

APPLICATION NOTE

AVR2131: Lightweight Mesh Getting Started Guide

Atmel MCU Wireless

Features

• Atmel® Lightweight Mesh Software Development Kit (SDK)

• WSNDemo sample application

• Custom applications

Description

The purpose of this application note is to introduce users to the Lightweight Mesh
network protocol stack and typical application development process from Atmel. This
document describes how to start quickly with the Lightweight Mesh SDK, by setting
up the development environment and programming devices with sample applications.

To find more detailed information about the Lightweight Mesh architecture and
application development process, refer to [1].

42029G−WIRELESS−03/2014

AVR2131: Lightweight Mesh Getting Started Guide [APPLICATION NOTE]
42029G−WIRELESS−03/2014

2

Table of Contents

1. Introduction .. 3

2. Development Tools .. 3

3. WSNDemo Sample Application .. 4

4. Using Provided Projects ... 4
4.1 Overview ... 4
4.2 Running the Application .. 5

5. Creating a New Application .. 5
5.1 Starting from a Template Application .. 5
5.2 Starting from Scratch .. 5

6. References .. 8

7. Revision History ... 9

AVR2131: Lightweight Mesh Getting Started Guide [APPLICATION NOTE]
42029G−WIRELESS−03/2014

3

1. Introduction
Atmel Lightweight Mesh is an easy to use proprietary low power wireless mesh network protocol. Lightweight Mesh was
designed to address the needs of a wide range of wireless connectivity applications. Some of these applications
include:

• Remote control

• Alarms and security

• Automatic Meter Reading (AMR)

• Home and commercial building automation

• Toys and educational equipment

Lightweight Mesh is designed to work with all Atmel IEEE® 802.15.4 transceivers and SoCs. Currently the stack works
with AVR®- and ARM®-based MCUs, but given extreme portability and low resource requirements, it can be run on
almost any Atmel MCU. Table 1-1 gives a summary of the currently supported hardware platforms.

Table 1-1. Supported Hardware Platforms

Board or module Ordering code MCU Radio Transceiver
ZigBit® 2.4GHz Module with Balanced RF Output
ZigBit 2.4GHz Module with Dual Chip Antenna

ATZB-24-B0
ATZB-24-A2 ATmega1281 AT86RF230B

ZigBit 2.4GHz Module with Chip Antenna ATZB-X0-256-3-0-C ATxmega256A3U AT86RF233

ATmega128RFA1 Evaluation Kit ATAVR128RFA1-EK1 ATmega128RFA1 ATmega128RFA1

XMEGA®-B1 Xplained and RZ600 radio modules ATXMEGAB1-XPLD ATAVRRZ600 ATxmega128B1 AT86RF212, AT86RF231

RCB128RFA1 Part of the ATRF4CE-EK ATmega128RFA1 ATmega128RFA1

RCB231 http://www.dresden-elektronik.de ATmega1281 AT86RF231

ATmega256RFR2 Xplained Pro ATMEGA256RFR2-XPRO ATmega256RFR2 ATmega256RFR2

RCB256RFR2 http://www.dresden-elektronik.de ATmega256RFR2 ATmega256RFR2

SAMD20 Xplained Pro and RZ600 radio modules ATSAMD20-XPRO ATAVRRZ600 ATSAMD20 J18 AT86RF231

SAMD20 Xplained Pro and REB233-XPRO radio module ATSAMD20-XPRO ATREB233-XPRO ATSAMD20 J18 AT86RF233

SAMR21 Xplained Pro ATSAMR21-XPRO ATSAMR21G18 (via
ATSAMD21J18)

ATSAMR21G18 (via
AT86RF233)

All demonstrations in this document will use the RCB128RFA1 board [3] and the WSNDemo sample application as an
example, but the same techniques can be applied to any other development kit, or a custom board and application.

2. Development Tools
A development toolchain consists of:

• An integrated development environment (for example, Atmel Studio or IAR Embedded Workbench®), where
sample applications may be modified, compiled, and debugged,

• a corresponding compiler toolchain (AVR-GCC, IAR™), which provides everything necessary to compile
application source code into binary images, and

• a programming device (for example, JTAG), which may be used to program and debug the application on a
target platform

IAR Embedded Workbench for Atmel AVR [4] can be used to develop and debug applications for AVR-based platforms.
The IAR IDE support’s editing of application source code, compilation, linking object modules with libraries, and
application debugging.

