REV	CHANGE DESCRIPTION	NAME	DATE
А	Release		8-1-16
В	Increased +1.2V Capacitor Value & VDD12A Cap Requirement		1-16-17

Any assistance, services, comments, information, or suggestions provided by Microchip (including without limitation any comments to the effect that the Company's product designs do not require any changes) (collectively, "Microchip Feedback") are provided solely for the purpose of assisting the Company in the Company's attempt to optimize compatibility of the Company's product designs with certain Microchip products. Microchip does not promise that such compatibility optimization will actually be achieved. Circuit diagrams utilizing Microchip products are included as a means of illustrating typical applications; consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. Microchip reserves the right to make changes to specifications and product descriptions at any time without notice.

DOCUMENT DESCRIPTION

Schematic Checklist for the LAN7850, 56-pin SQFN Package

80 Arkay Drive, Suite 100 Hauppauge, New York 11788	
Document Number	Revision
SC471255	В

Schematic Checklist for LAN7850

Information Particular for the 56-pin SQFN Package

LAN7850 SQFN Phy Interface:

- 1. TR0P (pin 1); This pin is the transmit/receive positive channel 0 input/output connection of the internal Phy. This pin connects to the 10/100/1000 magnetics.
- 2. TR0N (pin 2); This pin is the transmit/receive negative channel 0 input/output connection of the internal Phy. This pin connects to the 10/100/1000 magnetics.
- 3. TR1P (pin 4); This pin is the transmit/receive positive channel 1 input/output connection of the internal Phy. This pin connects to the 10/100/1000 magnetics.
- 4. TR1N (pin 5); This pin is the transmit/receive negative channel 1 input/output connection of the internal Phy. This pin also connects to the 10/100/1000 magnetics.
- 5. TR2P (pin 7); This pin is the transmit/receive positive channel 2 input/output connection of the internal Phy. This pin also connects to the 10/100/1000 magnetics.
- 6. TR2N (pin 8); This pin is the transmit/receive negative channel 2 input/output connection of the internal Phy. This pin also connects to the 10/100/1000 magnetics.
- 7. TR3P (pin 10); This pin is the transmit/receive positive channel 3 input/output connection of the internal Phy. This pin also connects to the 10/100/1000 magnetics.
- 8. TR3N (pin 11); This pin is the transmit/receive negative channel 3 input/output connection of the internal Phy. This pin also connects to the 10/100/1000 magnetics.
- 9. For Transmit/Receive Channel connections and termination details, refer to Figure 1.
- 10. Note: Unlike all previous generations of SMSC / Microchip Ethernet Phys, the Phy within the LAN7850 does not require the usual, external 49.9 ohm, 1.0% Ethernet terminations. These terminations have been designed internal to the device.

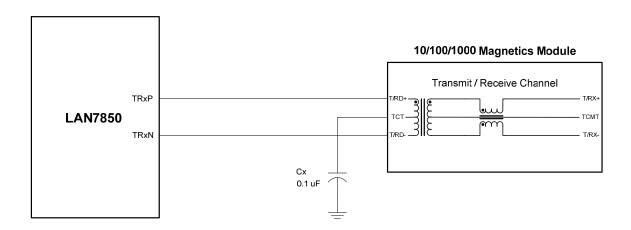


Figure 1 – Transmit / Receive Channel x Connections and Terminations

LAN7850 SQFN Magnetics:

