSG16
CxFIFOSTA2:
FIFOCIx = 1 MOf
RFFIF =0 MO2
RFHIF = 1
RFNIF = 1 MO3/MSG3
RXOVIF =0 MO4/MSG4

MO15/MSG15

DS70005340C-page 102 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

10.4 Transmit Queue Behavior

CxTXQCONL and CxTXQCONH are used to control the TXQ. CxTXQSTA contains the status
flags and the TXQ index (TXQCIx). CxTXQUAL and CxTXQUAH contain the user address of the
next transmit message object to be loaded.

The TXQCI[4:0] bits are used by the CAN FD Protocol Module to calculate the next message to
transmit. TXQCIx bits are not incremented linearly. They are recalculated every time a message
gets transmitted or TXREQ gets set.

Figure 10-15 through Figure 10-20 illustrate how the status flags and user address are updated.
There is no need for the user application to use TXQCIx; therefore, it is not shown in the figures.

Figure 10-15 shows the status of the TXQ after Reset. Message objects, MOO to MO7, are
empty. All status flags are set. The user address points to MOO.

Figure 10-15: TXQ - Initial State

CxTXQUAL = 0x090 ———» MO0
CxTXQSTA:
TXQEIF =1 MO1
TXQNIF =1 MO2
CxTXQCONL: !
TXREQ =0

MO7

Figure 10-16 illustrates the status of the TXQ after the first message (MSGO) is loaded. MOO now
contains MSGO. The user application sets the UINC bit, which causes the FIFO head to advance.
The user address now points to MO1. TXQEIF is cleared, since the queue is not empty anymore.
The user application now sets TXREQ to request the transmission of MSGO.

Figure 10-16: TXQ - First Message Loaded

CXTXQUAL = 0x0B8 MOO/MSGO
CXTXQSTA: Ta MOA
TXQEIF = 0

TXQNIF = 1 MO2

CxTXQCONL:
TXREQ =1

MO7

Figure 10-17 illustrates the status of the TXQ after MSGO is transmitted. The TXQ is empty again.
TXQEIF is set and TXREQ is cleared. The user address still points to MO1 because UINC is not set.

Figure 10-17: TXQ - First Message Transmitted

CXTXQUAL = 0x0B8 MO0
CXTXQSTA: T MO1

TXQEIF =1
TXQNIF =1 MO2
CxTXQCONL: !
TXREQ =0

MO7

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 103

dsPIC33/PIC24 Family Reference Manual

Figure 10-18 illustrates the status of the TXQ after MSG1 is loaded and UINC is set. The user
address now points to the next free message object: MOO.

Figure 10-18: TXQ - Next Message Loaded

CxXTXQUAL = 0x090 ——p» MO0
CxTXQSTA:
TXOEIF = 0 MO1/MSGH1
TXQNIF =1 MO2
CxTXQCONL: :
TXREQ =0

MO7

Figure 10-19 illustrates the status of the TXQ after six more messages are loaded: MSG2-MSG?7.
The user address now points to the last free message object: MO7.

Figure 10-19: TXQ - Next Six Messages Loaded

CxTXQUAL = 0x1A8 MOO0/MSG2
TXQEIF =0 O1/MSG
TXQNIF =1 MO2/MSG3
CxTXQCONL: MO3/MSG4
TXREQ =0
MO4/MSG5
MO5/MSG6
MO6/MSG7
MO7

Figure 10-20 illustrates the status of the TXQ after MSG8 is loaded and UINC is set. The TXQ is
now full, all flags are cleared. The user address now points to MOO. The user application now
sets TXREQ. The messages will be transmitted based on the priority of their IDs.

Figure 10-20: TXQ —Full

CxTXQUAL = 0x090 ———»| MOO/MSG2

CxTXQSTA:
TXQEIF = 0 MO1/MSG1
TXQNIF =0 MO2/MSG3
CxTXQCONL: MO3/MSG4
TXREQ =1
MO4/MSG5
MO5/MSG6
MO6/MSG7
MO7/MSG8

DS70005340C-page 104 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

10.5 Transmit Event FIFO Behavior

CxXTEFCONL and CxXTEFCONH are used to control the TEF. CXTEFSTA contains the status
flags. CxTEFUAL and CxTEFUAH contain the user address of the next message object to read.

The actual RAM address is calculated using Equation 7-1.

Figure 10-21 through Figure 10-28 illustrate how the status flags and user address are updated.
The TEF stores transmitted messages; therefore, the flags behave similarly to an RX FIFO.

Figure 10-21 shows the status of the TEF after Reset. Message objects, MOO to MO11, are
empty. All status flags are cleared. The user address points to MOO.

Figure 10-21: TEF - Initial State

CXTEFUAL = 0x000 — | MOO
CXTEFSTA:

TEFFIF = 0 MoT
TEFHIF = 0 MO2
TEFNEIF = 0 ,
TEFOVIF = 0 .

MO11

Figure 10-22 shows the status of the TEF after the first transmit message is stored. MOO contains
IDO, the ID of MSGO0. TEFNEIF is set since the TEF is not empty. The user address points to
MOO.

Figure 10-22: TEF - First Transmit Message is Stored

CxTEFUAL = 0x000 ——p» MOO0/IDO
CXTEFSTA:

TEFFIF =0 MO1
TEFHIF =0 MO2
TEFNEIF = 1)
TEFOVIF =0 .

MO11

Figure 10-23 illustrates the status of the TEF after IDO is read. The user application reads the ID
from RAM and sets the UINC bit (CxTEFCONL[8]). The user address increments and points to
MO1. The TEF is empty again. All flags are cleared.

Figure 10-23: TEF - First ID Read

CXTEFUAL = 0x00C MOO
CXTEFSTA: T MO'
TEFFIF = 0

TEFHIF = 0 MO2

TEFNEIF =0
TEFOVIF = 0 .

MO11

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 105

dsPIC33/PIC24 Family Reference Manual

Figure 10-24 illustrates the status of the TEF after six more messages are transmitted: MSG1-MSG6.
The user address points to MO1. TEFNEIF and TEFHIF are set because the TEF is now half full.

Figure 10-24: TEF — Half Full

CxTEFUAL = 0x00C MO0

TEFFIF = 0

TEFHIF = 1 MO2/1D2

TEFNEIF = 1)

TEFOVIF =0 .