Atmel Studio 6 [6] can be used to develop and debug applications for AVR-based platforms. Atmel Studio is equipped
with the GCC toolchain and does not require external tools to compile Lightweight Mesh applications.

AVR2131: Lightweight Mesh Getting Started Guide [APPLICATION NOTE]
42029G−WIRELESS−03/2014

4

3. WSNDemo Sample Application
The WSNDemo application implements a typical wireless sensor network scenario, in which one central node collects
the data from a network of sensors and passes this data over a serial connection for further processing. In the case of
the WSNDemo this processing is performed by the WSNMonitor PC application. The BitCloud® Quick Start Guide [2]
provides a detailed description of the WSNDemo application scenario, and instructions on how to use WSNMonitor.

The majority of the information in [2] applies to the WSNDemo application running on top of Lightweight Mesh stack.
However, since BitCloud is a ZigBee® PRO stack, there are a few differences in the protocol:

• Device types (Coordinator, Router, and End Device) are simulated on the application level; there is no such
separation in Lightweight Mesh on the stack level

• The value of the extended address field is set equal to the value of the short address field

• For all frames, the LQI and RSSI fields are filled in by the coordinator with the values of LQI and RSSI from the
received frame. This means that nodes that are not connected to the coordinator directly will have the same
values as the last node on the route to the coordinator

• Sensor data values are generated randomly on all platforms

4. Using Provided Projects

4.1 Overview
Applications are located in the apps directory in the SDK. All sample applications in the Lightweight Mesh SDK come
with the project files for Atmel Studio, IAR Embedded Workbench, and GNU make utility.

All Lightweight Mesh applications include a configuration file config.h. This file contains settings for the application and
the stack. WSNDemo application settings are listed in Table 4-1. For system settings mentioned in the configuration file
see [1].

Table 4-1. WSNDemo Application Settings

Parameter Description

APP_ADDR Node network address. This parameter also determines emulated device type:
• 0x0000 – Coordinator
• 0x0001-0x7fff – Router
• 0x8000-0xfffe – End Device

APP_CHANNEL Radio transceiver channel. Valid range for 2.4GHz radios is 11 – 26 (0x0b – 0x1a)

APP_PANID Network identifier

APP_SENDING_INTERVAL This parameter has a different meaning for different device types:
• Coordinator: Interval between sending sensor values to the UART
• Router: Interval between reporting sensor values to the coordinator
• End Device: Sleep interval

APP_SECURITY_KEY Security encryption key

Note: For normal network operation all devices should have different network addresses. There is no automatic
address assignment mechanism, so it is the developer’s responsibility to ensure that addresses are unique.

Refer to the respective development environment documentation for the information on how to compile and debug
projects.

Before programming compiled application into the chip make sure that Fuse bits are set correctly. Table 4-2 shows
correct fuse bits settings for various platforms.

AVR2131: Lightweight Mesh Getting Started Guide [APPLICATION NOTE]
42029G−WIRELESS−03/2014

5

Table 4-2. Recommended Fuse Bits Settings

Board or module MCU Extended High Low

RCB128RFA1 ATmega128RFA1 0xFE 0x9D 0xC2

RCB231 ATmega1281 0xFE 0x9D 0xC2

ZigBit ATmega1281 0xFE 0x9D 0xC2

ATmega256RFR2 Xplained Pro ATmega256RFR2 0xFE 0x9D 0xC2

RCB256RFR2 ATmega256RFR2 0xFE 0x9D 0xC2

4.2 Running the Application
After all boards are programmed connect coordinator board to the PC and run the WSNMonitor application. Observe
the coordinator and other node icons appearing on the screen. Refer to [2] for details on how to use the hardware and
PC software.

5. Creating a New Application

5.1 Starting from a Template Application
The best way to start a new standalone application is to use the provided Template application as a base, and make
custom modifications. Using template project files will ensure that all necessary components are included in the build,
and that all required definitions are present. The template application can be found in the <SDK Root>/apps/Template
directory.