- 1. The center tap connection on the LAN7850 side for each channel must be AC coupled to digital ground through a 0.1 uF capacitor.
- 2. The center tap connection on the cable side (RJ45 side) for each channel should be terminated with a 75 Ω resistor through a 1000 ρ F, 2KV capacitor (C_{magterm}) to chassis ground.
- 3. Assuming the design of an end-point device (NIC), TR0P (pin 1) of the LAN7850 SQFN should trace through the magnetics to pin 1 of the RJ45 connector.
- 4. Assuming the design of an end-point device (NIC), TR0N (pin 2) of the LAN7850 SQFN should trace through the magnetics to pin 2 of the RJ45 connector.
- 5. Assuming the design of an end-point device (NIC), TR1P (pin 4) of the LAN7850 SQFN should trace through the magnetics to pin 3 of the RJ45 connector.
- 6. Assuming the design of an end-point device (NIC), TR1N (pin 5) of the LAN7850 SQFN should trace through the magnetics to pin 6 of the RJ45 connector.
- 7. Assuming the design of an end-point device (NIC), TR2P (pin 7) of the LAN7850 SQFN should trace through the magnetics to pin 4 of the RJ45 connector.
- 8. Assuming the design of an end-point device (NIC), TR2N (pin 8) of the LAN7850 SQFN should trace through the magnetics to pin 5 of the RJ45 connector.
- 9. Assuming the design of an end-point device (NIC), TR3P (pin 10) of the LAN7850 SQFN should trace through the magnetics to pin 7 of the RJ45 connector.
- 10. Assuming the design of an end-point device (NIC), TR3N (pin 11) of the LAN7850 SQFN should trace through the magnetics to pin 8 of the RJ45 connector.

RJ45 Connector:

1. The RJ45 shield should be attached directly to chassis ground.

+3.3V Power Supply Connections:

- 1. The analog supply (VDD33A) pin on the LAN7850 SQFN is pin 44. This pin requires a connection to +3.3V. This pin is the +3.3V analog power supply for the USB 2.0 AFE.
- 2. The VDD33A pin should also have one .01 μ F (or smaller) capacitor to decouple the LAN7850. The capacitor size should be SMD_0603 or smaller.
- 3. The supply (VDD33_REG_IN) pin for the +2.5V LDO regulator in the LAN7850 SQFN is pin 54. This pin requires a connection to +3.3V.
- 4. The VDD33_REG_IN pin should also have one .01 μ F (or smaller) capacitor to decouple the LAN7850. The capacitor size should be SMD_0603 or smaller.
- 5. The supply (VDD_SW_IN) pin for the +1.2V switching regulator in the LAN7850 SQFN is pin 19. This pin requires a connection to +3.3V +2.5V.
- 6. The VDD_SW_IN pin should also have one .01 μ F (or smaller) capacitor to decouple the LAN7850. The capacitor size should be SMD_0603 or smaller.

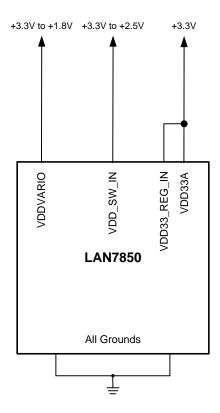


Figure 2 - +3.3V Power Supply Connections

VDDVARIO Power Supply Connections:

- 1. The VDDVARIO supply pins on the LAN7850 SQFN are 13, 25, 42 & 45. These pins require a connection to +3.3V +1.8V.
- 2. Each VDDVARIO pin should also have one .01 μF (or smaller) capacitor to decouple the LAN7850. The capacitor size should be SMD_0603 or smaller.

+2.5V Power Supply Connections:

- 1. VDD25_REG_OUT (pin 53), this pin is the output pin of the internal +2.5V LDO regulator for the LAN7850.
- 2. The VDD25_REG_OUT pin should have one .01 μ F (or smaller) capacitor to bypass the LAN7850. The capacitor size should be SMD_0603 or smaller.
- 3. The VDD25_REG_OUT pin also requires a 1.0 uF, low ESR capacitor. The low ESR requirement is to ensure the proper stability of the +2.5V internal regulator of the LAN7850. We recommend a high quality, low ESR, ceramic type capacitor for this particular application. We recommend the ESR not be any higher than 2.0 ohms for frequency ranges from 10 KHz to 1 GHz.
- 4. VDD25A (pins 3, 6, 9, & 12), these four input power supply pins should be powered from the internal +2.5V switching regulator. These pins power the Gigabit Ethernet Phy AFE. See figure 3 below for more details.
- 5. The VDD25A pins should each have one .01 μF (or smaller) capacitor to decouple the LAN7850. The capacitor size should be SMD_0603 or smaller.