MOG6/ID6

MQO7
MO8

MO11

Figure 10-25 illustrates the status of the TEF after five more messages are transmitted:
MSG7-MSG11. The user address still points to MO1. TEFNEIF and TEFHIF are set.

Figure 10-25: TEF — Almost Full

CXTEFUAL = 0x00C MO0
CXTEFSTA: \

TEFFIF = 0 MO1/IDT
TEFHIF = 1 MO2/ID2
TEFNEIF = 1 .

TEFOVIF = 0 .

MO11/ID11

Figure 10-26 illustrates the status of the TEF after one more message is transmitted: MSG12. All
status flags are set because the TEF is full. The user address points to MO1.

Figure 10-26: TEF — Full

CXTEFUAL = 0x00C MOO/ID12
CXTEFSTA: \

TEFFIF = 1 MO1/ID1
TEFHIF = 1 MO2/ID2
TEFNEIF = 1 ,
TEFOVIF = 0

MO11/ID11

DS70005340C-page 106 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

Figure 10-27 illustrates the status of the TEF after one more message is transmitted. Since the
TEF is already full, an overflow occurs. The ID is discarded and TEFOVIF is set. The user
address remains unchanged.

Figure 10-27: TEF - Overflow

CXTEFUAL = 0x00C MOO/ID12
CXTEFSTA: \

TEFFIF = 1 MO1/IDT
TEFHIF = 1 MO2/ID2
TEFNEIF = 1

TEFOVIF = 1

MO11/1D11

Figure 10-28 illustrates the status of the TEF after the application cleared TEFOVIF and read one
more message. TEFFIF is clear because the TEF is not full anymore. The user address points
to MO2.

Figure 10-28: TEF — One More ID Read

MOO/ID12
CxTEFUAL = 0x018 MO1
CXTEFSTA: \ N ooID2
TEFFIF = 0

TEFHIF = 1 MO3/ID3
TEFNEIF = 1 ,
TEFOVIF = 0 .

MO11/ID11

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 107

dsPIC33/PIC24 Family Reference Manual

11.0 TIMESTAMPING

The CAN FD Protocol Module contains a Time Base Counter (TBC). The TBC is a 32-bit free-running

counter that increments on multiples of FCAN and rolls over to zero when:

» TBCPRE[9:0] bits (CxTSCONL[9:0]) are used to configure the prescaler for the TBC

» Setting TBCEN (CxTSCONHI[0]) enables the TBC

» Clearing TBCEN disables, stops and resets the TBC

» The TBC has to be disabled before writing to CxTBCL/H by clearing TBCEN

» TEFTSEN (CxTEFCONLI5]) has to be set to timestamp messages in the TEF

* RXTSEN (CxFIFOCONXL[5]) has to be set to timestamp messages in the individual
RX FIFO

» The application can read CxTBCL/H at any time. Similar to any multibyte counter, the
application has to consider that the counter increments and might roll over while reading
different bytes of the counter.

All timestamps are 32 bits, allowing timestamps to be used for system time synchronization with
high resolution.

A rollover of the TBC will generate an interrupt if TBCIE is set.

Messages can be timestamped either at the beginning of a frame or at the end, depending on
the TSEOF bit (CxTSCONH[1]). When TSEOF = 0, TSRES (CxTSCONH][2]) specifies if FD
frames are timestamped at SOF or the “reserved bit". Table 11-1 specifies the reference points
when the timestamping occurs. At the reference point, the value of the TBC (CxTBCL/H) is
captured and stored into the message object:

* Receive Message Object: The TBC value is stored in the RXMSGTSx bits (see Table 9-1)
» TEF Object: The TBC value is stored in the TXMSGTSx bits (see Table 7-1)

Table 11-1: Reference Point
Frame CAN 2.0 CAN FD
Start of TX | Sample point of SOF Sample point of SOF or the bit after FDF
Start of RX | Sample point of SOF Sample point of SOF or the bit after FDF
Valid TX No error till end of EOF No error till end of EOF
Valid RX No error till the last, but one bit of No error till the last, but one bit of EOF
EOF

DS70005340C-page 108

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

12.0 INTERRUPTS
Interrupts can be classified into multiple layers. Lower layer interrupts propagate to higher
layers by multiplexing them into single interrupts. Figure 12-1 illustrates the layers of interrupts.

* FIFO Individual Interrupts

* FIFO Combined Interrupts

* Main Interrupts

These interrupts are then funneled into three separate module interrupts:
* Receive Interrupt

* Transmit Interrupt

 Information Interrupt

All module interrupts are persistent, meaning the condition that caused the interrupt must be
cleared within the module for the interrupt request to be removed.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 109

dsPIC33/PIC24 Family Reference Manual

Figure 12-1:

Interrupt Multiplexing

RFFIE

RFFIF

RFENIE

RFNIF
TXQEIE

TXQEIF
TXQNIE

TXQNIF
TFEIE

TFEIF

TENIE

TENIF

CxTEFCONL
CxTEFSTA

TEFOVIE

TEFOVIF
TEFFIE

TEFFIF
TEFHIE

TEFHIF
TEFNEIE

TEFNEIF

CxTXQCONL, CXTXQSTA
CxFIFOCONXL, CxFIFOSTAx

RFHIE
RFHIF D

TFHIE
TFHIF D

FIFO Individual ! EIFO Combined l Main Interrupts l Interrupt Pins
Interrupts | Interrupts ' '
| | |
31 FIFOs
RXIE (CxINTH) i_\ RX Interrupt
a1\ REIFH[15:0] (CKRXIFH) 31x RXIF (CXINTL) _—
RFIFL[15:1] (CxRXIFL) 2 e
1TXQ
TFIF[0] (CXTXIFL)
31 FIFOs TXIE (CX|NTH) X Interrupt
31 CXTXIFH[15:0] 32x TXIF (CxINTL)
X S CXTXIFL[15:] 7

CXRXOVIFH[15:0]

RXOVIE (CxINTH)

31x

X

:DRXOV'E <\ __31FIFOs
RXOVIF =

CxRXOVIFL[15:1]

CXTXATIFL[0]

%E} 17XQ
x
TXATIF

CXTXATIFH[15:0]

RXOVIF (CxINTL)

TXATIE (CxINTH)

28

32x

TXATIE 5 31FIFOs
TXATIF s

CXTXATIFL[15:1]

X

TXATIF (CxINTL)

TEFIE (CxINTH)

TEFIF (CXINTL)

IVMIE (CxINTH)

OR Info Interrupt

IVMIF (CXINTL)
WAKIE (CxINTH)

WAKIF (CXINTL)
CERRIE (CxINTH)

CERRIF (CXINTL)
MODIE (CxINTH)

MODIF (CxINTL)
TBCIE (CxINTH)

TBCIF (CXINTL)
SERRIE (CxINTH)

TTTTTT T

SERRIF (CxINTL)

DS70005340C-page 110

© 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

12.1 FIFO Individual Interrupts

CxFIFOCONKXL contains the interrupt enable flags and CxFIFOSTAX contains the interrupt flags
for the FIFOs. There is a separate register for each FIFO.

