
 AVR 8-bit Microcontrollers

 AVR134: Real Time Clock (RTC) Using the
Asynchronous Timer

 APPLICATION NOTE

Features

• Real Time Clock with Very Low Power Consumption (10µA @ 3.3V)
• Very Low Cost Solution
• Adjustable Prescaler to Adjust Precision
• Counts Time, Date, Month, and Year with Auto Leap Year

Configuration
• Can be used on all Atmel® AVR® Controllers with RTC Module
• C-code for Atmel ATmega128 included

Introduction

This application note describes how to implement a real time counter (RTC)
on AVR microcontrollers that features the RTC module. The implementation
requires only one discrete component – a 32.768kHz watch crystal. The
application has very low power consumption because the microcontroller
operates in Power-save mode most of the time. In Power-save mode the
AVR controller is sleeping with only a timer running. The Timer is clocked by
the external crystal. On every Timer overflow the time, date, month, and year
are counted. This RTC implementation is written for the ATmega128, and
can easily be ported to other AVRs with RTC Module. The advantages of
implementing an RTC in software compared to an external hardware RTC
are obvious:

• Lower cost
• Few external components
• Lower power
• Greater flexibility

Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

Table of Contents

Features.. 1

Introduction..1

1. Theory of Operation...3

2. Calculation...4

3. Configuration Example.. 5

4. Implementation.. 6

5. Accuracy..9

6. Revision History...10

Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer [APPLICATION NOTE]
Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

2

1. Theory of Operation
The implementation of an RTC utilizes the asynchronous operation of the RTC module. In this mode,
Timer/Counter0 runs independently from the CPU clock.

The figure below shows the Atmel AVR Controller operating at 4MHz, from the divided internal calibrated
RC-oscillator, when in active mode. When low power operation is desired, the AVR operates in power-
down mode, with only the asynchronous timer running from an external 32.768kHz crystal.

The software Real Time Clock (RTC) is implemented using an 8-bit Timer/Counter with overflow interrupts
enabled. Each timer overflow interrupt triggers an update of the software variables second, minute, hour,
date, month, and year at the correct intervals.

Figure 1-1. Oscillator Connection for Real Time Clock

Because the amount of time needed to make the Timer/Counter overflow is constant, each of these timer
variables will be incremented by a fixed number, for each timer overflow. This happens in the timer
overflow interrupt routine.

To reduce power consumption, the AVR spends most of its time in Power-save mode, in which all on-chip
modules are disabled, except for the RTC. As shown in the following table, the MCU typically consumes
less than 10µA in this mode. Each timer overflow interrupt will bring the device out of power-save mode,
and back into active mode. When in active mode, the timer overflow interrupt routine is executed, before
the device re-enters power-save mode.

To calculate the total power consumption, the power consumption in power-save mode should be added
to the power consumption in active mode. However, the code executed when the device is awake is
expected to be executed in less than 100 clock cycles, keeping the device awake for no more than 25µs
(@4MHz). The current consumed in this period can therefore be considered negligible.

According to the above information and the current consumptions listed in the table below, the current
consumption can be estimated to be less than 10µA for this application, as opposed to 5mA if the device
were not in power-save mode.

Table 1-1. Current Consumption for the Atmel ATmega128 Controller

Mode Typical Maximum

Active 4MHz, 3VCC 5mA 5.5mA

Idle 4MHz, 3VCC 2mA 2.5mA

Power-down, 3VCC <1μA 10μA

Power-save, 3VCC <10μA -

Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer [APPLICATION NOTE]
Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

3

2. Calculation
Given the frequency of the watch crystal, the user can determine the time for each Timer/Counter tick, by
selecting the desired pre-scaling factor. As shown in the following table, CS02, CS01, and CS00 in the
TCCR0 (Timer/Counter0 Control Register) define the Timer/Counter prescaler source. In the table,
clkT0S denotes the frequency of the Timer/Counter0 clock source. For example, if clkT0S equals
32.768kHz, as in our case, the Timer/Counter will tick at a frequency of 256Hz with a prescaler of 128.

Table 2-1. Timer/Counter0 Prescaler Select

CS02 CS01 CS00 Description (1) Overflow period

0 0 0 Timer/Counter0 is stopped –

0 0 1 clkT0S 1/128s

0 1 0 clkT0S/8 1/16s

0 1 1 clkT0S/32 1/4s

1 0 0 clkT0S/64 1/2s

1 0 1 clkT0S/128 1s

1 1 0 clkT0S/256 2s

1 1 1 clkT0S/1024 8s

Note: 
1. clkTOS = 32.768kHz.

Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer [APPLICATION NOTE]
Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

4

3. Configuration Example
As shown in Figure 1-1, the crystal should be connected directly between the pins TOSC1 and TOSC2.
Some devices might require additional external capacitors on these pins, as the internal oscillator
characteristics can vary. Refer to the device datasheet for details on crystal connections. The oscillator is
optimized for use with a 32.768kHz watch crystal, or an external clock signal in the interval of 0 - 256kHz.
In this example, the eight LEDs in port B are used to display the value of the RTC. The LED on pin B0 will
change state every second. The next six LEDs represent the minutes in binary, and the LED on pin B7
alternates every hour.