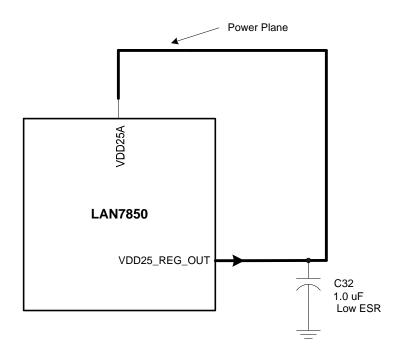


Figure 3 - LAN7850 +2.5V Power Connections

+1.2V Power Supply Connections:

- VDD12_SW_OUT (pin 18), this pin is the output pin of the internal +1.2V switching regulator for the LAN7850. This pin must be connected directly to a series 3.3 uH inductor.
- 2. The VDD12_SW_OUT pin / 3.3 uH inductor node in the design should have one .01 μ F (or smaller) capacitor to bypass the LAN7850. The capacitor size should be SMD_0603 or smaller.
- 3. The VDD12_SW_OUT pin / 3.3 uH inductor node also requires a 22 uF, low ESR capacitor. The low ESR requirement is to ensure the proper stability of the +1.2V internal regulator of the LAN7850. We recommend a high quality, low ESR, ceramic type capacitor for this particular application. We recommend the ESR not be any higher than 2.0 ohms for frequency ranges from 10 KHz to 1 GHz.
- 4. VDD12_SW_FB (pin 20), this pin supplies feedback for the internal +1.2V switching regulator. In this application, this pin should be connected directly to the 3.3 uH output inductor of the +1.2V switching regulator of the LAN7850. For applications where the +1.2V internal switching regulator is disabled, simply connect VDD12_SW_FB directly to VDD_SW_IN (pin 19).
- 5. The VDD12_SW_FB pin should have one .01 μ F (or smaller) capacitor to decouple the LAN7850. The capacitor size should be SMD 0603 or smaller.
- 6. VDD12CORE (pins 26 & 48), these two core input power supply pins may be powered from the internal +1.2V switching regulator. In this application, these two pins should be connected directly to the 3.3 uH output inductor of the +1.2V switching regulator of the LAN7850. See figure 4 below for more details. These two pins can also be supplied from an external +1.2V power supply. In this application, the internal +1.2V switching regulator can be disabled.
- 7. The VDD12CORE pins should each have one .01 μ F (or smaller) capacitor to decouple the LAN7850. The capacitor size should be SMD_0603 or smaller.
- 8. VDD12A (pins 33 & 52), these two pins supply power to the analog blocks (Gigabit Ethernet Phy & the USB PLL / AFE section) of the LAN7850 from the internal +1.2V switching regulator through a ferrite bead. Be sure to place bulk capacitance on each side of the ferrite bead. A 1.0 uF, low ESR cap is required on the pin 33 & 52 side of the ferrite bead. In this application, the ferrite bead should be connected to the 3.3 uH output inductor of the +1.2V switching regulator of the LAN7850. See figure 4 below for more details. These two pins can also be supplied from an external +1.2V power supply. In this application, the internal +1.2V switching regulator can be disabled.
- 9. The VDD12A pins should each have one .01 μ F (or smaller) capacitor to decouple the LAN7850. The capacitor size should be SMD 0603 or smaller.