12.1.1 TRANSMIT QUEUE INTERRUPTS

CxTXQCONL contains the interrupt enable flags and CxTXQSTA contains the interrupt flags for
the TXQ.

The TXQ interrupt occurs when there is a change in the status of the TXQ. There are two
interrupt sources:

+ TXQ Not Full Interrupt Flag (TXQNIF)

« TXQ Empty Interrupt Flag (TXQEIF)

Both interrupts can be enabled individually. The interrupts cannot be cleared by the application;
they will be cleared when the condition of the FIFO terminates.

Both interrupt sources are OR’d together and reflected in the TFIFO flag (CxTXIFL[0]).

12.1.2 RECEIVE FIFO INTERRUPTS - RFIF

The receive FIFO interrupts occur when there is a change in the status of the receive FIFO.
There are three interrupt sources:

* Receive FIFO Full Interrupt Flag (RFFIF)

* Receive FIFO Half Full Interrupt Flag (RFHIF)

» Receive FIFO Not Empty Interrupt Flag (RFNIF)

All three interrupts can be enabled individually. The interrupts cannot be cleared by the
application; they will be cleared when the condition of the FIFO terminates.

The three interrupt sources are OR’d together and reflected in the RFIF[31:16] (CxRXIFH[15:0])
and RFIF[15:1] (CxRXIFL[15:1]) flags.

12.1.3 TRANSMIT FIFO INTERRUPTS — TFIF

The transmit FIFO interrupts occur when there is a change in the status of the transmit FIFO.
There are three interrupt sources:

» Transmit FIFO Not Full Interrupt Flag (TFNIF)
» Transmit FIFO Half Empty Interrupt Flag (TFHIF)
» Transmit FIFO Empty Interrupt Flag (TFEIF)

All three interrupts can be enabled individually. The interrupts cannot be cleared by the
application; they will be cleared when the condition of the FIFO terminates.

The three interrupt sources are OR’d together and reflected in the CxTXIFL[15:1] and
CxTXIFH[15:0] flags.

12.1.4 RECEIVE FIFO OVERRUN INTERRUPT — RXOVIF

When a message is successfully received, but the FIFO is full, the RXOVIF of the individual
FIFO is set. The flag must be cleared by the application.

12.1.5 TRANSMIT FIFO ATTEMPT INTERRUPT — TXATIF

When the retransmission of a message fails due to an error, and all retransmission attempts are
exhausted, the TXATIF flag is set. The flag must be cleared by the application.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 111

dsPIC33/PIC24 Family Reference Manual

12.1.6 TRANSMIT EVENT FIFO INTERRUPTS — TEFIF

The TEF interrupts occur when there is a change in the status of the TEF. There are four
interrupt sources:

* TEF Full Interrupt Flag (TEFFIF)

« TEF Half Full Interrupt Flag (TEFHIF)

» TEF Not Empty Interrupt Flag (TEFNEIF)
* TEF Overrun Interrupt Flag (TEFOVIF)

The TEF interrupts work similarly to the receive FIFO interrupts. All four interrupts can be
enabled individually.

TEFFIF, TEFHIF and TEFNEIF cannot be cleared by the application; they will be cleared when
the status of the FIFO terminates.

The TEFOVIF must be cleared by the application.
The four interrupt sources are OR’d together and reflected in the TEFIF flag (CxINTL[4]).

12.2 FIFO Combined Interrupts
The following interrupts are individual FIFO interrupts:
» FIFOs/TXQ: RFIFx, TFIFx, RFOVIFx and TFATIFx

They are combined into single Interrupt Status registers:
* CxRXIFL/H, CxTXIFL/H, CxRXOVIFL/H and CxTXATIFL/H

The bits in the status registers are mapped to the FIFOs as follows: Bit 0 to TXQ, Bit 1 to
FIFO 1, Bit 2 to FIFO 2, up to Bit 31 to FIFO 31. Since Bit 0 corresponds to the TXQ, Bit 0 of
CxRXIFL and CxRXOVIFL is reserved. Hence, by reading one register, the application can
check the status of all FIFOs for a particular interrupt (e.g., any RFIFx pending).

The FIFO interrupts are enabled in CxFIFOCONXL.
TXQ interrupts are enabled in CxTXQCONL.
Clearing of the FIFO interrupts is explained in Section 12.1 “FIFO Individual Interrupts”.

12.3 Main Interrupts

The CxINTL register contains all the main interrupts. The following interrupts are a logical ‘OR’
of all combined FIFO interrupts: RXIF, TXIF, RXOVIF and TXATIF. These flags are read-only
and must be cleared in preceding hierarchies.

The TEFIF is generated in the TEF. This flag is read-only and must be cleared in preceding
hierarchies.

All interrupts in CxINTL/H can be enabled individually.
12.3.1 INVALID MESSAGE INTERRUPT — IVMIF

If a CAN bus error or DLC mismatch is detected during the last message transmitted or
received, the IVMIF bit will be set. The CxBDIAG1H register sets a flag for each error. The flag
must be cleared by the application.

The following CAN bus errors will trigger the interrupt in case an error frame is transmitted:
CRC, stuff bit, form, bit or ACK.

The flag will not be set if the ESI of a received message is set.

12.3.2 WAKE-UP INTERRUPT — WAKIF

This bit is set if bus activity has been detected while the module is in Sleep mode. The flag must
be cleared by the application.

DS70005340C-page 112 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

12.3.3 CAN BUS ERROR INTERRUPT - CERRIF

The CxTRECL/H registers will count the errors during transmit and receive according to the
1ISO11898-1:2015. The CERRIF flag will be set based on the error counter values. The flag
must be cleared by the application.