5.2 Starting from Scratch
If Lightweight Mesh has to be integrated into a larger existing project, it is recommended to include all required files and
definitions into the existing project. Table 5-1, Table 5-2, and Table 5-3 present a lists of files, include paths and
definitions that are required for normal Lightweight Mesh operation. If platform with a standalone transceiver is used,
then files, paths and definitions for the transceiver should be added to files, paths and definitions for the MCU.

Table 5-1. Required Files

MCU / RF transceiver Files

All <SDK Root>\nwk\src\nwk.c
<SDK Root>\nwk\src\nwkDataReq.c
<SDK Root>\nwk\src\nwkSecurity.c
<SDK Root>\nwk\src\nwkFrame.c
<SDK Root>\nwk\src\nwkGroup.c
<SDK Root>\nwk\src\nwkRoute.c
<SDK Root>\nwk\src\nwkRouteDiscovery.c
<SDK Root>\nwk\src\nwkRx.c
<SDK Root>\nwk\src\nwkTx.c
<SDK Root>\sys\src\sys.c
<SDK Root>\sys\src\sysTimer.c
<SDK Root>\sys\src\sysEncrypt.c

ATmega1281 <SDK Root>\hal\atmega1281\src\hal.c
<SDK Root>\hal\atmega1281\src\halPhy.c
<SDK Root>\hal\atmega1281\src\halTimer.c

AVR2131: Lightweight Mesh Getting Started Guide [APPLICATION NOTE]
42029G−WIRELESS−03/2014

6

ATxmega128B1 <SDK Root>\hal\atxmega128b1\src\hal.c
<SDK Root>\hal\atxmega128b1\src\halPhy.c
<SDK Root>\hal\atxmega128b1\src\halTimer.c

ATxmega256A3U <SDK Root>\hal\atxmega256a3u\src\hal.c
<SDK Root>\hal\atxmega256a3u\src\halPhy.c
<SDK Root>\hal\atxmega256a3u\src\halTimer.c

ATSAMD20J18 <SDK Root>\hal\atsamd20\src\hal.c
<SDK Root>\hal\atsamd20\src\halPhy.c
<SDK Root>\hal\atsamd20\src\halTimer.c
<SDK Root>\hal\atsamd20\src\halStartup.c

ATSAMR21G18 (via ATSAMD21J18) <SDK Root>\hal\atsamd21\src\hal.c
<SDK Root>\hal\atsamd21\src\halPhy.c
<SDK Root>\hal\atsamd21\src\halTimer.c
<SDK Root>\hal\atsamd21\src\halStartup.c

ATmega128RFA1 <SDK Root>\hal\atmega128rfa1\src\hal.c
<SDK Root>\hal\atmega128rfa1\src\halTimer.c
<SDK Root>\phy\atmegarfa1\src\phy.c

ATmega256RFR2 <SDK Root>\hal\atmega256rfr2\src\hal.c
<SDK Root>\hal\atmega256rfr2\src\halTimer.c
<SDK Root>\phy\atmegarfr2\src\phy.c

AT86RF230B <SDK Root>\phy\at86rf230\src\phy.c

AT86RF231 <SDK Root>\phy\at86rf231\src\phy.c

AT86RF212 <SDK Root>\phy\at86rf212\src\phy.c

AT86RF233 (including ATSAMR21G18) <SDK Root>\phy\at86rf233\src\phy.c

Table 5-2. Required Include Paths

MCU / RF transceiver Include Paths

All <SDK Root>\nwk\inc
<SDK Root>\sys\inc
<Application Root> (required to locate config.h file)

ATmega1281 <SDK Root>\hal\atmega1281\inc

ATxmega128B1 <SDK Root>\hal\atxmega128b1\inc

ATxmega256A3U <SDK Root>\hal\atxmega256a3u\inc

ATSAMD20J18 <SDK Root>\hal\atsamd20\inc

ATSAMR21G18 (via ATSAMD21J18) <SDK Root>\hal\atsamd21\inc

ATmega128RFA1 <SDK Root>\hal\atmega128rfa1\inc
<SDK Root>\phy\atmegarfa1\inc

ATmega256RFR2 <SDK Root>\hal\atmega256rfr2\inc
<SDK Root>\phy\atmegarfr2\inc

AT86RF230B <SDK Root>\phy\at86rf230\inc

AT86RF231 <SDK Root>\phy\at86rf231\inc

AT86RF212 <SDK Root>\phy\at86rf212\inc

AT86RF233 (including ATSAMR21G18) <SDK Root>\phy\at86rf233\inc

AVR2131: Lightweight Mesh Getting Started Guide [APPLICATION NOTE]
42029G−WIRELESS−03/2014

7

Table 5-3. Required Definitions

MCU / RF transceiver Definitions

All F_CPU=<MCU Operating Frequency>
Note that if MCU frequency is different from the supported by default then you
may need to change frequency depended code in the <SDK Root>\hal
directory.