- 10. VDD12HSIC (pin 34), this pin supplies power to the HSIC section of the device from the internal +1.2V switching regulator through a ferrite bead. Be sure to place bulk capacitance on each side of the ferrite bead. In this application, the ferrite bead should be connected to the 3.3 uH output inductor of the +1.2V switching regulator of the LAN7850. See figure 4 below for more details. This pin can also be supplied from an external +1.2V power supply. In this application, the internal +1.2V switching regulator can be disabled.
- 11. The VDD12HSIC pin should have one .01 μ F (or smaller) capacitor to decouple the LAN7850. The capacitor size should be SMD_0603 or smaller.

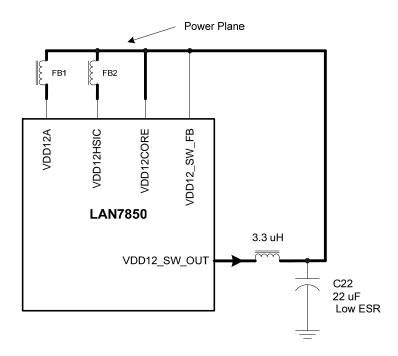


Figure 4 - LAN7850 +1.2V Power Connections

Ground Connections:

- All grounds, the digital ground pins (GND), the core ground pins (GND_CORE) and the analog ground pins (VSS_A) on the LAN7850 SQFN, are all connected internally to the exposed die paddle ground (VSS). The EDP Ground pad on the underside of the LAN7850 must be connected directly to a solid, contiguous digital ground plane.
- 2. On the PCB, we recommend one Digital Ground. We do not recommend running separate ground planes for any of our LAN products.

Crystal Connections:

- 1. A 25.000 MHz crystal must be used with the LAN7850 SQFN. For exact specifications and tolerances refer to the latest revision LAN7850 data sheet.
- 2. XI (pin 46) on the LAN7850 SQFN is the clock circuit input. This pin requires a $15-33 \, \rho F$ capacitor to digital ground. One side of the crystal connects to this pin.
- 3. XO (pin 47) on the LAN7850 SQFN is the clock circuit output. This pin requires a matching 15 33 ρF capacitor to ground and the other side of the crystal.
- 4. Since every system design is unique, the capacitor values are system dependant. The PCB design, the crystal selected, the layout and the type of caps selected all contribute to the characteristics of this circuit. Once the board is complete and operational, it is up to the system engineer to analyze this circuit in a lab environment. The system engineer should verify the frequency, the stability and the voltage level of the circuit to guarantee that the circuit meets all design criteria as put forth in the data sheet.
- 5. For proper operation, the additional external 1.0M Ω resistor across the crystal is no longer required. The necessary resistance has been designed-in internally on the LAN7850 SQFN.

EEPROM Interface:

- 1. EECS (pin 21) on the LAN7850 SQFN connects to the external EEPROM's CS pin.
- 2. EECLK (pin 24) on the LAN7850 SQFN connects to the external EEPROM's serial clock pin.
- 3. EEDI (pin 22) on the LAN7850 SQFN connects to the external EEPROM's Data Out pin.
- 4. EEDO (pin 23) on the LAN7850 SQFN connects to the external EEPROM's Data In pin.
- 5. Be sure to select a 3-wire style 2K/4K EEPROM that is organized for 256/512 x 8-bit operation.
- 6. Be sure to select an EEPROM with an operational voltage that matches your design's VDDVARIO voltage level.

REF_REXT Resistor:

1. REF_REXT (pin 55) on the LAN7850 SQFN should connect to digital ground through a $2.00K \Omega$ resistor with a tolerance of 1.0%. This pin is used to set-up critical bias currents for the embedded 10/100 Ethernet Physical device.

REF_FILT Capacitor:

- REF_FILT (pin 56) on the LAN7850 SQFN should connect to digital ground through a 1.0 uF capacitor. This pin is used as an external Phy reference filter for the embedded 10/100 Ethernet Physical device.
- 2. We recommend using a low ESR capacitor for the REF_FILT cap. The REF_FILT cap should be a high quality, low ESR, ceramic type capacitor for this particular application. We recommend the ESR not be any higher than 2.0 ohms for frequency ranges from 10 KHz to 1 GHz.