CERRIF will be set each time a threshold in the TEC/REC counter is crossed by the following

conditions:

» TEC or REC exceeds the error warning state threshold

» The transmitter or receiver transitions to the error passive state

» The transmitter transitions to the bus off state

» The transmitter or receiver transitions from the error passive to error active state

» The module transitions from the bus off to error active state after the bus off recovery
sequence

When the user clears CERRIF, it will remain clear until a new counter crossing occurs.

12.3.4 CAN MODE CHANGE INTERRUPT — MODIF

When the OPMODI[2:0] bits change, the MODIF flag will be set. The flag must be cleared by the
application.

12.3.5 CAN TIMER INTERRUPT - TBCIF

When the Time Base Counter rolls over, TBCIF will be set. The flag must be cleared by the
application.

12.3.6 SYSTEM ERROR INTERRUPT - SERRIF
* Bus Bandwidth Error:
Bandwidth errors can happen during receive and transmit.

Receive Message Assembly Buffer (RX MAB) overflow occurs when the module is unable
to write a received CAN message to RAM before the next message arrives.

Transmit Message Assembly Buffer (TX MAB) underflow occurs when the module cannot
feed the TX MAB fast enough to provide consistent data to the Bit Stream Processor.

The SERRIF flag will be set and the ICODE[6:0] bits (CxVECL[6:0]) will be setto 100 0101.
» Handling of RX MAB Overflow Errors:

RX MAB overflows are not acceptable for some applications. To prevent overflows, frame
filtering and data saving starts as early as possible; the latest at the beginning of the CRC
field of the received message. Updating the FIFO status has to wait until the beginning of
the 7th bit of the EOF field, since the received frame is only valid at this point. The complete
message has to be saved and the FIFO has to be updated until the end of the arbitration
field of the next message.

In case of an RX MAB overflow, the new message that caused the overflow will be dis-
carded. The module continues to store the message that is completely received and filtered.
Afterwards, the module will be able to receive new messages on the bus. The application
will be notified using the SERRIF bit.

The SERRIF bit (CxINTL[12]) will be cleared by writing a zero to the bit. This will also clear
the SERRIF condition from the ICODEX bits.

» Handling of TX MAB Underflow Errors:

1SO11898-1:2015 requires MAC data consistency: a transmitted message must contain con-
sistent data. If data errors occur due to ECC errors, or TX MAB underflow, the transmission
will not start. If the transmission is in progress, it will stop and the module will transition to
either Restricted Operation or Listen Only mode, which is selectable using the SERRLOM
bit (CxCONH[2]).

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 113

dsPIC33/PIC24 Family Reference Manual

The module handles these errors by stopping the transmission and transitioning to Restricted
Operation or Listen Only mode. The CxTX pin will be forced high. Additionally, all TXREQs will
be ignored. The application will be notified using SERRIF. The module will continue to receive
messages.

Note: There are two types of addressing errors and both of them will cause a soft trap error
on a dsPIC33C device by setting the CAN bit in the INTCONS register.

The first addressing error occurs when a FIFO is configured with an invalid address.
This error most commonly occurs when the FIFO points to an unimplemented
address.

The second addressing error commonly occurs when the message destination is
illegal; for example, attempting to write a received message to a program Flash,
which is not directly writable.

12.4 Interrupt Handling

The CAN FD Protocol Module allows the application to handle interrupts efficiently by:

» Implementing a lookup table using the CxVECL/H registers
» Using the status registers and deciding which interrupt to service first

The application can also use a combination of these two methods to handle interrupts.

12.41 INTERRUPT LOOKUP TABLE

The ICODEx and FILHITx bits in the CxVECL register enable the application to use a lookup
table to implement the Interrupt Service Routine (ISR).

The following bit fields allow the application to make full use of the three interrupt pins:

» TXCODE[6:0] bits: Reflect which object has a transmit interrupt pending
* RXCODE][6:0] bits: Reflect which object has a receive interrupt pending

A separate lookup table can be implemented for transmit and receive interrupts.

If more than one object has a pending interrupt, the interrupt or FIFO with the highest number
will show up in RXCODEx, TXCODEx and ICODEx. Once the interrupt with the highest priority
is cleared, the next highest priority interrupt will show up in CxXVECL/H. RXCODEx, TXCODEx
and ICODEXx are implemented with combinatorial logic using the interrupt flags as inputs.

12.4.2 INTERRUPT STATUS REGISTERS

The CAN FD Protocol Module contains 31 FIFOs and a TXQ. It would be complex to use the
ICODEX bits since the interrupt priorities are determined by the module. Therefore, the following
measures are taken to ensure efficient servicing of interrupts:

* CxINTL and CxINTH contain all main interrupt sources. The application can identify the
categories of interrupts that are pending and decide the order in which interrupts are to be
serviced (e.g., RXIF).

« All categories of interrupts for all FIFOs are combined into individual registers: CxRXIFL/H,
CxTXIFL/H, CxRXOVIFL/H and CxTXATIFL/H. The application can identify the RFIFx bits
that are pending by reading only one register. The same is true for TFIFx, RXOVIF and
TXATIF.

« In the register map, the Interrupt Status registers are arranged in a single block: CxVECL/H,
followed by CxINTL/H, CxRXIFL/H, CxTXIFL/H, CxRXOVIFL/H and CxTXATIFL/H. This
arrangement allows all status registers to be read with a single read access.

DS70005340C-page 114 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

12.5 Interrupt Flags

Table 12-1 summarizes all interrupt flags and lists how interrupts are cleared.