Some considerations must be taken into account when clocking the Timer/Counter from an asynchronous
clock source. A 32.768kHz crystal has a stabilization time of up to one second after power-up. The
controller should therefore not enter power-save mode less than one second after power-up. Care should
also be taken when configuring the timer/counter to operate in asynchronous mode. See the device
datasheet for detailed instructions. When updating the timer register, the data is transferred to a
temporary register and latched after two external clock cycles. The Asynchronous Status Register
(ASSR) contains status flags that can be checked to verify that the written register is updated.

The example code is written for Atmel START. It can be downloaded from the "BROWSE EXAMPLES"
entry of Atmel START for both Atmel Studio 7 and IAR™ IDE. Double click the downloaded .atzip file and
the project will be imported to Atmel Studio 7. To import the project in IAR, refer Atmel START in IAR,
select "Atmel Start Output in External Tools" → "IAR".

Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer [APPLICATION NOTE]
Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

5

http://start.atmel.com/static/help/index.html
http://start.atmel.com/static/help/index.html

4. Implementation
The software consists of two subroutines, a FUSES section and one Interrupt Service Routine (ISR).

The init() routine configures the device to the needs of this application.

• The AS0 bit in the ASSR (Asynchronous Status Register) is set to configure Timer/Counter0 to be
clocked from an external clock source. Only this timer can perform asynchronous operations

• The start value for the timer is reset
• The desired prescaler is selected
• To synchronize with the external clock signal, the program will wait for the ASSR register to be

updated
• The TOIE0 bit in the TIMSK (Timer/Counter Interrupt Mask Register) is set to enable the Timer/

Counter0 Overflow Interrupt
• The Global Interrupt Enable bit in SREG (Status Register) is set to enable interrupts. Setting this bit

is done calling the sei() macro
• Calling the set_sleep_mode(…) macro with the desired sleep mode as argument sets the SM1

and SM0 bit in MCUCR (MCU Control Register) to select what sleep mode the device should enter

The other sub routine corrects the date for leap years. The routine is described in detail in the flow
diagram Figure 4-2.

The FUSES section modifies the device fuses to make it run from the internal calibrated RC oscillator,
with a prescaler of two. This results in a clocking speed of 4MHz.

The main program controls the power down sequence. The sleep_mode() macro will place the controller
in sleep mode. To make sure the interrupt is cleared upon wakeup, the main routine also makes sure the
device never re-enters sleep mode within less than one TOSC cycle.

Timer/Counter0 Overflow Interrupt Service Routine
The interrupt service routine is executed every time TCC0 overflows. The interrupt request wakes the
MCU to update the timer variables. An interrupt routine cannot return or accept any variables. A global
structure with timer variables are declared to keep track of time: “second”, “minute”, “hour”, “date”,
“month”, and “year”. Since the time required to complete one timer overflow is known, second will be
incremented by a fixed number for every interrupt. Once it reaches 60, minute is incremented by 1 and
second is set to 0.

Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer [APPLICATION NOTE]
Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

6

Figure 4-1. Flow Chart, TCC0 Overflow ISR

Leap Year Check Subroutine
This routine performs a leap year check. It returns false for a leap year, and true for a non-leap year. A
year is considered to be leap if both of the following conditions are met:

1. The year is divisible with four, and
2. If the year is divisible with 100, it also has to be divisible by 400.

Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer [APPLICATION NOTE]
Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

7

Figure 4-2. Flow Chart, Leap Year Check Subroutine

Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer [APPLICATION NOTE]
Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

8

5. Accuracy
The RTC on the AVR controller maintains high accuracy as long as the watch crystal is accurate.
Asynchronous operation allows the timer to run without any delays, even when the CPU is under heavy
load. However, a small negligible discrepancy does occur because the timer variables are not updated in
parallel. By the time they are finished updating, they deviate from the Timer/Counter very slightly. The
largest discrepancy occurs when all the timer variables are overflowed. At this moment, “second” is 59,
“minute” is 59, “hour” is 23, and so on. It takes 94 cycles for the MCU to complete the update. At a 4MHz
CPU clock, the error between the RTC and the watch crystal will not exceed 23.5µs found by 94/(4 * 106).
A typical error should be 6µs since 24 cycles are needed to update “second”. This error does not
accumulate since the Timer is always synchronous with the watch crystal.

Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer [APPLICATION NOTE]
Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

9

6. Revision History
Doc. Rev. Date Comments

1259K 09/2016 Chapter "Configuration Example" has been updated

1259J 09/2016 Some values in table "Current Consumption for the Atmel ATmega128 Controller"
have been corrected

1259I 08/2016 New template

1259H 01/2014 New template and bugfixing

1259G 04/2009 Bugfixing

1259F 08/2006 Bugfixing

1259E Unknown

1259D Unknown

1259C Unknown

1259B Unknown

1259A Unknown Initial document release

Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer [APPLICATION NOTE]
Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

10

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-1259K-Real-Time-Clock-RTC-Using-the-Asynchronous-Timer_AVR134_Application Note-09/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, and others are registered trademarks or trademarks of Atmel Corporation in
U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Features
	Introduction
	Table of Contents
	1. Theory of Operation
	2. Calculation
	3. Configuration Example
	4. Implementation
	5. Accuracy
	6. Revision History