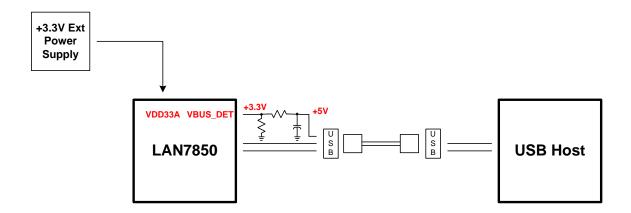
USBRBIAS Resistor:

1. USBRBIAS (pin 43) on the LAN7850 SQFN should connect to digital ground through a 12.0K Ω resistor with a tolerance of 1.0%. This pin is used to set-up critical bias currents for the embedded USB Physical device.

Required External Pull-ups/Pull-downs:

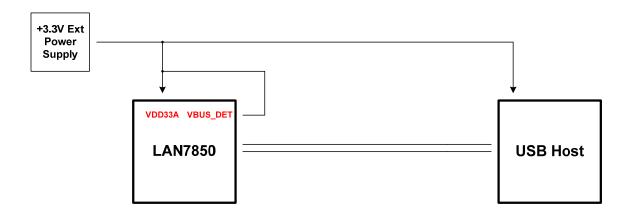
- 1. GPIO0 (pin 16) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 2. GPIO1 (pin 21) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 3. GPIO2 (pin 22) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 4. GPIO3 (pin 23) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 5. GPIO4 (pin 24) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 6. GPIO5 (pin 28) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 7. GPIO6 (pin 29) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 8. GPIO7 (pin 31) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 9. GPIO8 (pin 32) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 10. GPIO9 (pin 49) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 11. GPIO10 (pin 50) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.
- 12. GPIO11 (pin 51) A pull-up resistor would be required if this pin is programmed as an Open Drain Output.

USB Interface:

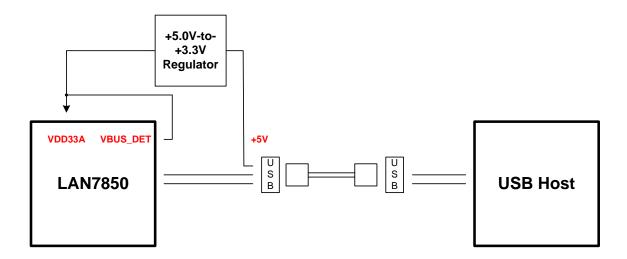

- 1. USB_DP (pin 36), this pin is the USB 2.0 channel positive data pin. This pin should be connected directly to pin 3 (D+) on an upstream USB connector (Type "B").
- 2. USB_DM (pin 37), this pin is the USB channel negative data pin. This pin should be connected directly to pin 2 (D-) on an upstream USB connector (Type "B").
- 3. Pin 4 on the USB connector should be connected directly to digital ground.
- 4. The metal shield of the USB connector should be connected directly to a suitable chassis ground plane.

VBUS_DET Configurations:

Possible VBUS_DET pin (pin 27) connections are dictated by the hardware configuration of the USB link. Possible designs are "Self-Powered Mode", "Self-Powered Permanently Attached Mode" and "Bus-Powered Mode". These three possible configurations are depicted below.


Self-Powered Mode:

- 1. In this application, the VBUS_DET pin (pin 27) is driven by a voltage divider circuit that drops the +5V VBUS voltage to +3.3V.
- 2. For the voltage divider, a series 100K ohm resistor with a 200K ohm resistor to digital ground is recommended.
- 3. A 2.2 uF capacitor is also recommended on pin 1 (VBUS) of the USB connector.