Table 12-1: Interrupt Flags
. . Cleared by | Cleared by) @ I
Flags Registers Categories Module Application Read-Only Description
RFFIF, RFHIF, CxFIFOSTAX FIFO X — — RX FIFO
RFNIF
TENIF, TFHIF, CxFIFOSTAX FIFO X — — TXFIFO
TFEIF
TXQNIF, TXQEIF | CxTXQSTA T™XQ X — — Transmit Queue
RXOVIF CxFIFOSTAXx FIFO — X — RX Overrun
TXATIF CxFIFOSTAx, |FIFO, TXQ — X — TX Attempt
CxTXQSTA
TEFFIF, CxTEFSTA FIFO X — — TEF
TEFHIF,
TEFNEIF
TEFOVIF CxTEFSTA FIFO — X — TEF Overrun
RFIF[31:1] CxRXIFL/H Combined — — X All RX FIFOs
TFIF[31:1] CXTXIFL/H Combined — — X All TX FIFOs
RFOVIF[31:1] CxRXOVIFL/H | Combined — — X All RX FIFO
Overruns
TFATIF[31:0] CxTXATIFL/H | Combined — — X All TX FIFO
Attempts
RXIF CxINTL Main — — X RX
TXIF CxINTL Main — — X TX
RXOVIF CxINTL Main — — X RX Overrun
TXATIF CxINTL Main — — X TX Attempt
TEFIF CxINTL Main — — X TEF
IVMIF CxINTL Main — X — Invalid Message
WAKIF CxINTL Main — X — Wake-up
CERRIF CxINTL Main — X — CAN Bus Error
MODIF CxINTL Main — X — Mode Change
TBCIF CxINTL Main — X — Time Base
Counter
SERRIF CxINTL Main — X — System Error

Note 1: The flags will be cleared when the condition of the FIFO terminates, initiated by the
UINC bit (CxFIFOCONXL[8].

2: The flags need to be cleared in the preceding hierarchies.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 115

dsPIC33/PIC24 Family Reference Manual

13.0 ERROR HANDLING

Every CAN controller checks the messages on the bus for the following errors: bit, stuff, CRC,
form and ACK errors. Whenever the controller detects an error, an error frame is transmitted
that deletes the message on the bus. Error frames are always signaled using the Nominal Bit

Rate.

Error detection and Fault confinement are described in the 1ISO11898-1:2015. CxTRECL con-
tains the error counters, TEC and REC (TERRCNTx, RERRCNTXx). CxTRECH contains the
error warning and error state bits. TEC and REC increment and decrement according to

1ISO11898-1:2015 specifications.

Figure 13-1 illustrates the different error states of the CAN FD Protocol Module. The module
starts in the error active state. If the TEC or REC exceeds 127, the module transitions to the
error passive state. If the TEC exceeds 255, the module will transition to the bus off state.

The module transmits active error frames when in an error active state. It will transmit passive
error frames while in an error passive state. When the module is in bus off, the CxTX pin is

always driven high and no dominant bits are transmitted.

To avoid the module from transitioning to the error passive state, the module will alert the appli-
cation when the TEC or REC reaches 96, using the CERRIF interrupt flag (see Section 12.3.3
“CAN Bus Error Interrupt — CERRIF”). This allows the application to take action before it

enters the error passive state.

Figure 13-1: Error States

—

POR

TEC > 127 or

REC > 127 128 Occurrences

TEC< 128 and
REC< 128

Error
Passive

of the Idle Condition

The bus diagnostic registers provide additional information about the health of the CAN bus:

+ CxBDIAGOL and CxBDIAGOH contain separate error counters for receive/transmit and for
Nominal/Data Bit Rates. The counters work differently than the counters in the CxTRECL/H
registers. They are simply incremented by one on every error. They are never

decremented, but can be cleared by writing ‘0’ to the register.

» CxBDIAG1H keeps track of the kind of error that occurred since the last clearing of the
register. The CxBDIAG1L register also contains the error-free message counter. The flags

and the counter are cleared by writing ‘0’ to the register.

The error-free message counter, together with the error counters and error flags, can be used to

determine the quality of the bus.

DS70005340C-page 116 © 2018-2022 Microchip Technology Inc.and its subsidiaries

CAN FD Protocol Module

13.1 Recovery from Bus Off State

If the TEC exceeds 255, the TXBO (CxTRECH][5]) and CERRIF (CxINTL[13]) bits will be set.
The module will go to bus off and start the bus off recovery sequence.

The bus off recovery sequence starts automatically. The module will transition out of the bus off
state only after the detection of 128 Idle conditions (see “1SO11898-1:2015: Bus Off Management”).
The module will set FRESET for all transmit FIFOs when entering the bus off state to ensure that
the module does not try to retransmit indefinitely. The application will be notified by CERRIF and
has the option to queue new messages for transmission.

The module signals the exit from the bus off state with the CERRIF bit and by setting the
TXBOERR bit (CxBDIAG1H[7]). Additionally, CxTRECL/H will be reset.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 117

dsPIC33/PIC24 Family Reference Manual

14.0 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33/PIC24 device families, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the CAN FD Protocol Module include the following:

Title Application Note #
No related application notes at this time. N/A

Note: Please visit the Microchip website (www.microchip.com) for additional application
notes and code examples for the dsPIC33/PIC24 families of devices.

DS70005340C-page 118

© 2018-2022 Microchip Technology Inc.and its subsidiaries

http://www.microchip.com
http://www.microchip.com

CAN FD Protocol Module

15.0 REVISION HISTORY

Revision A (February 2018)

This is the initial version of this document.

Revision B (January 2019)

Apart from the modified items given in the following list, this revision shows modified bit
representation (e.g., bits<3:0> have been changed to bits[3:0]). This is done to be consistent with
documents that were created in the SDL software.
» Sections:

- Added Section 5.3.7 “Recommendations for Bit Time Configuration”.

- Updated Section 4.1.4 “Entering and Exiting Disable Mode”, Section 5.0
“Configuration” and Section 8.0 “Message Filtering”.

» Figures:
- Updated Figure 1-2 and Figure 2-3.
» Tables:
- Updated Table 5-3, Table 6-1 and Table 7-1.
* Registers:
- Updated Register 3-2, Register 3-1, Register 3-45, Register 3-51, Register 3-50 and
Register 5-1.
* Examples:
- Updated Example 6-1, Example 7-1 and Example 9-1.

Revision C (December 2022)

Organized all registers by low/high bit order for consistency. Changed all register names to
represent all low/high register possibilities (i.e., Register 3-2: C1CONL has been changed to
CxCONL).
» Sections:

- Updated Section 1.0 “Introduction”, Section 3.0 “Control Registers”, Section 4.2
“Configuration Mode”, Section 5.0 “Configuration”, Section 5.3 “CAN FD Bit
Time Configuration”, Section 5.3.7 “Recommendations for Bit Time Configura-
tion”, Section 5.3.8 “Bit Time Configuration Example”, Section 5.4 “Message
Memory Configuration”, Section 6.6 “CxTXREQ Register”, Section 11.0 “Time-
stamping” and Section 13.0 “Error Handling”.