ATmega1281 HAL_ATMEGA1281

ATxmega128B1 HAL_ATXMEGA128B1

ATxmega256A3U HAL_ATXMEGA256A3U

ATSAMD20J18 HAL_ATSAMD20J18

ATSAMR21G18 (via ATSAMD21J18) HAL_ATSAMD21J18

ATmega128RFA1 PHY_ATMEGARFA1
HAL_ATMEGA128RFA1

ATmega256RFR2 PHY_ATMEGARFR2
HAL_ATMEGA256RFR2

AT86RF230B PHY_AT86RF230

AT86RF231 PHY_AT86RF231

AT86RF212 PHY_AT86RF212

AT86RF233 (including ATSAMR21G18) PHY_AT86RF233

The execution environment should ensure that:

• SYS_Init() function is called before any other Lightweight Mesh API call

• SYS_TaskHandler() function is called as often as possible

• SYS_TaskHandler() function is only called from the main while (1) {} loop

Note: The HAL_Init() function (called from SYS_Init() function) will perform low level hardware initialization. If such
initialization already is performed by the existing project environment, then it should be removed from the
HAL_Init() function.

AVR2131: Lightweight Mesh Getting Started Guide [APPLICATION NOTE]
42029G−WIRELESS−03/2014

8

6. References
[1] Atmel AVR2130: Lightweight Mesh Developer Guide.
[2] Atmel AVR2052: Atmel BitCloud Quick Start Guide.
[3] Atmel AVR2044: RCB128RFA1 – Hardware User Manual.
[4] IAR Embedded Workbench for Atmel AVR.
[5] Studio Archive (AVR Studio installer downloads).
[6] Atmel Studio 6.

http://www.atmel.com/Images/Atmel-42028-Lightweight-Mesh-Developer-Guide_Application-Note_AVR2130.pdf
http://www.atmel.com/images/doc8200.pdf
http://www.atmel.com/images/doc8339.pdf
http://www.iar.com/en/products/iar-embedded-workbench/avr/
http://www.atmel.com/tools/STUDIOARCHIVE.aspx
http://www.atmel.com/tools/ATMELSTUDIO.aspx

AVR2131: Lightweight Mesh Getting Started Guide [APPLICATION NOTE]
42029G−WIRELESS−03/2014

9

7. Revision History
Doc. Rev. Date Comments

42029G 03/2014 Added ATSAMR21-XPRO information

42029F 03/2014 Added ATZB-X0-256-3-0-C and ATREB233-XPRO information
Removed OTA information

42029E 08/2013 Added ATSAMD20 information
Changed product line abbreviation from AVR to Wireless in the document footer

42029D 05/2013 Updated directory structure, removed precompiled binaries information

42029C 03/2013 ATmega256RFR2-XPLD has been replaced by ATmega256RFR2-XPRO

42029B 02/2013 Added ATmega256RFR2 information

42029A 09/2012 Initial document release

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg.
1-6-4 Osaki, Shinagawa-ku
Tokyo 141-0032
JAPAN
Tel: (+81)(3) 6417-0300
Fax: (+81)(3) 6417-0370

© 2014 Atmel Corporation. All rights reserved. / Rev.: 42029G−WIRELESS−03/2014

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, BitCloud®, Enabling Unlimited Possibilities®, STK®, XMEGA®, ZigBit®, and others are
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM® and others are the registered trademark or trademarks of ARM Ltd. Other
terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/

	1. Introduction
	2. Development Tools
	3. WSNDemo Sample Application
	4. Using Provided Projects
	4.1 Overview
	4.2 Running the Application

	5. Creating a New Application
	5.1 Starting from a Template Application
	5.2 Starting from Scratch

	6. References
	7. Revision History