Self-Powered Permanently Attached Mode:

- 1. In this application, the VBUS_DET pin (pin 27) is driven by the same power rail that powers both the LAN7850 and the USB Host.
- 2. A series resistor (820 ohms to 10K ohms) may be used on the VBUS_DET pin in order to improve susceptibility characteristics.

Bus-Powered Mode:

- 1. Typical Bus-Powered applications will connect pin 1 (VBUS) on a standard 4-pin, upstream USB connector (Type "B") directly to a 2000 mA ferrite bead. This ferrite bead will in turn feed a LDO +5.0V-to-+3.3V voltage regulator to power the LAN7850.
- 2. We recommend no bulk capacitance be placed on pin 1 (VBUS) of the USB connector in Bus-Powered applications. On the voltage regulator side of the ferrite bead, we recommend limiting the bulk capacitance to 4.7 uF. This should satisfy the 10.0 uF total capacitance to limit in-rush current as required by the USB-IF specification.
- 3. VBUS_DET (pin 27), this pin detects the state of the supplied upstream power. This pin must be tied to VDD33A when operating in Bus-Powered mode.

HSIC Interface:

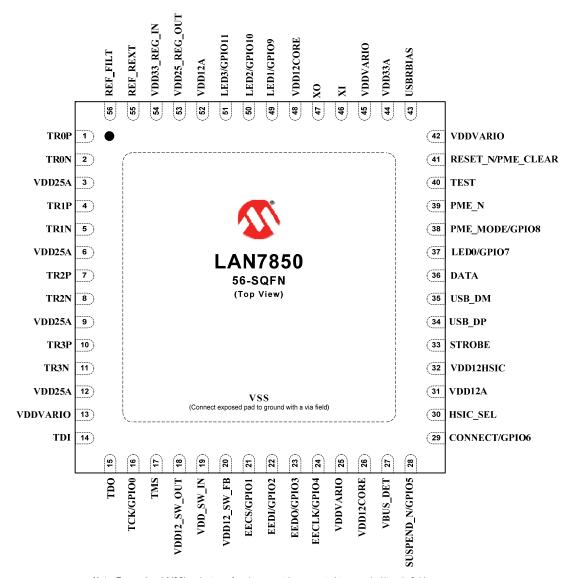
- DATA (pin 38), this pin is the Bi-directional Double Data Rate (DDR) data signal that is synchronous to the HSIC_STROBE signal as defined in the High-Speed Inter-Chip USB Specification, Version 1.0.
- 2. STROBE (pin 35), this pin is the Bi-directional data strobe signal as defined in the High-Speed Inter-Chip USB Specification, Version 1.0.
- 3. The HSIC_DATA and HSIC_STROBE pin timing adheres to the HSIC 1.0 specification. Refer to the High-Speed Interchip USB Electrical Specification Revision 1.0 (09-23-07) and USB HSIC ECN for detailed USB timing information.
- 4. CONNECT (pin 29), this pin asserts when the device is attempting to attach to the USB Host. This pin is intended to help address a known bug on existing HSIC controllers where the HSIC connect signaling is missing.
- 5. HSIC_SEL (pin 30) When tied to VDD, the device HSIC interface is enabled. Otherwise, the USB 2.0 interface is enabled. This is a static signal that may not be changed at run time.
- 6. The HSIC interface is only recommended for intra-board interconnect. Connectors and cables are not recommended. The connection should be point-to-point.

Miscellaneous:

- RESET_N (pin 41) A hardware reset will occur when the RESET_N pin is driven low. Assertion of RESET_N is not required at power-on. However, if used, RESET_N must be driven low for a minimum period as defined in Section 16.6.2, "RESET_N Timing,". The RESET_N pin is pulled-high internally but must be connected externally to VDDVARIO if unused.
- 2. RESET_N (pin 41), For a more robust LAN7850 design, a hardware reset (nRST assertion) is recommended following power-up. This signal resets all logic and registers within the LAN7850. SMSC does not recommend the use of an RC circuit for this pin reset. A reset generator / voltage monitor is one option to provide a proper reset. Better yet, for increased design flexibility, a controllable reset (GPIO, dedicated reset output) should be considered. In this case, SMSC recommends a push-pull type output (not an open-drain type) for the monotonic reset to ensure a sharp rise time transition from low-to-high.
- 3. LED0 (pin 31), LED1 (pin 49), LED2 (pin 50) & LED3 (pin 51), can be programmed via register settings to display various Ethernet activity such as Speed, Link & Duplex Status. See the latest version of the LAN7850 data sheet for complete details.
- 4. SUSPEND_N (pin 28), this pin is asserted when the device is in one of the suspend states as defined in Section 13.3, Suspend States of the data sheet. This pin may be configured to place an external switcher into a low power state such as when the device is in SUSPEND2.
- 5. TEST (pin 40), this pin must be tied directly to digital ground in order to ensure proper operation.
- 6. For a detailed description of the PME pins on the LAN7850, please refer to section 14.0 POWER MANAGEMENT EVENT (PME) OPERATION in the LAN7850 data sheet.
- 7. For a detailed description of the JTAG pins on the LAN7850, please refer to section 16.6.3 JTAG Timing in the LAN7850 data sheet.
- 8. Incorporate a large SMD resistor (SMD_1210) to connect the chassis ground to the digital ground. This will allow some flexibility at EMI testing for different grounding options. Leave the resistor out, the two grounds are separate. Short them together with a zero ohm resistor. Short them together with a cap or a ferrite bead for best performance.
- 9. Be sure to incorporate enough bulk capacitors (4.7 22μF caps) for each power plane.

LAN7850 SQFN QuickCheck Pinout Table:

Use the following table to check the LAN7850 SQFN shape in your schematic.


LAN7850 SQFN					
Pin No.	Pin Name	Pin No.	Pin Name		
1	TR0P	29	CONNECT / GPIO6		
2	TR0N	30	HSIC_SEL		
3	VDD25A	31	LED0 / GPIO7		
4	TR1P	32	PME_MODE / GPIO8		
5	TR1N	33	VDD12A		
6	VDD25A	34	VDD12HSIC		
7	TR2P	35	STROBE		
8	TR2N	36	USB_DP		
9	VDD25A	37	USB_DM		
10	TR3P	38	DATA		
11	TR3N	39	PME_N		
12	VDD25A	40	TEST		
13	VDDVARIO	41	RESET_N / PME_CLEAR		
14	TDI	42	VDDVARIO		
15	TDO	43	USBRBIAS		
16	TCK / GPIO0	44	VDD33A		
17	TMS	45	VDDVARIO		
18	VDD12_SW_OUT	46	XI		
19	VDD_SW_IN	47	XO		
20	VDD12_SW_FB	48	VDD12CORE		
21	EECS / GPIO1	49	LED1 / GPIO9		
22	EEDI / GPIO2	50	LED2 / GPIO10		
23	EEDO / GPIO3	51	LED3 / GPIO11		
24	EECLK / GPIO4	52	VDD12A		
25	VDDVARIO	53	VDD25_REG_OUT		
26	VDD12CORE	54	VDD33_REG_IN		
27	VBUS_DET	55	REF_REXT		
28	SUSPEND_N / GPIO5	56	REF_FILT		
57		EDP Ground Connection Exposed Die Paddle Ground Pad on Bottom of Package			

Notes:

LAN7850 SQFN Package Drawing:

Note: Exposed pad (VSS) on bottom of package must be connected to ground with a via field.

Reference Material:

- 1. Microchip LAN7850 Data Sheet; check web site for latest revision.
- 2. Microchip LAN7850 Reference Design, check web site for latest revision.
- 3. Microchip Reference Designs are schematics only; there are no associated PCBs.
- 4. EVB-LAN7850 Customer Evaluation Board & Schematics