- Added Section 5.4.6 “Calculation of Start Addresses”.
» Figures:

- Updated Figure 2-1 and Figure 5-3.
* Tables:

- Updated Table 5-3, Table 5-4, Table 6-1, Table 7-1 and Table 9-1.
* Registers:

- Updated Register 3-8, Register 3-7 and Register 3-27.
* Equations:

- Updated Equation 5-3, Equation 5-4 and Equation 5-11.
* Example

- Updated Example 6-1, Example 7-1 and Example 9-1.

© 2018-2022 Microchip Technology Inc. and its subsidiaries DS70005340C-page 119

dsPIC33/PIC24 Family Reference Manual

DS70005340C-page 120 © 2018-2022 Microchip Technology Inc.and its subsidiaries

Note the following details of the code protection feature on Microchip products:

. Microchip products meet the specifications contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and

under normal conditions.

. Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of
Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
continuously improving the code protection features of our products.

This publication and the information herein may be used only
with Microchip products, including to design, test, and integrate
Microchip products with your application. Use of this informa-
tion in any other manner violates these terms. Information
regarding device applications is provided only for your conve-
nience and may be superseded by updates. It is your responsi-
bility to ensure that your application meets with your
specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at https:/
www.microchip.com/en-us/support/design-help/client-support-
services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FORA
PARTICULAR PURPOSE, OR WARRANTIES RELATED TO
ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-
RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-
QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY
KIND WHATSOEVER RELATED TO THE INFORMATION OR
ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES
ARE FORESEEABLE. TO THE FULLEST EXTENT
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION
ORITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP
FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applica-
tions is entirely at the buyer's risk, and the buyer agrees to
defend, indemnify and hold harmless Microchip from any and
all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under
any Microchip intellectual property rights unless otherwise
stated.

For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR,
AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory,
CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeelLoq,
Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MedialLB,
megaAVR, Microsemi, Microsemi logo, MOST, MOST logo,
MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo,
PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity,
SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are
registered trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions
Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight
Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge,
ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, TrueTime, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,
BodyCom, Clockstudio, CodeGuard, CryptoAuthentication,
CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,
ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-
Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling,
IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display,
KoD, maxCrypto, maxView, memBrain, Mindi, MiwWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICKkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, RTAX, RTG4, SAM-ICE, Serial Quad /O, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQl,
SuperSwitcher, SuperSwitcher I, Switchtec, SynchroPHY, Total
Endurance, Trusted Time, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany
I GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries.
All Rights Reserved.

ISBN: 978-1-6683-1242-1

©2018-2022 Microchip Technology Inc. and its subsidiaries

DS70005340C-page 121

www.microchip.com/quality
www.microchip.com/quality
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, Ml
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79
Germany - Garching

Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS70005340C-page 122 © 2018-2022 Microchip Technology Inc. and its subsidiaries

09/14/21

http://support.microchip.com
http://www.microchip.com

	1.0 Introduction
	Figure 1-1: Net CAN FD Bit Rate
	1.1 Features
	Figure 1-2: System Block Diagram

	2.0 CAN FD Message Frames
	2.1 ISO vs. Non-ISO CRC
	Figure 2-1: General Data Frame
	Figure 2-2: Arbitration Field
	Figure 2-3: Control Field
	Figure 2-4: ISO CRC Field
	Figure 2-5: Non-ISO CRC Field
	Figure 2-6: Error and Overload Frame
	2.1.1 DLC Encoding
	Table 2-1: DLC Encoding

	3.0 Control Registers
	Register 3-1: CxCONL: CAN Control Register Low
	Register 3-2: CxCONH: CAN Control Register High (Continued)
	Register 3-3: CxNBTCFGL: CAN Nominal Bit Time Configuration Register Low(1)
	Register 3-4: CxNBTCFGH: CAN Nominal Bit Time Configuration Register High(1)
	Register 3-5: CxDBTCFGL: CAN Data Bit Time Configuration Register Low(1)
	Register 3-6: CxDBTCFGH: CAN Data Bit Time Configuration Register High(1)
	Register 3-7: CxTDCL: CAN Transmitter Delay Compensation Register Low(1)
	Register 3-8: CxTDCH: CAN Transmitter Delay Compensation Register High(1)
	Register 3-9: CxTBCL: CAN Time Base Counter Register Low(1,2)
	Register 3-10: CxTBCH: CAN Time Base Counter Register High(1,2)
	Register 3-11: CxTSCONL: CAN Timestamp Control Register Low
	Register 3-12: CxTSCONH: CAN Timestamp Control Register High
	Register 3-13: CxVECL: CAN Interrupt Code Register Low
	Register 3-14: CxVECH: CAN Interrupt Code Register High
	Register 3-15: CxINTL: CAN Interrupt Register Low
	Register 3-16: CxINTH: CAN Interrupt Register High
	Register 3-17: CxRXIFL: CAN Receive Interrupt Status Register Low(1)
	Register 3-18: CxRXIFH: CAN Receive Interrupt Status Register High(1)
	Register 3-19: CxRXOVIFL: CAN Receive Overflow Interrupt Status Register Low(1)
	Register 3-20: CxRXOVIFH: CAN Receive Overflow Interrupt Status Register High(1)
	Register 3-21: CxTXIFL: CAN Transmit Interrupt Status Register Low(1)
	Register 3-22: CxTXIFH: CAN Transmit Interrupt Status Register High(1)
	Register 3-23: CxTXATIFL: CAN Transmit Attempt Interrupt Status Register Low(1)
	Register 3-24: CxTXATIFH: CAN Transmit Attempt Interrupt Status Register High(1)
	Register 3-25: CxTXREQL: CAN Transmit Request Register Low
	Register 3-26: CxTXREQH: CAN Transmit Request Register High
	Register 3-27: CxFIFOBAL: CAN Message Memory Base Address Register Low
	Register 3-28: CxFIFOBAH: CAN Message Memory Base Address Register High
	Register 3-29: CxTXQCONL: CAN Transmit Queue Control Register Low
	Register 3-30: CxTXQCONH: CAN Transmit Queue Control Register High
	Register 3-31: CxTXQSTA: CAN Transmit Queue Status Register
	Register 3-32: CxFIFOCONxL: CAN FIFO Control Register x (x = 1 to 31) Low
	Register 3-33: CxFIFOCONxH: CAN FIFO Control Register x (x = 1 to 31) High
	Register 3-34: CxFIFOSTAx: CAN FIFO Status Register x (x = 1 to 31) (Continued)
	Register 3-35: CxTEFCONL: CAN Transmit Event FIFO Control Register Low
	Register 3-36: CxTEFCONH: CAN Transmit Event FIFO Control Register High
	Register 3-37: CxTEFSTA: CAN Transmit Event FIFO Status Register
	Register 3-38: CxFIFOUAxL: CAN FIFO User Address Register x (x = 1 to 31) Low(1)
	Register 3-39: CxFIFOUAxH: CAN FIFO User Address Register x (x = 1 to 31) High(1)
	Register 3-40: CxTEFUAL: CAN Transmit Event FIFO User Address Register Low(1)
	Register 3-41: CxTEFUAH: CAN Transmit Event FIFO User Address Register High(1)
	Register 3-42: CxTXQUAL: CAN Transmit Queue User Address Register Low(1)
	Register 3-43: CxTXQUAH: CAN Transmit Queue User Address Register High(1)
	Register 3-44: CxTRECL: CAN Transmit/Receive Error Count Register Low
	Register 3-45: CxTRECH: CAN Transmit/Receive Error Count Register High
	Register 3-46: CxBDIAG0L: CAN Bus Diagnostics Register 0 Low
	Register 3-47: CxBDIAG0H: CAN Bus Diagnostics Register 0 High
	Register 3-48: CxBDIAG1L: CAN Bus Diagnostics Register 1 Low
	Register 3-49: CxBDIAG1H: CAN Bus Diagnostics Register 1 High
	Register 3-50: CxFLTCONxL: CAN Filter Control Register x Low (x = 0 to 7; a = 0, 4, 8, 12, 16, 20, 24, 28; b = 1, 5, 9, 13, 17, 21, 25, 29)
	Register 3-51: CxFLTCONxH: CAN Filter Control Register x High (x = 0 to 7; c = 2, 6, 10, 14, 18, 22, 26, 30; d = 3, 7, 11, 15, 19, 23, 27, 31)
	Register 3-52: CxFLTOBJxL: CAN Filter Object Register x Low (x = 0 to 31)
	Register 3-53: CxFLTOBJxH: CAN Filter Object Register x High (x = 0 to 31)
	Register 3-54: CxMASKxL: CAN Mask Register x Low (x = 0 to 31)
	Register 3-55: CxMASKxH: CAN Mask Register x High (x = 0 to 31)

	4.0 Modes of Operation
	4.1 Mode Change
	4.1.1 Changing Between Normal Modes
	4.1.2 Changing Between Debug Modes
	4.1.3 Exiting Normal Mode
	4.1.4 Entering and Exiting Disable Mode
	4.1.5 Bus Integrating Mode
	Figure 4-1: CAN FD Modes of Operation

	4.2 Configuration Mode
	4.3 Normal Modes
	4.3.1 Normal CAN FD Mode
	4.3.2 Normal CAN 2.0 Mode

	4.4 Disable Mode
	4.5 Debug Modes
	4.5.1 Listen Only Mode
	4.5.2 Restricted Operation Mode
	4.5.3 Loopback Mode

	4.6 Low-Power Modes
	4.6.1 Sleep Mode
	4.6.2 Idle Mode
	4.6.3 Wake-up from Sleep
	Figure 4-2: Processor Sleep and CAN Bus Wake-up Interrupt

	5.0 Configuration
	5.1 Clock Configuration
	Register 5-1: CANCLKCON: CAN Clock Control Register(1)

	5.2 CAN Configuration
	5.2.1 ISO CRC Enable
	5.2.2 Protocol Exception Disable
	5.2.3 Wake-up Filter – WFT[1:0]
	5.2.4 Restriction of Transmission Attempts
	5.2.5 Error State Indicator (ESI) in Gateway Mode
	5.2.6 Mode Selection in Case of System Error
	5.2.7 Reserving Message Memory for TXQ and TEF

	5.3 CAN FD Bit Time Configuration
	Equation 5-1: Nominal Bit Rate/Time
	Equation 5-2: Data Bit Rate/Time
	Equation 5-3: Nominal Time Quanta
	Equation 5-4: Data Time Quanta
	Figure 5-1: Partition of Bit Time
	Equation 5-5: Number of NTQ in a NBT
	Equation 5-6: Number of DTQ in a DBT
	Table 5-1: Nominal Bit Rate Configuration Ranges
	Table 5-2: Data Bit Rate Configuration Ranges
	5.3.1 Sample Point
	Equation 5-7: Nominal Sample Point (%)
	Equation 5-8: Data Sample Point (%)

	5.3.2 Propagation Delay
	Equation 5-9: Maximum Propagation Delay
	Figure 5-2: Propagation Delay

	5.3.3 Transmitter Delay Compensation (TDC)
	Equation 5-10: Secondary Sample Point
	Figure 5-3: Measurement of Transceiver Delay (TDCV)

	5.3.4 Synchronization
	5.3.5 Synchronization Jump Width
	5.3.6 Oscillator Tolerance
	Equation 5-11: Oscillator Tolerance
	Equation 5-12: Condition 1
	Equation 5-13: Condition 2
	Equation 5-14: Condition 3
	Equation 5-15: Condition 4
	Equation 5-16: Condition 5

	5.3.7 Recommendations for Bit Time Configuration
	5.3.8 Bit Time Configuration Example
	Table 5-3: Step-by-Step Nominal Bit Rate Configuration
	Table 5-4: Step-by-Step Data Bit Rate Configuration
	Table 5-5: Bit Time Register Initialization (500k/2M)

	5.4 Message Memory Configuration
	Figure 5-4: Message Memory Organization
	5.4.1 Transmit Event FIFO Configuration
	5.4.2 Transmit Queue Configuration
	5.4.3 Transmit FIFO Configuration
	5.4.4 Receive FIFO Configuration
	5.4.5 Calculation of Required Message Memory
	Equation 5-17: Size of TEF
	Equation 5-18: Size of TXQ
	Equation 5-19: Size of FIFOs
	Equation 5-20: Total RAM Usage

	5.4.6 Calculation of Start Addresses
	Equation 5-21: Start Address of TEF
	Equation 5-22: Start Address of TXQ
	Equation 5-23: Start Address of Message FIFO
	Equation 5-24: Start Address of Nth FIFO

	6.0 Message Transmission
	6.1 Transmit Message Object
	6.2 Loading Messages into Transmit FIFO
	6.3 Loading Messages Into Transmit Queue
	Table 6-1: Transmit Message Object (TXQ and TX FIFO)

	6.4 Requesting Transmission of Message in Transmit FIFO
	6.5 Requesting Transmission of Message in Transmit Queue
	6.6 CxTXREQ Register
	6.7 Transmit Priority
	6.7.1 Transmit Priority of Messages in FIFO
	6.7.2 Transmit Priority of Messages in TXQ
	6.7.3 Transmit Priority Based on ID

	6.8 Transmit Bandwidth Sharing
	6.9 Retransmission Attempts
	6.9.1 Retransmission Attempts Disabled
	6.9.2 Three Retransmission Attempts
	6.9.3 Unlimited Retransmissions

	6.10 Aborting Transmission
	6.11 Remote Transmit Request – RTR
	6.12 Mismatch of DLC and Payload Size During Transmission
	6.13 Transmit State Diagram
	Figure 6-1: Transmit State Diagram

	6.14 Resetting Transmit FIFO
	6.15 Resetting Transmit Queue
	6.16 Message Transmission Code Example
	Example 6-1: Message Transmission Code
	Example 6-1: Message Transmission Code Example (Continued)
	Example 6-1: Message Transmission Code Example (Continued)

	7.0 Transmit Event FIFO – TEF
	7.1 Reading a TEF Object
	Equation 7-1: Start Address of TEF Object
	7.1.1 Resetting the TEF
	Table 7-1: Transmit Event FIFO Object

	7.2 Transmit Event FIFO Code Example
	Example 7-1: Using the Transmit Event FIFO Code
	Example 7-1: Using the Transmit Event FIFO Code (Continued)
	Example 7-1: Using the Transmit Event FIFO Code (Continued)

	8.0 Message Filtering
	8.1 Filter Configuration
	8.2 Filtering a Received Message
	Figure 8-1: Message Filtering Flow
	8.2.1 Filtering Standard or Extended Frames
	8.2.2 Mask Bits
	Figure 8-2: Filter Match

	8.2.3 Filtering on Data Bytes
	8.2.4 12-Bit Standard ID
	Table 8-1: Data Byte Filter Configuration
	Figure 8-3: CAN Operation with DeviceNet™ Filtering

	9.0 Message Reception
	9.1 Receive Message Object
	9.1.1 Reading a Receive Message Object
	Table 9-1: Receive Message Object

	9.2 Receive State Diagram
	Figure 9-1: Receive State Diagram

	9.3 Resetting RX FIFO
	9.4 Mismatch of DLC and Payload Size During Reception
	9.5 Message Reception Code Example
	Example 9-1: Message Reception Code
	Example 9-1: Message Reception Code (Continued)
	Example 9-1: Message Reception Code (Continued)

	10.0 FIFO Behavior
	Table 10-1: Example FIFO Configuration
	10.1 FIFO Status Flags
	10.1.1 TX FIFO Status Flags
	10.1.2 RX FIFO Status Flags
	10.1.3 TXQ Status Flags
	10.1.4 TEF Status Flags

	10.2 Transmit FIFO Behavior
	Figure 10-1: FIFO 1 – Initial State
	Figure 10-2: FIFO 1 – First Message Loaded
	Figure 10-3: FIFO 1 – First Message Transmitted
	Figure 10-4: FIFO 1 – Three More Messages Loaded
	Figure 10-5: FIFO 1 – FIFO Fully Loaded
	Figure 10-6: FIFO 1 – FIFO Fully Transmitted

	10.3 Receive FIFO Behavior
	Figure 10-7: FIFO 2 – Initial State
	Figure 10-8: FIFO 2 – First Message Received
	Figure 10-9: FIFO 2 – First Message Read
	Figure 10-10: FIFO 2 – Half Full
	Figure 10-11: FIFO 2 – FIFO Almost Full
	Figure 10-12: FIFO 2 – FIFO Full
	Figure 10-13: FIFO 2 – FIFO Overflow
	Figure 10-14: FIFO 2 – Two More Messages Read

	10.4 Transmit Queue Behavior
	Figure 10-15: TXQ – Initial State
	Figure 10-16: TXQ – First Message Loaded
	Figure 10-17: TXQ – First Message Transmitted
	Figure 10-18: TXQ – Next Message Loaded
	Figure 10-19: TXQ – Next Six Messages Loaded
	Figure 10-20: TXQ – Full

	10.5 Transmit Event FIFO Behavior
	Figure 10-21: TEF – Initial State
	Figure 10-22: TEF – First Transmit Message is Stored
	Figure 10-23: TEF – First ID Read
	Figure 10-24: TEF – Half Full
	Figure 10-25: TEF – Almost Full
	Figure 10-26: TEF – Full
	Figure 10-27: TEF – Overflow
	Figure 10-28: TEF – One More ID Read

	11.0 Timestamping
	Table 11-1: Reference Point

	12.0 Interrupts
	Figure 12-1: Interrupt Multiplexing
	12.1 FIFO Individual Interrupts
	12.1.1 Transmit Queue Interrupts
	12.1.2 Receive FIFO Interrupts – RFIF
	12.1.3 Transmit FIFO Interrupts – TFIF
	12.1.4 Receive FIFO Overrun Interrupt – RXOVIF
	12.1.5 Transmit FIFO Attempt Interrupt – TXATIF
	12.1.6 Transmit Event FIFO Interrupts – TEFIF

	12.2 FIFO Combined Interrupts
	12.3 Main Interrupts
	12.3.1 Invalid Message Interrupt – IVMIF
	12.3.2 Wake-up Interrupt – WAKIF
	12.3.3 CAN Bus Error Interrupt – CERRIF
	12.3.4 CAN Mode Change Interrupt – MODIF
	12.3.5 CAN Timer Interrupt – TBCIF
	12.3.6 System Error Interrupt – SERRIF

	12.4 Interrupt Handling
	12.4.1 Interrupt Lookup Table
	12.4.2 Interrupt Status Registers

	12.5 Interrupt Flags
	Table 12-1: Interrupt Flags

	13.0 Error Handling
	Figure 13-1: Error States
	13.1 Recovery from Bus Off State

	14.0 Related Application Notes
	15.0 Revision History
	Revision A (February 2018)
	Revision B (January 2019)
	Revision C (December 2022)

